
Last-Branch and Speculative Pruning Algorithms for Maxn

Nathan Sturtevant
UCLA, Computer Science Department

Los Angeles, CA 90024
nathanst@cs.ucla.edu

Abstract
Previous work in pruning algorithms for maxn
multi-player game trees has produced shallow
pruning and alpha-beta branch-and-bound prun-
ing. The effectiveness of these algorithms is
dependant as much on the range of terminal val-
ues found in the game tree as on the ordering of
nodes. We introduce last-branch and speculative
pruning techniques which can prune any constant-
sum multi-player game tree. Their effectiveness
depends only on node-ordering within the game
tree. As b grows large, these algorithms will, in
the best case, reduce the branching factor of a n-
player game from b to b(n-1)/n. In Chinese Checkers
these methods reduce average expansions at depth
6 from 1.2 million to 100k nodes, and in Hearts
and Spades they increase the average search depth
by 1-3 ply.

1 Introduction
While the minimax algorithm with alpha-beta pruning
[Knuth and Moore, 1975] has dominated the study of 2-
player games, a clearly dominant algorithm has not emerged
in the study of n-player games.
 The standard algorithm for n-player games is maxn
[Luckhardt and Irani, 1986]. Only some maxn game trees can
be pruned using established techniques such as shallow prun-
ing [Korf, 1991] and alpha-beta branch-and-bound pruning
[Sturtevant and Korf, 2000]. This is because the amount of
pruning possible under these algorithms is dependant on both
the node ordering and the range of terminal values found in
the game. Common heuristics for games such as Hearts and
Chinese Checkers do not have appropriate terminal values
for pruning. In two-player games, however, pruning is only
dependant on the node ordering in the tree.
 We present here last-branch and speculative pruning
techniques which can be used to prune any n-player constant-
sum maxn game tree. The effectiveness of these algorithms
depends only on node ordering within the game tree. Last-
branch pruning is similar to a directional algorithm [Pearl,

1984], as it examines the successors of each node left-to-
right without returning to previously searched nodes. It does
require that you know when you are searching the last branch
of a node. Speculative pruning, however, is not a directional
algorithm as it may re-search some branches of the tree. Last-
branch pruning is a special case of speculative pruning.
 The remainder of the paper is as follows. In Section 2
we present a brief overview of sample multi-player domains.
In Section 3 we cover previous techniques for pruning maxn
trees. Section 4 covers our new techniques, with results from
various domains in Section 5.

2 Multi-Player Domains
A multi-player game is one in which there are 3 or more play-
ers or teams competing against each other. Many 4-player
games are designed for 2 teams, making them two-player
games from a theoretical standpoint. We highlight a few of
the many interesting multi-player games here.

2.1 Chinese Checkers
One of the best known multi-player board games is Chinese
Checkers. This game is played on a board in the shape of a
6-pointed star, with players ̓pieces starting on opposite sides
of the board. The goal is to move your pieces across the board
faster than your opponent(s) can. Chinese Checkers can be
played with 2-6 players, and is not played in teams.

2.2 Card Games
We use two games here as examples, Spades and Hearts.
Spades is usually played with 4 players, but has a 3-player
variant. The goal of Spades is to maximize your score. Hearts
is usually played with 4 players, but can be played with 3 or
more. The goal of Hearts is to minimize your score.
 Many card games, including these, are trick-based. Be-
cause a trick cannot be given up after being taken, the tricks
taken during the game provide a monotonically increasing
lower-bound on the final score of the game. In the case of
Spades, players get 1 point per trick taken, while in Hearts
each player gets 1 point for every heart in the tricks they take,
as well as 13 points for the queen of spades. A complete game
is made up of multiple hands, where the goal is to minimize
or maximize your points over all the hands.
 Both Spades and Hearts are imperfect-information

games, while the descriptions and trees in this paper assume
games have perfect information. In card games, however, we
often use perfect-information methods to search imperfect-
information games through Monte-Carlo simulation. This
involves generating sets of hands that are similar to the hands
we expect our opponents to have. We then use traditional
perfect-information methods to search these hands, combin-
ing and analyzing the results to make the next play. These
methods have been successfully used in the Bridge program
GIB. [Ginsberg, 2001]

3 Pruning Algorithms for Maxn

The maxn algorithm can be used to play games with any num-
ber of players. For two-player games, maxn reduces to mini-
max. In a maxn tree with n players, the leaves of the tree are
n-tuples, where the ith element in the tuple is the ith playerʼs
score. At the interior nodes in the game tree, the maxn value
of a node where player i is to move is the child of that node
for which the ith component is maximum. This can be seen
in Figure 1.
 In this tree fragment there are three players. The player
to move is labeled inside each node. At node (a), Player 2 is
to move. Player 2 can get a score of 6 by moving to the left or
right and a score of 4 by moving to the middle node. We break
ties to the left, so Player 2 will choose the left branch, and the
maxn value of node (a) is (0, 6, 4). Player 1 acts similarly at
the root selecting the left branch, because the first component
of the maxn value there, 5, is greater his score from the middle
branch, 0, and his score at the right branch, 3.

3.1 Shallow Pruning
 Shallow pruning refers to cases where a bound on a node
is used to prune branches from the child of that node. The
minimum requirements for pruning a maxn tree with shallow
pruning are a lower bound on each players ̓score and an up-
per bound, maxsum, on the sum of all players ̓ scores. We
demonstrate this in Figure 2. In this figure, all scores have a
lower bound of 0, and maxsum is 10.
 Player 1 searches the left branch of the root in a depth-
first manner, getting the maxn value (5, 4, 1). Thus, we know
that Player 1 will get at least 5 points at the root. Since there
are only 10 points available, we know the other players will
get less than 5 points at this node.
 At node (a), Player 2 searches the left branch to get a

score of 6. Because maxsum is 10 we know that Player 1ʼs
score will never exceed 4 at node (a), so Player 1 will never
choose to move towards (a) at the root, and the remaining
children of (a) can be pruned.
 For shallow pruning to actually occur in a maximization
game, each player must have a score that ranges between 0
and maxsum. [Sturtevant and Korf, 2000] There are similar
bounds for minimization games. In the average case, no
asymptotic gain can be expected from shallow pruning.
[Korf, 1991] The basic problem with shallow pruning is that
it works by comparing the scores of only 2 out of n players
in the game, and it is unlikely that 2 players will have their
scores sum to maxsum. This contrasts with the large gains
available from using alpha-beta pruning with 2-player mini-
max.

3.2 Branch and Bound Pruning
If a monotonic heuristic is present in a game, it can also be
used to prune a maxn tree. The full details of how this occurs
is contained in [Sturtevant and Korf, 2000]. An example of a
monotonic heuristic is the number of tricks taken in Spades.
Once a trick has been taken, it cannot be lost. This guaran-
tee can provide a lower bound on a playerʼs score, and an
upper bound on oneʼs opponents scores, which can be used
in branch-and-bound pruning to prune the game tree. Alpha-
beta branch-and-bound pruning combines the actual scores of
the 2 players compared in shallow pruning with the heuristic
information from the other n-2 players to prune the tree.

3.3 Pruning in Practice
These algorithms have mixed performances in practice.
There are no obviously useful monotonic heuristics for Chi-
nese Checkers, and most useful cutoff evaluation functions
for the game do not meet the requirements for shallow prun-
ing. Thus, in practice it is not possible to use any of these
techniques to prune a Chinese Checkers game tree.
 If we use the number of points taken in the game tree so
far as the evaluation function, we will be able to use shallow
pruning in Spades and branch-and-bound pruning in both
Spades and Hearts. This is fine if you can search the entire
game tree, but we are currently unable to do that. If we add a
predictive component to the evaluation function, these prun-
ing techniques are much less effective. Thus a trade-off has to
be made between the quality of the cutoff evaluation function

(5, 4, 1)

Figure 1. A 3-player maxn tree fragment.

2 2 2

1

(5, 4, 1) (3, 1, 6)

3 3 3
(0, 6, 4) (4, 6, 0)(0, 4, 6)

(a)
(0, 6, 4)

(b)

Figure 2. Shallow pruning in a 3-player maxn tree.

maxsum = 10

2 2

1

(5, 4, 1)

3
(0, 6, 4)

(a)
(≤4, ≥6, ≤4)

(a)
(≥5, ≤5, ≤5)

values at (a) may interact with unseen values at (b) to affect
Player 2ʼs, and thus Player 1ʼs move. In this case, deep prun-
ing failed because the value at the right child of (a) was better
for Player 2 than a previous child of (a). If the children of (a)
were ordered optimally for Player 2, or if there was no right
child at (a), the deep prune could not have affected the maxn
value of the tree.
 While shallow pruning only considers 2 players ̓bounds
when pruning, we can actually use n players ̓bounds in a n-
player game. Since each player has already searched one or
more branches when we reach node (b) in Figure 4, we have
a lower bound on each playerʼs score. In this case, Player 1
has a lower bound of 5 from the left branch of the root, Player
2 has a bound of 3 from the left branch of (a), and Player 3
has a bound of 2 from the left branch of (b). The sum of these
bounds is 10, which is greater than or equal to maxsum. We
can thus show that any unseen value at (b) cannot be the maxn
value of the tree.
Lemma 1: If, in a maxn game tree, the sum of lower bounds
for a consecutive sequence of unique players meets or ex-
ceeds maxsum, the maxn value of any child of the last player
in the sequence cannot be the maxn value of the game tree.
Proof: We provide a proof by contradiction. Figure 5 shows a

and the potential amount of pruning in the game tree.

3.4 Deep Pruning
Deep pruning refers to when the bound at a node is used to
prune a grandchild or lower descendant of that node. [Korf,
1991] shows that, in the general case, deep pruning can incor-
rectly affect the maxn value of the game tree. We demonstrate
this in Figure 3. After searching the left branch of node (b),
Player 3 is guaranteed 5 points, and Player 1 is guaranteed to
get no more than 5 points at node (b). So, we can conclude
that the maxn value of node (b) will never be the maxn value
of the game tree, because Player 1 is already guaranteed a
score of 5 at the root, and he can do no better than that at node
(b). It is still possible, however, that the maxn value at (b) can
affect the final maxn value of the tree.
 For instance, if the actual maxn value of (b) is (4, 0, 6),
Player 2 will prefer the move (6, 4, 0) at node (a), and this
will be the maxn value of the game tree. But, if the maxn value
of (b) is (0, 4, 6), Player 2 will prefer this value, and so Player
1 will choose (5, 4, 1) to be the maxn value of the game tree.
Thus, in general deep pruning is not valid.

4 New Pruning Techniques
We now present our new algorithms. They have the same
minimum requirements to prune as shallow pruning, namely
a lower bound on each playerʼs score and a upper bound on
the sum of scores. This is slightly weaker than requiring a
game to be constant-sum, meaning that the sum of all scores
at every node is constant, but in either case we can usually
make adjustments to the evaluation function in a game to be
able to prune effectively.

4.1 Requirements for Pruning
Last-branch and speculative pruning both examine portions
of maxn game trees to find nodes whose maxn value can never
be the maxn value of the tree. They take different approaches,
however, when they prune these nodes.
 Returning to Figure 3, we know that Player 1 will never
get a better value than 5 at node (b). But, to prune at (b) cor-
rectly, we must show that Player 1 cannot get a better maxn
value at the root from either node (b) or node (a), as the Figure 5. Combining scores to limit value propagation in general.

2 2 2

1

(x, …)

3 3

(…, z)
1

(, y,)

(b)

(a)
(, ≥y,)

(≥x, ,)

(, , ≥z)

(x1, y1, z1)

(b)

(a)
2 2 2

1

(5, 4, 1) (3, 1, 6)

(6, 4, 0) or (5, 4, 1)

3 3 3

(4, 1, 5)

(4, 0, 6)
or

(0, 4, 6)
1

(3, 3, 4) (6, 4, 0)

Figure 3: The failure of deep pruning.

(≤5, , ≥5)

maxsum = 10

Figure 4. Combining maxn scores to limit value propagation.

2 2 2

1

(5, 4, 1) (3, 1, 6)

(5, 4, 1)

3 3

(3, 5, 2)
1

(3, 3, 4)

(b)

(a)
(, ≥3,)

(≥5, ,)

(, , ≥2)

maxsum = 10

…

generic 3-player game tree. In this figure Player 1 has a lower
bound of x at the root, Player 2 has a lower bound of y at (a),
and Player 3 has a lower bound of z at (b). Given that these
values sum to maxsum, assume there is a value v at the right
child of (b) which will be the maxn value of the game tree.
 Let v = (x1, y1, z1). For v to become the maxn value of the
tree, each player must prefer this move to their current move.
Since ties are broken to the left, z1 must be strictly better than
z, y1 must be strictly better than y, and x1 must be strictly bet-
ter than x. Thus, z1 > z, y1 > y and x1 > x. So, x1 + y1 + z1 > x +
y + z ≥ maxsum, and x1 + y1 + z1 > maxsum. But, by the defini-
tion of maxsum, this is impossible. So, no value at the right
child of (b) can be the maxn value of the game tree. While this
is the 3-player case, it clearly generalizes for n players. ¨
 While we have shown that we can combine n players ̓
scores to prove a maxn value will not propagate up a maxn
tree, we must also show that a prune in this case will not af-
fect the maxn value of the entire game tree. Last-branch and
speculative pruning address this problem in similar ways.
Neither algorithm, however, will prune more than n levels
away from where the first bound originates.

4.2 Last-Branch Pruning
When a sequence of players have bounds appropriate for
pruning under lemma 1, last-branch pruning guarantees that
the prune will be correct by only pruning when the intermedi-
ate players in the sequence are searching their last branch.
 We can see this in Figure 4. To prune correctly, we ob-
serve that after searching the left children of node (a) Player
2 has only two choices: the best maxn value from a previous
branch of (a), or the maxn value from (b). If Player 2 chooses
the maxn value from the previous branch of (a), (3, 3, 4),
Player 1 will get a lower score at (a) than his current bound
at the root. Lemma 1 shows that the maxn value at (b) can be
better than the current bound for Player 2 or for Player 1, but
not for both players. So, if Player 2 chooses a value from (b),
it must also have a lower maxn value for Player 1 than his
bound at the root. Thus, Player 1 will not get a better score at
(a), and we can prune the children of node (b).
 For last-branch pruning to be correct, in addition to
the conditions from lemma 1, Player 2 must be on his last
branch, and the partial maxn value from Player 2ʼs previously

searched children must not be better for Player 1 than his
current bound at the root. In the n-player case, all intermedi-
ate players between the first and last player must be search-
ing their last branches, while Players 1 and n can be on any
branch after their first one.
 Last branch pruning has the potential to be very effective.
Instead of only considering 2 players ̓scores, it compares n
players ̓scores. In fact, when all nodes in the tree have the
exact same evaluation, last-branch pruning will always be
able to prune, while shallow pruning will never be able to.
 The only drawback to last-branch pruning is that it only
prunes when intermediate players between the first and last
player are all on the last branch of their search. For a game
with branching factor 2 this is already the case, but otherwise
we use speculative pruning to address this issue.

4.3 Speculative Maxn Pruning
Speculative pruning is identical to last-branch pruning, except
that it doesnʼt wait until intermediate players are on their last
branch. Instead, it prunes speculatively, re-searching if needed.
 We demonstrate this in Figure 6. At the root of the tree,
Player 1 is guaranteed 5 points. At node (a), Player 2 is guar-
anteed 3, and at node (b), Player 3 is guaranteed 2. Because 5
+ 3 + 2 ≥ maxsum, we could prune the remaining children of
(b) if node (b) was the last child of node (a).
 Suppose we do prune, and then come to the final child of
node (a). If the final child of node (a) has value (4, 4, 2), we
know Player 1 will not move towards (a), because no value
there can be better for Player 1. But, if the value at (a) ends
up being (6, 4, 0), the partially computed maxn value of (a)
will be (6, 4, 0). With this maxn value, Player 1 will choose
to move towards node (b). Because this has the potential to

2 2 2

1

(5, 4, 1) (3, 1, 6)

3 3 3

(3, 5, 2)
1

(3, 3, 4) (4, 4, 2)
or

(6, 4, 0)

Figure 6. Speculative pruning a maxn game tree.

(, ≥3,)

(≥5, ,)

(, , ≥2)
(b)

(a)

(4, 6, 0)

maxsum = 10 specmaxn(Node, ParentScore, GrandparentScore)
{
 best = NIL; specPrunedQ = NIL;
 if terminal(node)
 return static eval(node);

 for each child(Node)
 if (best[previous Player] <= ParentScore)†
 result = specmaxn(next child(Node),
 best[current Player], ParentScore);
 else
 result = specmaxn(next child(Node),
 best[current Player], 0);
 if (best == NIL)
 best = result;
 else if (result == NIL)
 add Child to specPrunedQ;
 else if (best[current Player] < result[current Player])
 best = result;
 if (best[previous Player] > ParentScore)
 re-add specPrunedQ to child list;
 if (GrandparentScore+ParentScore+
 best[current Player] > maxsum)
 return NIL;
 return best;
}

Figure 7: Speculative maxn pseudo-code for a 3-player game.

change the maxn value at the root of the tree, we will have to
search node (b) again using new bounds. This occurs when
Player 2ʼs nodes are ordered suboptimally. With an optimal
node ordering we will never have to re-search a subtree.
 In general, we have to re-search pruned branches if, on
a mid-level branch, we find a new value for which both that
mid-level player and his parent have better scores. As with
last-branch pruning, we can only prune when Player 1 prefers
his current move over Player 2ʼs partial maxn value. If we
wish to preserve the order of tie-breaking in the tree, we must
also retain some extra information about the order of nodes
expanded. Nodes that can be pruned by last-branch pruning
will be always be pruned by speculative pruning. Pseudo-
code for speculative pruning can be found in Figure 7.
 As can been seen, it is reasonably simple to perform
speculative pruning in practice. In the 3-player implementa-
tion, the specmaxn function takes 3 arguments, the current
node, the best score at the parent node, and the best score at
the grandparent node.
 At the line marked † we are checking to see if our parent
can get a better score from the partial maxn value of this node
than from one of his previously searched nodes. If this is the
case, we cannot use the parentʼs bounds to help prune the
children of the current node.
 When a node is speculatively pruned, the specmaxn
function returns NIL. All nodes that have speculatively pruned
children are added to a list of pruned nodes, and if a child is
found with a maxn value that better for both the current node
and the parent node, then the speculatively pruned nodes will
have to be re-searched. This pseudo-code assumes that play-
ers always alternate plays in the tree, as in Chinese Checkers.
In card games, where this may not be the case, additional
checks are needed.
 For 3 players, the best-case analysis of speculative prun-
ing can be formulated as a recurrence, the solution of which
is the equation x3 - x2 - (b-1)·x - (b-1)2 = 0. A complete deri-
vation of the recurrence can be found in [Sturtevant, 2003].
Solving this equation for x gives the asymptotic branching
factor, which, as b grows large, is b2/3. For a general n-player
game, the equation will be xn - xn-1 - (b-1)1·xn-2 - (b-1)2·xn-3 -
… (b-1)n-1. As b grows large, this approaches bn-1/n. We give
sample values for b, given an optimal ordering of nodes in a
3-player game, in Table 8. The first column contains sample
values for b, the second column contains b2/3, and the third
column contains the actual optimal asymptotic value of b as
calculated from these equations.

4.4 Discrete Cutoff Evaluations
 It is possible to use tighter bounds for pruning when
the evaluation function has discrete as opposed to continu-
ous values. This draws from the proof of lemma 1. In this
proof we see that, for a value to affect the maxn value of the
tree, x1 > x, y1 > y, and z1 > z. Suppose the minimum delta of
a playerʼs score is µ. Since all players in the game must do
strictly better than their previous value we can combine this
into our bounds.
 We demonstrate this in Figure 9. At the root of the tree,
Player 1 is guaranteed a score of 5, and at node (a) Player 2 is
guaranteed 3 points. In this example µ = 1, so for these play-
ers both to prefer to move towards (b) they must get at least
6 and 4 points respectively. Because maxsum is 10, we know
if Player 3 gets more than 0 points, Players 1 and 2 canʼt both
get better than their current best scores. So, instead of prun-
ing when Player 3 gets 10 - 5 - 3 = 2 points, we can prune
when Player 3 gets 1 point.
 We can then use our tie-breaking rule to improve this.
Because ties are broken to the left, we can prune if Player 3
gets 0 points at the left branch of (b) and Player 1 and 2 donʼt
get 6 and 4 points respectively. If, for instance, the score is (7,
3, 0), Player 2 wonʼt choose this value over the left branch of
(a). In addition, Player 3 will only choose a better value than
0 from the unexpanded children of (b), which will meet our
earlier conditions for pruning.
 It follows from this that we can always prune if ∑scores
≥ maxsum - µ·(n - 2), where ∑scores are the current bounds
for the players in the tree. Additionally, we can prune if
∑scores ≥ maxsum - µ·(n - 1) and if on the first branch of the
node being pruned the other n - 1 players donʼt all have better
scores than their current best bound.

5 Experimental Results
As speculative pruning includes last-branch pruning as a
special case, we only report our experiments with speculative
maxn. In each experiment, re-expansions by speculative maxn
are counted as part of the total number of node expansions,
and node re-expansions in speculative pruning never out-

Figure 9. Discrete cut-off evaluations

2 2 2

1

(5, 4, 1) (3, 1, 6)

(5, 4, 1)

3 3

(5, 4, 1)
(7, 3, 0)

1

(3, 3, 4)

(b)

(, ≥3,)

(≥5, ,)
maxsum = 10

1
(6, 4, 0)
(6, 4, 0)

(a)

b b2/3 asymptotic b
2
3
4
5

10
1000

1.5874
2.0801
2.5198
2.9240
4.6416
100.00

1.8393
2.4675
3.0000
3.4755
5.4191
103.61

Table 8: Branching factor gains by speculative maxn in a 3-player game.

counted towards the node limit. We then measured the av-
erage search depth by maxn and speculative maxn over all
games. The results are found in Table 11. Averaging the
search depth over all moves is misleading, because at many
points in a hand the search depth is limited by the number of
cards in your hand. Instead, we averaged the search depth for
points in the tree where the search wasnʼt limited by the num-
ber of cards in the hand, and we also found the average point
at which a hand could be searched to completion.
 Speculative maxn can search a hand to completion when,
on average, there are 22.1 cards remaining in a hand, while
maxn can only do it when 20.9 cards remained. In the case
where search isnʼt depth limited, speculative maxn can search
an average of 12.1 moves ahead, while maxn can only search
11.1 moves deep.
 There are three reasons we donʼt see more spectacular
depth gains. First, in card games the order of player moves in
the tree is less uniform, which will lessen the amount of prun-
ing available. Second, we know that the ordering heuristic we
used in Hearts can be improved, as it had to re-search many
more times than in Chinese Checkers and Spades. Finally,
the asymptotic branching factor of Hearts is much lower than
Chinese Checkers, so the actual gains are smaller.

5.3 Spades
In Spades, like Hearts, we played 300 games with a 500k
node search limit, and then measured the average search
depth over all games. The results are also found in Table
11. While speculative maxn could search a hand to comple-
tion when it contained, on average, 24.3 cards, maxn could
only do it when 21.7 cards remained. When the search was
not depth limited, speculative maxn was only able to search
depths 15.4 while maxn could only search to depth 11.1.

5.4 Performance against Paranoid Algorithm
The paranoid algorithm [Sturtevant and Korf, 2000] is an-
other algorithm for playing multi-player games. It reduces
a game to a 2-player game by assuming oneʼs opponents
have formed a coalition. This represents a different decision
rule than standard maxn. The trade-off for this less plausible
decision rule is a gain in search depth. All techniques from
2-player game research can be used under the paranoid al-
gorithm, and alpha-beta pruning in a n-player paranoid game
tree will, in the best case, reduce the number of nodes ex-
panded in a game tree with n players from bd to bd·(n-1)/n.
 Although paranoid and speculative maxn have the same
asymptotic growth, paranoid will produce smaller trees in
practice because it can prune more than n levels away from

weighed the nodes savings from the additional pruning.
 Also, while our sample search trees show cutoff evalu-
ation functions that are seemingly independent of the other
players, the actual cutoff evaluation functions used in these
experiments are based on the scores of all players in the
game. So, instead of just trying to maximize their own score,
players are actually trying to maximize the difference be-
tween their score and their opponentʼs scores.
 Finally, all our experiments on card games were run on
the 3-player perfect-information variations of each game.

5.1 Chinese Checkers
In the past, maxn search of Chinese Checkers trees has been
limited to brute-force search, as the bounds in the game are
not appropriate for shallow or branch-and-bound pruning. In
our experiments we ordered moves according to which ones
move a piece farthest across the board. Because the branch-
ing factor is very high (over 100 in the mid-game), we only
considered the top 10 moves in our ordering at each node.
 We played speculative maxn in thirty 3-player games;
each game is about 50 moves long. We then measured the
average number of nodes expanded at depth 6 by speculative
maxn. Results are found in Table 10. While it takes 1.2 mil-
lion nodes to complete iterative searches to this depth with no
pruning, speculative maxn expands an average of 100k nodes,
while an optimal ordering of nodes would expand 84,927
nodes for this branching factor and depth. In some cases this
optimal ordering is achieved in practice.

5.2 Hearts
It is more difficult to measure the efficiency of speculative
maxn in card games. This is because node expansions are
highly dependant on the cards in your hand. Additionally,
better play, resulting from deeper search, often results in
more nodes being expanded throughout a game, as good
plays early in the game force more computation later in the
game. So, we measured our results in a slightly different
manner in Hearts.
 We played 300 hands of Hearts with a 500k node search
limit. Hands were searched iteratively deeper until the node
limit was reached, and re-expansions in speculative maxn

Hearts average search depth Spades average search depth
complete tree partial tree complete tree partial tree

Plain Maxn 20.9 11.1 21.7 11.1
Speculative Maxn 22.1 12.1 24.3 15.4

Paranoid 25.8 17.1 33.5 22.4
Table 11: Average search depth with 500k node expansions in Hearts and Spades.

Chinese Checkers expansions at depth 6
Plain Maxn 1.2 million

Speculative Maxn 100k
Table 10: Average expansions by maxn in Chinese Checkers.

Hearts Spades
Plain Maxn / Paranoid 8.50 / 8.50 5.55 / 5.78
Spec. Maxn / Paranoid 8.01 / 8.99 5.72 / 5.61

Table 12: Average score in Spades and Hearts.

where a bound originates.
 A comparison between paranoid and maxn can be found
in [Sturtevant, 2002]. Given the gains from speculative maxn,
it is worth making a comparison against paranoid.
 It has been shown experimentally [Sturtevant, 2002]
that the paranoid algorithm outperforms standard maxn at
fixed depths in Chinese Checkers. Since adding speculative
pruning doesnʼt change maxnʼs decision rule, we donʼt see a
gain in maxnʼs performance against paranoid with specula-
tive maxn. But, it may now be worth considering strategies
that are more mixed between standard maxn and the paranoid
strategy, as paranoidʼs advantage in search depth has been
greatly lessened.
 To measure the differences between paranoid and maxn
in card games we followed the same strategy in Hearts and
Spades. In both of these games we played 50 hands with a
500k node search limit. Each of these hands were played
multiple times to account for player positions on the table.
We measured the average search depth for paranoid over
these games, and we also compared the average score for
maxn with and without speculative pruning. Both algorithms
expand nodes at the same rate, so there is no significant dif-
ference in CPU time between the two algorithms.
 In Table 11 we see that paranoid was able to search
deeper than speculative maxn in both Hearts and Spades.
In Spades, paranoid can do highly efficient zero-window
searches [Pearl, 1980], allowing it to search entire hands
when they contain 33.5 cards on average, over 9 cards bet-
ter than speculative maxn. In Hearts, paranoid can search 3.7
cards deeper than speculative maxn.
 But, despite paranoidʼs advantage in search depth, these
results do not translate into quality of play. We see this in Ta-
ble 12. Each entry in the table contains the listed algorithmʼs
average score followed by paranoidʼs average score. In
Hearts, paranoid and maxn had virtually the same score after
all games. But, with the additive pruning and search depth
in speculative maxn, it was able to beat paranoid by almost 1
point per hand. (Lower scores are better.) In Spades, where
maxn did slightly worse than paranoid, speculative maxn was
able to do better than paranoid, despite a much shallower
search. (Higher scores are better.) These results show that
given speculative pruning, maxn has the potential to be the
best decision rule for card games.

6 Conclusions and Future Work
We have seen here that last-branch and speculative pruning
combine to provide large theoretical and practical gains for
searching maxn trees. This is the first pruning technique to
be developed for maxn that is effective on a wide range of
games. While other pruning techniques have required very
specific cutoff evaluation functions in order to prune, last-

branch and speculative maxn pruning only require a game
to have a lower bound on each playerʼs score and an upper
bound on the sum of all scores.
 Also, while the paranoid algorithm must make assump-
tions about the strategies its opponents use in order to prune,
last-branch and speculative pruning make no such assump-
tions, but can still be adapted to account for opponents strate-
gies. Thus, these algorithms are quite promising for use in
multi-player games.
 Speculative maxn pruning only prunes over n levels in
the game tree. It is possible to extend this idea to prune even
deeper into the tree. However, it is unclear if the cost of book-
keeping and re-search for these cases offsets the potential
gains. This is an area of our ongoing research.

Acknowledgments
We would like to thank Rich Korf and Alex Fukunaga for
their comments and suggestions on these techniques. This
work was supported in part by NASA and JPL under contract
No. 1229784 and by NSF contract EIA-0113313.

References
[Ginsberg, 2001] GIB: Imperfect Information in a Computationally

Challenging Game, Journal of Artificial Intelligence Research,
14, 2001, 303-358.

[Knuth and Moore, 1975] An Analysis of Alpha-Beta Pruning, Arti-
ficial Intelligence, vol. 6 no. 4, 1975, 293-326.

[Korf 1991] Multiplayer Alpha-Beta Pruning, Artificial Intelligence,
vol. 48 no. 1, 1991, 99-111.

[Luckhardt and Irani, 1986] An algorithmic solution of N-person
games, Proceedings AAAI-86, Philadelphia, PA, 158-162.

[Pearl, 1980] Asymptotic properties of minimax trees and game-search-
ing procedures. Artificial Intelligence vol 14 no 2, 1980, 113-138.

[Pearl, 1984] Heuristics, Addison-Wesley, Reading, MA, 1984.
[Sturtevant, 2002] A Comparison of Algorithms for Multi-Player

Games, Proceedings of the 3rd International Conference on Com-
puters and Games, 2002.

[Sturtevant and Korf, 2000] On Pruning Techniques for Multi-Play-
er Games, Proceedings AAAI-00, Austin, TX, 201-207.

[Sturtevant, 2003] Multi-Player Games: Algorithms and Approach-
es, PhD Thesis, UCLA.

