
Reformulating Planning Problems by Eliminating Unpromising Actions

Luk áš Chrpa and Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics
Charles University in Prague

{chrpa,bartak}@ktiml.mff.cuni.cz

Abstract

Despite a big progress in solving planning problems,
more complex problems still remain hard and challeng-
ing for existing planners. One of the most promising re-
search directions is exploiting knowledge engineering
techniques such as (re)formulating the planning prob-
lem to be easier to solve for existing planners. In par-
ticular, it is possible to automatically gather knowledge
from toy planning problems and exploit this knowledge
when solving more complex planning problems. In this
paper we propose a method for eliminating some ac-
tions from the problem specification that are often use-
less or may mislead the planners. The method detects if
actions are somehow connected with the initial or goal
predicates and by using this information we suggest that
some actions are not necessary when solving the plan-
ning problem. To eliminate these actions we modify the
planning domain and hence the method remains inde-
pendent of used planning system.

Introduction
AI (Artificial Intelligence) planning is a traditional and still
hot research topic thanks to its theoretical interest as well
as wide real-life applicability ranging from robotics to web
service composition. Despite the significant improvement
of planning system in recent years many planning problems
still remain hard and challenging. This opens up a lot of
possibilities for research.

In the last decade, a lot of planning systems were de-
veloped and many of them competed in the International
Planning Competition (IPC)1. Along with those planning
systems, many novel planning techniques have been pro-
posed. Advanced planning techniques are usually based
on the Planning Graph (Blum & Furst 1997) accompanied
by many different and mostly powerful heuristics (Bonet &
Geffner 1999). In addition, some planners benefit from a
translation of a planning problem into other formalisms such
as Boolean Satisfiability (SAT) (Kautz & Selman 1992) or
Constraint Satisfaction Problems (CSP) (Do & Kambham-
pati 2001).

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://ipc.icaps-conference.org

However, even the best planners often fail to find a so-
lution in a reasonable time if the planning problem is more
complex. Theoretically, it has been proven by (Erol, Nau, &
Subrahmanian 1995) that the complexity of plan existence
is EXPSPACE-complete in the classical representation of
planning problems (Ghallab, Nau, & Traverso 2004). Even
though powerful heuristics are used to guide planners, it is
almost impossible to confront such a complexity with ‘brute
force‘ search methods only. It seems to be more than rea-
sonable to gather knowledge that should help planners to
significantly reduce the depth of the search space as well as
the branching factor. Such knowledge can be learnt from
given training plans that are obtained as solutions of simpler
planning problems.

One of the well known sorts of knowledge are the so
called macro-operators (Korf 1985) – operators represent-
ing a sequence of other (primitive) operators and behaving
like a single operator. There were developed several ap-
proaches (Coles, Fox, & Smith 2007; Newton, Levine, &
Fox 2005) reaching promising results. One of the most influ-
ential works in this area is a planning system called Macro-
FF (Boteaet al. 2005) that combines its own macro-operator
learner and the well known planner FF (Hoffmann & Nebel
2001). Even though macro-operators are good for reducing
the depth of the search space, they are usually responsible
for a significant increase of the branching factor. The high
branching factor is a challenge we are facing in this paper.
Clearly, if there are many instances of operators (actions)
in the planning process then the planning process tends to
be slow and inefficient, because in every node it may be
forced to choose among many alternatives. It is not a sur-
prise that the number of operators’ instances (actions) may
grow exponentially depending on the number of operators’
arguments and the number of objects listed in a particular
planning problem.

Existing planning systems usually do not generate all in-
stances of planning operators in preprocessing. For exam-
ple, the FF planner (Hoffmann & Nebel 2001) instantiates
only reachable actions - actions that can be applicable at
some point of the planning process. The work presented
in (Helmert 2006) uses the idea called reach-one-goal (i.e.
achieve the goals of the planning task consecutively), where
the solver focuses on such actions that may be relevant for a
particular goal.

In this paper we investigate the connectivity between
some planning operators and initial or goal predicates. We
propose a method that is able to detect such a connectiv-
ity from given training plans and encode it back into plan-
ning domains and their related planning problems. Hence
the transformed domains and problems can be easily passed
to existing planners. The main contribution of this paper
rests in pruning actions that may mislead the planners when
searching for a solution. In comparison to works mentioned
above that prune only unreachable actions, our approach can
prune also actions that are normally reachable but (mostly)
unnecessary.

The paper is organized as follows. First, we will intro-
duce basic notions from the planning theory followed by a
motivating example. Then we will give the theoretical back-
ground of the proposed approach. After that, we will de-
scribe the method for detecting connectivity between plan-
ning operators and initial or goal predicates. We will also
suggest how such a connectivity can be encoded into plan-
ning domains and problems. Finally, we will present the ex-
perimental evaluation of the method and in conclusions we
will discuss possible future work.

Preliminaries
Traditionally, AI planning deals with the problem of find-
ing a sequence of actions transforming the world from some
initial state to a goal state.Predicatep(t1, . . . , tn) is a con-
struct, wherep represents a predicate symbol andt1, . . . , tn
are terms (variables or constants). A predicate isgrounded
if and only if all its terms are constants.States is a set of
(grounded) predicates that are true ins. Action a is a 3-tuple
(pre(a), eff−(a), eff+(a)) of sets of grounded predicates
such thatpre(a) is a set of grounded predicates representing
the precondition of actiona, eff−(a) is a set of negative
effects of actiona, eff+(a) is a set of positive effects of
actiona, andeff−(a) ∩ eff+(a) = ∅. Action a is ap-
plicable to states if pre(a) ⊆ s. If action a is applica-
ble to states, then the new states′ obtained after apply-
ing the action iss′ = (s \ eff−(a)) ∪ eff+(a). Plan-
ning operator o is a 3-tuple(pre(o), eff−(o), eff+(o))
of sets of predicates (not necessarily grounded) and if there
exists a substitutionΘ from variables to constants then
(pre(o), eff−(o), eff+(o))Θ is an action. Aplanning do-
main is represented by a set of predicates and a set of opera-
tors (or actions if the planning domain is grounded). Aplan-
ning problem is represented by a planning domain, a set of
constants representing particular objects, an initial state, and
a set of goal predicates. A (valid)plan is an ordered se-
quence of actions which leads from the initial state to any
goal state containing all of the goal predicates. A plan-
ning problem issolvable if and only if there exists a valid
plan. For deeper insight in this area, see (Ghallab, Nau, &
Traverso 2004).

Motivating example
Let us consider the well known planning domain
Blocksworld (Slaney & Thíebaux 2001), where the robotic
arm builds towers from available blocks. We focus on

the version with four operators: STACK (stacks a block
on another block), UNSTACK (unstacks a block from an-
other block), PICKUP (picks a block from the table), and
PUTDOWN (puts a block to the table). Operators STACK
and UNSTACK have two arguments (they operate with two
blocks), the other operators just one. It is easy to find out
that for problems considering a hundred blocks, the opera-
tors STACK and UNSTACK have almost ten thousand in-
stances and all of them are reachable. However, if we ob-
serve the Blocksworld domain more deeply then we can re-
veal the following facts. At first we have to take down the
initial ‘towers‘ of blocks (or necessary parts of them) and
put the blocks on the table. At second we have to build the
required ‘towers‘ of blocks. Now, we can see that we need
only such instances of UNSTACK (resp. STACK) operators
having a connectivity with the initial (resp. goal) predicates
describing what block is on another block. In particular, op-
erator UNSTACK(X,Y) requires block X to be stacked on
block Y. If some block A is initially stacked on block B
then we allow action UNSTACK(A,B), otherwise we deny
this action. This idea can be analogically applied to oper-
ator STACK. By this approach we are able to prune many
instances of STACK and UNSTACK operators that are not
necessary when solving any planning problem in this do-
main.

Theoretical background
Planning systems process planning domains with corre-
sponding planning problems to produce their solutions,
plans. Informally said, planning domains serve like abstract
templates for given environments, and planning problems,
on the other hand, describe those environments concretely
and define certain planning tasks. The main challenge for
planning is the exploration of a huge search space, whose
size depends directly on the number of applicable actions.
We focus on the problem of excessive number of actions
that may mislead planners when looking for solutions. If
we consider an operator with aritys and a planning prob-
lem withn (untyped) objects then the number of all possible
instances of this operator isns. Often, this is simply too
many actions to be considered during the planning process.
In fact, many of these actions may be useless and not all
these actions can be pruned by checking their reachability
using the methods mentioned in the introduction. Our goal
is to reduce the number of such useless actions (especially
reachable) by analyzing simpler plans.

We found out that in some cases there exists a connection
between operators’ predicates in preconditions and initial
predicates or operators’ predicates in positive effects and
goal predicates. Now, we formally define several notions
describing these kinds of connections.

Definition 1.1: Let P = 〈Σ, s0, g〉 be a planning
problem, o be a planning operator fromΣ and p be a
predicate. Operatoro is entangled by init (resp. goal)
with predicatep in planning problemP if and only if
p ∈ pre(o) (resp. p ∈ eff+(o)) and there exists a plan
π that solvesP and for every actiona ∈ π which is an
instance ofo and for every grounded instancepground of the

predicatep holds:pground ∈ pre(a) ⇒ pground ∈ s0 (resp.
pground ∈ eff+(a) ⇒ pground ∈ g).

Definition 1.2: Let Σ be a planning domain,o be a
planning operator fromΣ andp be a predicate. Operator
o is fully entangled by init (resp. goal)with predicatep if
and only if there does not exist any planning problemP
overΣ whereo in not entangled by init (resp. goal) withp
in P . In addition we define a setplans(P, o, p, init (resp.
goal)) = {π | π is a solution ofP and satisfy the conditions
of entanglement ofo andp regarding def. 1.1}.

The entanglement by init (resp. goal) says that in a par-
ticular planning problem we use only such instances of op-
erators, whose predicates in preconditions (resp. positive
effects) correspond with the initial (resp. goal) predicates.
The full entanglement extends this for every solvable plan-
ning problem in a particular domain.

Recall our motivating example from the previous section.
Assume that binary predicateon(X,Y) represents the fact
that blockX is stacked on blockY . Now, we can easily see
that the operator UNSTACK is fully entangled by init with
predicateon. It means that we unstack blocks only from
their initial positions. Analogically, the operator STACK is
fully entangled by goal with predicateon. It means that we
stack blocks only to their goal positions.

In the following paragraphs we shall show that all static
predicates (predicates that do not appear in effects of any
operator) with respect to operators having these predicates
in preconditions satisfy the conditions to be fully entangled
by init.

Definition 1.3: Let Σ be a planning domain andp be a
predicate such that there does not exist any substitutionΘ
and any operatoro belonging toΣ such thatpΘ ∈ eff−(o)
or pΘ ∈ eff+(o) (in the other wordspΘ represents a
variant ofp). Thenp is astatic predicatewith respect toΣ.

Proposition 1.4: Let Σ be a planning domain andp
be a static predicate (with respect toΣ). Then for every
operatoro belonging toΣ where there exists a substitu-
tion Ψ such thatpΨ ∈ pre(o), it holds thato is fully
entangled by init withp and for every planning problemP
plans(P, o, p, init) contains all plans that solveP .

Proof: Let P = 〈Σ, s0, g〉 be an arbitrary solvable
planning problem andp be a static predicate with respect
to Σ. Let s be an arbitrary state reachable froms0 which
means that there exists a valid sequence of actions (in-
stances of operators fromΣ) transforming states0 to s.
We shall show that all instances ofp from s0 belong also
to s and no other instance ofp can belong tos. From the
assumption we know that no variant ofp appears in positive
or negative effects of any operator fromΣ. It means that
we cannot add or remove any instance ofp from s0 which
implies that in any reachable state froms0 we have the
same instances ofp. Consequently for any actiona in
the above valid sequence of actions starting ins0, it holds
pground ∈ pre(a) ⇒ pground ∈ s0 (otherwise the action is

not applicable to a reachable state). Hence, operatoro from
Σ giving these actions as its instances is entangled by init
with predicatep in problemP . As P can be an arbitrary
planning problem in domainΣ, operatoro is fully entangled
by init with p. It is also clear thatplans(P, o, p, init)
contains all plans that solvesP . 2

Definition 1.2 ensures the existence of plans for every
solvable planning problem when pruning actions violating
the full entanglement conditions. For static predicates as we
proved before, the sets of plans solving particular (solvable)
planning problems remain the same. In general case, each
full entanglement somehow restricts those sets of plans
allowing only such actions that do not violate the particular
full entanglement. However, such restrictions differ regard-
ing the particular full entanglements. The different full
entanglements can be used together in such a way that every
solvable planning problem remains solvable even if actions
violating at least one of the full entanglements are pruned.

Definition 1.5: Let Σ be a planning domain,SFE a
set of triples SFE = {(o1, p1, t1), . . . , (on, pn, tn)},
where oi is an operator fromΣ, pi is a predicate from
Σ and ti ∈ {init, goal} (i.e., oi is fully entangled byti
on pi). If for every solvable planning problemP over Σ⋂n

i=1 plans(P, oi, pi, ti) 6= ∅ holds, thenSFE is a set of
compatible full entanglements.

The following proposition formally describes how the full
entanglement affects possible operators instances (actions).

Proposition 1.6: Let Σ be a planning domain,P =
〈Σ, s0, g〉 be an arbitrary planning problem that is solvable
andSFE = {(o1, p1, t1), . . . , (on, pn, tn)} be a set of com-
patible full entanglements. LetA be a set of all actionsa
meeting the following conditions:

1. a is an instance of planning operatoro from Σ

2. if (o, p, init) ∈ SFE then∀Θ : pΘ ∈ pre(a) ⇒
pΘ ∈ s0

3. if (o, p, goal) ∈ SFE then∀Θ : pΘ ∈ eff+(a) ⇒
pΘ ∈ g

Let Σ′ be a grounded planning domain containing set of
actionsA and a corresponding set of grounded predicates.
Then, planning problemP ′ = 〈Σ′, s0, g〉 is solvable and a
plan forP ′ is a plan forP too.

Proof: We have to prove that we the reformulated
planning problemP ′ is solvable and a plan forP ′ is also
a plan forP . We can simply see that every plan forP ′
contains only actions fromA. As we can see from the
assumption, actions fromA meet three conditions. For the
first condition, it is clear that any solution ofP contains only
such actions that are instances of the operators defined inΣ.
For the second condition, we know that if any operatoro is
fully entangled by init with any predicatep then we allow
only such instances ofo having in their preconditions such
instances ofp that correspond with instances ofp belonging
to the initial state. From definition 1.1 (entanglement) we

know that there exists a planπ containing such actions
satisfying the following conditions. If actiona ∈ π is an
instance of operatoro which is entangled by init with any
predicatep in P then ∀Θ : pΘ ∈ pre(a) ⇒ pΘ ∈ s0
(Θ is a substitution from variables to constants, sopΘ is
a grounded predicate). Analogically it holds for the third
condition. ConsideringSFE is a set of compatible full
entanglements, we know that there exists at least one plan
which satisfy the entanglement conditions (def. 1.1) for all
operators and predicates that are fully entangled. Now it is
clear thatP ′ is also solvable. 2

Informally said, if some operator is fully entangled
on some predicate (or predicates) then we can omit such
instances of this operator where the predicate (or predicates)
in the preconditions or positive effects are not corresponding
with the particular predicates belonging to the initial or goal
state. We assume that by detecting (compatible) full en-
tanglements we can omit a lot of unnecessary actions. Full
entanglements can be understood as a piece of knowledge
that we can pass to existing planners via the definition of the
planning problem without updating the source code of the
planner. There are (at least) two ways how the information
about full entanglements can be encoded in the planning
domain/problem. The first option rests in production of
grounded domains (and problems) as we did it in Propo-
sition 1.6. The main disadvantage of this approach rests
in the fact that the grounded domains may be very large
which may cause a significant slow-down of the planner
in the pre-processing phase (loading the problem). It may
also disallow some other techniques such as lifting. The
second option rests in the extension of planning domains by
special static predicates. We shall present this approach in
the following paragraphs.

Definition 1.7: Let Σ be a planning domain andP =
〈Σ, s0, g〉 be an arbitrary planning problem. If operatoro
from Σ is fully entangled by init (resp. goal) with pred-
icate p and p is not a static predicate then we definere-
formulated domainRef(Σ, o, p) andreformulated problem
Ref(P, o, p) in the following way:

1. create a new predicatep′ which is not present inΣ and
has the same arity asp

2. create an operatoro′ = (pre′(o), eff−(o), eff+(o)),
wherepre′(o) = pre(o) ∪ {p′} (the arguments ofp′ cor-
respond with the arguments ofp)

3. create a reformulated domainRef(Σ, o, p) from Σ by
addingp′ and replacingo by o′

4. create a reformulated problemRef(P, o, p) =
〈Ref(Σ, o, p), s′0, g〉, wheres′0 = s0 ∪ {p′Θ | pΘ ∈
s0 (resp. pΘ ∈ g)}

Theorem 1.8: Let P = 〈Σ, s0, g〉 be a planning problem
and SFE = {(o1, p1, t1), . . . , (on, pn, tn)} be a set of
compatible full entanglements. LetP ′ be a problem
obtained fromP by successive application ofRef(P, o, p)
for every(o, p, t) ∈ SFE, wherep is a non-static predicate.

Then, ifP is solvable thenP ′ is solvable and a plan forP ′
is a plan forP too.

Proof: Recall Definition 1.7, whereRef(P, o, p) was
introduced. We added the predicatep′ into the reformulated
domain and problem. It is clear thatp′ is a static predicate,
because it does not appear in effects of any operator. From
the proof of Proposition 1.4 we know that static predicates
hold through the whole planning process without being
changed. It can be easily observed that no action with in-
stance ofp′ in the precondition that do not correspond with
the initial instances ofp′ can be applied to any state. From
the 2nd and 4th point (Def. 1.7) we can see that arguments
of p′ correspond with the arguments ofp. From Proposition
1.6 we know that if we remove such operators’ instances
from the domain that ‘break‘ full entanglements fromSFE
(recall conditions 2 and 3 from Proposition 1.6), then it
does not affect the solvability of the reformulated problem.2

Detection of full entanglements
In the previous section, we showed that if we know full en-
tanglement relations then we can restrict the set of grounded
actions (Definition 1.7 and Theorem 1.8) to be assumed dur-
ing planning without affecting solvability of the planning
problem. The remaining question is how the (compatible)
full entanglements can be detected. Theoretically, we are
facing the problem of validating entanglements for all solv-
able planning problems over a given domain. For the static
predicates the detection is easy and can be realized for ev-
ery domain (Proposition 1.4). For the other predicates we
have two options. First, we can prove (compatible) full en-
tanglements theoretically (it is not practically possible to
explore all solvable planning problems) or second, we can
use heuristics to guess that a given operator can be fully en-
tangled with a given predicate by exploring only a fraction
of planning problems (training planning problems). In the
first case we can fully exploit the theoretical results from the
previous section and we are sure that we cannot break the
solvability of planning problems by pruning of actions men-
tioned above. In the second case we cannot assure that the
solvability is preserved because the heuristic method does
not guarantee full entanglement.

In our opinion, the first option may require domain-
dependent approaches and hence a domain expert who can
handle it. Therefore, in the rest of the paper we will focus
on the second option with the goal to have a fully automated
domain-independent approach. It motivates us to develop a
method for detection of full entanglement based on heuris-
tics.

The main idea of our approach is as follows. Instead
of exploring all planning problems and finding a plan
validating the condition from Definition 1.1, we assume
only a subset of training problems together with existing
plans for these problems. The entanglement condition
as specified in Definition 1.1 is checked only for these
training problems and plans and if validated we declare full
entanglement as the following heuristic specifies.

INPUT: planning domainΣ, set of planning problems and their plans

OUTPUT:a set of compatible full entanglements

Set the full entanglements by init (resp. goal) between all operators and predicates

from the corresponding preconditions (resp. positive effects) fromΣ
ForEach planning problemP do

ForEach operatoro from Σ do
ForEach p ∈ pre(o) do

ForEach a ∈ π wherea is an instance ofo andπ is a plan solvingP do
If ¬∃Θ : pΘ ∈ s0 ∧ pΘ ∈ pre(a) wheres0 is an initial state ofP

then Unsetthe full entanglement by init betweeno andp
EndForeach

EndForeach
ForEach p ∈ eff+(o) do

ForEach a ∈ π wherea is an instance ofo andπ is a plan solvingP do
If ¬∃Θ : pΘ ∈ g∧pΘ ∈ eff+(a) whereg is a set of goal predicates

of P then Unsetthe full entanglement by goal betweeno andp

EndForeach
EndForeach

EndForeach
EndForeach

Figure 1: Algorithm for heuristic detection of the full entan-
glements by init or by goal.

Heuristic 2.1: Let Σ be a planning domain. If for each
training planning problemP over Σ together with a plan
solving the problem it holds that operatoro from Σ is
entangled by init (resp. goal) on predicatep then operator
o is considered as fully entangled by init (resp. goal)
with predicatep. We also consider that all detected full
entanglements are compatible.

This heuristic gives us an opportunity to develop the al-
gorithm (fig. 1) for detection of full entanglement (by init or
goal) at the cost of losing its completeness. It means that the
algorithm may declare full entanglement even if it does not
hold.

The algorithm starts with an assumption that every op-
erator from given domain is fully entangled by init (resp.
goal) with every predicate listed in the corresponding pre-
conditions (resp. positive effects). The algorithm is testing
if the conditions of entanglement are satisfied in each train-
ing plan for every operator and the corresponding predicate.
If the condition of entanglement is broken (once is enough)
then we set the particular pair (operator and predicate) as not
fully entangled.

The worst-case time complexity of the algorithm can be
estimated in the following way. Letn be the number of train-
ing planning problemsPi = 〈Σ, si

0, g
i〉 and πi be a plan

solvingPi. Let O be the set of operators fromΣ and℘ be
the set of predicates fromΣ. Then the time complexity of
the algorithm is following:

O

(
|O||℘|

n∑

i=1

(|πi|)
(

n∑

i=1

(|si
0|

)
+

n∑

i=1

(|gi|)
))

In most current planning domains and their corresponding
planning problems it holds that|O| ¿ ∑n

i=1 (|πi|), |℘| ¿∑n
i=1 (|πi|) and|gi| ¿ |si

0|. Hence we can update the time
complexity estimation in the following way:

O

(
n∑

i=1

(|πi|)
n∑

i=1

(|si
0|

)
)

The low time complexity of the algorithm means that
we can run the algorithm even for more training problems.
However, we need to consider that every training problem
must be solved before the algorithm can start computation
(we need a training plan). Even though there are good plan-
ners around, solving of many training problems can still be
very time consuming. It means that we should use ‘reason-
able‘ training plans - usually toy problems - only.

Moreover, the existing planners frequently do not pro-
duce shortest plans even though some of them successfully
participated in optimal tracks of IPC! This may cause
problems to our heuristic algorithm because if the training
plan contains actions that are not necessary to solve the
problem, these actions may break the condition of full
entanglement. Hence we suggest to weaken the heuristic
further to allow ‘a few‘ violations of the entanglement
condition.

Heuristic 2.2: Let Σ be a planning domain. If for each
training planning problemP over Σ holds that operatoro
from Σ is NOT entangled by init (resp. goal) on predicatep
in less or equal thann% times (‘flaws‘ ratio), then operator
o is considered as fully entangled by init (resp. goal)
with predicatep. We also consider that all detected full
entanglements are compatible.

The ‘flaws‘ ratio describes the ratio between the number
of violations of full entanglements and the total number of
instances of a particular operator in all training plans. To fol-
low heuristic 2.2 the detection algorithm can be updated in
such a way that instead of unsetting of full entanglements we
increase the number of violations of these full entanglements
and decide about the full entanglement at the end based on
the ‘flaws‘ ratio. Clearly, the risk of ‘false positive‘ detec-
tion of full entanglements is getting higher as the ‘flaws‘
ratio raises.

‘Flaws‘ ratio introduces a parameter to the algorithm
which raises the question how to set this parameter. In the
lines bellow we shall present an approach which can help to
determine the ‘flaws‘ ratio.

1. setflaws to n, wheren ∈ (0; 1); according to our exper-
iments we suggest starting withn = 0.1

2. generate the entanglements by the modified algorithm us-
ing ‘flaws‘ ratioflaws

3. compare the generated entanglements to the entan-
glements obtained by the original algorithm (without
‘flaws‘). If same then quit (we are not able to gather ad-
ditional entanglements).

4. generate a reformulated domain and reformulated training
problems considering the generated entanglements (ac-
cording to Definition 1.6)

5. run the planner on all the reformulated training problems.
If succeed then quit (we found proper full entanglements
with respect to training plans).

6. otherwise decreaseflaws by ε (ε > 0, for exampleε =
0.01) and go to the second step.

Problem no fr with fr
Unary Binary Unary Binary

Depots 1(2) 2(2) 1(2) 3(3)
Driverlog 1(1) 2(2) 1(1) 2(3)
Storage 2(2) 1(1) 2(2) 1(1)
Zenotravel 0(0) 2(2) 0(0) 2(2)
GoldMiner 3(3) 0(0) 3(3) 0(0)
MatchingBW 5(9) 2(4) 5(9) 3(5)
Parking 3(4) 2(2) 3(4) 2(2)
Thoughtful 15(47) 3(6) 15(47) 3(6)

Table 1: The table shows how many unary and binary predi-
cates were added and how how many times they were added
to operators’ preconditions (in brackets).

Experimental evaluation
We evaluated our approach experimentally in the follow-
ing way. At first, we looked for what our methods can
learn (how many new predicates are added to modified do-
mains by applying Definition 1.6). At second, we com-
pared running times and plan lengths of well known plan-
ners SATPLAN 2006 (Kautz, Selman, & Hoffmann 2006)
(winner of the 5th IPC optimal track), SGPLAN 5.22 (Hsu
et al. 2007) (winner of the 5th IPC sub-optimal track) and
LAMA (Richter & Westphal 2008) (winner on the 6th IPC
sub-optimal track) on a couple of planning domains well
known from the IPC. In summary, we proceeded the eval-
uation in the following steps:

• generate several simpler training plans (by SATPLAN),

• run our methods (with and without ‘flaws‘ ratio) for de-
tection of entanglements,

• generate reformulated domains and problems considering
the detected entanglements,

• run the planners both on the original problems and on the
reformulated problems and compare results.

We used several planning domains for our evalua-
tion to ensure that the proposed approach is generally
applicable (rather than specific for a particular plan-
ning domain). In particular, we used domainsDepots,
DriverLog, andZenoTravel from the third IPC, domain
Storage from the fifth IPC, and domainsGoldMiner,
MatchingBlockWorld, Parking, andThoughtful from
the learning track of the sixth IPC.

Learning phase
For the learning phase we used 3 to 6 training planning prob-
lems depending on the particular domain. For generation
of training plans we used SATPLAN. The selected training
planning problems were not too complex which results that
the training plans were generated mostly within tenths of
seconds. The detection of the full entanglement with gen-
eration of reformulated domain and problems took at most
half of second2.

In table 1 it is shown how many unary and binary predi-
cates were added and how how many times they were added

2performed on Core2Duo 2.66GHz, 4GB RAM, Win XP

to operators’ preconditions (in brackets). We focused only
on unary and binary predicates, because nullary predicates
did not bring any useful information and ternary predicates
(or more) were not presented in the tested domains (or never
detected as fully entangled). We also compared both meth-
ods - without and with ‘flaws‘ ratio. We found out that
using the ‘flaws‘ ratio contributed in Depots, Driver Log
and Matching BlockWorld domains. The other domains
remained the same as reformulated by the method without
‘flaws‘ ratio.

Running times and plans lengths comparison
The results of the evaluation are showed in table 2 (plan
lengths are in brackets)3. Symbol ’-’ in the cells of the table
was used only in columns representing reformulated prob-
lems by the method with ‘flaws‘ ratio where it indicates the
fact that this method did not reveal more knowledge than
the method without ‘flaws‘ ratio (see the previous subsec-
tion). Term ’err’ in the table cells means that the planner
terminated with unexpected error (probably caused by some
planner’s bug). All reformulated problems remained solv-
able except thoughtful-s7-t5b and thoughtful-s7-t5c. This
was caused by the fact that the (toy) training problems for
Thoughtful domain took in account full entanglements that
were applicable for the problems of type thoughtful-s5-t4,
but too restrictive for the problems of type thoughtful-s7-t5.

The best results were acquired by SATPLAN. Running
times of reformulated problems (especially those that were
generated by the method with ‘flaws‘ ratio) were (mostly
significantly) better in all tested cases. The plan quality (the
less plan length the better) were also in most cases better
in the reformulated problems. Even though SATPLAN pro-
duces optimal plans in makespan, it does not ensure the op-
timality with respect to the number of actions. SATPLAN
simply find the first plan with the lowest makespan. The re-
formulated problems operate with the lesser number of ac-
tions than the original ones. It may result in the better plan
quality for the reformulated problems.

SGPLAN’s running times of the reformulated problems
were mostly better than the original ones (especially in the
reformulated Matching BlockWorld domain and Parking do-
main). However, in some cases the running times of the
reformulated problems were significantly worse. The rea-
son of this may lie in SGPLAN’s heuristics that are based
on heuristics used in Metric-FF. FF based heuristics are vul-
nerable to problems that may contain dead-ends (i.e. we
can reach such a state from which the goal is unreachable).
Pruning of actions done by our methods may cause that
some problems become dead-ended. The quality of plans
was better in most of the reformulated Depots problems,
slightly worse in the reformulated Storage problems and sig-
nificantly worse in the reformulated Parking domain.

LAMA’s running times of the reformulated problems
were mostly better than the original ones. However, simi-
larly to SGPLAN, the running times of several reformulated
problems were worse. The reason of this also may rest in
LAMA’s heuristics (based on FF and Causal Graph) that

3performed on XEON 2.4GHz, 1GB RAM, Ubuntu Linux

may be vulnerable to problems with dead-ends. The most
interesting and a bit surprising result was achieved in Gold
Miner domain, where the quality of solutions of reformu-
lated problems were much better than in original ones.

Additional remarks
The presented results showed that our approach is reason-
able and can help planners increase their performance. SAT-
PLAN, which gained the best results, is based on transform-
ing of the planning graph (Blum & Furst 1997) into a SAT
formulae. We suppose that SATPLAN benefits from our
methods because our methods result in a significant reduc-
tion of the size of the planning graph. Planners like SG-
PLAN or LAMA using FF-based heuristics may occasion-
ally experience difficulties when using our approach. It was
discussed in the previous subsection that the main problem
of this (we suppose) rests in the fact that problems reformu-
lated by our methods may contain dead-ends. On the other
hand in most of problems our method is still helpful. For in-
stance, Matching BlockWorld domain is a good example of
problems with dead-ends. As we anticipated, SGPLAN ex-
perienced difficulties when solving original problems. Our
methods helped SGPLAN to solve these problems, often in
a very good time. It shows that our methods can be success-
fully used in a connection with planners based on FF-based
heuristics (like SGPLAN) mostly for problems with dead-
ends. In addition, many planning problems, especially real
world ones, have dead-ends.

Conclusions
In this paper, we presented methods for domain and prob-
lem transformations that can prune many unnecessary ac-
tions that may mislead planners when solving the planning
problem. The proposed methods are based on detection of
connectivity (here defined as full entanglements) between
operators’ instances in training plans and initial or goal pred-
icates in corresponding planning problems. The main advan-
tage of the proposed approach rests in a possible reduction
of searching space. The presented experimental evaluation
confirmed that in most cases our approach reduced the time
needed to find a solution.

Another advantage lies in independence of the proposed
techniques from the planning algorithm. In particular, we
suggest modification of planning domains and problems,
so that it is not required to modify the planners them-
selves. Hence our approach can be combined with other
pre-processing techniques such as reachability analysis.

A possible mutual reinforcement rests in connec-
tion of our approach with methods for learning macro-
operators (Boteaet al. 2005). As we mentioned before,
using of macro-operators reduces the depth of search trees
at the cost of increase of the branching factor. We believe
that in connection with our method we can reduce back the
branching factor which may result in significant improve-
ment of the whole planning process.

We also plan to study other possibilities for reducing the
number of generated instances of operators. We know that
the full entanglements by goal we are usually limited by

the lesser number of goal predicates. We would like to
study possibilities how to extend our approach by detecting
of such predicates that must be also true in any goal state
(though not specified as goal predicates). It may help us to
find more relations of full entanglement by goal.

Acknowledgements
The research is supported by the Czech Science Foundation
under the contract no. 201/08/0509.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis.Artificial Intelligence90(1-2):281–
300.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. InProceedings of ECP, 360–372.
Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators.Journal of Artificial Intelligence
Research24:581–621.
Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. InProceedings
of ICAPS, 97–104.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compil-
ing it into csp.Artificial Intelligence132:151–182.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning.Artificial Intelligence76:75–88.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Hsu, C.-W.; Wah, B. W.; Huang,
R.; and Chen, Y. 2007. SGPlan.
http://manip.crhc.uiuc.edu/programs/SGPlan/index.html.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proceedings of ECAI, 359–363.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan:
Planning as satisfiability. InProceedings of IPC.
Korf, R. 1985. Macro-operators: A weak method for learn-
ing. Artificial Intelligence26(1):35–77.
Newton, M. H.; Levine, J.; and Fox, M. 2005. Genetically
evolved macro-actions in ai planning. InProceedings of
PLANSIG, 47–54.
Richter, S., and Westphal, M. 2008. The lama planner us-
ing landmark counting in heuristic search. InProceedings
of IPC.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence125(1-2):119–153.

problem
SATPLAN SGPLAN LAMA

orig ref no fr ref with fr orig ref no fr ref w fr orig ref no fr ref with fr

depotprob1817 >600 >600 >600 24.69(100) 391.46(99) 0.15(95) 331.03(118) 95.94(111) 3.64(93)

depotprob1916 137.57(79) 49.27(74) 5.32(70) 0.41(83) >600 80.95(57) 1.70(62) 0.58(59) 0.14(60)

depotprob4321 5.32(43) 2.24(46) 0.48(39) 0.02(41) 0.10(35) 0.00(34) 4.96(39) 3.69(38) 0.03(37)

depotprob4398 1.08(32) 0.72(36) 0.27(35) 0.04(28) 0.03(28) 0.00(28) 0.23(30) 0.10(27) 0.03(26)

depotprob5646 0.39(31) 0.26(28) 0.08(28) 0.01(26) 0.01(26) 0.00(28) 0.17(26) 0.07(26) 0.02(26)

depotprob5656 222.84(70) 76.73(71) 5.92(69) 411.33(133) 337.18(70) 0.24(62) >600 >600 3.42(63)

depotprob6178 6.87(51) 4.54(51) 1.50(46) 0.11(48) 0.06(48) 0.02(37) 11.66(41) 6.06(41) 0.06(39)

depotprob6587 3.35(30) 2.18(29) 0.55(26) 0.06(28) 0.06(26) 0.00(24) 0.43(25) 0.19(25) 0.05(23)

depotprob7654 10.08(41) 6.13(39) 1.39(40) 0.09(35) 0.04(33) 0.01(33) 1.48(33) 46.58(35) 12.41(33)

depotprob8715 35.68(50) 28.31(46) 8.70(44) 0.26(34) 0.13(34) 0.05(36) 1.66(34) 0.54(33) 0.17(33)

dlog-2-3-6a 24.67(46) 3.52(43) 3.35(38) 0.94(41) 0.05(42) 0.02(42) 2.20(44) 1.68(49) 1.68(49)

dlog-2-3-6b 3.82(27) 1.31(27) 1.25(28) 0.01(32) 0.01(32) 0.01(32) 1.61(39) 1.03(30) 1.01(30)

dlog-3-3-6 2.86(37) 1.00(38) 0.90(35) 0.56(46) 0.14(41) 0.07(41) 0.15(51) 1.63(46) 1.63(46)

dlog-4-4-8 28.94(54) 13.08(52) 8.72(53) 0.04(47) 0.01(47) 0.01(47) 0.13(44) 0.06(44) 0.06(44)

dlog-5-5-10 >600 167.16(98) 169.36(95) >600 25.20(103) 17.82(105) 18.24(132) 7.55(114) 7.43(114)

dlog-5-5-15 507.89(92) 110.19(84) 121.43(89) 6.93(110) 3.81(106) 1.63(106) 14.33(112) 6.20(95) 6.04(95)

dlog-5-5-20 >600 >600 406.60(92) 23.15(105) >600 >600 17.75(127) 9.24(114) 8.88(114)

storage-11 85.47(22) 9.25(20) - 0.00(17) err - 0.56(32) 0.08(20) -

storage-12 38.01(24) 9.65(24) - 0.00(17) 0.00(20) - 0.70(32) 0.06(20) -

storage-13 153.45(18) 64.26(18) - 0.00(18) 0.00(20) - 1.25(38) 0.02(20) -

storage-14 24.70(22) 23.58(22) - 0.00(19) 0.00(26) - 5.15(32) 0.33(24) -

storage-15 8.28(25) 0.60(26) - 0.01(21) 0.00(20) - 0.88(22) 0.56(20) -

ztravel-3-7 1.90(22) 1.59(19) - 0.01(18) 0.00(18) - 0.04(15) 0.04(18) -

ztravel-3-8a 1.71(27) 1.31(25) - 0.01(27) 0.00(27) - 0.05(24) 0.04(23) -

ztravel-3-8b 0.86(27) 0.65(29) - 0.01(29) 0.00(29) - 0.04(28) 0.03(28) -

ztravel-3-10 3.79(31) 3.78(38) - 0.02(36) 0.01(36) - 0.05(31) 0.05(30) -

ztravel-5-10 34.49(42) 22.53(38) - 0.22(40) 0.19(40) - 0.24(41) 0.20(39) -

ztravel-5-15a 92.04(50) 40.70(53) - 0.12(60) 0.09(60) - 0.48(47) 0.37(47) -

ztravel-5-15b err err - 0.58(55) 0.47(55) - 0.62(57) 0.48(57) -

gold-miner-7x7-01 5.99(35) 4.97(35) - err 0.00(33) - 0.30(176) 0.04(31) -

gold-miner-7x7-02 4.36(32) 3.58(32) - err 0.00(30) - 0.16(161) 0.04(28) -

gold-miner-7x7-03 4.12(32) 3.46(32) - err 0.01(34) - 0.29(257) 0.04(32) -

gold-miner-7x7-04 9.15(43) 7.62(42) - err 0.01(41) - 0.21(130) 0.02(41) -

gold-miner-7x7-05 9.78(39) 8.16(41) - err 0.00(39) - 0.38(157) 0.03(39) -

gold-miner-7x7-06 6.00(33) 4.96(34) - err 0.00(33) - 0.18(182) 0.02(33) -

gold-miner-7x7-07 6.08(38) 4.85(38) - err 0.01(36) - 0.04(65) 0.02(34) -

gold-miner-7x7-08 3.06(25) 2.60(25) - err 0.00(27) - >600 0.02(25) -

gold-miner-7x7-09 4.24(33) 3.61(29) - err 0.01(31) - 0.14(130) 0.03(29) -

gold-miner-7x7-10 5.96(35) 4.92(35) - err 0.00(33) - 0.29(176) 0.05(31) -

matching-bw-n15a 27.81(42) 19.93(42) 1.95(42) >600 >600 0.25(46) 0.22(68) 0.22(62) 0.25(50)

matching-bw-n15b 34.25(56) 10.18(52) 1.37(52) >600 >600 170.39(54) 0.36(66) 0.31(78) 0.38(60)

matching-bw-n15c 26.80(38) 9.39(42) 1.20(38) >600 20.89(74) 284.65(34) 0.71(66) 1.74(72) 0.14(46)

matching-bw-n15d 40.74(40) 14.41(42) 1.45(42) >600 >600 >600 0.51(58) 0.29(60) 0.18(56)

matching-bw-n15e 59.00(34) 14.62(36) 1.73(36) >600 >600 47.17(42) 0.17(40) 0.80(44) 0.07(34)

matching-bw-n20a >600 189.75(52) 15.00(50) >600 >600 >600 0.46(62) 0.37(66) 0.25(66)

matching-bw-n20b 245.12(48) 54.35(50) 4.39(48) >600 >600 0.35(60) 3.63(78) 3.44(68) 0.93(50)

matching-bw-n20c 363.36(54) 60.94(54) 5.62(54) >600 533.89(90) 237.64(36) >600 55.72(70) 1.46(72)

matching-bw-n20d 195.87(46) 43.04(46) 4.31(46) >600 10.40(74) >600 0.77(86) 1.43(92) 0.48(64)

parking-a >600 399.11(16) - 0.67(20) 0.02(31) - 0.16(19) 0.15(31) -

parking-b >600 98.13(15) - 0.73(22) 0.11(36) - 0.22(20) 0.14(31) -

parking-c 304.47(12) 17.68(12) - 0.53(25) 0.08(29) - 0.16(15) 0.12(23) -

parking-d >600 >600 - 0.02(18) 0.01(18) - 0.34(31) 0.13(18) -

parking-e >600 167.20(13) - 0.76(29) 0.05(56) - 0.31(27) 0.14(20) -

parking-f >600 >600 - 0.47(25) 0.27(39) - 0.20(21) 0.13(19) -

parking-g >600 >600 - 17.89(34) 0.83(52) - 14.16(30) 0.58(20) -

parking-h >600 >600 - 19.39(37) 0.71(58) - 0.55(19) 1.01(38) -

thoughtful-s5-t4d 3.20(37) 0.47(37) - 0.04(28) 0.02(30) - err err -

thoughtful-s5-t4e 44.41(41) 2.56(36) - 0.05(33) 0.02(31) - err err -

thoughtful-s5-t4f 5.46(36) 0.94(32) - 0.02(31) 0.02(28) - err err -

thoughtful-s5-t4g 3.92(38) 1.11(38) - 0.03(32) 0.02(32) - err err -

thoughtful-s5-t4h 3.26(41) 0.58(36) - 0.04(31) 0.01(34) - err err -

thoughtful-s7-t5a 288.57(58) 99.73(65) - 0.10(50) 205.71(49) - err err -

thoughtful-s7-t5b 136.44(65) unsolvable - 1.39(84) unsolvable - err unsolvable -

thoughtful-s7-t5c 232.32(71) unsolvable - 0.13(51) unsolvable - err unsolvable -

Table 2: The table shows comparison of the running times (in seconds) and plan lengths (in brackets) of original problems and
problems reformulated using our methods (without and with ‘flaws‘ ratio).

