
Abstract Planning with Unknown Object Quantities and Properties
Siddharth Srivastava and Neil Immerman and Shlomo Zilberstein

Department of Computer Science,
University of Massachusetts,

Amherst, MA 01003

Abstract
State abstraction has been widely used for state aggregation in
approaches to AI search and planning. In this paper we use
a powerful abstraction technique from software model check-
ing for representing collections of states with different object
quantities and properties. We exploit this method to develop
precise abstractions and action operators for use in AI. This
enables us to find scalable, algorithm-like plans with branches
and loops which can solve problems of unbounded sizes. We
describe how this method of abstraction can be effectively
used in AI, with compelling results from implementations of
two planning algorithms.

Introduction
The objective of automated planning is to determine methods
for reaching a goal state using domain specific actions. Clas-
sical planning concentrates on the most fundamental ques-
tion in planning by focusing on finding linear sequences of
actions that take an input state to a goal state. Conditional
planning on the other hand, generalizes this problem in two
ways: first, the initial state need not be defined precisely, and
second, actions may lead to states with unknown or uncer-
tain properties, which may be clarified using sensing actions.
In this paper we focus on the role of abstraction in solving
fundamental problems of conditional planning, by assuming
that we do not have any probabilistic information about the
associated uncertainties.

Conditional planning frameworks typically work with sets
of possible states, or belief states (Bonet & Geffner 2000;
Hoffmann & Brafman 2005). Approaches for conditional
planning use a variety of abstraction methods for represent-
ing these belief states and computing the effects of actions
applied on them. However, existing abstraction mechanisms
have a significant shortcoming: they do not provide methods
for representing and dealing with unknown quantities of ob-
jects. Situations where such representations are required, or
would be beneficial, are fairly common. For instance, con-
sider a simplified recycling problem where a recycling robot
must pick up objects from a set of unknown number of bins,
perform a sensing action to determine recyclability, and store
them in appropriate containers. While the core set of actions
may be simple, no method for conditional planning can ex-
press this problem. Under existing methods, every instance
of this problem with k bins forms a distinct state space and
needs to be solved separately.

This problem is further aggravated by limitations on con-
ditional plan representations: current conditional planners
find tree-structured solutions whose exponential size quickly
makes their computation infeasible. With such representa-
tions, even simple problems like recycling described above
will challenge planners, simply because of the size of their

solutions. Approaches like conditional non-linear plan-
ning (Peot & Smith 1992) address this issue, but are limited
in their representation of object quantities and cannot contain
the growth in size of the state space due to increasing objects.
One approach for dealing with large or unknown numbers of
objects is to allow loops over these objects. Such a solu-
tion for the recycling problem would be short, with a simple
loop of actions, and an included branch for the sensing result
with the appropriate action for the current object. Finding
such plans presents some difficult challenges: first, finding
the loop itself, and second in determining the overall effect,
and more importantly, the utility of the loop. We need to be
able to distinguish “hard” loops that return to the same world
state from desirable loops that make progress. The difficulty
is that plans with loops and branches resemble programs and
algorithms, for which questions about progress can be unde-
cidable even for single problem instances.

In this paper, we address the twin problems of represent-
ing unknown object quantities in belief states and finding
scalable conditional plans by using an abstraction technique
based on 3-valued first-order logic which was originally de-
veloped for static analysis of programs (Sagiv et al. 2002).
This abstraction technique allows us to effectively work with
belief states comprised of states with different numbers of
objects. Our goal is to be able to find scalable plans with
loops and branches along with methods for computing their
applicability. We begin by formalizing the desired plan rep-
resentation and planning framework in the section on Gener-
alized Planning. This leads to a useful observation that makes
algorithm-like “generalized” plans more tractable than algo-
rithms for most practical planning domains (Fact 1), includ-
ing the benchmark planning problems. The algorithmic solu-
tion to the recycling problem discussed above is an example
of a generalized plan. Such plans do not have to grow with in-
creasing domain size. However, they are difficult to analyze.
We mitigate this problem by enriching the abstraction to in-
clude more information about the states comprising a belief
state. This is described after the description of our state and
action representations, in the section on Belief State Repre-
sentation. We describe how this approach can be used in AI
to model belief states with unknown numbers of objects and
sensing actions with non-deterministic results. We demon-
strate the utility of this technique by two planning algorithms:
a technique for generalizing example plans by placing se-
quences of actions into loops that make measurable progress,
and a method for using this generalization technique together
with a plan-merging routine to create plans with complicated
loop and branch structures, while still being able to determine
the class of problems that they solve in a wide range of do-
mains. We demonstrate the scope of this approach through
experiments on a prototype implementation.

Generalized Planning
We take the state-based approach to planning. A domain’s
relations, actions, and integrity constraints are used to define
a domain schema. Integrity constraints specify characteris-
tics of structures of interest. Action operators map pairs of
state and operand instantiations to new states. States are rep-
resented using logical structures. Formally,
Definition 1 A domain-schema is a tuple 〈V,A,K〉 where
the vocabulary V = {Rn1

1 , . . . , Rnk

k } is a set of predicate
symbols together with their arities, A is a set of action op-
erators, and K is a collection of integrity constraints about
the domain. Each action operator a(x1, . . . , xn) consists of a
precondition ϕpre expressed in an appropriate language and a
state transition function τa which maps a legal (wrt integrity
constraints) state with an instantiation for the operands satis-
fying the preconditions to another legal state:
τa(x̄) : {(S, i)|S ∈ ST [V]K ∧ (S, i) |= ϕpre} → ST [V]K

where x̄ = (x1, . . . , xn), ST [V]K is the set of finite struc-
tures over V satisfying K, and (S, i) denotes the structure S
together with an interpretation for the variables x1, . . . , xn.

An instance from a domain-schema is a structure in its
vocabulary satisfying the integrity constraints.
Definition 2 A Generalized planning problem is a tuple
〈I,D, ϕg〉 where I is a possibly infinite set of instances, D
is the domain-schema, and ϕg is the common goal formula in
an appropriate language. I can be represented using a finite
representation (e.g., propositional or First-Order formulas).

This formulation of the generalized planning problem is
expressive enough to capture sophisticated algorithm synthe-
sis problems:
Example 1 Consider the graph 2-coloring problem. The
vocabulary VG = {E2, R1, B1}, consists of the edge re-
lation and the two colors. The set of actions is AG =
{colorR(x), colorB(x)}, for assigning the red and blue col-
ors. Their preconditions are respectively ¬B(x),¬R(x).
Integrity constraints stating our graphs are undirected, the
uniqueness of color labels, and the coloring condition are
given by

KG = {∀x(¬(R(x) ∧B(x))) ∧
∀x, y (E(x, y)→ (E(y, x) ∧ ¬(R(x) ∧R(y))

∧¬(B(x) ∧B(y))))}

We consider the planning problem with IG = ST [VG]KG , or
all structures satisfying the integrity constraints; the domain
schema 〈VG,AG,KG〉, and the goal condition ϕ2−color =
∀x(R(x) ∨B(x)).

In addition to the relations from a problem’s domain
schema, solving a generalized planning problem may require
the use of some auxiliary relations for keeping track of use-
ful information. For example, in a transport domain such re-
lations can be used to store and maintain shortest paths be-
tween locations of interest. These paths can then be used
to move a transport using the regular state-transforming ac-
tions. In order to maintain or extract such information, a
generalized plan can include meta-actions which update the
auxiliary relations. The action of choosing an instantiation

setD(x)setD(x) succeed

setR(y) fail setB(y)

choose y: E(x,y) choose y: E(x,y)

R(y)

choose x: C(x) D(x)

B(y)

setR(x)

D(x)

choose x: D(x)

B(y) R(y)

R(x)

no such x

no su
ch y no such y

no such x

B(x)

R(y) B(y)

Figure 1: Generalized plan for two coloring a graph

of operands is also a simple kind of meta-action. A choice
meta-action is specified using the variables to be chosen, and
a formula describing the constraints they should meet, e.g.
choose x, y : (E(x, y) ∧ ¬R(y)). Solutions to generalized
planning problems are called generalized plans. Intuitively, a
generalized plan is a full fledged algorithm. Formally,

Definition 3 (Generalized plan) A generalized plan Π =
〈V,E, `, s, T,M〉 is defined as a tuple where V,E are the
vertices and edges of a connected, directed graph; ` is a func-
tion mapping nodes to actions and edges to conditions; s
is the start node and T a set of terminal nodes. The tuple
M = 〈Rm, Am〉 consists of the vocabulary of auxiliary re-
lations (Rm) and the set of meta-actions (Am) used in the
plan.

During an execution, the generalized plan’s run-time con-
figuration is given by a tuple 〈pc, S, i,R〉 where pc ∈ V is
the current node to be executed; S, the current state on which
to execute it; i, an instantiation of the free variables in `(pc),
and R, an instantiation over S of the auxiliary relations in
Rm. In general, compound node labels consisting of multiple
actions and meta-actions can be used for ease of expression.
For simplicity, we allow only a single action per node and
require that all of an action node’s operands be instantiated
before executing that node. Unhandled edges such as those
due to an action’s precondition not being satisfied and due to
non-exhaustive edge labels are assumed to lead to a default
terminal (trap) node.

A generalized plan is executed by following edges whose
conditions are satisfied, starting with s. After executing the
action at a node u, the next possible actions are those at
neighbors v of u for which the label of 〈u, v〉 is satisfied by
(S, i). Non-deterministic plans can be achieved by labeling
a node’s outgoing edges with mutually consistent conditions.
A generalized plan solves an instance i ∈ I if every possible
execution of the plan on i ends with a structure satisfying the
goal.

Example 2 A generalized plan for the example discussed
above can be found using an auxiliary labeling relation D(x)
for nodes whose processing is done. D is initialized to φ and
is modified using the meta-action setD(x). The generalized
plan is shown in Fig. 1. We use the abbreviation C(x) for
B(x) ∨R(x).

We call a generalized planning problem “finitary” if for ev-
ery instance i ∈ I, the set of reachable states is finite. The
simplest way of imposing this constraint is to bound the num-
ber of new objects that can be created (or found, in case of

partial observability). Finitary domains are practical because
they capture most real-world situations and are tractable:
Fact 1 In finitary domains, the language consisting of in-
stances that a generalized plan solves is decidable.

Finitary domains thus have a solvable halting problem. We
could thus conceivably develop efficient algorithms for ap-
proximating the preconditions of a generalized plan, and use
them to create and extend generalized plans.

We measure the quality of a generalized plan as the frac-
tion of solvable problem instances that it solves, or its do-
main coverage. More specifically, we define Dπ(n) =
|Sπ(n)|/|T (n)| where T (n) is the total number of solvable
problem instances of size at most n, and Sπ(n) is the number
of those that π solves.

State and Action Representation
Running Example (Delivery) Given a set of crates marked
with their destinations at a dock, and a truck in a garage, the
goal is to determine each crate’s destination and to deliver
it using the truck. All the delivery locations are connected
directly with the dock. For simplicity, we assume that each
crate represents a unit of cargo equal to the truck’s capacity.

As described above, we represent states of a domain by
two-valued structures in First-Order logic with transitive clo-
sure (FO[TC]). State transitions are carried out using action
operators described as a set of formulas in FO[TC], defining
new values of every predicate in terms of the old ones. We
represent belief states using structures in 3-valued logic (“ab-
stract structures”). The set of initial instances is represented
as a finite disjunction of belief states. While the terms “struc-
ture” and “state” are interchangeable in our setting, we use
the former when dealing with a logic-based mechanism.
Example 3 The delivery domain can be modeled us-
ing the following vocabulary: V = {crate1, dock1,
garage1, location1, truck1, delivered1, in2, at2, dest2}. An
example structure, S, for the crate delivery problem dis-
cussed above can be described as: the universe, |S| =
{c, d, g, l, t}, crateS = {c}, dockS = {d}, garageS = {g},
locationS = {l}, truckS = {t}, deliveredS = ∅, inS = ∅,
atS = {(c, d), (t, g)}, destS = {(c, l)}.

The action operator for an action (e.g., a(x̄)) consists of a
set of preconditions and a set of formulas defining the new
value p′ of each predicate p. Let ∆+

i (∆−i) be formulas rep-
resenting the conditions under which the predicate pi(x̄) will
be changed to true (false) by a certain action. The formula for
p′i, the new value of pi, is written in terms of the old values
of all the relations:

p′i(x̄) = (¬pi(x̄) ∧∆+
i) ∨ (pi(x̄) ∧ ¬∆−i) (1)

The RHS of this equation consists of two conjunctions:
one holds for arguments on which pi is changed to true by
the action; the other holds for arguments on which pi was
already true and remains so after the action. These update
formulas resemble successor state axioms in situation calcu-
lus (Levesque et al. 1998). However, we use query evaluation
on possibly abstract structures rather than forward chaining to
derive the effect of an action.
Example 4 The delivery domain with one truck has
the following actions: Drive(l), Load(c), Unload(c),

L1

L2

L3

C1

C2
C3
C4

Abstraction

dest

Location

Crate

dest

Figure 2: Abstraction for representing belief states

SetDrivingDest(l), SenseAndSetDest(c). With loc as the lo-
cation to drive to, update formulas for Drive(loc) action are:

at′(u, v) := {at(u, v) ∧ (¬truck(u) ∧ ∀t¬in(u, t))} ∨
{¬at(u, v) ∧ (v = loc ∧ (truck(u) ∨
∃t(truck(t) ∧ in(u, t))))}

The mechanism of the sensing action SenseAndSetDest() is
described in section on Sensing Object Properties.

The goal condition is also represented as a formula in
FO[TC]. For example, ∀x(crate(x) → delivered(x)). The
predicate delivered is updated to True for a crate when the
Unload action unloads it at its destination.

Belief State Representation
We use an abstraction technique originally developed in
TVLA (Three Valued Logic Analyzer), a well-established
system for the static analysis of programs (Sagiv et al. 2002).
We represent belief states using 3-valued structures (or “ab-
stract structures”), in which each tuple may have a logical
value 1 (present in a relation), 0 (not present), or 1

2 (perhaps
present) (Sagiv et al. 2002). This way, an abstract three-
valued structure, Sa, represents a possibly infinite set of con-
crete, two-valued structures denoted as γ(Sa). Given a do-
main, we select a set, A, of unary predicates to be the ab-
straction predicates (all the unary predicates in our examples
are abstraction predicates). We define the role that an ele-
ment of a structure plays as the set of abstraction predicates
it satisfies.

The idea of the abstraction is that each abstract struc-
ture will have at most one element of each role. For ex-
ample Fig. 2 shows part of a concrete state S1 in the de-
livery domain, and an abstract structure Sa which encom-
passes S1. Sa has two elements, c, `, satisfying the roles,
{crate}, {location}, respectively. Both elements of Sa are
drawn with double circles indicating that they are summary
nodes, i.e. they may represent one or more concrete node. A
non-summary node represents a unique concrete node. The
edge marked “dest” is drawn as a dotted arrow indicating that
the truth value of dest(c, `) is 1

2 . A truth value of 1 is drawn
as a solid line and a truth value of 0 is not drawn.

The canonical abstraction of a concrete structure is the
least general abstract structure that it represents. (Sagiv et al.
2002). Canonical abstraction is formed with one element for
each role that occurs in the concrete structure. This will be a
summary element iff there is more than one element of that
role in the concrete structure. A relation holds with value 1 in
the canonical abstraction if it holds for all tuples represented
in the concrete structure and it holds with value 1

2 if it holds
for some but not all of the tuples represented. For example,
Sa is the canonical abstraction of S1. In Sa, dest(c, `) holds
with value 1

2 because it holds for (C1, L1), but not (C1, L2).
This illustrates the use of the intermediate logical value—to
represent a more general set of concrete structures than can
be represented in two-valued logic. The truth value 1

2 can

Role i Role iRole i Role i
Role i

φφ

fφ

φ

S SS
1 2 3

S
0

Figure 3: Effect of focus with respect to φ.

also be used to represent uncertain information about rela-
tions in a concrete state. The set of all concrete nodes rep-
resented by Sa is denoted γ(Sa). In Fig. 2, it consists of S1

along with all the other two-valued structures containing one
or more crate and one or more location, with the relation dest
holding between zero or more pairs of crates and locations.
Most of these concrete states are inconsistent for the deliv-
ery problem domain. Integrity constraints serve to rule out
such structures. For example, constraints stating that every
crate must have a unique destination are sufficient to reduce
γ(Sa) to the actually possible real world states. In the rest of
this paper, we use γ(Sa) to refer to the set of concrete states
represented by Sa that are consistent with the underlying do-
main’s integrity constraints. An abstract structure Sa is said
to embed Sb iff γ(Sb) ⊆ γ(Sa). This can be determined by
comparing the truth values for tuples of both structures.

The advantage of this methodology is that it allows us to
represent and deal with uncertainty in object properties or in
numbers of objects. Compact representation of belief states
is a key challenge in conditional planning. In this approach,
each abstract structure has at most 2a elements where a =
|A|, the number of abstraction predicates–even though it can
represent an infinite set of similar structures. This limit on
structure size also makes abstract state spaces finite.

Action Application on Belief States With the abstraction
described above, action update formulas may result in in-
creasingly more imprecise abstract states. This is handled
in TVLA using the focus operation with user-specified for-
mulas prior to every action update. The focus operation on
a three-valued structure S with respect to a formula ϕ pro-
duces a set of structures which have definite truth values for
every possible instantiation of variables in ϕ, while collec-
tively representing the same set of concrete structures repre-
sented by S. The focus operation wrt a set of formulas works
by successive focusing wrt each formula in turn. This process
could produce structures that are inherently infeasible. Such
structures are either refined or discarded using the integrity
constraints. A focus operation with a formula with one free
variable on a structure which has only one role (Rolei) is
illustrated in Fig. 3: if φ() evaluates to 1

2 on a summary ele-
ment, e, then either all of e satisfies φ, or part of it does and
part of it doesn’t, or none of it does.

Focus formulas are automatically determined from action
update formulas in our approach (Srivastava et al. 2007). Ap-
plication of an action on an abstract structure thus consists of
the following steps: action-specific focus operation, precon-
dition test, an action update for every predicate, and finally,
a canonical abstraction resulting in the final structure. This
method of action application results in abstract states that en-
compass all possible real world results.

Dealing with Unknown Quantities In general, objects
representing action arguments need to be drawn out from
their roles prior to action application on abstract states. The

S
1

S
2

S
i

S
j

S
k

(#
R >

 1
)

Plan Pre­condition

Figure 4: Finding preconditions of plan branches

drawing-out operation results in two abstract structures, cap-
turing whether or not the drawn element was the last of its
role. This is accomplished using mandatory choice opera-
tions which select an action’s operands prior to action appli-
cation. The range of choices for action operands’ roles can be
reduced by providing choice operations with the class of ac-
ceptable roles. In the planning approaches described later in
this paper, these roles are automatically determined as roles
of the chosen concrete elements used in the user-provided
example plans. Choice operations mark the element being
drawn out with a new abstraction predicate to keep it sepa-
rated from the existing roles. Truth values of predicates for
tuples involving the drawn element are initially the same as
those for tuples having the original summary element instead
of the drawn element; integrity constraints can make these
truth values more precise.

We implement this mechanism for dealing with unknown
quantities using the focus operation. In Fig. 3 for instance,
if integrity constraints restrict φ to be unique and satisfiable,
then structure S3 in Fig. 3 would be discarded and the sum-
mary elements for which φ() holds in S1 and S2 would be
replaced by singletons. These two structures would then rep-
resent the cases where we have either exactly one, or more
than one object with e’s role. Further, the choice action’s
predicate update would set a new predicate (e.g. chosen) to
hold for the drawn element for which φ holds.

Sensing Object Properties In this paper, non-determinism
arises entirely due to uncertainty about properties of a state.

Sensing actions are similar to normal actions, except that
their focus formulas represent the property being sensed. In
the delivery domain for instance, the sensing action Sense-
AndSetDest() is applicable on a crate marked with the new
(not in the domain’s vocabulary) abstraction predicate cho-
sen, and focuses on the formula ∃x(chosen(x)∧dest(x, y)).
An integrity constraint stating that every crate has a unique
destination rules out illegal results. Sensing actions can also
have predicate updates, to be applied on all possible result
structures of the sensing operation: the SenseAndSetDest ac-
tion sets the targetDest predicate for the chosen crate’s newly
focused destination in this way.

In general, all the legal possibilities for any predicate with
imprecise truth values in an abstract state can be generated
using a parameterised sensing action. In this paper however,
we work with problems where all the possible sensing actions
are specified by the domain.

Enriching Canonical Abstraction
In the preceding sections we demonstrated how abstraction
based on 3-valued logic can be used to collapse similar states
with different numbers of objects into belief states. Although
the focus operation in TVLA provides a method for increas-
ing the precision in these states, in many instances in plan-
ning we need greater detail. For instance, Fig. 5 shows
the abstract structures obtained while applying some actions

Dock
at dest

at

Truck

dest, at

Locationcrate

Garage
delivered;crate

Dock
at dest

at

Truck

Locationcrate

Garage

Dock

at

Truck

dest, at

Location

Garage
delivered;crate

destat

chosen;crate

Dock
at dest

at

Truck

dest, at

Locationcrate

Garage
delivered;crate

S
1

S
2

S
3

S
4

Choose(crate)

Figure 5: A loop in the belief state space of the delivery domain that makes progress in the concrete state space. The dotted edges represent a
sequence of actions delivering one crate: Choose(crate), Load(), SenseAndSetDest(), Drive(), UnLoad(), SetDrivingDest(Dock), Drive().

in the delivery domain. Abstract structure S1 represents all
the infinitely many problem instances with more than one un-
delivered crates and locations. After applying a sequence of
actions (see Fig. 5’s caption) on structure S3, we may return
to the same abstract structure. However, the Choose(crate)
operation in this sequence has a branch that doesn’t fall back
into the loop and instead results in an abstract state where
only one undelivered crate remains. Delivering this crate will
lead to the goal. In model checking, where the goal is to
find potential failure, finding any such path to a target failure
structure is a satisfactory result. In automated planning how-
ever, we need more details for such a path of actions to be
usable. For instance:
• Which concrete member states of the start structure actu-

ally reach the goal?
• How expensive is the given path to the goal, or, how many

iterations of the loop do we need to reach the goal?
• What does each iteration of the loop accomplish? Can exit

from the loop be guaranteed?
Answers to these questions depend on the actual problem

instance being worked upon. However, in a large class of
problem domains we can compute comprehensive answers
that are parametric in terms of the possible problem instances.
Note that action application can lead to multiple results (only)
because of the focus operation. In order to determine the of
class instances solved by a path of actions, we need to find
the required condition for each branch at the abstract state
where it occurs, and propagate it backwards (Fig. 4).

Let #R(S#) denote the number of elements of role R in
concrete state, S#. For many planning problems, labeling ab-
stract structures with linear inequalities concerning such role
counts provides the information needed to do this. A class of
abstraction schemes where this approach works is formalized
as extended-LL domains. Further discussion about these do-
mains, proofs, and procedures for finding plan preconditions
can be found at (Srivastava et al. 2007).

Theorem 1 Given a plan with simple loops over an
extended-LL domain, and a structure node S in the plan, we
can compute a set of linear inequalities whose arguments in-
clude initial role-counts and whose solutions are exactly the
achievable role-counts at S. These inequalities can be com-
puted in time linear in the number of actions in the plan.

Action branches in these domains are determined by linear
inequalities on role-counts, and the effect of an action on the
role-count of a structure is determined by a linear function of

its initial role-counts. The effect of a loop on role-counts also
determines if the loop makes progress towards the goal.

Discussion The use of summary elements described above
provides a method for state aggregation across instances of
problems with unknown, or different object quantities. With
more information attached to abstract structures, we can
effectively apply these methods where conventional state-
aggregation has proved useful in AI. As an example, we can
conduct a direct search for plans in the abstract state space,
simulating a search across infinitely many problem instances.
Such a search can also yield powerful loops (the one in Fig. 5
can be found by a search in the delivery domain’s abstract
state space). Due to the fixed number of roles, abstract state
spaces capturing infinitely many problem instances as de-
scribed above are finite, and often comparable in size to the
corresponding concrete state spaces for moderate problem in-
stances. The delivery domain’s abstract state space is smaller
than the concrete state space for an instance with 8 crates and
locations. On the other hand, it is difficult to associate con-
stant distances to the goal, or “values” as used in MDPs, with
such abstract states because of the differences among their
real world components. Both of these notions are replaced
here by functions over instance-specific parameters.

These methods also allow us to determine plan costs pa-
rameterized in terms of the actual problem instances. Con-
sider Fig. 5. The desired exit from the loop occurs as a pos-
sible result of the Choose(crate) action. Methods described
in (Srivastava et al. 2007) can be used to determine that in
order for this exit to be taken, the role-count of undelivered
crates at an application of Choose(crate) should be found as
1; that every execution of the presented sequence of actions
decreases this count by 1, and therefore, if we have to reach
S4, S1 must have l + 3 undelivered crates where l ≥ 0 is
the number of iterations the loop that will be required. The
parameterized cost of executing the plan is thus (l+ 3) · 7, as
each delivery operation uses 7 actions described in the figure.

A Hybrid Approach for Generalized Planning
In this section we use the abstraction and action mechanisms
presented above to develop algorithms for generalized plan-
ning. We call this system for generalized planning Aranda1.
The overall approach behind these algorithms is to use clas-
sical plans to construct a generalized plan. More specifically,

1After an Australian tribe whose number system captures a sim-
ilar abstraction.

we generalize every available example plan using ARANDA-
Learn, and merge it with the existing generalized plan using
ARANDA-Merge. The example plans themselves can be gen-
erated automatically using classical planners.

Generalizing Example Plans: ARANDA-Learn
The ARANDA-Learn algorithm (Srivastava et al. 2008) uses
the abstraction mechanism described above to generalize a
given classical plan which solves a single problem instance
into a generalized plan with simple loops of actions. The
resulting generalized plan typically works for infinitely many
problem instances; in extended-LL domains this class can be
easily computed.

The input to ARANDA-Learn is a pair (π, S#
0), where

π = (a1, . . . , an) is a solution plan for the concrete structure
S#

0 . The algorithm proceeds as follows: first, π is modified
to be applicable to abstract states by replacing its actions’ ar-
guments by their roles, giving us π′. π′ is then applied to
an abstraction S0 of S#

0 , keeping only that abstract structure
Si at each step which embeds the state S#

i obtained by π at
that step (this is called “tracing”). Repeated abstract struc-
tures in this trace indicate that certain state properties have
recurred. With an appropriate abstraction, this means that the
same actions can be applied again, and is taken as a cue for
recognizing a loop. The loop is formed by merging the two
abstract structures in the trace.

Note that tracing rejects any structure Si that is not con-
sistent with the result S#

i in the concrete example. If these
structures are included in the plan as open-ended nodes with
no following actions in the final trace, they can be used as a
compact representation of situations that were not handled.
Small instances of these structures can be used to generate
more relevant example plans using classical planners.

Context-Sensitive Merging: ARANDA-Merge
ARANDA-Merge (Alg. 1) uses the representation of possible
states (or contexts) as abstract structures by storing abstract
structures possible after each action in the generalized plan
as determined by ARANDA-Learn. It takes as input an exam-
ple trace tracei created by ARANDA-Learn, and an existing
generalized plan Π. Alg. 1 uses findMergePoint to find the
earliest structure in tracei that is embeddable in a structure in
Π. In order to provide accurate expressions of loop effects,
structures within loops in tracei are not considered during
this search in order to reduce the structural complexity of the
generated plans; those within loops in Π are allowed. If suc-
cessful, findMergePoint returns mpΠ and mpt, the nodes on
Π and tracei corresponding to these structures. A success-
ful search indicates that the example trace’s actions can be
successfully executed starting at mpΠ . However, these ac-
tions may not be different from those following mpΠ in Π.
In order to minimize the new edges added to Π, after find-
ing merge points, Alg. 1 conducts a search for a branch point
using subroutine findBranchPoint.

findBranchPoint traverses the edges of tracei and Π start-
ing from the last known merge points mpt and mpΠ, and re-
turns the first pair of subsequent nodes where tracei and Π
are not consistent: i.e., either a pair of structures such that
none of the successor actions in Π match any of the succes-

Algorithm 1: ARANDA-Merge
Input: Existing plan Π, eg trace tracei

Output: Extension of Π
if Π = ∅ then

Π← tracei

return Π
repeat

mpΠ,mpt ← findMergePoint(Π, tracei, bpΠ, bpt)
if mpΠ found and not first iteration then

attachEdges(Π, tracei, bpt, mpt, mpΠ, bpΠ)
if mpΠ found then

bpΠ, bpt ← findBranchPoint(Π, tracei,mpΠ,mpt)

until new bpΠ or mpΠ not found
return Π

sor actions in tracei, or, a pair of structures nst, nsΠ such
that the structure on Π (`(nsΠ)) does not embed the structure
in the trace (`(nst)). This gives us a branch point, where the
trace behaved differently from the existing plan.

The overall algorithm works by attaching nodes and edges
from the branch point to the merge point (bpt, mpt) in tracei
between bpΠ and mpΠ in Π. If a branch point on Π coincides
with the next merge point on Π, Alg. 1 introduces a new loop.
The result contains abstract result structures after each step,
which can be ignored for extracting the generalized plan.

If loops within the resulting generalized plan are simple
loops, but with included branches that are caused only by
sensing actions, the methods presented in (Srivastava et al.
2007) can be extended to apply to these plans, to find their
preconditions and the required number of iterations of each
loop. Many kinds of nested loops are allowed under this
restriction; we omit a formal classification due to lack of
space. Examples of allowed loop structure are illustrated by
the plans shown in Fig. 6.

Results
In this section we present the results of some of our exper-
iments with prototype implementations of ARANDA-Learn
and ARANDA-Merge. The test problems were motivated
by benchmarks from the international planning competitions.
Incremental results for each problem are shown in Fig. 6. The
actual plans are more detailed with choice actions, and in-
clude one iteration of the loop learned using the first exam-
ple prior to the topmost action shown in the figures. Action
names were modified in some cases to capture the action ar-
guments. To aid readability, edge labels for results of sensing
actions were not drawn.
Fire Fighting A room in a building may be on fire. Smoke
can be detected from anywhere on a floor iff one of its rooms
is on fire. The agent has smoke and heat sensors; it must
use the smoke detector and goToNextFloor actions to reach
the correct floor, and then use the heat sensors to reach the
room with the fire and use the extinguish action to quench
the fire. In this problem, the first example plan covered all
the floors but found none to be smoky. The second plan
started at a smoky floor and proceeded to search for the room
with fire. ARANDA-Learn found a loop in this example plan,
and Alg. 1 attached the generalization to a structure in the
loop obtained using example 1. The last two example plans
covered unhandled, boundary conditions where the last floor

goToNextBin()

senseType()

apply−PaperPreProc(obj)

apply−GlassPreProc(obj)

senseType()

apply−PaperPreProc(obj)

collect−PaperCont(obj)
collect−Glass−Cont(obj)

apply−GlassPreProc(obj)

goToNextBin()

collect−Glass−Cont(obj)

collect−Paper−Cont(obj)

Recycling

senseSmoke−CurFloor()

goToNextFloor()

go−UnvisitedRoom−CurFloor()

go−UnvisitedRoom−CurFloor()

senseHeat−CurRoom()

extinguishFire−CurRoom()

senseSmoke−CurFloor()
senseHeat−CurRoom()

go−UnvisitedRoom−CurFloor()

Fire Fighting

forkLift(kind1, T1)

forkLift(kind1, T2)

mv(T1, L)

mv(T2, L)

load(kind1, T1)

unload(T1) mv(T1,D1)

mv(T2,L)

load(kind1, T2)

mv(T2, D3)

load(kind2, T2)

mv(T2, D2)

unload(T2)

load(kind1,T2)

forkLift(kind1, T2)

mv(T2, D1)

mv(T2,L)

Transport

2

4

3

2

4

3 2

2

3

4

Figure 6: Segments of computed plans for test problems. Circled numbers indicate components added due to different examples.
was smoky or the first room of a floor was on fire. Both the
loops of the final plan are simple and make progress by in-
creasing the number of visited floors and rooms. This can be
determined using existing methods (Srivastava et al. 2007;
2008). There are no unresolved action branches, indicating
that the final structure with “no fire” is always reached.
Recycling As described in the introduction, a recycling
agent must visit different bins, sense the type of material
present (paper or glass), apply appropriate pre-processing op-
erations and collect the material in an appropriate container.
The first example plan only encountered paper. The second
plan was created to handle an instance of the situation where
some bins had glass. The plan handled one bin with a glass
object and collected it. Alg. 1 created a loop by making the
branch point for this example’s trace the same as the merge
point. This illustrates how even small examples could be used
to identify powerful loops. Example 3 dealt with an unhan-
dled branch caused due to the drawing out of elements from
a role (last bin was reached), and example 4 handled the case
where the last object was of type glass. Computed precondi-
tions match the required number of containers with the num-
ber of times the corresponding sensing branches are taken.
Transport This is a more complicated version of the deliv-
ery problem. The roadmap is a Y-shaped graph with depots
D1, D2, D3 on the end points. Two trucks, T1 and T2 with
capacities one and two are originally at D1 and D2, respec-
tively. The problem is to deliver crates from D1 (of kind1)
andD2 (of kind2) in pairs with one of each kind toD3. Loca-
tion L at the center of the Y can be used to transfer cargo be-
tween the two trucks. There are two non-deterministic factors
in this problem: crates of kind1 may be heavy, in which case
the simple load action drops them and a forkLift action must
be used; crates left at L may get lost if no truck is present.

The first example plan delivered 6 pairs of crates to D3

without experiencing heavy crates or losses. The second ex-
ample found a heavy crate, and delivered it using forkLift
actions instead of load; in the third plan a crate left at L was
found missing when T2 reached L, and another crate had to
be picked up from D1. The plan computed using these three
examples does not handle one case of a crate of kind1 being
heavy (Fig. 6). This can be detected using the set of unhan-
dled abstract structures and was handled by example plan 4.
The computed preconditions of the resulting plan include the
condition that we must have extra crates of kind1 at D1 ini-
tially, to compensate for the losses at L. This condition tells

us why extra crates are needed and that their number corre-
sponds to the number of losses, but this number cannot be
predetermined with the available domain knowledge.

Key Observations Results of the proposed approach show
several novel features. In all cases, the generalized
plans cover infinitely many problems of unbounded size.
ARANDA-Merge adds only necessary segments from exam-
ple plans. For instance, only edges for the two forkLift ac-
tions from the entire second example in transport were added.
Merging action segments into loops is a powerful technique
for increasing the scope of the plan far beyond the individual
examples: in the recycling domain, the plan learned using the
first example covers only n of the 2n+1− 1 possible problem
instances of size at most n. The second plan on the other
hand covers a single specific problem instance. The general-
ized result using just these two plans covers 2n−1 instances
(it assumes that the last two bins have paper).

We present timing results and domain coverage plots for
the computed plans for the recycling domain in Fig. 7. For
our plans, this includes the complete time taken to generate
the result using the provided examples. We compare these
results with the largest plan for recycling (for 7 bins) that we
could generate using contingent-FF (Hoffmann & Brafman
2005), a well-established contingent planner.

Related Work
Our approach uses abstraction for state aggregation, which
has been extensively studied for efficiently representing uni-
versal plans using BDD’s (Cimatti et al. 1998), for solving
MDPs (Hoey et al. 1999; Feng & Hansen 2002), for pro-
ducing heuristics (Helmert et al. 2007) and for hierarchical
search (Knoblock 1991). Unlike these techniques that only
aggregate states within a single problem instance, we use an
abstraction that aggregates states from different problem in-
stances with different numbers of objects.

An alternative approach for handling the “state explosion”
caused due to increasing numbers of objects is to treat object
types as resources with quantities (Do & Kambhampati 2003;
Hoffmann 2003; Gerevini et al. 2008). However current
approaches to numeric planning only deal with numbers as
measures of the extent of action effects, such as driving x
distance, and cannot work with a unit of these resources as
action operands (e.g. load one of the crates into the truck,
then sense its destination). Further, current approaches are
designed to work with states that include valuations for all

 0
 5

 10
 15

 20
 25

 30
 35

 40 100 120 140 160 180 200 220 240 260 280 0

 0.2

 0.4

 0.6

 0.8

 1
D(n>=8) = 1

D(n>=8) = 0.5

D(n>=8) = 0.25

C
ov

er
ag

e
(D

)

Max Number of Bins (n) Time Taken to Compute (s)

CFF-soln7
Gen(Eg 1)

Gen(Eg 1+2)
Gen(Eg 1..3)
Gen(Eg 1..4)

Figure 7: Domain coverage and time for computation of different
solution plans for the recycling problem.

the numerical variables. (Milch et al. 2005) present a lan-
guage (BLOG) for defining Bayesian probability models over
unknown objects. BLOG models can be considered as ab-
stract representations for possible states, but do not include
methods for abstract state transformation needed for action
operations in planning.

Various approaches have attempted to use loops to make
plans and policies more general. Cimatti et al. (2003) con-
sider domains where loops are needed for actions which may
have to be repeated for success. Such loops are “hard” loops,
in the sense that they return to the exact same problem state.
In contrast, our objective is to find loops that make measur-
able, incremental changes. Hansen & Zilberstein (2001) also
present a method for computing policies with hard loops of
actions, but in a setting where probabilities of action out-
comes and their rewards are used to determine the action
which would lead to the best possible value. More recently,
Winner & Veloso (2007) presented a method for combin-
ing example plans into branching planners with simple loops.
However, this approach does not provide techniques for an-
alyzing plan applicability. Levesque (2005) presents an ap-
proach (KPLANNER) for iteratively solving problems of in-
creasing sizes and extracting patterns in the solutions to de-
termine simple loops which generalize the example plans.
KPLANNER is limited to identifying loops that generalize a
single numeric planning parameter.

Conclusions and Future Work

In this paper we used an abstraction technique from software
model checking for state aggregation and planning in AI. We
developed methods to effectively reason about action effects
in many problem domains in AI and used them in developing
novel algorithms for finding powerful plans that can handle
infinitely many problems of unbounded size. To our knowl-
edge, this is the first planning approach capable of dealing
with unknown numbers of objects and computing complex
loops of operator sequences that make measurable progress
towards a desired goal. This approach also provides a novel
representation of algorithm synthesis problems in the form of
a state-based representation on which AI search techniques
can be applied. Directions for future work include general
methods for determining progress in more complex plan con-
trol structure and development of effective methods for direct
plan search.

Acknowledgements
Support for this work was provided in part by the Na-
tional Science Foundation under grants IIS-0535061, CCF-
0541018 and CCF-0830174

References
Bonet, B., and Geffner, H. 2000. Planning with incomplete in-
formation as heuristic search in belief space. In Proc. of AIPS,
52–61.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artif. Intell. 147(1-2):35–84.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Automatic OBDD-
based generation of universal plans in non-deterministic domains.
In Proc. of AAAI, 875–881.
Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-objective
metric temporal planner. J. Artif. Intell. Res. 20:155–194.
Feng, Z., and Hansen, E. A. 2002. Symbolic heuristic search for
factored markov decision processes. In Proc. of AAAI, 455–460.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2008. An approach
to efficient planning with numerical fluents and multi-criteria plan
quality. Artif. Intell. 172(8-9).
Hansen, E. A., and Zilberstein, S. 2001. Lao*: A heuristic search
algorithm that finds solutions with loops. Artif. Intell. 129(1-2):35–
62.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible abstrac-
tion heuristics for optimal sequential planning. In Proc. of ICAPS,
176–183.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. SPUDD:
Stochastic planning using decision diagrams. In Proc. of UAI, 279–
288.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning via
heuristic forward search witn implicit belief states. In Proc. of
ICAPS, 71–80.
Hoffmann, J. 2003. The metric-FF planning system: Translating
“ignoring delete lists” to numerical state variables. Journal of Arti-
ficial Intelligence Research. Special issue on the 3rd International
Planning Competition.
Knoblock, C. A. 1991. Search reduction in hierarchical problem
solving. In Proc. of AAAI, 686–691.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Foundations for
the situation calculus. Electronic Transactions on Artificial Intel-
ligence 2:159–178.
Levesque, H. J. 2005. Planning with loops. In Proc. of IJCAI,
509–515.
Milch, B.; Marthi, B.; Russell, S. J.; Sontag, D.; Ong, D. L.; and
Kolobov, A. 2005. BLOG: Probabilistic models with unknown
objects. In Proc. of IJCAI, 1352–1359.
Peot, M. A., and Smith, D. E. 1992. Conditional nonlinear plan-
ning. In Proceedings of the first international conference on Arti-
ficial intelligence planning systems, 189–197.
Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric shape
analysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems 24(3):217–298.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2007. Using Ab-
straction for Generalized Planning. Technical report, 07-41, Dept.
of Computer Science, Univ. of Massachusetts, Amherst.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning
generalized plans using abstract counting. In Proc. of AAAI, 991–
997.
Winner, E., and Veloso, M. 2007. LoopDISTILL: Learning
domain-specific planners from example plans. In Workshop on
AI Planning and Learning, ICAPS.

