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Abstract ing method, branch-and-bound pruning, showing that it faces
Max" (Luckhardt and Irani, 1986) isthe extension of themini- the same limitations as alpha-beta pruning when applied to
max backup rule to multi-player games. We have shown that max' trees. Finallywe present a hybrid algorithm, alpha-
only alimited version of alpha-beta pruning, shallow prun- beta branch-and-bound, which combines these two pruning
ing, can be applied to a max" search tree. We extend this techniques in multi-player games for moréeefive prun-

work by cal culating the exact bounds needed to use this prun-
ing technique. In addition, we show that branch-and-bound
pruning, using a monotonic heuristic, has the same limita-
tions as a pha-beta pruning in a max" tree. We present a hy-
brid of these algorithms, al pha-beta branch-and-bound prun- . .
ing, which combines a monotonic heuristic and backed-up Examples. Heartsand Ser geant M aor (8'5'3)
\fsgﬁé?e%hucrt‘ﬁ)?oefnawoﬁe effectively. We‘ also br'-ef,ly dis- To help make the concepts in this paper more cachose
-player game to a ‘paranoid’ 2-player d : S
game. In Sgyeant Majoya 3-player card game, we averaged two card games, I-_|earts and Wnt. Majorto h,'ghl'ght the
node expansions over 200 height 15 trees. Shallow pruning ~ successes and failures of the various algorithms presented.

and branch-and-bound each reduced node expansions by a Note that while the game of bridge is played with 4 players,

ing. We will also analyze the reduction ohglayer game
to a 2-player game.

factor of about 100alpha-beta branch-and-bound reduced each player has the goal of maximizing the joint score they
the expansions by an additional factor of TBe 2-player share with their partneso bridge is really a two-team game,
reduction was a factor of 3 better than alpha-beta branch-  and standard minimax applies.

and-bound. Using heuristic bounds in the 2-player reduction Hearts and Sgeant Majoralso known as 8-5-3, are both

reduced node expansions another factor of 12. trick-based card gameBhat is, the first player plays (leads)

a card face-up on the table, and the other players follow in
Introduction and Overview ordet playing the same suit if possibM/hen all players

have played, the player who played the highest card in the
Much work and attention has been focused on two-player suit that was led “wins” or “takes” the trick. He then places
games and alpha-beta minimax search (Knuth, Moore, 1975).the played cards in his discard pile, and leads the next trick.
This is the fundamental technique used by computers to play This continues until all cards have been played. Cards are
at the championship level in games such as chess and checkdealt out to each player before the game begins, and each
ers.Alpha-beta pruning works particularly well on games of game has special rules about passing cards between players
two players, or games with two teams, such as bridge. Much before starting. Card passing has no bearing on the work
less work has been focused on games with three or morepresented here, so we ignore it.

teams or players, such as Hearts. In h{anckhardt and Hearts is usually played with four players, but there are
Irani, 1986) the extension of minimax to multi-player games, variations for playing with three or more playefrbe goal
pruning is not as successful. of Hearts is to take as few points as possible. Each card in the

This paper focus on pruning techniguékere are many suit of hearts is worth one point, and the queen of spades is
open guestions in multi-player games, and we cannot coverworth 13.A player takes points when he takes a trick which
them all here. For instance, it is unclear what the ‘best’ prac- contains point cardét the end of the game, the sum of all
tical backup rule isThe techniques presented in this paper scoresis always 26, and each player can score between 0 and
represent just one way we can evaluate tfezt¥feness of 26.If a player takes 26 points, or “shoots the moon, tther
an algorithm. players all get 26 points each. For newe ignore this rule.

We first review the maalgorithm and the conditions un- Segeant Major is a three-player game. Each player is dealt
der which pruning can be applied to ma@ased on this, we 16 cards, and the remainder of the deck is set aSide.
show that shallow pruning in magannot occur in many  ultimate goal for each player is to take as many tricks as
multi-player gamedMNe will examine another common prun-  possible. Similar to Hearts, the sum of scores is always 16,
and each individual player can get any score from 0 to 16.
Copyright © 2000AmericanAssociation forrtificial Intelligence More in-depth descriptions of these and other games men-
(www.aaai.og). All rights reserved. tioned here can be found in (Hoyle et al. 1991).




(7, 3, 03, 2, 50, 10, O§4, 2, 411, 4, 5)4, 3, 3)
Figure 1A 3-player maxgame tree.

Max"

Luckhardts and Irang extension of minimax for multi-
player games is called ma¥or a n-player game, an n-tuple
of scores records each playeindividual score for that par
ticular game stat&hat is, the fi element in the tuple repre-
sents the score of thé playerAt each node in a magearch
tree, the player to move selects the move that maximizes his
own component of the scoréhe entire tuple is backed up
as the makvalue of that node. In a three-player game, we
propagate triples from the leaves of the tree up to the root.
For example, in Figure 1, the triples on the leaves are the
terminal values of the tre@éhe number inside each square
represents the player to move at that néde¢he node la-
belled (a), Player 2 will choose to back up the triple (7, 3, 0)
from the left child, because the second component of the
left child of (a), 3, is greater than the second component of
the right child of (a), 2. Player 2 does likewise at nodes (b)
and (c). Player 1 then chooses a triple from those backed u
by Player 2At the root, the first component of Playes 1’
children is greatest at node (a). Player 1 will back this triple
up, giving the final maxvalue of the tree, (7, 3, 0). Because
the mag value is calculated in a left-to-right depth-first or
der, a partial bound on the ntaxalue of a node is available
before the entire calculation is completdaroughout this
paper we assume that nodes are generated from left to righ
in the tree, and that all ties are broken to the left.

When generating a Hearts game tree, the terminal values

will be the number of points taken in the game. Irg8ant
Major, the terminal values will be the number of tricks taken.

If we are not able to search to the end of the game, we can

apply an evaluation function at the frontier nodes to gener
ate appropriate backup valuédg.a minimum, this evalua-
tion would be the exact evaluation of what has occurred so
far in the game, but might also contain an estimate of what
scores are expected in the remainder of the game.

In most card games, one is not normally allowed to see
ones opponents card&s was suggested by (Ginsger
1996), we first concentrate on being able to play a completely

p

open (double-dummy) game where all cards are available
for all to see. In a real game, we would model the probabil-
ity of our opponent holding any given card, and then gener
ate hundreds of random hands according to these probabil-
ity models. It is expected that solving these hands will give
a good indication of which card should actually be played.
See (Ginsbey, 1999) for an explanation of how this has been
applied to Bridge.

Duality of Maximization and Minimization

Throughout this paper we deal with games that are usually
described in terms of either maximization or minimization.
Since minimization and maximization are symmetric, we
briefly present here how the bounds used by pruning algo-
rithms are transformed when we switch from one type of
game to the other type.

There are four values we can use to describe the bounds
on players’scores in a gam&linp andmaxp are a playes
respective minimum and maximum possible sciliasum
andmaxsumare the respective minimum and maximum pos-
sible sum of all players scores. In Heamig)p is 0 andmaxp
= maxsum = minsum = 26. In Segeant Majorminp is also 0
andmaxp = maxsum = minsum = 16. (Korf, 1991) showed
that we may be able to prune a rhize ifminp andmaxsum
are boundedie are interested in how these bounds change
when the goal of a game is changed from minimization to
maximizationThe transformation does not change the prop-
erties of the game, it simply allows us to talk about games in
their maximization forms without loss of generality

The one-to-one mapping between the minimization and
maximization versions of a game is showrTable 1.The
first row in the table contains the variable names for a mini-
mization problem, followed by sample values for a Hearts
game, wher@, the number of players, isBhe transforma-
tion applied to the values are in the third row: the negation

pf the original value plusnaxp,,, This re-normalizes the

scores so thatinp is always 0. Since Hearts and @sant
Major are zero-sum or constant-sum gannessum is al-
ways the same asinsum. The final rows contain the new
score after transformation and the new variable naies.
process can be reversed to turn a maximization game into a
minimization game.

Given the symmetry of minimization and maximization,
there is also a duality in pruning algorithrbat is, for any
pruning algorithm that works on a maximization tree, we
can write the dual of that algorithm that works the same
under the equivalent minimization tree. Howeyest chang-
ing the goal of a game from minimization to maximization
does not create the dual of the gaifige other parameter

minimization variable| s S, s, maxp minp . maxsum . & minsum
.. ) ) min min min min
minimization value 3 10 13 26 26
tran_sfqrm_atlon -S +maxp,_ . -maxp,_. +maxp . -minp_ +maxp, . -maxsum_ +nmaxp
maximization value 23 16 13 26 52
maximization variable st s? s minp maxp. maxsum__ & minsum
max max max max

Table 1:The transformation between a maximization and minimization problem, and examples for a 3-player game.
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Figure 3:A generic maktree.

(a), and<5 points at (b). So, Player 1 will never move to-
wards node (b) no matter what maalues the other chil-
dren have, and the remaining children of (b) are prurtad.

is shallow pruning, because the bound used to prune came

Figure 2: Pruning in a maxee.

maxsum, must also be calculated. Given these observations, from (a), the parent of (b).
we will not explicitly show dual algorithms. Unless other-
wise stated, all trees and algorithms presented here will be General Boundsfor Shallow Max" Pruning

for maximization problems. Figure 3 shows a generic nidree. In this Figure we have

only included the values needed for shallow pruning. Other

ina i n values are marked by a ‘WWhen Player 1 gets a scorexof
Pruning in Max" Trees at node (a), the lower bound on Playerdcore at the root is
In atwo-player zero-sum game, there are three types of al- thenx. Assume Player 2 gets a scoregy@tt node (c). Player
pha-beta pruning that occur: immediate, shallow, and deep 2 will then have a lower bound gfat node (b). Because of
pruning. Not all of these are valid in multi-player games. the upper bound afiaxsum on the sum of scores, Player 1 is
guaranteed less than or equalntaxsum - y at node (b).
Immediate Pruning Thus, no matter what value is at (d)ydixsum-y < x, Player

1 will not choose to move towards node (b) because he can
always do no worse by moving to node (a), and we can prune
the remaining children of node (b).
In the maximization version of Heartsaxsumis 52, and
x andy will range between 0 and 26, meaning that we only
prune when 52y < x, which is only possible & =y = 26.
In Segeant Majormaxsum is 16, andx andy will range
from 0 to 16, meaning that we will prune when 36<x.
Given these examples, we extract general conditions for
pruning in multi-player gamesVe will use the following
variables:n is the number of players in the gam@axsum
is the upper bound on the sum of players scoresparglis
. the upper bound on any given players scdfe.assume a
Shallow Pruning lower bound of zero on each score without loss of general-
While having a zero-sum game is a sufficient condition to ity. So, by definitionaxp < maxsum < n-maxp.
apply alpha-beta pruning to a two-player game tree, it is not
sufficient for a multi-player game tree. Given just one com- Lemma 1.
ponent of a zero-sum multi-player game, we cannot restrict To shallow prune in a mafree,maxsum < 2maxp.
any other single score in the game, because one of the re-
maining scores might be arbitrarily ¢&; and another arbi-  Proof:
trarily small. But, given a lower bound on each individual We will use the generic tree of FigureTd. prune:
score, and an upper bound on the sum of scores, we can prune. X > maxsum -y
Figure 2 contains a sample 3-player mage.At node By definition:
(a), Player 1 can get at least 6 points by choosing the left- 2maxp > x+y
most branch of node (a)Vhen Player 2 examines the first  So,
child of node (b), Player 2 gets a score of 5, meaning Player 2:-maxp > X +Y > maxsum
2 will get at least 5 by choosing the left-most branch at (b).  2:maxp > maxsum
There are 10 points available in the game, and since Player 2
will get at least 5 at node (b), Player 1 can get no more thanHowevey if maxsum = 2maxp, we can only prune when
10 - 5 = 5 points at (b). Player 1 is guarante6dgoints at bothx andy equalmaxp. But, if y = maxp, we can also im-

Immediate pruning in a multi-player game is like immedi-
ate pruning in atwo-player game. In atwo-player game, we
immediately prunewhen aplayer getsthe best possible score,

~ for max and « for min. In a multi-player game, we can
prune when the current player gets a scoraaxp, the best
score in a multi-player game.

The opportunity to prune immediately is seen in Figure 1.
At node (b), Player 2 can get 10 points by choosing to move
towards his left child. Sincesaxp = 10, Player 2 can do no
better than 10 point3hus, after examining the first child,
the second child can be pruned.



mediate prune. Because of this, we tighten the bound to ex-
clude this case, and the lemma holds. O

We can now verify what we suggested before. In the maxi-
mization version of 3-player Heartsaxsum= 52, andnaxp
= 26. Since the strict inequality of Lemma 1, 52 < 2-26, does
not hold, we can only immediate prune in Hearts. In Ser
geant Majorthe inequality 16 < 2-16 does hold, so we will
be able to shallow prune a §eant Major maktree.
Intuitive Approach. Speaking in terms of the games as they
are normally played, it may seem odd that wetgamine in
Hearts and we can prune in §eant Major when the only
real diference in the games is that it one you try to minimize
your score, and in the other you try to maximiz@/ile the
preceding lemma explains the fdifence mathematically
there is another explanation that may be more intuitive.

Suppose in Sgeant Major that a player is deciding be-
tween two cards, thace of Spades and tHen of Clubs.
When we calculate the maxalue of the search tree, we are
calculating how well the player can expect to do when play-
ing a given card. Once we have the result of how well the
player can do with thAce of Spades, we begin to look at
the prospects for théen of ClubsWe prune this search
when we have enough information to guarantee that the
player will always do no better with tfien of Clubs than
with theAce of SpadesWe get this information based on
the dependence between the playswsires. In Sgeant
Major, there are only 16 points available, and all players are

branching factob
min
branching factob™?

Figure 4The reduction of a-player game to a 2-player game.

nent, 3, is higher than the second component of the max
value at (c), 2This will result in the maxvalue of (7, 3, 0)
for the entire tree, since Player 1 can then get a score of 7.
Alternatively if the value of (d) is (0, 4, 6), the masalue
of (c) will be (0, 4, 6)Then, at node (e), Player 2 will choose
to backup (0, 4, 6) because the second component, 4, is higher
than that in the other child, 3his means the final max
value of the tree will be (6, 3, 1).
Thus, while the bounds predicted correctly that no value
at (d) will ever be the final méxalue of the tree, the dr-
ent possible values at (d) mayeat the final makvalue of
the tree, and so (d) cannot be pruned.

Asymptotic Results

The asymptotic branching factor of mavth shallow prun-
ing in the best case (i$+ 4} 4b-3 )/2, whereb is the brute-

competing to get as many points as possible. Each trick takenforce branching factor without any prunidg average case

by one player is a trick denied to another playhis direct model predicts that even under shallow pruning, the asymp-
dependence between any two players score is what gives ugotic branching factor will bé. (Korf, 1991)

the information that allows us to pruivéhen the next player We have shown here that in many cases, such as the game
is guaranteed enough points to deny a better score than camf Hearts, even under an optimal ordering of the tree, we
be achieved by playing thce of Spades, the line of play = would still be unable to do anything besides immediate prun-

originating from theTen of Clubs is pruned.
In the standard minimization form of Hearts, the goal is to

ing. This compares poorly with the 2-player best-case as-
ymptotic branching factor of b (Knuth, Moore 1975),

take as few points as possible. Points taken by one player aravhich can very nearly be achieved in two-player games.

points denied to the other players. But, since all players are

trying to take as few points as possible, they tiatind be-

ing denied pointsThus, when another player takes points, it
simply tells us that the current line of play may be better than
previous lines of plgyand that we should keep exploring our
current line of playWwhen one player avoids taking points,

those points must be taken by the other players. But, there is

nothing that says which player must take the points. So, in
contrast to Sgeant Majorthere is a lack of direct depen-
dence between two players scores, and we are unable to prun

Deep Pruning

Reduction to a Paranoid 2-Player Game

Another method to increase the pruning in a multi-player
game is to reduce the game to a two-player gdmis. is
done by making the ‘paranoid’ assumption that all our oppo-
nents have formed a coalition against us. Under this reduc-
tion we can use standard alpha-beta to prune ouiTtneeis

not a realistic assumption and can lead to suboptimal play

é)ut due to the pruning allowed, it may be worthwhile to ex-

amine.We will only analyze the pruning potential here.
To calculate the minimum number of nodes that need to
be examined within the game tree, we need a strategy for

Returning to Figure 2, Player 1 is guaranteed a score greatemmin and a strategy for max. Min and max will play on the

than or equal to 6 at the root node Y&@ might be tempted

to prune node (d), because the bound on Plagesctre at

(c), =5, says that Player 1 will get less than 6 poihtss
would be deep pruning, because (a) is a grandparent of (c)

tree in Figure 4, where max is to move at the root, with a
branching factor o, and min moves next, with a branching
factor ofb™*. Min is the combination of the 1 players play-

.ing against the first player

However as we demonstrate here, the value at node (d) can Within a strategy for max, max must look at one succes-

still affect the makvalue of the tree. (Korf 1991)

If the value of (d) is (2, 2, 6), Player 3 will choose this
value as the méxalue of (c). Player 2 at (e) will then choose
(7, 3, 0) as the mawalue of (e) since the second compo-

sor of each max node in the strategyd all possible suc-
cessors of each min node in the strat&yppose the full
tree is of depttD. Max will expandb™?d nodes at every
other level, meaning that there &®&Y??leaf nodes in the



cost bound = "

Figure 5A single-agent depth-first branch-and-bound problem.

tree. Similarly a min strategy must look at only one succes-
sor of each min node, and all successors of each max node,
so min will look ath®? nodes totalWe have two players in

the reduced game, and each player has an equal number of Figure 6Branchand-bound pruning in a nixee.

turns, sdD is even, meaning we ddrfiave to consider the .

floor or ceiling in the exponent. In order to draw parallels between alpha-beta pruning, we

The total nodes examined by both algorithms will be about Will describe the pruning that occurs in the same terms that
b2 4+ K2 nodes, which is ®MDP). But, D is the depth we use to describe alpha-beta pruning: immediate, shallow
in the tree of Figure 4Ve really want our results in terms of ~ and deep pruning. In a two-player game, immediate pruning
the real tree that we will search. For example, if the original occurs when we get the best score possible, a win. In the
tree has 3 players and is depth 12 (4 tricks), the new tree hafresence of a heuristic, the best score possible is best that we
2 players and will also contains 4 tricks, so it will be height can get given the heuristic. In Figure 5, the heuristic at node
8. So, for the actual tree searched, which has hdjght (a) says the best score we can get is 2. Since we have a path
d-2h. Thus, we re-write the asymptotic branching factor in of total cost 2 through the first child, we can prune the re-

the best case as (") to reflect the branching factor in maining children, as we have found the best possible path.
the actual tree. After finding the path with cost 2, we use that cost as a

bound while searching subsequent childfgmode (b), our
heuristic tells us that all paths through (b) have cost higher
Depth-First Branch-and-Bound Pruning than the bound of 2, so all children of (b) are pruiiéds is
) ) ) like shallow pruning, since the bound comes from the parent
Branch-and-Bound is another common pruning technique. of (b). Finally at node (c) we can prune based on the bound

It requires a monotonic heuristic, and many card games haveof 2 on the path cost from the grandparent of (c), which is
natural monotonic heuristics. In Hearts andg8ant Major like deep pruning.

once you have taken a trick or a point you cannot lose it.
Thus, an evaluation can be applied within the tree to give a s ) }
bound on the points or tricks to be taken by a player in the Multi-Player Branch a_nd Bound

game We use the notation i)( j to indicate that the heu- ~ Branch-and-bound pruning can be used to prune atnes

ristic is giving a lower bound scorejdfor playeri, and hi) but u_nder mait is limited by the same factors as alpha-beta

< j to indicate that the heuristic is giving an upper bound of Pruning, namely we cannot use the bound at a node to prune
j on playeri's score Suppose, for a Sgeant Major game, at its grandchildAs with deep alpha—beta pruning, while the
the players have taken 3, 2, and 6 points respectitiegn, max' value of the pruned nodes will never be the Twaiue

h(1) > 3 because Player 1 has taken 3 poiit, h(1)< 8 of the tree, they still have the potential tteaf it. We will

becausenaxsum (16) minus thether players’ scores (8)is 8.  demonstrate this here, but because the proof is identical to
the proof of why deep alpha-beta pruning does not work

; ) ) (Korf, 1991), we omit the proof.
SingleAgent Branch-and Eoun.d ) In Figure 6 we show a portion of a mdsee and demon-
The branch-and-bound algorithm is most commonly used in strates how branch-and-bound can prune parts of the tree.
a depth-first search to prune single-agent minimization searchjmmediate pruning occurs at node (&).the left child of
trees, such as tﬁ'gavelling Salesman Problem. In Figure 5, (a), Player 2 can get a score of 9. Since the h(2) we

we are trying to find the shortest path to a leaf from the root, know Player 2 cannot get a better score from another child,
where edges have positive costs as labelled. Since all pathsand the remaining children are pruned.

have positive length, the cost along a path will monotoni-  shallow pruning occurs at node (b) when the bound from
cally increase, giving a lower bound on the cost to a leaf the parent combines with the heuristic to prune the children
along that pathThe labels at the leaves are the actual path of (b). Player 1 is guaranteed 7 or more at the root. So, when
costs. Next to a node is a limit on the optimal cost of a path pjayer 15 heuristic at (b) guarantees a score of 5 or less, we
going through that node. If unexplored paths through a node prune all the children of (b), since Player 1 can always do
are guaranteed to be greater than the best path found so fahetter by moving to node (a).

we can prune the children of that node in the tree. Fina”y, deep branch-and-bound pruning, like deep a|pha_




maxsum = 10 not get 7 points at the left child of (a), the shallow bound
maxp = 10 itself is suficient to prune the right branch of (a).

In an-player game where we normally only compare the

scores of two players, we can further decrease our bound for
(a) pruning by subtracting the heuristic value for the remaining
h(3)> 2 (n - 2) playersThat is, if we have a lower bound on Player
N i's score from our parent, and Playisrto play at the current

node, the upper bound on Playsrscore at the next node is
maxsum - scoref) - Yh(x) {for x i or j}. In a two-player

shallow &7, >3, <7

(6.3.1)2] ABng (<5, 3,<7)

(4,3, 3) game, this reduces to plain alpha-beta.
The alpha-beta branch-and-bound procedure is as follows.
Figure 7:Alpha-beta branch-and-bound pruning. In this procedure, we usg,ho represent a heuristic upper

bound and j, to represent a heuristic lower bouBdund is
beta pruning, can incorrectlyfa€t the calculation of the  the upper bound oRlayer’s score.
max' value of the game tre&he partial makvalue at the
root of the tree in Figure 6 guarantees Player 1 a score of 7ABBnB( Node, Pl ayer, Bound)
or better At node (c), Player 1 is guaranteed less than or | F Node is terminal, RETURN static val ue
equal to 5 points by the heurisfitius, we might be tempted  /* shallow branch-and-bound pruning */
to prune the children of (c), since Player 1 can do better by | F (h,,(Prev Player) < maxsum- Bound)
moving to node (a). But, this reasoning does not take into RETURN static value

account the actions of Player 2. Best=ABBnB(first Child, next Player, maxsumn

Depending on which value we place at the child of (c), (5, /* Calculate our opponents guaranteed points */
8, 3) or (5, 3, 8), Player 2 will either select (5, 8, 3) from Heuristic = Sh{Nn) [n#Pl ayer or prev. Player]
node (c) or (10, 5, 1) from node (glyight branch to backup  FOR each renai ning Child
as the maxvalue of node (d). Player 1 would then choose | F (Best[Player] > Bound-Heuristic) OR
the root makXvalue to be either (7, 9, 0) or (10, 5, 1). So, (Best[Player] = h,(Player))
while the bounds on node (c) will keep it from being the RETURN Best
max value of the tree, it has the potential tieef the mak Current = ABBnB(next Child, next Player,
value of the tree. maxsum - Best[ Pl ayer])

IF (Current[ Pl ayer] > Best[Player])

Alpha-Beta Branch-and-Bound Pruning Best = Current

Now that we have two relatively independent techniques for RETURN Best

pruning a multi-player game tree, we show how these tech-
niques can be combined. Shallow pruning makes compari-
sons between two players’ backed up scores to prune. Branch
and-bound compares a monotonic heuristic to a plageore
to prune Alpha-beta branch-and-bound pruning uses both
the comparison between backed up scores and monotoni
heuristic limits on scores to prune even mofedaively.
Looking at Figure 7, we see an example where shallow
pruning appliesWe have bounds on the root value of the
tree from its left branclfter searching the left child of node
(a) we get bounds on the masmlue of (a)We place an up-
per bound of 7 on Playerslscore, because Player 2 is guar
anteed at least 3 points, and f@xsum) - 3 = 7.This value
does not conflict with the partial maxound on the root, so Experimental Results
we cannot prunéle have a bound from our heuristic, but
because it is not Players3urn, we can not use that by itself We tested alpha-beta branch-and-bound (ABBnB) to see how
to prune eitheBut, if we combine this information, we can it compared to branch-and-bound (BnB), alpha-beta shal-
tighten our boundsie know from backed up values that low pruning, and the paranoid 2-player reduction. Our test
Player 2 will get at least 3 points and from our heuristic that domain was the game of §eant Majorand our heuristic
Player 3 will get at least 2 points at (a). So, the real bound onwas the number of tricks taken so far in the gaieesearch-
Player 1§ score isnaxsum - score(2) - h(3) =10-3-2=5. ed 200 random game trees to a depth of 5 tricks, which is 15
As an aside, one may notice another slight, bectde cards. Consecutive cards in a pldgdrand were generated
optimization in this examplét (a), Player 2 will not choose  as a single successdoves were ordered from high cards
another path unless he gets at least 4 points, and thus Playeio low cardsWe initially did not use a transposition table or
1 gets no more than Bhus, sincaies are broken to the left,  any other techniques to speed the search. Our code expands
we have integer terminal values, and because Player 1 didabout 150k nodes per second on a Pentium Il 233 laptop,

This procedure will always prune as much as shallow branch-
and-bound pruning or shallow alpha-beta pruning. So, while
we lose the ability to do deep pruning in a multi-player game,
we may be able to use alpha-beta branch-and-bound prun-
ing to prune more than we would be able to with just alpha-
%eta or branch-and-bound pruning alone.

Disregarding immediate branch-and-bound pruniig,
pha-beta branch-and-bound will have the same best-case
performance as shallow pruning. If we have perfect erder
ing and a perfect heuristic, immediate branch-and-bound
pruning could drastically shrink the search tree.



Algorithm Full Tree DFBnB Shallow ABBNB Paranoid Paranoid \ith heuristi¢
Avg. Nodes infree  3.33 billion 32.7 million 26.8 million 1.43 million 437,600 36,121
Reduction factor 1 102 1.22 18.7 3.27 12.1

Table 2:The average nodes expanded of the first 5 tricks me&at Major and reduction factor over the next best algorithm.

depending on the problem. More research needs to be done to see what other algo-
The number of nodes in the entire tree varied from 78 rithms or methods might be applied to help with multi-player

million to 64 billion, with the average tree containing 33 searchWe are continuing to work to compare the value of

billion nodesThe number of nodes expanded by each of the these and other algorithms in real playd as this work

algorithms varied widelybased on the difficulty of tHend. progresses we will be evaluating the assumption that we can

Because of this, we have chosen to report our results accordingise double-dummy play to model our opponents hands. It

to the average number of nodes expanded by an algorithm ovemwould be worthwhile to develop a fiifent theoretical model

all 200 treesThese results are foundTiable 2. to better explain how shallow and alpha-beta branch-and-
The first line in the table contains the average number of bound pruning works in practicédditional work on heuris-

nodes in the entire tre€he second line contains the factor tics and game search can be found in (Prieditis, Flett9@8).

in reduction over the next best algorithithe algorithms One possibility for improving our search is to use domain

are listed left to right from worst to beS$te ran the para- specific knowledge for a particular game to simplify the prob-

noid algorithm twice, once without using the heuristic in- lem. In most trick games, for instance, you must follow suit.

formation, and once using the heuristic information. This creates a loose independence between suits, which may
One interesting result is that the shallow pruning proce- be exploited to simplify the search process.

dure provides significant savings over the full tree expan-  Research in practical multi-player game search has been

sion.Thus, despite the negative theoretical results, there is very limited.We expect that in the next few years this will

still some potential for this algorithm. change and that much progress will be made in multi-player
Another thing to notice is how much faster the paranoid game search.

algorithm is than the standard maackup ruleThis speed

increase will not, howeveguarantee an increase in play

quality. Under this model, a player may make very poor Acknowledgments

moves assuming all the other players might work together

much more than they really do. Double dummy play can

magnify this problem. Clearly more work is needed to dis-

tinguish which algorithms are the best to use in practice.
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