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Abstract

Generating minimal hitting sets of a collection of sets
is known to be NP-hard, necessitating heuristic ap-
proaches to handle large problems. In this paper a
low-cost, approximate minimal hitting set (MHS) al-
gorithm, coined Staccato, is presented. Staccato

uses a heuristic function, borrowed from a lightweight,
statistics-based software fault localization approach, to
guide the MHS search. Given the nature of the heuris-
tic function, Staccato is specially tailored to model-
based diagnosis problems (where each MHS solution
is a diagnosis to the problem), although well-suited for
other application domains as well. We apply Staccato

in the context of model-based diagnosis and show that
even for small problems our approach is orders of mag-
nitude faster than the brute-force approach, while still
capturing all important solutions. Furthermore, due
to its low cost complexity, we also show that Stac-

cato is amenable to large problems including millions
of variables.

Introduction

Identifying minimal hitting sets (MHS) of a collection
of sets is an important problem in many domains, such
as in model-based diagnosis (MBD) where the MHS
are the solutions for the diagnostic problem. Known
to be a NP-hard problem (Garey and Johnson 1979),
one (1) desires focusing heuristics to increase the search
efficiency and/or (2) limits the size of the return set.
Such strategies have the potential to reduce the MHS
problem to a polynomial time complexity at the cost of
completeness.

In this paper, we present an algorithm, coined
Staccato1, to derive an approximate collection of
MHS. Staccato uses a heuristic borrowed from
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1
Staccato is an acronym for STAtistiCs-direCted min-

imAl hiTing set algOrithm.

a statistics-based software fault diagnosis approach,
called spectrum-based fault localization (SFL). SFL
uses sets of component involvement in nominal and fail-
ing program executions to yield a ranking of compo-
nents in order of likelihood to be at fault. We show that
this ranking heuristic is suitable in the MBD domain as
the search is focused by visiting solutions in best-first
order (aiming to capture the most relevant probability
mass in the shortest amount of time). Although the
heuristic originates from the MBD domain, it is also
useful in other domains. We also introduce a search
pruning parameter λ and a search truncation parame-
ter L. λ specifies the percentage of top components in
the ranking that should be considered in the search for
true MHS solutions. Taking advantage of the fact that
most relevant solutions are visited first, the search can
be truncated after L solutions are found, avoiding the
generation of a myriad of solutions.

In particular, this paper makes the following contri-
butions:

• We present a new algorithm Staccato, and derive
its time and space complexity;

• We compare Staccato with a brute-force approach
using synthetic data as well as data collected from a
real software program;

• We investigate the impact of λ and L on Staccato’s
cost/completeness trade-off.

To the best of knowledge this heuristic approach has
not been presented before and has proven to have a sig-
nificant effect on MBD complexity in practice (Abreu,
Zoeteweij, and Van Gemund 2009).

The reminder of this paper is organized as follows.
We start by introducing the MHS problem. Subse-
quently, Staccato is outlined, and a derivation of its
time/space complexity is given. The experimental re-
sults using synthetic data and data collected from a
real software system are then presented, followed by a
discussion of related work. Finally, we close this paper
with some concluding remarks and directions for future
work.



Minimal Hitting Set Problem

In this section we describe the minimal hitting set
(MHS) problem, and the concepts used throughout this
paper.

Let S be a collection of N non-empty sets S =
{s1, . . . sN}. Each set si ∈ S is a finite set of elements
(components from now on), where each of the M ele-
ments is represented by a number j ∈ {1, . . . , M}. A
minimal hitting set of S is a set d such that

∀si ∈ S, si ∩ d 6= ∅ ∧ 6 ∃d′ ⊂ d : si ∩ d′ 6= ∅

i.e., there is at least a component of d that is member
of all sets in S, and no proper subset of d is a hitting
set. There may be several minimal hitting sets for S,
which constitutes a collection of minimal hitting sets
D = {d1, . . . , dk, . . . , d|D|}. The computation of this
collection D is known to be a NP-hard problem (Garey
and Johnson 1979).

In the remainder of this paper, the collection of sets S
is encoded into a N×M (binary) matrix A. An element
aij is equal to 1 if component j is a member of set i, and
0 otherwise. For j ≤M , the row Ai∗ indicates whether
a component is a member of set i, whereas the column
A∗j indicates which sets component j is a member. As
an example, consider the set S = {{1, 3}, {2, 3}} for
M = 3, represented by the matrix

1 2 3
1 0 1 first set
0 1 1 second set

A näıve, brute-force approach to compute the col-
lection D of minimal hitting sets for S would be to
iterate through all possible component combinations
to (1) check whether it is a hitting set, and (2) and
(if it is a hitting set) whether it is minimal, i.e.,
not subsumed by any other set of lower cardinality
(cardinality of a set dk, |dk|, is the number of ele-
ments in the set). As all possible combinations are
checked, the complexity of such an approach is O(2M ).
For the example above, the following sets would be
checked: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} to
find out that only {3} and {1,2} are minimal hitting
sets of S.

STACCATO

As explained in the previous section, brute-force algo-
rithms have a cost that is exponential in the number of
components. Since many of the potential solution can-
didates turn out to be no minimal hitting set, a heuris-
tic that focuses the search towards high-potentials will
yield significant efficiency gains. In addition, many of
the computed minimal hitting sets may potentially be of
little value for the problem that is being solved. There-
fore, one would like the solutions to be ordered in terms
of relevance, possibly terminating the search once a par-
ticular number of minimal hitting sets have been found,
again boosting efficiency. In this section we present our

approximate, statistics-directed minimal hitting set al-
gorithm, coined Staccato, aimed to increase search
efficiency.

The key idea behind our approach is the fact, that
components that are members of more sets than other
components, may be an indication that there is a mini-
mal hitting set containing such component. The trivial
case are those components that are involved in all sets,
which constitute a minimal hitting set of cardinality 1.
A simple search heuristic is to exploit a ranking based
on the number of set involvements such as

H(j) =

N
∑

i=1

aij

To illustrate, consider again the example above. Us-
ing the heuristic function H(j), it follows that H(1) =
1, H(2) = 1, and H(3) = 2, yielding the ranking
< 3, 1, 2 >. This ranking is exploited to guide the
search. Starting with component 3, it appears that it
is involved in the two sets, and therefore is a minimal
hitting set of minimal cardinality. Next in the ranking
comes component 1. As it is not involved in all sets,
it is combined with those components that are involved
in all sets except the ones already covered by 1 (note,
that combinations involving 3 are no longer considered
due to subsumption). This would lead us to find {1,2}
as a second minimal hitting set.

Although this heuristic avoids having to iterate
through all possible component combinations (O(2M )),
it may still be the case that many combinations have to
be considered. For instance, using the heuristic one has
to check 3 sets, whereas the brute-force approach iter-
ates over 8 sets. Consequently, we introduce a search
pruning parameter λ that contains the fraction of the
ranking that will be considered. The reasoning behind
this parameter is that the components that are involved
in most sets (ranked high by H) are more likely to be a
minimal hitting set. Clearly, λ cannot be too small. In
the previous example, if λ would be set to λ = 1/3, only
element 3 would be considered, and therefore we would
miss the solution set {1,2}. Hence, such a parameter
trades efficiency for completeness.

Approximation

While the above heuristic increases search efficiency, the
number of minimal hitting sets can be prohibitive, while
often only a subset need be considered that are most
relevant with respect to the application context. Typ-
ically, approaches to compute the minimal hitting set
are applied in the context of (cost) optimization prob-
lems. In such case, one is often interested in finding
the minimal hitting set of minimal cardinality. For ex-
ample, suppose one is responsible for assigning courses
to teachers. In particular, one proposes to minimize
the number of teachers that need to be hired. Hence,
one would like to find the minimal number of teach-
ers that can teach all courses, which can be solved by
formulating the problem as a minimal hitting set prob-
lem. For this example, solutions with low cardinality



(i.e., number of teachers) are more attractive than those
with higher cardinality. The brute-force approach, as
well as the above heuristic approach are examples of
approaches that find minimal hitting sets with lower
cardinality first.

In many situations, however, obtaining MHS solu-
tions in order of just cardinality does not suffice. An ex-
ample is model-based diagnosis (MBD) where the min-
imal hitting sets represent fault diagnosis candidates,
each of which has a certain probability of being the
actual diagnosis. The most cost-efficient approach is
to generate the MHS solutions in decreasing order of
probability (minimizing average fault localization cost).
Although probability typically decreases with increas-
ing MHS cardinality, cardinality is not sufficient, as,
e.g., there may be a significant probability difference
between diagnosis (MHS) solutions of equal cardinality
(of which there may be many). Consequently, a heuris-
tic that predicts probability rather than just cardinality
makes the difference. The fact that the MHS solutions
are now generated in decreasing order of probability al-
lows us to truncate the number of solutions, where, e.g.,
one only considers the MHS subset of L solutions that
covers .99 probability mass, ignoring the (many) im-
probable solutions. This approximation trades limited
cost penalty (completeness) for significant efficiency
gains.

Model-Based Diagnosis

In this section we extend our above heuristic for use in
MBD. In the context of MBD a diagnosis is derived by
computing the MHS of a set of so-called conflicts (de
Kleer and Williams 1987). A conflict would be a se-
quence of probable faulty components that explain the
observed failure (this set explains the differences be-
tween the model and the observation). For instance, in
a logic circuit a conflict may be the sub-circuit (cone)
activity that results in an output failure. In software
a conflict is the sequence of software component activ-
ity (e.g., statements) that results in a particular faulty
return value (Abreu, Zoeteweij, and Gemund 2008).

In MBD the MHS solutions dk are ranked in order of
probability of being the true fault explanation Pr(dk),
which is computed using Bayes’ update according to

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk|obsi−1) (1)

where obsi denotes observation i. In the context of the
presentation in this paper, an observation obsi stands
for a conflict set si that results from a particular ob-
servation. The denominator Pr(obsi) is a normalizing
term that is identical for all dk and thus needs not be
computed directly. Pr(dk|obsi−1) is the prior probabil-
ity of dk, before incorporating the new evidence obsi.
For i = 1 Pr(dk) is typically defined in a way such that
it ranks solutions (diagnosis candidates) of lower cardi-
nality higher in absence of any observation. Pr(obsi|dk)

is defined as

Pr(obsi|dk) =

{

0 if obsi ∧ dk |=⊥
1 if dk → obsi

ε otherwise

In MBD, many policies exist for ε based on the chosen
modeling strategy. See (Abreu, Zoeteweij, and Gemund
2008; de Kleer 2006; 2007) for details.

Given a sequence of observations (conflicts), the MHS
solutions should be ordered in terms of Eq. (1). How-
ever, using Eq. (1) as heuristic is computationally pro-
hibitive. Clearly, a low-cost heuristic that still provides
a good prediction of Eq. (1) is crucial if Staccato is
to be useful in MBD.

An MBD Heuristic

A low-cost, statistics-based technique that is known to
be a good predictor for ranking (software) faults in or-
der of likelihood is spectrum-based fault localization
(SFL) (Abreu, Zoeteweij, and Van Gemund 2007). SFL
takes the set of conflicts S (corresponding to erroneous
system behavior) as well as information collected dur-
ing nominal system behavior (again, set of components
involved), and produces a ranking the components in
order of fault likelihood. The component ranking is
computed using a statistical similarity coefficient that
measures the statistical correlation between component
involvement and erroneous/nominal system behavior.
To comply with SFL, we extend A into a pair (A, e)
(see Figure 1), where e is a binary array which indi-
cates whether the Ai∗ corresponds to erroneous system
behavior (e = 1) or nominal behavior (e = 0).
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Figure 1: Encoding for a collection of sets

Many similarity coefficients exist for SFL, the best
one currently being the Ochiai coefficient known from
molecular biology and introduced to SFL in (Abreu,
Zoeteweij, and Van Gemund 2007). It is defined as
follows

s(j) =
n11(j)

√

(n11(j) + n01(j)) ∗ (n11(j) + n10(j))
(2)

where
npq(j) = |{i | aij = p ∧ ei = q}|

A similarity coefficient indicts components using n11(j),
and exonerates components using n10(j) and n01(j).
In (Abreu, Zoeteweij, and Van Gemund 2007) it has
been shown that similarity coefficients provide an or-
dering of components that yields good diagnostic accu-
racy, i.e., components that rank high are usually faulty.



This diagnostic performance, combined with the very
low complexity of s(j) is the key motivation to use the
Ochiai coefficient s(j) for H. If (A, e) only contains
conflicts (i.e., 6 ∃ei = 0), the ranking returned by this
heuristic function reduces to the original one

H(j) =

N
∑

i=1

aij = n11(j)

and, therefore, classic MHS problems are also ade-
quately handled by this MBD heuristic.

Algorithm

Staccato uses the SFL heuristic Eq. (2) to focus the
search of the minimal hitting set computation (see Algo-
rithm 1). To illustrate how Staccato works, consider
the following (A, e), comprising two (conflict) sets origi-
nating from erroneous system behavior and one set cor-
responding to component involvement in nominal sys-
tem behavior.

1 2 3 ei

1 0 1 1 first set (error)
0 1 1 1 second set (error)
1 0 1 0 third set (nominal)

From (A, e) it follows H(1) = 0.5, H(2) = 0.7, and
H(3) = 1, yielding the following ranking < 3, 2, 1 >.
As component 3 is involved in all failed sets, it is added
to the minimal hitting set and removed from A using
function Strip Component, avoiding solutions sub-
sumed by {3} to be considered (lines 5–12). After this
phase, the (A, e) is as follows

1 2 ei

1 0 1
0 1 1
1 0 0

Next component to be checked is component 2, which
is not involved in one failed set. Thus, the column for
that component as well as all conflict sets in which it
is involved are removed from (A, e), using the Strip

function, yielding the following

1 ei

1 1
1 0

Running Staccato with the newly generated (A, e)
yields a ranking with component 1 only (line 15 – 18),
which is a MHS for the current (A, e). For each MHS
d returned by this invocation of Staccato, the union
of d and component 2 is checked ({1, 2}), and because
this set is involved in all failed sets, and is minimal, it
is also added to the list of solutions D (lines 18–24).
The same would be done for component 1, the last in
the ranking, but no minimal set would be found. Thus,
Staccato would return the following minimal hitting
sets {{3}, {1, 2}}. Note that this heuristic ranks com-
ponent 2 on top of component 1, whereas the previous
heuristic ranked component 1 and 2 at the same place

Algorithm 1 Staccato

Inputs: Matrix (A, e), number of components M , stop
criteria λ, L

Output: Minimal Hitting set D

1 TF ← {Ai∗|ei = 1} ⊲ Collection of conflict sets
2 R← rank(H, A, e)
3 D ← ∅
4 seen← 0
5 for all j ∈ {1..M} do
6 if n11(j) = |TF | then
7 push(D, {j})
8 A← Strip Component(A, j)
9 R← R\{j}

10 seen← seen + 1

M
11 end if
12 end for
13 while R 6= ∅ ∧ seen ≤ λ ∧ |D| ≤ L do
14 j ← pop(R)
15 seen← seen + 1

M
16 (A′, e′)← Strip(A, e, j)
17 D′ ← Staccato (A′, e′, λ)
18 while D′ 6= ∅ do
19 j′ ← pop(D′)
20 j′ ← {c} ∪ j′

21 if is not subsumed(D, j′) then
22 push(D, j′)
23 end if
24 end while
25 end while
26 return D

(because they both explained the same number of con-
flicts).

In summary, Staccato comprises the following steps

• Initialization phase, where a ranking of components
using the heuristic function borrowed from SFL is
computed (lines 1–4 in Algorithm 1);

• Components that are involved in all failed sets are
added to D (lines 5–12);

• While |D| < L, for the first top λ components in the
ranking (including also the ones added to D, lines 13-
25) do the following: (1) remove the component j and
all Ai∗ for which ei = 1 ∧ aij = 1 holds from (A, e)
(line 17), (2) run Staccato with the new (A, e), and
(3) combine the solutions returned with the compo-
nent and verify whether it is a minimal hitting set
(lines 17–24).

Complexity Analysis

To find a minimal hitting set of cardinality C Stac-

cato has to be (recursively) invoked C times. Each
time it (1) updates the four counters per component
(O(N ·M)), (2) ranks components in fault likelihood
(O(M · log M)), (3) traverse λ components in the rank-
ing (O(M)), and (4) check whether it is a minimal hit-
ting set (O(N)). Hence, due to the tail recursion, the



overall time complexity of Staccato is merely O(C ·
M · (N + log M)). (Note that a proper recursion would
imply a time complexity of O((M · (N + log M))C).)

With respect to space complexity, for each in-
vocation of Staccato, it has to store four coun-
ters per component to create the SFL-based ranking
(n11, n10, n01, n00). As the recursion depth is C to find a
solution of the same cardinality, Staccato has a space
complexity of O(C ·M).

Experimental Results

In this section we present our experimental results using
synthetic data and data collected from a real software
program.

Synthetic Diagnosis Experiments

In order to assess the performance of our algorithm we
use synthetic sets generated for diagnostic algorithm
research, based on random (A, e) generated for various
values of N , M , and the number of injected faults C
(cardinality). Component activity aij is sampled from a
Bernoulli distribution with parameter r, i.e., the prob-
ability a component is involved in a row of A equals r.
For the C faulty components cj (without loss of gener-
ality we select the first C components, i.e., c1, . . . , cC

are faulty). We also set the probability a faulty compo-
nent behaves as expected hj . Thus, the probability of
a component j being involved and generating a failure
equals r · (1 − hj). A row i in A generates an error
(ei = 1) if at least 1 of the C components generates a
failure (or-model). Measurements for a specific scenario
are averaged over 500 sample matrices.

Table 1 summarizes the results of our study for r =
0.6 (typical value for software), M = 20 and N = 300,
which is the limit for which a brute-force approach is
feasible. Per scenario, we measure the number of MHS
solutions (|D|), the computation CPU time (T , mea-
sured on a 2.3 GHz Intel Pentium-6 PC with 4 GB
of memory), the miss ratio ρ per C (the ratio of solu-
tions with cardinality C found using Staccato and the
brute-force approach, and the diagnostic performance
(W ) for the brute-force approach (B-F) and Staccato

with several λ parameter values. The miss ratio ρ values
presented are per cardinality - separated by a ‘/’ - where
the last value is the percentage of solutions missed with
C ≥ 6. Diagnostic performance is measured in terms of
a diagnostic performance metric W that measures the
percentage of excess work incurred in finding the actual
components at fault, a typical metric in software debug-
ging (Abreu, Zoeteweij, and Van Gemund 2007), after
ranking the MHS solutions using the Bayesian policy
described in (Abreu, Zoeteweij, and Gemund 2008). For
instance, consider a M = 5 component program with
the following diagnostic report D =< {4, 5}, {1, 2} >,
while components 1 and 2 are actually faulty. The first
diagnosis candidate leads the developer to inspect com-
ponents 4 and 5. As both components are healthy, W is
increased with 2

5
. The next components to be inspected

are components 1 and 2. As they are both faulty, no
more wasted effort is incurred. After repairing these
two components, the program would be re-run to ver-
ify that all test cases pass. Otherwise, the debugging
process would start again until no more test cases fail.

As expected, |D| and the time needed to compute D
decrease with λ. Although some solutions are missed
for low values of λ, they are not important for the diag-
nostic problem as W does not increase. This suggests
that our heuristic function captures the most probable
solutions to be faulty. An important observation is that
for λ = 1, the results are essentially the same as an ex-
haustive search but with several orders of magnitude
speed-up. Furthermore, we also truncated |D| to 100
to investigate the impact of this parameter in the di-
agnostic accuracy for λ = 1. Although it has a small
negative impact on W , it reduces the time needed to
compute W by more than half. For instance, for C = 5
and h = 0.1 it takes 0.008 s to generate D, requiring
the developer to waste more effort to find the faulty
components, W = 10%.

We have not presented results for other settings of
M, N because the brute-force approach does not scale.
However, as an example, for M = 1, 000, 000, N =
1, 000, and C = 1, 000, the candidate generation time
rate with Staccato is still only 88.6 ms on average
(22.1 ms for C = 100).

Results with matrices containing only conflict sets
show that the performance of Staccato is similar to
the one just reported, meaning that the general, classic
MHS problems are properly handled by our algorithm.

Real Software Diagnosis

In this section we apply the Staccato algorithm in the
context of model-based software fault diagnosis, namely
to derive the set of valid diagnoses given a set of obser-
vations (test cases). We use the tcas program which
can be obtained from the software infrastructure repos-
itory (SIR, (Do, Elbaum, and Rothermel 2005)). TCAS
(Traffic Alert and Collision Avoidance System) is an air-
craft conflict detection and resolution system used by
all US commercial aircraft. The SIR version of tcas
includes 41 faulty versions of ANSI-C code for the res-
olution advisory component of the TCAS system. In
addition, it also provides a correct version of the pro-
gram and a pool containing N = 1, 608 test cases. tcas
has M = 178 lines of code, which, in the context of the
following experiments, are the number of components.
In our experiments, we randomly injected C faults in
one program. All measurements are averages over 100
versions, except for the single fault programs which are
averages over the 41 available faults. The activity ma-
trices are obtained using the GNU gcov2 profiling tool
and a script to translate its output into a matrix. As
each program suite includes a correct version, we use
the output of the correct version as reference. We char-
acterize a run/computation as failed if its output differs

2http://gcc.gnu.org/onlinedocs/gcc/Gcov.html



h 0.1 0.9
C 1 5 1 5

B
-F

|D| 355 508 115 286

T (s) 25.5 54.3 0.27 5.72
W (%) 0.0 13 14 21

S
t
a
c
c
a
t
o

λ = 0.1

|D| 63 127 10 46
T (s) 0.006 0.007 0.001 0.003

ρ (%) 0/0/0/65/87/0 0/0/41/95/60/82 0/44/100/0/0/0 0/0/42/88/0/0
W (%) 0.0 10.7 0.0 12.9

λ = 0.2

|D| 86 181 16 63
T (s) 0.008 0.009 0.02 0.003
ρ (%) 0/0/0/54/87/0 0/0/30/87/59/70 0/31/100/0/0/0 0/0/36/88/0/0

W (%) 0.0 9.2 0.0 13.9

λ = 0.3

|D| 112 232 26 75

T (s) 0.009 0.010 0.003 0.004
ρ (%) 0/0/0/30/74/0 0/0/21/87/53/65 0/25/73/0/0/0 0/0/26/75/0/0
W (%) 0.0 9.1 0.0 14.4

λ = 0.4

|D| 175 276 47 83
T (s) 0.011 0.012 0.004 0.004

ρ (%) 0/0/0/26/75/0 0/0/21/87/18/64 0/6/72/0/0/0 0/0/10/63/0/0
W (%) 0.0 9.2 0.0 13.8

λ = 0.5

|D| 218 300 67 146

T (s) 0.013 0.018 0.004 0.007
ρ (%) 0/0/0/23/66/0 0/0/10/87/6/65 0/0/64/0/0/0 0/0/5/56/0/0

W (%) 0.0 9.0 0.0 14.3

λ = 0.6

|D| 253 372 83 180
T (s) 0.015 0.019 0.004 0.008

ρ (%) 0/0/0/20/61/0 0/0/0.08/65/0/65 0/0/39/0/0/0 0/0/0/46/0/0
W (%) 0.0 8.8 0.0 14.7

λ = 0.7

|D| 293 425 87 199
T (s) 0.019 0.025 0.005 0.008
ρ (%) 0/0/0/11/50/0 0/0/0.06/54/0/55 0/0/39/0/0/0 0/0/0/44/0/0

W (%) 0.0 8.6 0.0 14.4

λ = 0.8

|D| 343 449 109 228

T (s) 0.023 0.028 0.06 0.009
ρ (%) 0/0/0/7/26/0 0/0/0.02/38/0/24 0/0/24/0/0/0 0/0/0/32/0/0
W (%) 0.0 8.8 0.0 14.8

λ = 0.9

|D| 355 508 115 270
T (s) 0.024 0.034 0.08 0.012

ρ (%) 0/0/0/0/0/0 0/0/0/15/0/10 0/0/0/0/0/0 0/0/0/13/0/0
W (%) 0.0 9.0 0.0 14.8

λ = 1

|D| 355 508 115 286

T (s) 0.025 0.041 0.010 0.016
ρ (%) 0/0/0/0/0/0 0/0/0/0/0/0 0/0/0/0/0/0 0/0/0/0/0/0

W (%) 0.0 9.0 0.0 14.9

Table 1: Results for the synthetic matrices

from the corresponding output of the correct version,
and as passed otherwise.

Table 2 presents a summary of the results obtained
using a brute-force approach (B-F) and Staccato with
different λ parameter values. Again, we report the size
of the minimal hitting set (|D|), the time T required to
generate D, and the diagnostic performance incurred
by the different settings. As expected, the brute-force

approach is the most expensive of them all. The best
trade-off between complexity and the diagnostic cost W
is for λ ≈ 0.5, since Staccato does not miss important
candidates - judging by the fact that W is essentially
the same as the brute-force approach - and it is faster
than for other, higher λ.

Although Staccato was applied to other, bigger
software programs (Abreu, Zoeteweij, and Van Gemund



tcas

C 1 2 5
#matrices 41 100 100

B
-F

|D| 76 59 68
T (s) 0.98 2.1 11.2
W (%) 16.7 23.7 29.7

S
t
a
c
c
a
t
o

λ = 0.1
|D| 30 35 61
T (s) 0.11 0.16 0.22
W 15.2 29.3 37.1

λ = 0.2
|D| 34 39 62
T (s) 0.15 0.17 0.25
W 15.2 29.3 37.0

λ = 0.3
|D| 50 44 63
T (s) 0.18 0.18 0.26
W 16.2 28.8 37.1

λ = 0.4
|D| 51 58 65
T (s) 0.19 0.19 0.27
W 16.3 23.7 32.1

λ = 0.5
|D| 76 58 66
T (s) 0.20 0.20 0.30
W 16.7 23.7 30.1

λ = 0.6
|D| 76 59 67
T (s) 0.22 0.22 0.31
W 16.7 23.7 29.7

λ = 0.7
|D| 76 59 68
T (s) 0.23 0.25 0.34
W 16.7 23.7 29.7

λ = 0.8
|D| 76 59 68
T (s) 0.24 0.26 0.35
W 16.7 23.7 29.7

λ = 0.9
|D| 76 59 68
T (s) 0.27 0.27 0.37
W 16.7 23.7 29.7

λ = 1
|D| 76 59 68
T (s) 0.30 0.28 0.48
W 16.7 23.7 29.7

Table 2: Results for tcas

2009), no comparison is given as the brute-force algo-
rithm does not scale. As an indication, for a given pro-
gram, space (Do, Elbaum, and Rothermel 2005), with
M = 9, 564 lines of code and N = 132 test cases, Stac-

cato required roughly 1 s to compute the relevant MHS
solutions (for λ = 0.5 and L = 100). In these exper-
iments, using the well-known Siemens benchmark set
of software faults and the space program, L = 100
was proven to already yield comparable results to those
obtained for L =∞ (i.e., generating all solutions).

Related Work

Several exhaustive algorithms have been presented to
solve the MHS problem. Since Reiter (Reiter 1987)
showed that diagnoses are MHSs of conflict sets, many
approaches to solve this problem in the model-based
diagnosis context have been presented. In (Greiner,
Smith, and Wilkerson 1989; de Kleer and Williams
1987; Reiter 1987; Wotawa 2001) the hitting set prob-
lem is solved using so-called hit-set trees. In (Fijany
and Vatan 2004; 2005) the MHS problem is mapped
onto an 1/0-integer programming problem. Contrary

to our work does not use any other information but
the conflict sets. The integer programming approach
has the potential so solve problems with thousands
of variables but no complexity results are presented.
In contrast, our low-cost approach can easily handle
much larger problems. In (Zhao and Ouyang 2007)
a method using set-enumeration trees to derive all
minimal conflict sets in the context of model-based
diagnosis is presented. The authors just conclude
that this method has an exponential time complex-
ity in the number of elements in the sets (compo-
nents). The Quine-McCluskey algorithm (Quine 1955;
Mccluskey 1956), originating from logic optimization, is
a method for deriving the prime implicants of a mono-
tone boolean function (a dual problem of the MHS
problem). This algorithm is, however, of limited use
due to its exponential complexity, which has prompted
the development of heuristics such as Espresso (dis-
cussed later on).

Many heuristic approaches have been proposed to
render MHS computation amenable to large systems.
In (Lin and Jiang 2002) an approximate method to com-
pute MHSs using genetic algorithms is described. The
fitness function used aims at finding solutions of mini-
mal cardinality, which is not always sufficient for MBD
as even solutions with similar cardinality have differ-
ent probabilities of being the true fault explanation.
Their paper does not present a time complexity anal-
ysis, but we suspect the cost/completeness trade-off to
be worse than for Staccato. Stochastic algorithms,
as discussed in the framework of constraint satisfac-
tion (Freuder et al. 1995) and propositional satisfia-
bility (Qasem and Prügel-Bennett 2008), are examples
of domain independent approaches to compute MHS.
Stochastic algorithms are more efficient than exhaus-
tive methods. The Espresso algorithm (Brayton et al.
1984), primarily used to minimize logic circuits, uses a
heuristics to guide the circuit minimization that is in-
spired by this domain. Originating from logic circuits, it
uses a heuristic to guide the circuit minimization that
is specific for this domain. Due to its efficiency, this
algorithm still forms the basis of every logic synthesis
tool. Dual to the MHS problem, no prime implicants
cost/completeness data is available to allow comparison
with Staccato.

To our knowledge the statistics-based heuristic to
guide the search for computing MHS solutions has not
been presented before. Although the heuristic function
used in our approach comes from a fault diagnosis ap-
proach, there is no reason to believe that Staccato

will not work well in other domains.

Conclusions and Future Work

In this paper we presented a low-cost approximate
hitting set algorithm, coined Staccato, which uses
a heuristic borrowed from a low-cost, statistics fault
diagnosis tool, making it especially suitable to the
model-based diagnosis domain. Moreover, the very low



time/space complexity of the algorithm allows dealing
with large-size problems with millions of variables.

Our experiments have demonstrated that even for
small problems our heuristic approach is orders of mag-
nitude faster than exhaustive approaches, even when
the algorithm is set to be complete (λ = 1). Fur-
thermore, the experiments have shown that the search
can be further focused using λ, where completeness is
hardly sacrificed for λ ≈ 0.5 (i.e., reduce search space).
Compared to λ, the potential impact of truncating the
number of solutions L in the set on cost is much greater.
As most relevant solutions are visited first, the number
of solutions returned to the user can be suitably trun-
cated (e.g., only returning 100 candidates in the con-
text of our model-based diagnosis experiments). Hence,
a very attractive cost/completeness trade-off is reached
by setting λ = 1 while limiting L.

Future work includes extending the parameter range
for our experiments (e.g., investigate the impact of
truncating the number of returned solutions). Further-
more, we plan to quantitatively compare the efficiency
of Staccato to other approaches to compute minimal
hitting sets. In particular, we intend to compare the ef-
ficiency of our approach to SAT approaches, which also
handle problems with millions of variables.
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