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Abstract
Previous work in pruning algorithms for maxn 
multi-player game trees has produced shallow 
pruning and alpha-beta branch-and-bound prun-
ing. The effectiveness of these algorithms is 
dependant as much on the range of terminal val-
ues found in the game tree as on the ordering of 
nodes. We introduce last-branch and speculative 
pruning techniques which can prune any constant-
sum multi-player game tree. Their effectiveness 
depends only on node-ordering within the game 
tree. As b grows large, these algorithms will, in 
the best case, reduce the branching factor of a n-
player game from b to b(n-1)/n. In Chinese Checkers 
these methods reduce average expansions at depth 
6 from 1.2 million to 100k nodes, and in Hearts 
and Spades they increase the average search depth 
by 1-3 ply.

1   Introduction
While the minimax algorithm with alpha-beta pruning 
[Knuth and Moore, 1975] has dominated the study of 2-
player games, a clearly dominant algorithm has not emerged 
in the study of n-player games.
 The standard algorithm for n-player games is maxn 
[Luckhardt and Irani, 1986]. Only some maxn game trees can 
be pruned using established techniques such as shallow prun-
ing [Korf, 1991] and alpha-beta branch-and-bound pruning 
[Sturtevant and Korf, 2000]. This is because the amount of 
pruning possible under these algorithms is dependant on both 
the node ordering and the range of terminal values found in 
the game. Common heuristics for games such as Hearts and 
Chinese Checkers do not have appropriate terminal values 
for pruning. In two-player games, however, pruning is only 
dependant on the node ordering in the tree.
 We present here last-branch and speculative pruning 
techniques which can be used to prune any n-player constant-
sum maxn game tree. The effectiveness of these algorithms 
depends only on node ordering within the game tree. Last-
branch pruning is similar to a directional algorithm [Pearl, 

1984], as it examines the successors of each node left-to-
right without returning to previously searched nodes. It does 
require that you know when you are searching the last branch 
of a node. Speculative pruning, however, is not a directional 
algorithm as it may re-search some branches of the tree. Last-
branch pruning is a special case of speculative pruning.
 The remainder of the paper is as follows. In Section 2 
we present a brief overview of sample multi-player domains. 
In Section 3 we cover previous techniques for pruning maxn 
trees. Section 4 covers our new techniques, with results from 
various domains in Section 5.

2   Multi-Player Domains
A multi-player game is one in which there are 3 or more play-
ers or teams competing against each other. Many 4-player 
games are designed for 2 teams, making them two-player 
games from a theoretical standpoint. We highlight a few of 
the many interesting multi-player games here.

2.1   Chinese Checkers
One of the best known multi-player board games is Chinese 
Checkers. This game is played on a board in the shape of a 
6-pointed star, with players  ̓pieces starting on opposite sides 
of the board. The goal is to move your pieces across the board 
faster than your opponent(s) can. Chinese Checkers can be 
played with 2-6 players, and is not played in teams.

2.2   Card Games
We use two games here as examples, Spades and Hearts. 
Spades is usually played with 4 players, but has a 3-player 
variant. The goal of Spades is to maximize your score. Hearts 
is usually played with 4 players, but can be played with 3 or 
more. The goal of Hearts is to minimize your score.
 Many card games, including these, are trick-based. Be-
cause a trick cannot be given up after being taken, the tricks 
taken during the game provide a monotonically increasing 
lower-bound on the final score of the game. In the case of 
Spades, players get 1 point per trick taken, while in Hearts 
each player gets 1 point for every heart in the tricks they take, 
as well as 13 points for the queen of spades. A complete game 
is made up of multiple hands, where the goal is to minimize 
or maximize your points over all the hands.
 Both Spades and Hearts are imperfect-information 



games, while the descriptions and trees in this paper assume 
games have perfect information. In card games, however, we 
often use perfect-information methods to search imperfect-
information games through Monte-Carlo simulation. This 
involves generating sets of hands that are similar to the hands 
we expect our opponents to have. We then use traditional 
perfect-information methods to search these hands, combin-
ing and analyzing the results to make the next play. These 
methods have been successfully used in the Bridge program 
GIB. [Ginsberg, 2001]

3   Pruning Algorithms for Maxn

The maxn algorithm can be used to play games with any num-
ber of players. For two-player games, maxn reduces to mini-
max. In a maxn tree with n players, the leaves of the tree are 
n-tuples, where the ith element in the tuple is the ith playerʼs 
score. At the interior nodes in the game tree, the maxn value 
of a node where player i is to move is the child of that node  
for which the ith component is maximum. This can be seen 
in Figure 1.
 In this tree fragment there are three players. The player 
to move is labeled inside each node. At node (a), Player 2 is 
to move. Player 2 can get a score of 6 by moving to the left or 
right and a score of 4 by moving to the middle node. We break 
ties to the left, so Player 2 will choose the left branch, and the 
maxn value of node (a) is (0, 6, 4). Player 1 acts similarly at 
the root selecting the left branch, because the first component 
of the maxn value there, 5, is greater his score from the middle 
branch, 0, and his score at the right branch, 3.

3.1   Shallow Pruning
 Shallow pruning refers to cases where a bound on a node 
is used to prune branches from the child of that node. The 
minimum requirements for pruning a maxn tree with shallow 
pruning are a lower bound on each players  ̓score and an up-
per bound, maxsum, on the sum of all players  ̓ scores. We 
demonstrate this in Figure 2. In this figure, all scores have a 
lower bound of 0, and maxsum is 10.
 Player 1 searches the left branch of the root in a depth-
first manner, getting the maxn value (5, 4, 1). Thus, we know 
that Player 1 will get at least 5 points at the root. Since there 
are only 10 points available, we know the other players will 
get less than 5 points at this node.
 At node (a), Player 2 searches the left branch to get a 

score of 6. Because maxsum is 10 we know that Player 1ʼs 
score will never exceed 4 at node (a), so Player 1 will never 
choose to move towards (a) at the root, and the remaining 
children of (a) can be pruned.
 For shallow pruning to actually occur in a maximization 
game, each player must have a score that ranges between 0 
and maxsum. [Sturtevant and Korf, 2000] There are similar 
bounds for minimization games. In the average case, no 
asymptotic gain can be expected from shallow pruning. 
[Korf, 1991] The basic problem with shallow pruning is that 
it works by comparing the scores of only 2 out of n players 
in the game, and it is unlikely that 2 players will have their 
scores sum to maxsum. This contrasts with the large gains 
available from using alpha-beta pruning with 2-player mini-
max.

3.2   Branch and Bound Pruning
If a monotonic heuristic is present in a game, it can also be 
used to prune a maxn tree. The full details of how this occurs 
is contained in [Sturtevant and Korf, 2000]. An example of a 
monotonic heuristic is the number of tricks taken in Spades. 
Once a trick has been taken, it cannot be lost. This guaran-
tee can provide a lower bound on a playerʼs score, and an 
upper bound on oneʼs opponents scores, which can be used 
in branch-and-bound pruning to prune the game tree. Alpha-
beta branch-and-bound pruning combines the actual scores of 
the 2 players compared in shallow pruning with the heuristic 
information from the other n-2 players to prune the tree.

3.3   Pruning in Practice
These algorithms have mixed performances in practice. 
There are no obviously useful monotonic heuristics for Chi-
nese Checkers, and most useful cutoff evaluation functions 
for the game do not meet the requirements for shallow prun-
ing. Thus, in practice it is not possible to use any of these 
techniques to prune a Chinese Checkers game tree.
 If we use the number of points taken in the game tree so 
far as the evaluation function, we will be able to use shallow 
pruning in Spades and branch-and-bound pruning in both 
Spades and Hearts. This is fine if you can search the entire 
game tree, but we are currently unable to do that. If we add a 
predictive component to the evaluation function, these prun-
ing techniques are much less effective. Thus a trade-off has to 
be made between the quality of the cutoff evaluation function 

(5, 4, 1)

Figure 1. A 3-player maxn tree fragment.
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Figure 2. Shallow pruning in a 3-player maxn tree.
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values at (a) may interact with unseen values at (b) to affect 
Player 2ʼs, and thus Player 1ʼs move. In this case, deep prun-
ing failed because the value at the right child of (a) was better 
for Player 2 than a previous child of (a). If the children of (a) 
were ordered optimally for Player 2, or if there was no right 
child at (a), the deep prune could not have affected the maxn 
value of the tree.
 While shallow pruning only considers 2 players  ̓bounds 
when pruning, we can actually use n players  ̓bounds in a n-
player game. Since each player has already searched one or 
more branches when we reach node (b) in Figure 4, we have 
a lower bound on each playerʼs score. In this case, Player 1 
has a lower bound of 5 from the left branch of the root, Player 
2 has a bound of 3 from the left branch of (a), and Player 3 
has a bound of 2 from the left branch of (b). The sum of these 
bounds is 10, which is greater than or equal to maxsum. We 
can thus show that any unseen value at (b) cannot be the maxn 
value of the tree.
Lemma 1: If, in a maxn game tree, the sum of lower bounds 
for a consecutive sequence of unique players meets or ex-
ceeds maxsum, the maxn value of any child of the last player 
in the sequence cannot be the maxn value of the game tree.
Proof: We provide a proof by contradiction. Figure 5 shows a 

and the potential amount of pruning in the game tree.

3.4   Deep Pruning
Deep pruning refers to when the bound at a node is used to 
prune a grandchild or lower descendant of that node. [Korf, 
1991] shows that, in the general case, deep pruning can incor-
rectly affect the maxn value of the game tree. We demonstrate 
this in Figure 3. After searching the left branch of node (b), 
Player 3 is guaranteed 5 points, and Player 1 is guaranteed to 
get no more than 5 points at node (b). So, we can conclude 
that the maxn value of node (b) will never be the maxn value 
of the game tree, because Player 1 is already guaranteed a 
score of 5 at the root, and he can do no better than that at node 
(b). It is still possible, however, that the maxn value at (b) can 
affect the final maxn value of the tree.
 For instance, if the actual maxn value of (b) is (4, 0, 6), 
Player 2 will prefer the move (6, 4, 0) at node (a), and this 
will be the maxn value of the game tree. But, if the maxn value 
of (b) is (0, 4, 6), Player 2 will prefer this value, and so Player 
1 will choose (5, 4, 1) to be the maxn value of the game tree. 
Thus, in general deep pruning is not valid.

4   New Pruning Techniques
We now present our new algorithms. They have the same 
minimum requirements to prune as shallow pruning, namely 
a lower bound on each playerʼs score and a upper bound on 
the sum of scores. This is slightly weaker than requiring a 
game to be constant-sum, meaning that the sum of all scores 
at every node is constant, but in either case we can usually 
make adjustments to the evaluation function in a game to be 
able to prune effectively.

4.1   Requirements for Pruning
Last-branch and speculative pruning both examine portions 
of maxn game trees to find nodes whose maxn value can never 
be the maxn value of the tree. They take different approaches, 
however, when they prune these nodes.
 Returning to Figure 3, we know that Player 1 will never 
get a better value than 5 at node (b). But, to prune at (b) cor-
rectly, we must show that Player 1 cannot get a better maxn 
value at the root from either node (b) or node (a), as the Figure 5. Combining scores to limit value propagation in general.
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generic 3-player game tree. In this figure Player 1 has a lower 
bound of x at the root, Player 2 has a lower bound of y at (a), 
and Player 3 has a lower bound of z at (b). Given that these 
values sum to maxsum, assume there is a value v at the right 
child of (b) which will be the maxn value of the game tree.
 Let v = (x1, y1, z1). For v to become the maxn value of the 
tree, each player must prefer this move to their current move. 
Since ties are broken to the left, z1 must be strictly better than 
z, y1 must be strictly better than y, and x1 must be strictly bet-
ter than x. Thus, z1 > z, y1 > y and x1 > x. So, x1 + y1 + z1 > x + 
y + z ≥ maxsum, and x1 + y1 + z1 > maxsum. But, by the defini-
tion of maxsum, this is impossible. So, no value at the right 
child of (b) can be the maxn value of the game tree. While this 
is the 3-player case, it clearly generalizes for n players. ¨
 While we have shown that we can combine n players  ̓
scores to prove a maxn value will not propagate up a maxn 
tree, we must also show that a prune in this case will not af-
fect the maxn value of the entire game tree. Last-branch and 
speculative pruning address this problem in similar ways. 
Neither algorithm, however, will prune more than n levels 
away from where the first bound originates.

4.2   Last-Branch Pruning
When a sequence of players have bounds appropriate for 
pruning under lemma 1, last-branch pruning guarantees that 
the prune will be correct by only pruning when the intermedi-
ate players in the sequence are searching their last branch.
 We can see this in Figure 4. To prune correctly, we ob-
serve that after searching the left children of node (a) Player 
2 has only two choices: the best maxn value from a previous 
branch of (a), or the maxn value from (b). If Player 2 chooses 
the maxn value from the previous branch of (a), (3, 3, 4), 
Player 1 will get a lower score at (a) than his current bound 
at the root. Lemma 1 shows that the maxn value at (b) can be 
better than the current bound for Player 2 or for Player 1, but 
not for both players. So, if Player 2 chooses a value from (b), 
it must also have a lower maxn value for Player 1 than his 
bound at the root. Thus, Player 1 will not get a better score at 
(a), and we can prune the children of node (b).
 For last-branch pruning to be correct, in addition to 
the conditions from lemma 1, Player 2 must be on his last 
branch, and the partial maxn value from Player 2ʼs previously 

searched children must not be better for Player 1 than his 
current bound at the root. In the n-player case, all intermedi-
ate players between the first and last player must be search-
ing their last branches, while Players 1 and n can be on any 
branch after their first one.
 Last branch pruning has the potential to be very effective. 
Instead of only considering 2 players  ̓scores, it compares n 
players  ̓scores. In fact, when all nodes in the tree have the 
exact same evaluation, last-branch pruning will always be 
able to prune, while shallow pruning will never be able to.
 The only drawback to last-branch pruning is that it only 
prunes when intermediate players between the first and last 
player are all on the last branch of their search. For a game 
with branching factor 2 this is already the case, but otherwise 
we use speculative pruning to address this issue.

4.3   Speculative Maxn Pruning
Speculative pruning is identical to last-branch pruning, except 
that it doesnʼt wait until intermediate players are on their last 
branch. Instead, it prunes speculatively, re-searching if needed.
 We demonstrate this in Figure 6. At the root of the tree, 
Player 1 is guaranteed 5 points. At node (a), Player 2 is guar-
anteed 3, and at node (b), Player 3 is guaranteed 2. Because 5 
+ 3 + 2 ≥ maxsum, we could prune the remaining children of 
(b) if node (b) was the last child of node (a).
 Suppose we do prune, and then come to the final child of 
node (a). If the final child of node (a) has value (4, 4, 2), we 
know Player 1 will not move towards (a), because no value 
there can be better for Player 1. But, if the value at (a) ends 
up being (6, 4, 0), the partially computed maxn value of (a) 
will be (6, 4, 0). With this maxn value, Player 1 will choose 
to move towards node (b). Because this has the potential to 
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Figure 6. Speculative pruning a maxn game tree.
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maxsum = 10 specmaxn(Node, ParentScore, GrandparentScore)
{
 best = NIL; specPrunedQ = NIL;
 if terminal(node)
  return static eval(node);

 for each child(Node)
  if (best[previous Player] <= ParentScore)†
   result = specmaxn(next child(Node),
     best[current Player], ParentScore);
  else
   result = specmaxn(next child(Node),
     best[current Player], 0);
  if (best == NIL)
   best = result;
  else if (result == NIL)
   add Child to specPrunedQ;
  else if (best[current Player] < result[current Player])
   best = result;
   if (best[previous Player] > ParentScore)
    re-add specPrunedQ to child list;
  if (GrandparentScore+ParentScore+
     best[current Player] > maxsum)
   return NIL;
 return best;
}

Figure 7: Speculative maxn pseudo-code for a 3-player game.



change the maxn value at the root of the tree, we will have to 
search node (b) again using new bounds. This occurs when 
Player 2ʼs nodes are ordered suboptimally. With an optimal 
node ordering we will never have to re-search a subtree.
 In general, we have to re-search pruned branches if, on 
a mid-level branch, we find a new value for which both that 
mid-level player and his parent have better scores. As with 
last-branch pruning, we can only prune when Player 1 prefers 
his current move over Player 2ʼs partial maxn value. If we 
wish to preserve the order of tie-breaking in the tree, we must 
also retain some extra information about the order of nodes 
expanded. Nodes that can be pruned by last-branch pruning 
will be always be pruned by speculative pruning. Pseudo-
code for speculative pruning can be found in Figure 7.
 As can been seen, it is reasonably simple to perform 
speculative pruning in practice. In the 3-player implementa-
tion, the specmaxn function takes 3 arguments, the current 
node, the best score at the parent node, and the best score at 
the grandparent node.
 At the line marked † we are checking to see if our parent 
can get a better score from the partial maxn value of this node 
than from one of his previously searched nodes. If this is the 
case, we cannot use the parentʼs bounds to help prune the 
children of the current node.
 When a node is speculatively pruned, the specmaxn 
function returns NIL. All nodes that have speculatively pruned 
children are added to a list of pruned nodes, and if a child is 
found with a maxn value that better for both the current node 
and the parent node, then the speculatively pruned nodes will 
have to be re-searched. This pseudo-code assumes that play-
ers always alternate plays in the tree, as in Chinese Checkers. 
In card games, where this may not be the case, additional 
checks are needed.
 For 3 players, the best-case analysis of speculative prun-
ing can be formulated as a recurrence, the solution of which 
is the equation x3 - x2 - (b-1)·x - (b-1)2 = 0. A complete deri-
vation of the recurrence can be found in [Sturtevant, 2003]. 
Solving this equation for x gives the asymptotic branching 
factor, which, as b grows large, is b2/3. For a general n-player 
game, the equation will be xn - xn-1 - (b-1)1·xn-2 - (b-1)2·xn-3 - 
… (b-1)n-1. As b grows large, this approaches bn-1/n. We give 
sample values for b, given an optimal ordering of nodes in a 
3-player game, in Table 8. The first column contains sample 
values for b, the second column contains b2/3, and the third 
column contains the actual optimal asymptotic value of b as 
calculated from these equations.

4.4   Discrete Cutoff Evaluations
 It is possible to use tighter bounds for pruning when 
the evaluation function has discrete as opposed to continu-
ous values. This draws from the proof of lemma 1. In this 
proof we see that, for a value to affect the maxn value of the 
tree, x1 > x, y1 > y, and z1 > z. Suppose the minimum delta of 
a playerʼs score is µ. Since all players in the game must do 
strictly better than their previous value we can combine this 
into our bounds.
 We demonstrate this in Figure 9. At the root of the tree, 
Player 1 is guaranteed a score of 5, and at node (a) Player 2 is 
guaranteed 3 points. In this example µ = 1, so for these play-
ers both to prefer to move towards (b) they must get at least 
6 and 4 points respectively. Because maxsum is 10, we know 
if Player 3 gets more than 0 points, Players 1 and 2 canʼt both 
get better than their current best scores. So, instead of prun-
ing when Player 3 gets 10 - 5 - 3 = 2 points, we can prune 
when Player 3 gets 1 point.
 We can then use our tie-breaking rule to improve this. 
Because ties are broken to the left, we can prune if Player 3 
gets 0 points at the left branch of (b) and Player 1 and 2 donʼt 
get 6 and 4 points respectively. If, for instance, the score is (7, 
3, 0), Player 2 wonʼt choose this value over the left branch of 
(a). In addition, Player 3 will only choose a better value than 
0 from the unexpanded children of (b), which will meet our 
earlier conditions for pruning.
 It follows from this that we can always prune if ∑scores 
≥ maxsum - µ·(n - 2), where ∑scores are the current bounds 
for the players in the tree. Additionally, we can prune if 
∑scores ≥ maxsum - µ·(n - 1) and if on the first branch of the 
node being pruned the other n - 1 players donʼt all have better 
scores than their current best bound.

5   Experimental Results
As speculative pruning includes last-branch pruning as a 
special case, we only report our experiments with speculative 
maxn. In each experiment, re-expansions by speculative maxn 
are counted as part of the total number of node expansions, 
and node re-expansions in speculative pruning never out-

Figure 9. Discrete cut-off evaluations
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Table 8: Branching factor gains by speculative maxn in a 3-player game.



counted towards the node limit. We then measured the av-
erage search depth by maxn and speculative maxn over all 
games. The results are found in Table 11. Averaging the 
search depth over all moves is misleading, because at many 
points in a hand the search depth is limited by the number of 
cards in your hand. Instead, we averaged the search depth for 
points in the tree where the search wasnʼt limited by the num-
ber of cards in the hand, and we also found the average point 
at which a hand could be searched to completion.
 Speculative maxn can search a hand to completion when, 
on average, there are 22.1 cards remaining in a hand, while 
maxn can only do it when 20.9 cards remained. In the case 
where search isnʼt depth limited, speculative maxn can search 
an average of 12.1 moves ahead, while maxn can only search 
11.1 moves deep.
 There are three reasons we donʼt see more spectacular 
depth gains. First, in card games the order of player moves in 
the tree is less uniform, which will lessen the amount of prun-
ing available. Second, we know that the ordering heuristic we 
used in Hearts can be improved, as it had to re-search many 
more times than in Chinese Checkers and Spades. Finally, 
the asymptotic branching factor of Hearts is much lower than 
Chinese Checkers, so the actual gains are smaller.

5.3   Spades
In Spades, like Hearts, we played 300 games with a 500k 
node search limit, and then measured the average search 
depth over all games. The results are also found in Table 
11. While speculative maxn could search a hand to comple-
tion when it contained, on average, 24.3 cards, maxn could 
only do it when 21.7 cards remained. When the search was 
not depth limited, speculative maxn was only able to search 
depths 15.4 while maxn could only search to depth 11.1.

5.4   Performance against Paranoid Algorithm
The paranoid algorithm [Sturtevant and Korf, 2000] is an-
other algorithm for playing multi-player games. It reduces 
a game to a 2-player game by assuming oneʼs opponents 
have formed a coalition. This represents a different decision 
rule than standard maxn. The trade-off for this less plausible 
decision rule is a gain in search depth. All techniques from 
2-player game research can be used under the paranoid al-
gorithm, and alpha-beta pruning in a n-player paranoid game 
tree will, in the best case, reduce the number of nodes ex-
panded in a game tree with n players from bd to bd·(n-1)/n.
 Although paranoid and speculative maxn have the same 
asymptotic growth, paranoid will produce smaller trees in 
practice because it can prune more than n levels away from 

weighed the nodes savings from the additional pruning.
 Also, while our sample search trees show cutoff evalu-
ation functions that are seemingly independent of the other 
players, the actual cutoff evaluation functions used in these 
experiments are based on the scores of all players in the 
game. So, instead of just trying to maximize their own score, 
players are actually trying to maximize the difference be-
tween their score and their opponentʼs scores.
 Finally, all our experiments on card games were run on 
the 3-player perfect-information variations of each game.

5.1   Chinese Checkers
In the past, maxn search of Chinese Checkers trees has been 
limited to brute-force search, as the bounds in the game are 
not appropriate for shallow or branch-and-bound pruning. In 
our experiments we ordered moves according to which ones 
move a piece farthest across the board. Because the branch-
ing factor is very high (over 100 in the mid-game), we only 
considered the top 10 moves in our ordering at each node.
 We played speculative maxn in thirty 3-player games; 
each game is about 50 moves long. We then measured the 
average number of nodes expanded at depth 6 by speculative 
maxn.  Results are found in Table 10. While it takes 1.2 mil-
lion nodes to complete iterative searches to this depth with no 
pruning, speculative maxn expands an average of 100k nodes, 
while an optimal ordering of nodes would expand 84,927 
nodes for this branching factor and depth. In some cases this 
optimal ordering is achieved in practice.

5.2   Hearts
It is more difficult to measure the efficiency of speculative 
maxn in card games. This is because node expansions are 
highly dependant on the cards in your hand. Additionally, 
better play, resulting from deeper search, often results in 
more nodes being expanded throughout a game, as good 
plays early in the game force more computation later in the 
game. So, we measured our results in a slightly different 
manner in Hearts.
 We played 300 hands of Hearts with a 500k node search 
limit. Hands were searched iteratively deeper until the node 
limit was reached, and re-expansions in speculative maxn 

Hearts average search depth Spades average search depth
complete tree partial tree complete tree partial tree

Plain Maxn 20.9 11.1 21.7 11.1
Speculative Maxn 22.1 12.1 24.3 15.4

Paranoid 25.8 17.1 33.5 22.4
Table 11: Average search depth with 500k node expansions in Hearts and Spades.

Chinese Checkers expansions at depth 6
Plain Maxn 1.2 million

Speculative Maxn 100k
Table 10: Average expansions by maxn in Chinese Checkers.



Hearts Spades
Plain Maxn / Paranoid 8.50 / 8.50 5.55 / 5.78
Spec. Maxn / Paranoid 8.01 / 8.99 5.72 / 5.61

Table 12: Average score in Spades and Hearts.

where a bound originates.
 A comparison between paranoid and maxn can be found 
in [Sturtevant, 2002]. Given the gains from speculative maxn, 
it is worth making a comparison against paranoid.
 It has been shown experimentally [Sturtevant, 2002] 
that the paranoid algorithm outperforms standard maxn at 
fixed depths in Chinese Checkers. Since adding speculative 
pruning doesnʼt change maxnʼs decision rule, we donʼt see a 
gain in maxnʼs performance against paranoid with specula-
tive maxn. But, it may now be worth considering strategies 
that are more mixed between standard maxn and the paranoid 
strategy, as paranoidʼs advantage in search depth has been 
greatly lessened.
 To measure the differences between paranoid and maxn 
in card games we followed the same strategy in Hearts and 
Spades. In both of these games we played 50 hands with a 
500k node search limit. Each of these hands were played 
multiple times to account for player positions on the table. 
We measured the average search depth for paranoid over 
these games, and we also compared the average score for 
maxn with and without speculative pruning. Both algorithms 
expand nodes at the same rate, so there is no significant dif-
ference in CPU time between the two algorithms.
 In Table 11 we see that paranoid was able to search 
deeper than speculative maxn in both Hearts and Spades. 
In Spades, paranoid can do highly efficient zero-window 
searches [Pearl, 1980], allowing it to search entire hands 
when they contain 33.5 cards on average, over 9 cards bet-
ter than speculative maxn. In Hearts, paranoid can search 3.7 
cards deeper than speculative maxn.
 But, despite paranoidʼs advantage in search depth, these 
results do not translate into quality of play. We see this in Ta-
ble 12. Each entry in the table contains the listed algorithmʼs 
average score followed by paranoidʼs average score. In 
Hearts, paranoid and maxn had virtually the same score after 
all games. But, with the additive pruning and search depth 
in speculative maxn, it was able to beat paranoid by almost 1 
point per hand. (Lower scores are better.) In Spades, where 
maxn did slightly worse than paranoid, speculative maxn was 
able to do better than paranoid, despite a much shallower 
search. (Higher scores are better.) These results show that 
given speculative pruning, maxn has the potential to be the 
best decision rule for card games.

6   Conclusions and Future Work
We have seen here that last-branch and speculative pruning 
combine to provide large theoretical and practical gains for 
searching maxn trees. This is the first pruning technique to 
be developed for maxn that is effective on a wide range of 
games. While other pruning techniques have required very 
specific cutoff evaluation functions in order to prune, last-

branch and speculative maxn pruning only require a game 
to have a lower bound on each playerʼs score and an upper 
bound on the sum of all scores.
 Also, while the paranoid algorithm must make assump-
tions about the strategies its opponents use in order to prune, 
last-branch and speculative pruning make no such assump-
tions, but can still be adapted to account for opponents strate-
gies. Thus, these algorithms are quite promising for use in 
multi-player games.
 Speculative maxn pruning only prunes over n levels in 
the game tree. It is possible to extend this idea to prune even 
deeper into the tree. However, it is unclear if the cost of book-
keeping and re-search for these cases offsets the potential 
gains. This is an area of our ongoing research.
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