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Abstract

The exploration of complex interaction networks has
attracted considerable interest in various fields, rang-
ing from fundamental biology and medicine to statis-
tical physics and information technology. In “-omics”
disciplines, significant progresses have been made in
understanding the large-scale properties and the bio-
logical relevance of these interactions. Some properties
such as “scale-free” distribution of nodes connectivity
or “centrality” are aspects commonly described in such
complex interaction systems. In many of these studies
the analysis of network topology is complemented by a
semantic analysis that may rely on different labels asso-
ciated to the interacting entities. One of the bottleneck
of these semantic analysis is that they are computa-
tionally costly. In this paper we present a framework
to explore abstraction of networks useful to speedup
the computation of ground network measures. Such
abstraction mechanisms may be used to efficiently pro-
vide accurate approximations of ground network mea-
sures.

Introduction
The exploration of the complex molecular interactions
defining the cellular environments is attracting consid-
erable interest in various fields including biology and
medicine. Supported by the unprecedented amount
of biological sequence data generated by the Human
Genome Project and by the development of -omics dis-
ciplines, significant progresses have been made in un-
derstanding the large-scale properties and the biological
relevance of these interactions.

An important motivation for the study of -omics in-
teractions resides in the ability of network formalisms
to assess the biological relevance of a high number of in-
teracting molecules in various experimental conditions.
The interactional nature of the cellular processes, un-
derstood as associations of molecules whose relations
to each other are instrumental in realizing a partic-
ular function (Alon 2003; Barabasi and Oltvai 2004;
Hartwell et al. 1999), underlines the key role of the in-
teraction patterns analysis in untangling the functional
architecture of the cellular environments.
Copyright c© 2009, Association for the Advancement of Ar-
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Uncovering patterns in large interaction networks is a
difficult task because of the large number of nodes and
edges. Thus, several proposals have been put forwards
to extract manually or automatically useful information
from these networks. To ease network exploration and
analysis, Hu et al. advocate the use of multi-level ap-
proaches (Hu et al. 2007) which support zooming the
network at different levels of granularity. Many other
approaches rely on clustering nodes (Huang, Wei, and
Pan 2006; Huang and Pan 2006) based on their topolog-
ical properties and/or their associated labels. Corneliu
et al., for example, use node labels and make them dif-
fuse on the graph to generate clusters that are then
used to target useful biological information (Henegar et
al. 2006). Unfortunately the computation that are re-
quired at the ground level is classically super-quadratic
with the size of the network. In this extended abstract
we define a framework for network abstractions, so as to
explore the feasibility for computing approximations of
typical ground statistics based on the abstract network
level.

Biological Problem Description
The strong relation between the biological roles of
molecules and the modular organization of their inter-
actions has been long hypothesized even before high-
throughput genomic data became available (Hartwell
et al. 1999). Several studies have uncovered correla-
tions of network centrality indices (be it connectivity or
betweenness between nodes in the network) with indi-
cators of biological relevance, such as lethal knockout
phenotypes (Jeong et al. 2001). Other studies have
shown that specific patterns of phylogenetic variability
(Guimera and Nunes Amaral 2005) were also correlated
with centrality indices.

In parallel, the biological interpretation of high-
throughput gene expression measurements (i.e., the ge-
nomic functional profiling), has evolved into a highly
standardized analytical framework. Functional pro-
filing tools rely on curated biological annotation re-
sources, as those provided by the Gene Ontology Con-
sortium (GO) (Ashburner et al. 2000) or the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al. 2008), and on statistical significance measures to
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Figure 1: Schema of the abstraction mechanism to com-
pute abstract measures using an abstract network

identify biological themes, which are significantly over-
represented among those annotating a set of transcripts.
These tools became popular, as they provide valuable
insights into the biological phenomena encoded into mi-
croarray expression measurements.

Although these two aspects of the biological interpre-
tation of transcriptomic signatures have been developed
independently, they follow a common goal by exploring
complementary facets of the biological phenomena en-
coded into gene expression profiles. The benefit of in-
tegrating them into a unique framework is suggested
by the strength of the relation linking the modular
structuring of transcripts interactions to their biolog-
ical roles, as well as by the interactional nature of the
latter ones, which cannot be conceived independently
from those of the other molecular actors that compose
the cellular environments.

Algorithmic solutions inspired by network formalisms
are of major interest for integrating heterogeneous in-
formation pertaining to the analysis of genomic data.
Among recent developments, several proposals relied on
network abstractions to represent semantic relations be-
tween GO biological themes annotating gene products
and to improve the characterization of the functional
profile of gene expression datasets (Aubry et al. 2006;
Chabalier, Mosser, and Burgun 2007). Another goal is
to increase the accuracy of supervised and unsupervised
classification methods available for microarray data by
integrating information on relevant molecular interac-
tions extracted from pathways annotation databases
such as KEGG. Finally, several authors proposed var-
ious ways of incorporating the biological information
available on transcripts roles (i.e. the sharing of com-
mon annotating themes) to weight similarity metrics
and improve the biological relevance of the clustering
of transcriptional profiles (Zhou, Kao, and Wong 2002;
Huang, Wei, and Pan 2006; Henegar et al. 2006).

A recent approach has suggested to take into account
the biological knowledge available on transcripts roles
to improve the biological relevance of the modular pat-
terns identified in co-expression networks (Prifti et al.
2008; Henegar et al. 2008). Such an approach ex-
plores both transcriptional and functional patterns in
co-expression networks, and it has proven to be more bi-
ologically relevant in terms of transcriptional and func-
tional patterns identified in co-expression networks.

Network Abstraction Operators
The proposed approach is summarized in Figure 1.
Starting from a ground interaction graph G, we are in-
terested in computing some measurements on it, for in-
stance the centrality of every node or its betweenness.
Let X = f(G) be the set of such measures, obtained
by means of the procedures globally denotes f . For
large networks, these computations may be too long,
or their results may remain hidden in the large amount
of ground information, making difficult understanding
their meaning. As an alternative, we generate an ab-
stract network A = ω(G) through the application of an
abstraction operator ω, which “condenses” the ground
network. Then, we extract from A, by means of pro-
cedures f ′, the properties that are analogous of those
looked for in G, namely X ′ = f ′(A). Finally, we trans-
form the values of properties X ′ into the values of prop-
erties X again, by applying the functions h and obtain-
ing Xa = h(X ′). In this process, the requirement that
Xa = X may be too strong, and we accept that Xa be
only an approximation of X.

More formally, let G be a ground undirected network
with n vertices (nodes), each one associated to a specific
gene in a given set. In G two nodes gi and gj are con-
nected with an arc if they are co-expressed, i.e., they
show a similar expression pattern. More precisely, co-
expression between two genes can be quantified by as-
signing to the connecting arc a weight, namely a positive
real number wij that represents its strength. With this
representation, the ground network is a weighted graph.
In order to work with unweighted graphs, a thresholding
process can be applied to the arcs: given a threshold τ ,
all arcs whose associated weights are less than τ are re-
moved. The unweighted graph is a special case of the
weighted one, occurring when all weights are either 0
(no connecting arc) or 1 (connecting arc). In both cases,
the ground graph is represented through its adjacency
matrix Mg. For the sake of exemplification, in Figure
2 a gene matrix G with n = 574 gene is reported. Let
us consider now a set A = {a1, ..., am} of themes, i.e.,
labels annotating genes and referring to some particular
biological role. For instance, themes may be biological
processes, in which the gene is involved, or molecular
component, in which the gene is present, and so on.
The labels corresponding to the themes are attached
to the nodes of graph G. In analogy with the ground
space, a network A can be associated to the set A. The
nodes of A correspond to themes, and the arcs repre-
sent similarity between themes. Usually, the network
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Figure 2: Example of a gene matrix G with n = 574
nodes (genes).

A is a weighted one and it is very dense. Graph A is
represented by its adjacency m×m matrixMa. Refer-
ring to Figure 1, we can formally say that graph A is
derived from G by means of the abstraction operator ω:

A = ω(G) (1)

Equation (1) is a synthetic way of expressing the fact
that the matrix Ma can be derived from Mg through
the procedure Ω, associated to the formal operator ω:

Ma = Ω(Mg) (2)

It is convenient, in the envisaged application, to con-
sider Ω as associated to an n×m matrix W, which es-
tablishes the links between genes (corresponding to the
rows) and themes (corresponding to the columns). An
entry wi,r (1 ≤ i ≤ n, 1 ≤ r ≤ m) in W represents the
strength with which gene gi is associated to theme ar.
The procedure Ω is composed of two steps: in the first
one, it fills the matrix Ma, and, in second one, com-
putes pairwise distances between the columns (themes)
of Ma, determining thus the edges of A. By chang-
ing either the way matrix W is filled or the distance
measure between themes, different abstraction opera-
tors can be implemented.

By summarizing, Mg represents the co-expression
similarity between genes, matrix Ma represents the
similarity between themes, and matrix W represents
the association between subsets of genes and themes.

Experimentations
The most basic type of abstraction that can be thought
of is the association of identically labelled genes to the
abstract node corresponding to their label. An entry in
the corresponding matrix, denotedW(b), will be w(b)

i,r =
1, if gene gi has label ar, and w

(b)
i,r = 0 otherwise. In

W(b) each column represents the set of genes “covered”
by a theme, and it can be thought of as a feature vector
describing the theme. By applying a distance measure
to these feature vectors, we can construct the abstract
basic matrix A(b), whose entries contain pairwise simi-
larity between themes. In order to treat the theme on a
uniform basis, each column is normalized, by dividing
each entry by the sum of the corresponding column. In
this basic case, the similarity between two themes is de-
termined by the number of genes that bear both labels.
Euclidean distance is used afterwards.

A more complex way of constructing W, that is
derived from biological consideration (Henegar et al.
2006), treats a theme label as a “fluid” that originates
from the genes covered by the theme and spreads into
the ground network through the nearest neighbors of
these last and the nearest neighbors of nearest neigh-
bors and so on. More precisely, let a consider an initial,
normalized matrix W(0) = W(b), and let us iterate the
computation of W(t)(t ≥ 1) starting from W(t−1) and
Mg, and renormalizing the columns at each iteration
step:

W(t)
temp =Mg W(t−1) (3)

w
(t)
i,r =

w
(t)
i,r∑n

k=1 w
(t)
i,r,temp

(4)

By applying Equation (3) four times, convergence is
reached to a final matrix W (∞). In Figure 3 the ab-
stract graph A(∞) corresponding to the ground network
of Figure 2 is reported. Given the two graphs, we have
experimented the comparison sketched in Figure 1 for
the parameters: closeness centrality, betweenness, clus-
tering index and degree distribution. In the following,
only the results for the centrality c are reported, for the
sake of brevity. Let ~x be the vector (of size n) contain-
ing the values of the centrality computed directly on the
nodes of G. Let ~x′ be the vector (of size m) containing
the values of the centrality computed on the nodes of
A. We compute the approximation of the ground values
of the centrality for a ground node (gene) as the sum
of the centralities of the abstract themes that cover it,
weighted by the strength of the link between the gene
and the theme:

c(gj) =
m∑

r=1

(
c(ar)

w
(∞)
j,r∑m

k=1 w
(∞)
j,k

)
(1 ≤ j ≤ n) (5)

We have compared the centrality computed directly
on the ground graph and the one derived from the ab-
stract graph. The results are reported in Figure 4. As
we can see, the average behavior on the whole set of
nodes is almost the same, even though there are dif-
ferences on the single nodes. For the betweenness the
correspondence is less marked, whereas for the cluster-
ing index the results are similar to Figure 4. The degree
distribution is a power law on both the ground and the
abstract network even though with different exponents.



Figure 3: Abstract matrixA(∞) obtained from equation
(4). The nodes (themes) are m = 145.
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Figure 4: Comparison between the centrality computed
directly on the ground graph (blue) and the one derived
from the abstract graph (red). On the abscissa there
are the nodes’ identifiers. The two graphs have been
scaled to obtain superposition. As it is apparent, the
average behaviors of the two measures agree, and, what
is more important, both measures agree on the high
peaks. This means that the used abstraction is able to
capture the highest centrality nodes.

Conclusion
In this paper we have reported an initial work on us-
ing abstraction to simplify the analysis of complex net-
works, in particular biological networks. The idea is
to reduce the computational complexity of the analysis
and to increase the interpretability of the results by ab-
stracting the ground network into a much smaller one.
For this initial investigation the abstraction operator
has been suggested by biological considerations, but we
intend, in the future, to try to learn the best ones that
satisfy a set of given contraints.
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