
Automatic State Abstraction for Pathfinding in
Real-Time Video Games

Nathan Sturtevant, Vadim Bulitko, and Michael Buro

Department of Computing Science, University of Alberta, Edmonton, Alberta, T6G 2E8, Canada
{nathanst|bulitko|mburo}@cs.ualberta.ca

Abstract. Real-time video games are a unique domain for pathfinding and search.
Traditional approaches to search have usually assumed static worlds with a single
agent. But, in real-time video games there are multiple cooperative and adversar-
ial agents. While the search space in most games is relatively small, algorithms
are expected to plan in mere milliseconds. Thus, techniques such as abstraction
are needed to effectively reason and act in these worlds. We provide an overview
of the research we have completed in this area, as well as areas of current and
future work.

1 Introduction

The worlds of popular real-time video games, such as Warcraft III or Command and
Conquer are much richer than many traditional domains used as test-beds for Artifi-
cial Intelligence research. The most basic task in these games is to get one or more
units from their current location to some destination. These games are not designed to
showcase algorithms from AI, but to be interesting for people to play. This means that
standard approaches from AI and search are usually too slow or memory-intensive to
be effective in practice. We believe that abstraction is the key technique for meeting the
real-time and other constraints posed by these domains.

2 Previous Work

We first provide an overview of completed work on applying abstraction to search.
First, we have developed a simple method for automatically building abstractions from
an underlying octile map. For the purposes of this discussion, we consider any map to
be a graph, where a node is a tile in the underlying map, and an edge means an agent
can pass directly between two tiles without going through another tile first.

Given a graph representation of a map, we build an abstract version of the map by
reducing connected components into abstract nodes. Instead of using the approach of
[1] where nodes are abstracted along with their neighbors, we only abstract groups of
nodes that are fully connected cliques. In practice, this means that at most four nodes
are abstracted in any one step. When building an abstraction offline, we process the
space in a uniform manner so that the abstract space more closely represents the space
it abstracts. This process can also be applied in an online fashion by assuming unknown
portions of the map are empty and applying local repair as an agent explores the map.

Given an abstract representation of a search space, there are many methods that
leverage this abstraction for quick pathfinding. The approach of Botea et. al. [2] is to
abstract large sectors in the original space. When doing refinement, local smoothing
is applied to account for error introduced by large sector sizes. Smoothing, however, is
only applied to complete paths. Because we are interested in dynamic worlds, we do not
always want to compute complete paths. Instead, we build partial paths at each level of
abstraction refining them locally as needed. This allows us to spread the computational
cost of path following evenly across path execution. So, if we are interrupted, we reduce
lost computation efforts. These methods are described in detail in [3].

Abstraction necessarily introduces error, so we would like to learn about errors and
correct them over repeated pathfinding experiences. Thus, we have taken the abstract
search that is applied at each level of our abstraction and replaced the A* search with a
learning search [4]. This allows us to learn much better heuristics in abstract space.

3 Current and Future Work

We are currently working towards four goals with regard to abstraction and search. First,
a variety of ideas have been suggested for building abstractions of search spaces, includ-
ing reductions based on cliques, local neighborhoods, large sectors, and triangulation.
We are attempting to incorporate a more flexible abstraction module into our simula-
tion framework so that we can more precisely quantify the advantages and trade-offs of
different methods.

Second, we would like to generalize existing work to a single algorithm that can
parameterize methods for search, so we can better evaluate which parameters for search
work best on which problems and abstraction methods.

Third, general work on learning better heuristics is computationally expensive, be-
cause we must keep a large table of heuristic information between every pair of nodes
in our search space. Storing heuristics in abstract space reduces this cost somewhat, but
we are also looking into ways to reduce this cost further by selectively storing learned
heuristic information at each level of abstraction. To this end we are actively developing
high-performance learning methods for real-time heuristic search [5].

Finally, we are building stochastic and dynamic environments in which there are
multiple cooperative and competitive units that must interact, so that we can measure
how existing techniques scale to environments typical of real-time video games.

References
1. Holte, R., Perez, M., Zimmer, R., MacDonald, A.: Hierarchical A*: Searching abstraction

hierarchies efficiently. In: AAAI/IAAI Vol. 1. (1996) 530–535
2. Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path–finding. J. of Game

Develop. 1(1) (2004) 7–28
3. Sturtevant, N., Buro, M.: Partial pathfinding using map abstraction and refinement. In: Under

Review. (2005)
4. Bulitko, V., Sturtevant, N., Kazakevich, M.: Speeding up learning in real-time search via state

abstraction. In: Under Review. (2005)
5. Bulitko, V., Lee, G.: Learning in real-time heuristic search: A unifying framework. Under

Review (2005)

