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Abstract
Simultaneous move games where all the player
have to take their actions simultaneously are a class
of games in general game playing. In this paper we
analyze how UCT performs in this class of games.
We argue that UCT does not converge to a Nash
equilibrium in general and the situation that it con-
verges to can be exploited. We also analyze CFR
(CounterFactual Regret) and show how it can be
used to exploit UCT.

1 Introduction
In General Game Playing (GGP), an agent is given the de-
scription of a game to be played through the Game Descrip-
tion Language (GDL) which is represented in KIF (Knowl-
edge Interchange Format) [Love et al., 2006]. The agent
has no prior knowledge about what the game is going be
to. Therefore it cannot have any special-purpose algorithms
hardcoded in its nature for solving that particular game.
The player should analyze the game description and play by
choosing reasonable actions. The better it chooses its actions,
the stronger it will be.

Games in GGP can be single agent, two player, and mul-
tiplayer. All the games are finite, discrete, and deterministic.
At each step of the game, all the players are required to submit
the action that they are going to take. If the game is turn tak-
ing, then the player whose turn is passed will simply submit
the special noop (no operation) move. However, if the game
is a real simultaneous move game, then all the players will
have effective moves at each step of the game. This results in
uncertainty in the game since none of the players know what
moves other players will take. Therefore, each player should
have a good model of his opponents or his actions must be
robust enough considering whatever actions others will take.
Although having a good model of the opponent is also ben-
eficial in turn-taking games, it is more decisive in simultane-
ous move games because the player will not be even certain
about result of his own action considering the indeterminism
that arises from what others may do.

Different approaches have been used to create general
game playing programs. Initially, most program develop-
ers tried to develop heuristics for a game by extracting fea-
tures from the game description [Clune, 2007; Schiffel and

Thielscher, 2007; Kuhlmann and Stone, 2006]. The heuris-
tics were then used in conjunction with a classic search algo-
rithm (e.g. alpha-beta) to play the game. Therefore, devising
a good heuristic was a key factor in the success of their ap-
proaches. Inventing a good heuristic is a challenging prob-
lem since the game that is going to be played by the player is
unknown beforehand. After the advent of UCT [Kocsis and
Szepesvári, 2006] and its notable success in the game of Go
[Coulom, 2006; Gelly et al., 2006], its use in general game
playing came into prominence. An appealing feature of UCT
is that it does not require any special knowledge about the
domain. This feature makes UCT a robust and simple way to
approach the design of a general game player. UCT seemed
promising at first, but like other algorithms, it was well suited
to a special class of problems, viz. problems in deterministic
domains. Although general game playing is currently focused
on deterministic domains, simultaneous move games are le-
gal. In a simultaneous move game, the presence of at least
another player that is allowed to change the game state while
the player is taking an action, adds indeterminism to the game
and makes it challenging for UCT. Since there is no good
strategy to play these games now, a non-losing strategy can
be a reasonable one. Tuning our strategy to play according
to the Nash equilibrium results in a non-losing strategy. CFR
(CounterFactual Regret) is a way of computing approximate
Nash equilibrium.

In this paper we will focus on the simultaneous move
games and how they can be handled. We will review the UCT
algorithm in section 2 and will analyze its use in simultaneous
move games in section 3. We argue that UCT will not con-
verge to a Nash equilibrium in general and the situation that
it converges to can be exploited. We will consider the CFR
algorithm in section 4 and its use in GGP in section 5. We
will also present insights about how CFR performs in GGP.
Finally we will discuss how CFR can be used to exploit UCT
in section 6.

2 UCT
The multi-armed bandit problem is an example of an envi-
ronment where an agent tries to optimize his decisions while
improving his information about the environment at the same
time. If we consider a K-armed bandit, we are dealing with
K different slot machines whose outcomes follow different
unknown distributions with different expected values. An op-



timal play with K-armed bandit is to select the arm with the
highest payoff at each step of play. However, since we do
not know the distribution of outcomes for different arms, the
goal is to be as close as possible to the optimal play based on
our past experiences. By careful tuning how much we exploit
the best known arm versus exploring the other arms, we can
bound our regret that results from selecting a suboptimal ac-
tion (pulling the suboptimal arm). UCB1 (Upper Confidence
Bound) is an algorithm to balance between exploration and
exploitation. It achieves a logarithmic bound on the regret as
a factor of the number of plays [Auer et al., 2002]. It con-
siders a bonus for selecting each action which is directly pro-
portional to the number of plays and inversely proportional to
the number of times that specific action has been selected till
now. Therefore, actions that have been rarely selected will
get higher bonus to be selected and explored.

UCT (UCB applied to Trees) is an extension of the UCB1
algorithm to tree search. It gradually expands the game tree
by adding nodes to it. UCT considers every interior node in
the tree as an independent bandit and its children (available
actions at that node) as the arms of the bandit. UCT searches
the tree based on a specific strategy (e.g. minimax) consider-
ing a bonus similar to the one in UCB1 to balance between
exploration and exploitation. When the search reaches a non-
terminal leaf node, a Monte Carlo simulation from that node
to a terminal state is carried out. The value that results from
the simulation is then used to update the values of all nodes
along the path from the root of the tree to the node that leads
to that simulation. UCT is an iterative algorithm. It searches
through the tree, does simulations at non-terminal nodes and
adds new nodes to the tree. Tree expansion will continue un-
til the whole tree is expanded or a memory or time limit is
reached. The pseudocode for one iteration of UCT is given
in Figure 1. Proofs of convergence and regret bounds can be
found in [Kocsis and Szepesvári, 2006].

The first three lines in Figure 1 initialize and expand the
root of the tree. Node expansion involves adding all the chil-
dren of a node to the tree without expanding them. It also
sets the counters and average return value of all children to
zero. Tree search is done in lines 4-12. In the tree search, if
we reach a node that has a child which has not been expanded
yet (counter = 0), that child gets priority for selection over
others (lines 8-9). Selection among the other children is done
based on the average value of that child and a bonus to en-
force exploration (line 11). When we reach a non-terminal
leaf node in the tree that has not been expanded yet, it will be
explored. This is the place where memory bounds can be en-
forced (lines 13-15). Finally if we are not in a terminal state,
a simulation will be carried out and the return value will be
gathered (lines 16-19). This will be used to update the aver-
age return values of the nodes in the tree along the path from
the root (lines 20).

The pseudocode given in Figure 1 corresponds to single
agent UCT. However, UCT has been applied in domains
with more than one agent (e.g. computer Go [Coulom, 2006;
Gelly et al., 2006]) and showed notable results. It has
also been used in the general game playing competition and
showed superior results as well, becoming the champion for
two successive years [Finnsson and Björnsson, 2008]. The

single agent UCT can be modified to be used in multiplayer
and simultaneous move games [Finnsson and Björnsson,
2008]. Furthermore, the behaviour of UCT has been analyzed
for multiplayer games and shown to compute an (possibly
mixed) equilibrium strategy [Sturtevant, 2008]. For exam-
ple, by replacing line 11, the selection rule between children
of a node, with

values[i] ← − traverser . children[i]. value

+ C
√

ln(traverser . counter)
traverser . children[i]. counter

when the opponent is the active player (the player that can
make a move), we will have a UCT that uses minimax in tree
search.

2.1 Multiplayer Games and Opponent Modeling
In general game playing the value of the goal is defined for
different players in a terminal state. Thus, the program must
keep values for each player. In multiplayer games, the num-
ber of children can be as large as the product of available
actions for each player. Therefore, the number of children
can be very large. However, we can keep the values for dif-
ferent actions of different players instead of keeping them for
each combination of actions. This will also enable us to do
more sophisticated opponent modeling than merely consider-
ing that everybody is playing against us (paranoid assump-
tion).

2.2 Exploration vs. Exploitation
The square root bonus added to the value of a node on line 11
is used to balance between exploitation and exploration. It is
directly proportional to the number of times a state (parent)
is visited and inversely proportional to the number of times
a specific action (child) is selected. Therefore, by exploiting
the best action repeatedly, the bonus for selecting other ac-
tions will become larger. The constant factor, C, defines how
important it is to explore instead of selecting the greedy ac-
tion. The higher the value of C, the more exploration will be
done.

2.3 Playout Policies
Different policies can be used to do the Monte Carlo simu-
lation. The simplest one is to select random actions for dif-
ferent players at each step. However, one can use a more
informed approach by selecting the best action if the simula-
tion runs into a node that has been visited before during tree
search (the idea of using transition table). In addition, history
heuristic about actions can be used in the playout.

2.4 Updating Values
The outcome that results from a simulation will be used to
update the values of the nodes along the path from the root in
the search tree (line 20). Updates can simply be a weighted
average. However, if the game is single-player and there is
no uncertainty in the game, maximization between the old
value and the new one can be used as the update rule. In
the deterministic single player case, the only concern is to
achieve the highest possible outcome. In addition, a discount
factor can be used during the update process to favor shorter
solutions over longer ones.



DOONEITERATION()
1 if root = NULL
2 then root ← MAKENODE ¤ Initializes the root of the tree
3 EXPANDNODE(root) ¤ Adds all children of the node and sets their counters to zero,

but does not expand them.

4 traverser ← root
5 while traverser 6= LEAF
6 expandLeaf ← TRUE
7 for i ← 1 to number [traverser . children]
8 if traverser . children[i]. counter = 0 ¤ Will be incremented in UPDATEVALUES(.,.)
9 then values[i] ←∞

10 expandLeaf ← FALSE

11 else values[i] ← traverser . children[i]. value + C
√

ln(traverser . counter)
traverser . children[i]. counter

12 traverser ← traverser . children[arg max{values}]

13 if expandLeaf and traverser 6= TERMINAL
14 then EXPANDNODE(traverser )
15 traverser ← RANDOMCHILD(traverser)

16 if traverser 6= TERMINAL
17 then outcome ← DOMONTECARLOSIMULATION(traverser)

¤ Does a simulation to the end of the game and returns the outcome
18 else traverser . values ← GAMEVALUE
19 outcome ← traverser . values

20 UPDATEVALUES(traverser , outcome)
¤ Updates the values and increments the counters of the nodes along the path to the root

Figure 1: One iteration of the UCT algorithm.

r p s

p2

r p s

p2

r p s

p2

50
50 100

0
0

100 50
50 100

0
0

100
100
0

0
100 50

50

p1

rp s

Figure 2: Rock-paper-scissors game tree for UCT. Dark
nodes are terminal. Action selection is a simultaneous pro-
cess, but the tree is represented in two levels to be easier to
understand.

3 UCT in Simultaneous Games
The variant of UCT that we will consider for simultaneous
move games will use maximization strategy for all players. It
will also keep track of expected values for different actions
of different players as well as the number of times that each
action has been selected. Therefore it can calculate the explo-
ration bonus for each player separately.

We consider the game of rock-paper-scissors and C = 100

to illustrate how UCT works (refer to Figure 2). In this ex-
ample the game tree includes only one non-terminal node and
three terminal nodes, therefore we will not consider tree ex-
pansion here. The game tree in Figure 2 is represented in two
levels to simplify the description of the computation involved.
At the beginning, since none of the actions for any player has
been tried before, action selection is done randomly. For sim-
plicity we will assume that the player will select his left most
action in Figure 2 when he has to select an action randomly.
The first player selects paper and the second player selects
rock leading to (100, 0). On the second and the third itera-
tion (r, p) and (s, s) are selected respectively. Therefore after
three iterations the expected value of actions for the first and
the second players will be as follows.

EP1(rock) = 0, EP1(paper) = 100, EP1(scissors) = 50

EP2(rock) = 0, EP2(paper) = 100, EP2(scissors) = 50
On the fourth iteration both players select paper considering
the expected values of their actions (the bonus is very small
at this point). The expected values will be updated as follows.

EP1(rock) = 0, EP1(paper) = 75, EP1(scissors) = 50

EP2(rock) = 0, EP2(paper) = 75, EP2(scissors) = 50
The players will keep selecting paper until its expected value
is down to 50 or the bonus for the scissors gets large enough



rock paper scissors
rock 50, 50 25, 75 100, 0
paper 75, 25 50, 50 45, 55

scissors 0, 100 55, 45 50, 50

Table 1: Biased rock-paper-scissors payoff matrix.

to dominate the difference. This process will be continued
and the values will be updated until all the values converge to
the game theoretic expected value of the game which will be
the value of the Nash equilibrium, i.e. 50 in this case.

If we compute the ratio of taking each action during the
UCT iterations for the rock-paper-scissors example, it will
be the same as the probabilities in the Nash equilibrium, i.e.
(1/3, 1/3, 1/3). However, UCT is not able to get the correct
mixed strategy in general, even if there is only one Nash equi-
librium in the game. The reason for this problem is because
the balanced situation that UCT converges to is based on the
model of opponents that is assumed during the iterations. In
addition the probabilities (number of times each action is se-
lected in comparison with others) that UCT assumes for each
player is correlated with the probability of selecting each ac-
tion for other players. Therefore the way that the player will
finally behave is based on how the correlation of players’ ac-
tion in UCT result to a balanced situation. When UCT finds
a situation (probability settings) that leads it to the achievable
expected value it could get if it has followed a Nash equilib-
rium, it will adhere to that balanced settings which may not
be a Nash equilibrium.

Rock-paper-scissors with biased payoff as shown in Table
1 is an example of a game that UCT gets into a balanced sit-
uation instead of converging to the true mixed strategy Nash
equilibrium. The rules of the game are the same while the
outcomes are different. In Table 1, the first row and column
are the actions of players and the values in each cell are the
payoffs for taking the joint actions crossing at that cell. The
row player gets the first value while the second player gets
the second one. There is only one Nash equilibrium in this
game which is a mixed strategy with action probabilities as
follows.

P (rock) = 0.0625
P (paper) = 0.6250

P (scissors) = 0.3125
One possible execution of UCT with C = 100 will be as
follows.1

(r, p), (p, s), (s, r), (p, r), (p, p), (r, s), (r, p), (s, r), (p, r),
(r, p), (p, p), (p, r), (p, s), (r, p), (p, p), (s, s), (p, r), (p, p),
(r, s), (r, p), (s, p), (p, r), (s, p), (p, p), (r, r), (s, s), . . .

After this sequence, the values for both players in UCT will
be identical which will result in both players playing the same
during UCT iterations and cycling through a balanced situa-
tion. Since the value that each player is getting is also equal to
the expected value of the Nash equilibrium in the game, both

1The purpose of this part is to give a counter example that UCT
does not compute the Nash equilibrium in general.

DOONEITERATION()
1 if root = NULL
2 then BUILDTREE

3 COMPUTEEXPECTEDVALUES(root )
4 RESETALLREACHINGPROBABILITIESTOZERO()
5 for each player p
6 root . reachingProbability [p] ← 1
7 COMPUTEREACHINGPROBABILITIES(root )
8 UPDATEPROBABILITIES(root )

Figure 3: One iteration of the CFR algorithm.

players are satisfied with their outcomes and will not change
their action selection. If we consider action selection ratios
to define the probability of choosing each action, we will get
equal probabilities for different actions (1/3, 1/3, 1/3). It is
clear that this probability setting is not a Nash equilibrium,
because each player can increase his payoff by unilaterally
skewing his action selection probability toward paper.

The balanced situation that the players arrive at is depen-
dent on the value of C for each player. For example if we
consider C = 100 for the first player and C = 50 for the
second player, then the probability settings for the first and
second players after approximately one million iterations will
be (0.07, 0.12, 0.81) and (0.03, 0.46, 0.51) respectively (the
first, second, and third arities are probabilities of selecting
rock, paper, and scissors respectively). Therefore if UCT
plays as the first player, the second player can exploit UCT
by skewing his action selection probability toward rock. On
the whole, the balanced situation that UCT converges to is not
necessarily a Nash equilibrium and can be exploited.

4 CFR
When we face an unknown game, a reasonable strategy can

be the non-losing one. A non-losing strategy will not lead us
to a loss if we follow it during playing the game. It would be
better if the opponent cannot gain any advantage by unilater-
ally changing his strategy against us. If our strategy has all
of these properties then we are playing according to a Nash
equilibrium strategy. Therefore it is convenient to find a Nash
equilibrium in a game and follow it. However, if the game
is very complex (e.g. the state space is very large) then we
can hardly compute the precise equilibrium. Instead, we can
use an ε-Nash equilibrium strategy where ε is an indication
of how far we are from the equilibrium. Since we will not
lose anything by following a Nash equilibrium, ε can be con-
sidered as the amount that we will lose if it happens to play
against a best response to our strategy. In fact ε is a mea-
sure of how exploitable we will be by following an ε-Nash
equilibrium strategy.

CFR (CounterFactual Regret) is an algorithm for finding
an ε-Nash equilibrium in a problem. It is currently the most
efficient algorithm, which can handle the largest state spaces
in comparison to other available methods [Zinkevich et al.,
2007]. It also has the nice property of being incremental;



meaning that the longer it runs the closer it gets to the Nash
equilibrium.

Since in a Nash equilibrium no player can increase his pay-
off (decrease his regret) in the game by unilaterally changing
his strategy, we can find the Nash equilibrium in a game by
trying to tune the strategies of all players to minimize their re-
grets knowing what others will do. CFR uses the fact that the
sum of immediate counterfactual regrets is an upper bound
on the overall regret of a player. Counterfactual regret is the
amount that the player will regret by taking an action in a state
in comparison with the expected value he could get. Since we
are considering a specific state we considers that he played to
reach to that state and take that action (thus it is called coun-
terfactual) while other players played based on their probabil-
ity setting for taking different actions from an initial state to
that specific state. The pseudocode for one iteration of CFR
is given in Figure 3. Proofs of convergence and bounds on
how close it will get to a Nash equilibrium can be found in
[Zinkevich et al., 2007].

CFR expands the game tree at first. However, if the whole
game tree is too large to fit in memory, we only expand the
tree to a certain depth. Since we need return values for dif-
ferent players at the leaf nodes, simulations can be done to
obtain these values. At each iteration of the algorithm, CFR
computes the expected value for different actions of each
player at each node (lines 6-10 in Figure 4) as well as the
overall expected value for each player (lines 11-12 in Figure
4). It also computes the reaching probability to each node in
the tree for different players. However, as CFR deals with
counterfactual regret, the probability for each player is com-
puted as that player played to reach that node while other
players have played based on their probability settings (lines
1-2 in Figure 5). Counterfactual regrets are computed us-
ing the reaching probabilities and the difference between ex-
pected values for taking a specific action versus following
the current strategy (lines 1-6 in Figure 6). CFR keeps track
of cumulative counterfactual regret for every action of each
player at each node of the tree. Action probabilities for the
next iteration are computed based on the cumulative counter-
factual regret. The probabilities of all the actions which have
negative regrets will be set to zero as the player is suffering
by taking those actions based on the current probability set-
tings (line 11 in Figure 6). The probabilities of the actions
which have positive regrets will be set according to the value
that the player regrets them (line 10 in Figure 6). However, if
all the regrets are zero, then the player will switch to random-
ization between all of his actions according to the uniform
distribution.

It should be noticed that during the computation, the game
is not actually being played, but the algorithm is tuning prob-
abilities for the players to minimize their immediate counter-
factual regret. The final probabilities for taking each action
are computed as the ratio between the sum of probabilities
over all the iterations for taking that action and the overall
sum of these sums.

We consider the game of rock-paper-scissors to illustrate
how CFR works (refer to Figure 7). Assume the first player’s
action probabilities are (1, 0, 0) (the first, second, and third
arities represent the probability of playing rock, paper, and

100 − 0 50 − 50 0 − 100

r − s
p − r
s − p

r − r
p − p
s − s

r − p
p − s
s − r

Figure 7: Rock-paper-scissors game tree for CFR. Dark nodes
are terminal.

scissors respectively) and the second player’s action prob-
abilities are (0, 1, 0). Considering the probability settings,
the expected return for the first player playing rock will be
E(r1) = P (r2)× goalP1(r1− r2) + P (p2)× goalp1(r1−
p2)+P (s2)×goal(r1−s2)1 = 0×50+1×0+0×100 = 0
and for playing paper and scissors will be 50 and 100 re-
spectively. Therefore the current expected return for the first
player will be E(P1) = P (r1)×E(r1)+P (p1)×E(p1)+
P (s1) × E(s1) = 1 × 0 + 0 × 50 + 0 × 100 = 0. The
counterfactual regret for not playing paper by the first player
will be regret(p1) = E(p1) − E(P1) = 50 − 0 = 50 and
regret(s1) = 100 (obviously regret(r1) = 0). Updated ac-
tion probabilities for the first player for the next iteration will
be (0/(100 + 50), 50/150, 100/150) = (0, 1/3, 2/3). Sim-
ilar computations will be done for the second player and his
action probabilities will be updated as well before the next
iteration.

5 Using CFR in GGP
CFR was originally designed for Poker which is an imperfect
information game [Zinkevich et al., 2007]. Therefore in the
original CFR it dealt with the concept of an information set
that the state of the game can only be defined to be among
a set of states. However, the only imperfect information that
arises in GGP is a result of simultaneous actions taken by
different players. This simplifies the use of CFR in GGP since
each information set is in fact a unique state. On the other
side, it is not possible to use any abstractions while dealing
with games in GGP in the same way that abstraction is used
in Poker to shrink the state space. Therefore, CFR must deal
with a game tree that will grow linearly as the state space
grows.

In GGP the player must submit his moves before a time
limit is reached, therefore deciding on the size of the tree that
we must deal with is critical. The smaller the tree is, the
faster it will be to do an iteration over the tree and the values
will converge faster. But we will have non-terminal leaves
in our tree that we need a value for. We must do simula-
tions to acquire a value to base our computation in CFR on

1P : Probability, goalP1: first player’s outcome, r2: second
player playing rock, p2: second player playing paper, s2: second
player playing scissors, r1 − r2: a state where both players play
rock.



COMPUTEEXPECTEDVALUES(root )
1 for i ← 1 to number [root . children]
2 COMPUTEEXPECTEDVALUES(root .children [i])

3 for each player p
4 for each a ∈ actions(p)
5 root . actionExpectedValue[p][a] ← 0

6 for i ← 1 to number [root . children]
7 for each player p
8 pAct ← root . children[i]. action[p]
9 prob ← Πop6=p root . actionProbability [op][root . children[i]. action[op]]

10 root . actionExpectedValue[p][pAct ] += prob× root . children[i]. expectedValue[p]

11 for each player p
12 root .expectedValue[p] ← ∑

a∈actions(p)root .actionProbability[p][a] × root .actionExpectedValue[p][a]

Figure 4: Computing expected values in CFR.

COMPUTEREACHINGPROBABILITIES(root )
1 for i ← 1 to number [root . children]
2 root . children[i]. reachingProbability [p] +=

root . reachingProbability [p]×Πop 6=p root . actionProbability [op][root . children[i]. action[op]]
3 if ALLPARENTSCOMPUTATIONAREDONE(root .children[i])
4 then COMPUTEREACHINGPROBABILITIES(root .children[i])

Figure 5: Computing reaching probabilities in CFR.

UPDATEPROBABILITIES(root )
1 for each player p
2 sum ← 0
3 for each a ∈ actions(p)
4 root . regret [p][a] +=

root . reachingProbability [p]× (root . actionExpectedValue[p][a]− root . expectedValue[p]
5 if root . regret [p][a] > 0
6 then sum += root . regret [p][a]
7 if sum > 0
8 then for each a ∈ actions(p)
9 if root . regret [p][a] > 0

10 then root . actionProbability [p][a] ← root . regret [p][a]/ sum
11 else root . actionProbability [p][a] ← 0
12 else for each a ∈ actions(p)
13 root . actionProbability [p][a] ← 1/|a ∈ actions(p)|
14 for each a ∈ actions(p)
15 root . cfrActionProbability [p][a] += root . actionProbability [p][a]

¤ Keeps track of accumulative probabilities to extract probability of actions at last
Final probabilities for each player will be root . cfrActionProbability[p][a]∑

a∈actions(p)
root . cfrActionProbability[p][a]

Figure 6: Updating probabilities in CFR.
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Figure 8: CFR convergence rate to different margins of
Nash Equilibrium for different number of rock-paper-scissors
hands.

it. The simulation trajectories are longer for smaller trees and
the outcome is variable implying that we will need a higher
number of simulations. Thus, although the probabilities that
CFR computes will converge faster, they will be farther from
the actual values that we must have converged to. The reverse
is true for the larger tree. While it takes longer to converge,
but we will converge to a higher quality solution. Therefore,
there is a trade off between how fast we can get an stable
probability setting versus how good the result will be. In ad-
dition all the simulations can be done at first or they can be
done for each iteration. While the first approach is faster, the
second approach will result in a better long term quality since
the quality is not bounded by the simulations done at first.

In Figure 8, convergence rate of the CFR algorithm for dif-
ferent number of repeated rock-paper-scissors game is given.
The graph uses logarithmic scaling on the vertical axis. There
is only one unique Nash equilibrium in the game, which is
playing each action with the probability of 1/3 everywhere.
Convergence rates are give for three different margins of the
Nash equilibrium, viz. 0.1, 0.01, and 0.001. The experiments
were done on a 2.4GHz AMD machine with the time limit of
3 minutes. Points that are missed at the bottom of the graph
indicate that the computation took less than 0.01 of a second.
It should be considered that more repetitions of the game re-
sults in larger tree sizes. How the computation for different
tree sizes scales versus time can be seen.

Our current CFR player expands its tree using as much
memory as it has. For partial trees, a number of simulations
are done for each leaf node to get an estimate on its value.
Currently we consider one thousand simulations at most for
each leaf. In addition, if the difference after doing 25 more
simulations is less than 0.1 we will cut the simulations.

6 Exploiting UCT by CFR
We discussed in section 3 that UCT will not necessarily con-
verge to a Nash equilibrium. But if we just adhere to the Nash
equilibrium while playing against UCT, we are just guaran-
teed to get the Nash equilibrium expected value. However, if
we can model the probability distribution that UCT will con-
verge to, we can exploit UCT and gain more than what we
can gain just by following the Nash equilibrium.

For example consider the payoff matrix of a simple game

b1 b1

a1 23, 77 77, 23
a2 73, 27 27, 73

Table 2: The payoff matrix of a simple game.

shown in Table 2. There is only one Nash equilibrium for
that game with the expected value of 50 for both players. The
mixed strategy action probabilities are as follows.

P (a1) = 0.46, P (a2) = 0.54

P (a1) = 0.5, P (a2) = 0.5
Suppose the first player tends to select a2 all the time. If we
just follow the mixed strategy probabilities for action selec-
tion we will only get 1

2 × 27 + 1
2 × 73 = 50 points versus the

potential 73 points that we could have got if we had used our
knowledge about our opponent properly.

Exploiting UCT by CFR is straightforward. We set the
probabilities for the player that UCT is going to play his role
in the game equal to the probabilities that we assume UCT
will use to actually play the game. Then we use CFR to com-
pute the probabilities for the player that we will play his role
in the game while keeping the probabilities for the opponent
(UCT) fixed. Finally we use the new probabilities to play
the game. However, since it is an open question that what
balanced situation UCT converges to and the distribution of
probabilities is not known in advance, we do not have a best
response to UCT for every game. In addition, the opponent
may not be even UCT. Therefore, using the best response ap-
proach can be very brittle and can suffer greatly if the as-
sumed model is wrong.

It is desirable to exploit a known opponent but still be close
to a Nash equilibrium to not be exploitable greatly. Two ap-
proaches can be taken to exploit an opponent and still do
not suffer greatly if the the model is wrong. One of them
is to compute both the best response and a mixed strategy
Nash equilibrium and alternate between them. We can as-
sume different probabilities for using each of the probabil-
ity distributions to achieve different levels of exploitation and
exploitability. Another approach is to assume that with prob-
ability p our opponent adheres to what we assumed and with
probability 1 − p it is a general player that tries to minimize
his regret and play a Nash equilibrium. Then use this new
model of the opponent to compute a mixed strategy Nash
equilibrium to play the game (this new equilibrium is called
restricted Nash equilibrium). Different variations of p can
lead to different levels of exploitation and exploitability. In
Poker the latter approach shown to be superior to the former
[Johanson et al., 2007]. The results for using the latter ap-
proach for Goofspiel are given in Table 3.1 Goofspiel, also
known as the game of pure strategy, is a card game for two
or more players. The variant that we are considering here is
a two player game with three suits of cards from ace to 5 in-
clusive. Each player owns a suit and the third suit is on the

1In these experiments our UCT general game player, which com-
peted in 2008 GGP competition, played versus our CFR general
game player described in Section 5 using 1 minute start-clock and
20 seconds play-clock on a 3.4GHz Intel machine.



Model confidence (p) Exploitation (CFR vs. UCT) Exploitability (CFR vs. best response)
1 84.5− 15.5 0.5− 99.5

0.75 70− 30 10− 90
0.5 52.42− 47.58 42− 58
0.25 56− 44 49− 51
0 50.63− 49.37 53− 47

Table 3: Exploitation vs. exploitability in 5 cards Goofspiel with 0− 50− 100 goal values.�������� ��� �� 	���
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Figure 9: Exploitation vs. Exploitability.

ground in a specific order. All three suites are faced up. For
convenience, we assume that the third suit is in order (from
ace to 5). At each step of the game, each player selects a
card in his hand and both players reveal their selected cards
simultaneously. The player who has a higher card will gather
the card placed on the ground from the third suit and acquire
as much points as the value of the card (1 to 5 for ace to 5).
Picking up cards will be done in the order they are placed on
the ground (from ace to 5 in this example). If both players
happen to have the same card, no one will win the card from
the third suit and all the three cards will be discarded. The
player with the higher points wins 100 points and the other
player gets 0. A draw results in 50 points for each player.

If we consider the best response payoff (p = 1) and the
mixed strategy Nash equilibrium, we can achieve any ex-
ploitation and exploitability tradeoff by different mixing in
between. Using these two approaches, we will be in a safe
margin if our model of the opponent happens to be wrong.
As it can be seen in Figure 9 the line for using restricted Nash
equilibrium approach is below the mixing approach for Goof-
spiel. Therefore it is better to use the mixing approach at least
in this game.

7 Conclusion and Future Work
We analyzed how UCT plays in a simultaneous move game
and gave a counter example that UCT does not converge to
a Nash equlibrium, although it converges to a balanced situ-
ation which can be exploited. We showed that CFR can be
used in GGP and can be used to exploit UCT if a model of it
is available.

As the future work, we are working to define the charac-
teristic of the balanced situation that UCT converges to. In
addition, we are considering different ways of tree expansion
to be used in CFR that can improve the quality of probabilities
being computed using the partial tree.
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