
Simultaneously Searching with Multiple Settings: An Alternative to Parameter
Tuning for Suboptimal Single-Agent Search Algorithms

Richard Valenzano, Nathan Sturtevant, Jonathan Schaeffer
University of Alberta

{valenzan, nathanst, jonathan}@cs.ualberta.ca

Karen Buro
Grant MacEwan University

burok@macewan.ca

Akihiro Kishimoto
Tokyo Institute of Technology and

Japan Science and Technology Agency
kishimoto@is.titech.ac.jp

Abstract

Many search algorithms have parameters that need to be
tuned to get the best performance. Typically, the parameters
are tuned offline, resulting in a generic setting that is sup-
posed to be effective on all problem instances. For subopti-
mal single-agent search, problem-instance-specific parameter
settings can result in substantially reduced search effort. We
consider the use of dovetailing as a way to take advantage
of this fact. Dovetailing is a procedure that performs search
with multiple parameter settings simultaneously. Dovetail-
ing is shown to improve the search speed of weighted IDA*
by several orders of magnitude and to generally enhance the
performance of weighted RBFS. This procedure is trivially
parallelizable and is shown to be an effective form of paral-
lelization for WA* and BULB. In particular, using WA* with
parallel dovetailing yields good speedups in the sliding-tile
puzzle domain, and increases the number of problems solved
when used in an automated planning system.

1. Introduction
When constructing a single-agent search system, there are a
number of decisions to be made that can significantly affect
search efficiency. While the most conspicuous of these de-
sign decisions are those of algorithm and heuristic function
selection, there are often subtle choices, such as tie-breaking
and operator ordering, that can also greatly impact the search
speed. Following the work of Hutteret al. (Hutter, Hoos,
and Stützle 2007) we will refer to the set of choices made
for a particular algorithm as the algorithm’sconfiguration.

In domains in which only suboptimal problem-solving is
feasible, additional options arise as most applicable algo-
rithms involve some kind of parameterization. For example,
in the weighted variants of A*, IDA* (Korf 1985), and RBFS
(Korf 1993), the value of the weight must be set.

In practice, parameter values are tested offline so as to
find some single setting to be used in any future search. Un-
fortunately, parameter tuning is an expensive process thatis
specific to each problem domain. This issue is of particular
concern when designing general problem-solving systems,
for which offline tuning time is not typically available. In
practice, researchers building such systems commit to a sin-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gle parameter value and hope that it will be effective over a
diverse class of problems (eg. (Bonet and Geffner 2001)).

While tuning will find the setting with the best average
performance, there is no guarantee that this setting will per-
form well on each individual problem. Instead, other pa-
rameter values may have significantly better performance on
certain problems. This behaviour is evident when weighted
IDA* (WIDA*) (Korf 1993) is used to solve the standard
100 15-puzzle problems (Korf 1985). WIDA* is a sim-
ple adjustment to IDA* in which the familiar cost function,
f(s), is changed tof(s) = g(s) + w ∗ h(s), whereg(s) is
the length of the current path from the initial state to state
s, h(s) is the heuristic value ofs, andw ≥ 0 is a positive
real-valued parameter called the weight.

For each of the 100 problems and each weight in the
setS = {1, 2, ..., 25}, the number of nodes expanded by
WIDA* was recorded. The weight of 7 achieved the best
average performance over all problems. This data was also
used to find the weight inS that solved any specific prob-
lemp the fastest (ie. requiring the fewest node expansions).
In Figure 1, for each problemp, we have plotted the ratio of
the number of nodes expanded by thew = 7 search on prob-
lem p to the number of nodes expanded by the best weight
in S for p. The problems have been sorted in the order of
increasing difficulty (nodes expanded) for thew = 7 search.

Thew = 7 setting is best on only 6 problems (for which
the fraction is 1). Furthermore, on 82 of the 100 problems,
there is a weight inS that expands less than half the nodes
as doesw = 7. In fact, if there existed a system that could
properly select the best weight fromS for each problem, it
would expand 25 times fewer total nodes thanw = 7 alone.

These results demonstrate that correctly selecting the
weight on a problem-by-problem basis can dramatically im-
prove search speed. Therefore configuration selection is
an extremely important issue. In this paper, we consider
the use ofdovetailingto deal with this issue. Dovetailing
will be shown to significantly improve the speed of WIDA*
and generally enhance the performance of WRBFS on two
benchmark domains: the sliding-tile puzzle and the pan-
cake puzzle. We also investigate the performance of the
trivial parallelization of dovetailing as it applies to WIDA*,
weighted RBFS (WRBFS), weighted A* (WA*), and the
beam-search variant BULB (Furcy and Koenig 2005). We
conclude with experiments that test the effectiveness of

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f N
od

es
 E

xp
an

de
d

by
 W

ei
gh

t 7
T

o
th

e
M

in
im

um
 N

od
es

 E
xp

an
de

d

Problem Number in the Order of Difficulty for Weight 7

Figure 1: Comparing the performance of aw = 7 WIDA*
search to the best of all other integer weights in the range of
1 to 25 on 100 15-Puzzle problems.

dovetailing when used with a modern WA*-based satisfic-
ing planner.

2. Dovetailing for Single-Agent Search
Dovetailing is a strategy that takes as its input a problemp
and a set of ordered pairs of search algorithms and configu-
rationsA = {(a0, θ0), ..., (an, θn)} where for eachi, θi is
a configuration for algorithmai. The output of dovetailing
is a solution top. The setA is called analgorithm portfolio
and each pair inA is called acandidate algorithm.

We will assume that each candidate algorithm performs
the search in a series of steps and the work done during each
step is comparable between algorithms. We also assume that
all candidate algorithms share the same base algorithm (ie.
a0 = a1 = ... = an) and differ only in the configuration.
As such, we will refer to the input of dovetailing as being a
candidate set of configurationsΘ for an algorithma.

Dovetailing is a technique by which a parallel algorithm
is run on a single processor by interleaving the work done by
each thread. This procedure consists of a number of rounds.
Each round works as follows: each candidate algorithm will,
in order, advance its search by a single step. If some algo-
rithm finds a goal on its turn, the solution found will be re-
turned and dovetailing will stop. If a round completes with-
out having found a solution, a new round begins. Note that
each candidate algorithm is performing a completely inde-
pendent search. There is no memory shared between config-
urations, and communication is restricted to messages indi-
cating that a solution has been found for the current problem
and the search should stop.

As each algorithm advances by a single step during each
round, any algorithm inA will have performed approxi-
mately as much work as any other at any time. The total
problem-solving time when dovetailing on a problemp is
therfore approximately|A| times the problem-solving time
of the candidate algorithm with the best performance onp.

For most of our experiments, each algorithm step corre-
sponds to exactly a single node expansion. Letexp(a, θ, p)
denote the number of nodes thata(θ) expands while solv-

ing problem p. For some set of configurationsΘ, let
oracle(a, Θ, p) = minθ∈Θ exp(a, θ, p). Intuitively, this
value captures the number of nodes expanded when solving
problemp given an oracle that knows exactly which configu-
ration is most efficient onp. The number of nodes expanded
when dovetailing overΘ will then have|Θ|oracle(a, Θ, p)
as an upper bound. The actual number may be slightly lower
due to the order in which configurations expand a node in
any round. For example, if a configurationθ ∈ Θ is the best
for problemp, and it is the first configuration which expands
a node during roundexp(a, θ, p) of dovetailing overΘ, then
only |Θ|(oracle(a, Θ, p) − 1) + 1 nodes will be expanded.
However, as we are only interested in difficult problems, the
factor oforacle(a, Θ, p) dominates this expression. There-
fore, the upper bound of|Θ|oracle(a, Θ, p) is very accurate
in practice.

Many of the properties of dovetailing will be related to the
properties of the candidate configurations. For example, if
each of the candidate algorithms has a bound on the solution
suboptimality, then the suboptimality will be bounded by the
maximum of the individual bounds. Similarly, the memory
requirement of dovetailing is exactly the sum of the memory
requirements of each of the individual algorithms. As such,
dovetailing is problematic for memory intensive algorithms
such as weighted A*.

Parallel Dovetailing
As multi-core machines and computer clusters become more
readily available, the importance of algorithm parallelization
as a way of taking advantage of such resources becomes in-
creased.Parallel dovetailingtakes in an algorithma and a
candidate setΘ, and assigns a unique configurationθ ∈ Θ
to each of|Θ| processors. Each processor will then perform
an independent search on a problemp with the algorithm
configuration assigned to it. All processors will work on the
same problem simultaneously and communication is limited
to messages indicating thatp has been solved and processors
should proceed to the next problem. The time taken by par-
allel dovetailing with algorithma and configuration setΘ on
a problemp will be given by the time any single processor
takes to expandoracle(a, Θ, p) nodes.

Dovetailing and Diversity
If a search algorithm makes an early mistake it may spend
a lot of time exploring areas of the state space that do not
contain a solution. By expanding multiple candidate paths
in parallel, diversity is introduced into the search. This is the
strategy taken by beam searches and the KBFS algorithm
(Felner, Kraus, and Korf 2003). In practice, diversity helps
to decrease the probability of becoming stuck in a heuristic
local minima or an area with many dead-ends.

Dovetailing will achieve diversity in search if there is di-
versity in the behaviour of the candidate algorithms selected.
If the algorithms all search the state space in a similar man-
ner, any differences in search effort between candidate al-
gorithms will be small and any improvement made by an
oracle will be overwhelmed by the cost of running multiple
algorithms simultaneously. For example, the worst case for
dovetailing overk instances of an algorithm occurs when the

candidate algorithms are identical, in which case dovetailing
will take a factor ofk more time than is necessary.

If the candidate algorithms perform a diverse set of
searches, there is an increased chance that one of them will
avoid dead-ends or heuristic local minima. It is this aspectof
dovetailing that can lead to its strong behaviour in practice.

3. Related Work
As far as we know, dovetailing has only been previously
considered for suboptimal search by Kevin Knight (Knight
1993). He demonstrated that by dovetailing over many in-
stances of Learning Real-Time A* (LRTA*), each with a
lookahead of 1 but a different random tie-breaking strategy,
the solutions found were shorter than those found when run-
ning a single instance. This strategy also found solutions
faster than the single instance of LRTA* with a larger looka-
head that achieved similar average solution quality. While
Knight only considered dovetailing over random number
generator seeds, this idea will be generalized to show that
dovetailing can be used over other parameter spaces.

EUREKA is a search system designed to construct
problem-specific parallel versions of IDA*(Cook and Var-
nell 1997). The system does so by collecting statistics dur-
ing a breadth-first expansion of 100,000 nodes. These statis-
tics are then fed to a decision-tree that builds a parallel IDA*
instance by selecting between various methods of task dis-
tribution, load balancing, and node ordering. The decision
tree is trained using a set of problem instances, each anno-
tated with the combination of techniques found to be most
effective for that problem. Note, this approach was not con-
sidered for suboptimal search and while it may prove to be
effective when used in this way, it is much more complicated
than parallel dovetailing.

Dovetailing is also related to the use of random restarts
in SAT and constraint satisfaction solvers. Gomeset al.
showed that the strength of this technique is due to the dis-
tribution over run-times for different configurations (even
when the configurations only differ by the random seed) be-
ing of the Pareto-Lévy class, which have an infinite mean
and variance (Gomes, Selman, and Crato 1997). Restarts
significantly decrease the tail-lengths of these distributions.

While dovetailing interleaves the execution of different
configurations, restarts run a single configuration which
changes every so often. Whenever the configuration is
changed, the search begins anew (perhaps with information
learned along the way). Restarts can be viewed as orthog-
onal to dovetailing since configurations in a candidate set
could include the use of restarts. Parallel dovetailing can
also be viewed as a natural parallelization of restarts.

Note that the notion of running an algorithm portfolio in
parallel, with each algorithm having been assigned to a sep-
arate processor, is not new. This idea has been successfully
applied in SAT solvers (Hamadi, Jabbour, and Sais 2009)
and Satisfiability Modulo Theories (Wintersteiger, Hamadi,
and de Moura 2009). However, to the best of our knowl-
edge, this idea has not been explored in single-agent search.
Section 6. presents results showing that the use of an algo-
rithm portfolio offers an effective form of parallelization for
suboptimal single-agent search algorithms.

Finally, our work is also related to automatic configura-
tion selection systems such as ParamILS and FocusedILS
(Hutter, Hoos, and Stützle 2007). These systems replace the
manual offline tuning procedure with a local search which
optimizes an algorithm for a given training set (ie. for a
single domain). As we are more interested in per-problem
tuning, we did not consider this approach any further.

4. Experimentation Through Simulation

When testing the performance of dovetailing on an algo-
rithm a, a set of configurationsΩ, called thestarting con-
figuration set, is initially selected. For some problem set
P , each problemp ∈ P was solved usinga(θ) for each
θ ∈ Ω. Having collected this information, it is easy to cal-
culateoracle(a, Θ, p) for anyΘ ⊆ Ω on anyp ∈ P . The
total number of nodes expanded when dovetailing overΘ
can then be approximated by|Θ|

∑

p∈P oracle(a, Θ, p).

In Section 5. all experiments were performed using this
simulation technique. Testing in this way allows us to effi-
ciently calculate the performance of dovetailing on a large
number of candidate sets and thereby determine how robust
dovetailing is with respect to the selection of the candidate
set. Where there aren configurations in the starting config-
uration set, we will consider the average performance over
all

(

n
k

)

possible candidate sets of sizek in terms of the total
number of nodes expanded on the problem set, as well as
the candidate sets with the best and worst performance. The
figures will show how many times fewer nodes are expanded
by dovetailing than are expanded by the single configuration
θ∗ ∈ Ω with the best average performance without dovetail-
ing (defined asθ∗ = arg minθ∈Ω

∑

p∈P exp(a, θ, p)). For
example, if the value shown for the best candidate set for
somek is 5, this means that the best candidate set of the

(

n
k

)

candidate sets of sizek expanded5 times fewer total nodes
thanθ∗ alone.

As we are also interested in determining over which pa-
rameter spaces dovetailing is effective, the starting configu-
ration sets will be selected such that they are identical with
the exception of a single design choice. The first choice con-
sidered will be the main algorithm parameter: the weight for
weighted algorithms and the beam width for BULB.

Part of the standard definition of a single-agent search do-
main is the successor function. Typically, the implementa-
tion of this function begins with an ordering over all opera-
tors applicable in the domain. The successor function con-
structs a listL of states by checking each operator in order
for applicability. If an operator is found to be applicable to
the current state, the corresponding child is constructed and
appended toL. The order of states inL can often signif-
icantly impact the speed of search performed by some al-
gorithm. For example, in weighted A*, nodes are typically
added to the open list in the order in which they appear inL.
As such, the underlying operator ordering can change how
ties are broken between nodes with equalf -cost (andg-cost
where this value is also used to break ties). Therefore, we
also consider starting configuration sets which only differin
their operator ordering.

5. Dovetailing over WIDA* and WRBFS
Instances

Weighted IDA* (WIDA*) and Weighted RBFS (WRBFS)
are linear-space alternatives to WA* (Korf 1993). Both use
w ≥ 1; and the solution cost found is guaranteed to be no
worse thanw times that of the optimal value.

Unfortunately, both algorithms do not handle early mis-
takes in the heuristic well. In WIDA*, the search can be-
come stuck investigating large areas of the search space with
no heuristic guidance. In this algorithm, heuristic guidance
is given in the form of af -cost thresholdT , such that nodes
with a largerf -value are not expanded until the threshold is
increased. Consider the example of a unit cost graph with a
constant branching factorb, bi-directional edges, and a con-
sistent heuristic (ie. the heuristic will change by at most 1
from the child to the parent). For some nodec with a heuris-
tic value exactly one greater than its parentp, the following
holds:f(c) = g(c)+w∗h(c) = g(p)+1+w∗(h(p)+1) =
g(p)+w∗h(p)+w+1 = f(p)+w+1. This means that as-
suming the depth of the search tree is unbounded, the search
below a noden will not be cut off until at least a depth of
⌊(T − f(n))/(w + 1)⌋. Therefore, in the subtree of size
b⌊(T−f(n))/(w+1)⌋ belown, WIDA* will have no heuristic
guidance as no pruning will occur. As a result, if a heuris-
tic incorrectly guides the search into an area of lowf -value,
many nodes will have to be expanded before the search will
backtrack out of the area.

WRBFS was introduced as an attempt to handle this is-
sue that WIDA* has with inconsistency. However, as re-
ported in the original RBFS paper (Korf 1993), WIDA* gen-
erally outperforms WRBFS in practice. We have seen simi-
lar behaviour in our own experiments. Due to these results,
WIDA* should still be viewed as a valuable algorithm, even
in light of the existence of WRBFS.

Dovetailing is tested with WIDA* and WRBFS on two
single-agent search domains: the sliding-tile puzzle and
the pancake puzzle. Several sizes of the sliding-tile puz-
zle were considered so as to evaluate how well the per-
formance scales. For the sliding-tile puzzle, the Manhat-
tan distance heuristic is used. For the pancake puzzle, pat-
tern database heuristics are used (Culberson and Schaeffer
1996).PDB(p0, p1, p2, ..., pi) is used to denote the pattern
database heuristic in which the pancakespj for 0 ≤ j ≤ i
are distinct in the abstract space. The performance of a
simple parallelization of dovetailing with WA* and BULB
(Furcy and Koenig 2005) is considered later in this paper.

Dovetailing over Weights in WIDA* and WRBFS
We begin by considering a starting configuration set of size
15, where configurations differ only in the assigned inte-
ger weight[2...16]. Consider the performance of dovetailing
over these WIDA* configurations on the sliding-tile puzzle.
In the case of the5×5 puzzle, the single configuration with
the best average performance over 1000 randomly generated
problems was thew = 5 configuration. Figure 2 shows the
dovetailing improvement when compared to this weight.

When the candidate set sizes reach 3 and 5, the average
and worst configurations, respectively, outperform even the

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16

F
ac

to
r

of
 R

ed
uc

tio
n

 in
 N

od
es

 E
xp

an
de

d

Candidate Set Size

Best of Dovetailing
Worst of Dovetailing

Average of Dovetailing

Figure 2: Dovetailing over weights in WIDA* on 10005×5
sliding-tile puzzles.

 0

 1

 2

 3

 4

 5

 2 4 6 8 10 12 14 16
F

ac
to

r
of

 R
ed

uc
tio

n
 in

 N
od

es
 E

xp
an

de
d

Candidate Set Size

Best of Dovetailing
Worst of Dovetailing

Average of Dovetailing

Figure 3: Dovetailing over weights in WRBFS on the4 × 5
sliding-tile puzzle.

single best configuration alone. When dovetailing over all
15 configurations (ie. candidate set size is 15), the total num-
ber of nodes expanded is reduced by a factor of42.5 and the
average solution length only decreases by a factor of1.8.

WRBFS does not scale as well to large domains such as
the5×5 puzzle, and so the data collection phase needed for
simulation was too time-consuming. Instead, we show the
simulation results for the4×5 sliding-tile puzzle. The sin-
gle best weight for WRBFS in this domain isw = 3. Figure
3 shows the factor of improvement in nodes expanded when
using dovetailing as compared to thew = 3 search alone.
The average performance of dovetailing reaches the perfor-
mance of the best of the configurations alone at a candidate
set size of 5. When the candidate set is of size 15, dovetail-
ing requires 1.9 times fewer node expansions thanw = 3,
while finding solutions that are on average 1.3 times longer.

In both algorithms, increasing the domain size also in-
creased the effectiveness of dovetailing. For WIDA*, dove-
tailing over all 15 configurations decreased the number of
nodes by a factor of2.1, 7.9, and42.5 (as reported above)
when compared to the single best configuration on 1000
problems of each of the4×4, 4×5, and5×5 puzzles, re-
spectively. Furthermore, on 1006×6 puzzles, dovetailing
over these 15 configurations decreased the number of nodes
expanded by a factor of 121 over thew = 5 search (the only

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8 9 10 11

F
ac

to
r

of
 R

ed
uc

tio
n

 in
 N

od
es

 E
xp

an
de

d

Candidate Set Size

Best of Dovetailing
Worst of Dovetailing

Average of Dovetailing

Figure 4: Dovetailing over weights in WIDA* on the16 pan-
cake puzzle.

configuration that could successfully solve the entire prob-
lem set in the time allotted).

On 10004×4 sliding-tile puzzle problems, dovetailing
over all 15 WRBFS configurations required1.7 times more
node expansions than the single best weight alone. With
respect to the5×5 puzzle, while we cannot present simu-
lation results for dovetailing with WRBFS due to the time
needed for the data collection phase, dovetailing over all 15
configurations did improve upon the number of nodes ex-
panded when compared to the single best weight of those
that did successfully solve all 1000 problems in the problem
set (w = 3) by a factor of11.5. This provides further evi-
dence that the effectiveness of dovetailing increases withthe
domain size when used with WRBFS.

Consider dovetailing with WIDA* on the 16 pancake
puzzle with the heuristic given by maximizing over the
PDB(0, 1, 2, 3, 4, 5) andPDB(6, 7, 8, 9) heuristics. Fig-
ure 4 shows the improvement factor in total nodes expanded
on 1000 randomly generated problems for each of the can-
didate set sizes, compared to the best weight of 5 alone.

In these experiments, the starting configuration set was
restricted to the 11 configurations given by the unique inte-
ger weights in the range of[2, 12]. This is because all other
weights took too long to solve all the problems. When dove-
tailing over all 11 of these configurations,1.9 times fewer
nodes are expanded than the best weight of 5 alone, with a
solution cost that is 1.4 times worse. If we consider dove-
tailing over all 15 configurations from the starting config-
uration set considered earlier, dovetailing also expands1.8
times fewer nodes thanw = 5 alone.

Similar experiments were performed with WRBFS.
Again, the starting configuration set only contains the 11
configurations with integer weights in the range of[2, 12]. In
this case, dovetailing over all 11 configurations requires3.3
times as many nodes as the single best configuration (w = 3)
alone. This gap narrows when we consider dovetailing over
all 15 configurations given by the integer weights from 2
to 16, in which case dovetailing only expands1.7 times as
many nodes. However, in order to determine which weight
alone has the best performance, we would need offline tun-
ing. Here dovetailing has allowed us to avoid the expensive
tuning phase with only a small degradation of performance.

WIDA* on the WRBFS on the
5×5 puzzle 4×5 puzzle

Over Best Over Av. Over Best Over Av.
Weight Order Order Order Order

3 5.6 3.46 0.9 1.6
4 14.5 127.4 1.3 3.8
5 37.1 115.4 3.3 6.3
6 43.0 223.1 2.3 6.1
7 47.8 254.8 4.6 9.0
8 33.7 217.1 4.9 13.8
9 48.3 349.0 7.4 17.2
10 142.5 380.0 5.8 16.1

Table 1: Dovetailing over operator ordering in WIDA* and
WRBFS on the sliding-tile puzzle in terms of factor of im-
provement over the best and the average configuration.

Dovetailing over Operator Orderings in WIDA*
and WRBFS

Consider dovetailing over configurations that only differ in
the operator ordering being used. For the sliding-tile experi-
ments, we consider 8 different starting configuration sets for
each algorithm. Each starting configuration set will contain
configurations with a different weight, and each will contain
24 configurations (one for each of the 24 possible operator
orderings). For example, thew = 3 set will contain 24 con-
figurations each with a weight of3 but a different operator
ordering, while thew = 4 set is defined analogously, except
all configurations are set to have a weight of4.

Table 1 summarizes the operator ordering experiments
with WIDA* and WRBFS in the5×5 and4×5 sliding-tile
puzzles, respectively. The test sets contain 100 randomly
generated problems. For each of the configuration sets, we
show the factor of the decrease in the number of nodes ex-
panded when using dovetailing over all 24 configurations
when compared to the best configuration in the set, and when
compared to the average performance of all 24 configura-
tions. For example, dovetailing over the 24w = 5 WIDA*
configurations required 37.1 times fewer node expansions
than the single best operator ordering, and 115 times fewer
than the number of nodes expanded on average over all 24
configurations. We include the comparison with the aver-
age configuration since it is generally not well understood
as to how this design choice will affect search speed. As
such, a system designer is left to perform a lot of tuning, or,
more commonly, randomly select a operator ordering and
stick with it.

The table shows that dovetailing over operator order-
ings generally significantly improves both algorithms in the
sliding-tile puzzle domain. This is particularly true of the
higher weights which generally have much worse perfor-
mance on their own. In this way, dovetailing over order-
ings reduces the effect of a system designer selecting a poor
weight. For example, the average performance of each of
the 24 operator orderings alone is 3.9 times worse when
the weight is set as 10 as opposed to 5. However, if dove-
tailing is used, the weight of 10 starting configuration set
performance is only1.18 times worse than the performance
of the weight 5 configuration set, and it is still97.7 times

WIDA* WRBFS
Over Best Over Av. Over Best Over Av.

Weight Order Order Order Order
3 1.1 1.8 0.2 0.2
4 1.4 2.4 0.2 0.3
5 2.6 4.7 0.3 0.5
6 2.3 4.3 0.4 0.7
7 2.5 8.2 0.7 1.1
8 4.4 14.3 0.7 1.2
9 15.4 63.0 1.8 3.6
10 77.9 279.6 2.1 4.4

Table 2: Dovetailing over operator ordering in WIDA* and
WRBFS on the 16 pancake puzzle (factor of improvement
over the best and the average configuration).

faster than the average single weight 5 configuration. There-
fore, the penalty for mistakenly using the weight of 10 is not
nearly as severe.

For the pancake puzzle, we still consider different starting
configuration sets, each containing 15 of the15! possible op-
erator orderings. The operator orderings were selected ran-
domly under the constraint that each of the 15 begins with a
different operator. Table 2 summarizes the results of dove-
tailing over operator orderings with WIDA* and WRBFS on
the 16 pancake puzzle. Again the test set used contains 100
randomly generated problems.

In this puzzle, dovetailing is clearly less effective than it
was in the sliding-tile puzzle (which was also evident when
considering dovetailing over weights). However, it still im-
proved WIDA* with all starting configuration sets consid-
ered, and improved WRBFS on the larger weights.

This improvement in search speed also comes at almost
no cost in terms of solution quality. When dovetailing over
WIDA* instances all with the same weight, the difference
in solution quality when compared to the average solution
quality of the configurations in the starting configuration set
was virtually neglible. When dovetailing over WRBFS con-
figurations, the solution quality generally improved, whith
the largest improvements being found on the higher weight
configuration sets. For example, on the4 × 5 sliding-tile
puzzle, dovetailing over all 24w = 3 configurations im-
proved the solution quality by1% over the averagew = 3
configuration, while dovetailing over allw = 10 configura-
tions improved the quality by8% over the averagew = 10
configuration.

6. Parallel Dovetailing
In this section we will experiment with parallel dovetailing.
Single-agent search algorithms are notoriously difficult to
parallelize, and we will show that despite the fact that par-
allel dovetailing is a very simple procedure, it often yields
significant gains.

Parallel Dovetailing with WIDA* and WRBFS
To determine the effectiveness of parallel dovetailing with
WIDA* and WRBFS, the speedups reported in Section 5.
are simply multiplied by the candidate set size being used.
For example, parallel dovetailing with 24 cores in the5×5

sliding-tile puzzle over 24 WIDA* configurations each with
a weight of 6 but a different operator ordering, results in a
speedup of43×24 = 1032 over the single best configura-
tion alone. This means that in most of our experiments we
are seeingsuper-linear speedup, which occurs when the im-
provement factor is greater than the number of processors
being used. Any dovetailing point with a value greater than
1 in any of Figures 2, 3, or 4 are indicative of a super-linear
speedup. The same is true for entries in Tables 1 and 2.

While there have been many attempts at parallelizing
IDA*, we are unaware of any work on parallelizing WIDA*.
While the techniques used to parallelize IDA* may work
with WIDA*, they are generally much more complicated
than this simple algorithm portfolio approach which we have
shown to often yield several orders of magnitude of speedup
with only a small number of cores. We are also unaware
of any attempts at parallelizing either WRBFS or RBFS, but
have shown that parallel dovetailing often yields super-linear
speedups in the former.

Parallel Dovetailing with WA*
While dovetailing is ill-suited for use with WA* due to the
large memory requirements of the algorithm, parallel dove-
tailing can still be used, particularly in the presence of dis-
tributed memory machines. In this section, we will compare
the performance of parallel dovetailing with a recent tech-
nique for parallelizing WA*, called wPBNF (Burns et al.
2009b), on the4×4 sliding-tile puzzle. Specifically, we will
compare the speedups reported in the wPBNF paper to our
own speedups when using parallel dovetailing over operator
orderings in this domain.

As the wPBNF evaluation shares memory between pro-
cessors, we will do the same. In our setup, we will not allow
the cumulative number of states held in memory by all in-
stances to exceed1×106. As wPBNF was tested with a 15
GB memory system, we suspect this is a significant underes-
timate of the number of nodes that wPBNF was allowed to
hold in memory. We then assume that once memory has
been exhausted by thek instances,k − 1 instances stop,
clear their memory usage, and sit idle as the processor con-
tinues on to solve the problem using the1×106 node limit
as needed. We will also assume that the algorithm always
“guesses” wrong and always continues with the instance that
will take longest to complete its search.

Finally, the speedup results that we present for some can-
didate set sizek will correspond to the average performance
over min(10, 000,

(

24
k

)

) candidate sets tested when com-
pared to the single best configuration alone. As such, it
should be clear that we are using a pessimistic evaluation
of parallel dovetailing.

The speedups for wPBNF, taken from a combination of a
conference paper (Burns et al. 2009b) and a workshop paper
(Burns et al. 2009a), and the simulated speedups of parallel
dovetailing are shown in Table 3. Notice that wPBNF out-
performs parallel dovetailing for small weights, but actually
degrades performance from a serial WA* for larger weights.
This suggests that techniques for parallelizing A* cannot
necessarily be expected to yield similar speedups when ap-
plied to WA*.

Speedup With Different
Numbers of Processors

wPBNF Parallel Dovetailing
Weight 2 4 8 2 4 8

1.4 1.12 1.65 2.62 0.99 0.98 0.97
1.7 0.76 1.37 1.49 0.98 1.02 1.03
2.0 0.62 1.10 1.46 1.01 1.15 1.23
3.0 0.62 0.90 0.78 1.06 1.62 2.05
5.0 0.60 0.76 0.64 1.16 1.62 2.02

Table 3: The speedup of wPBNF and the average speedup
of parallel dovetailing over operator orderings on 424×4
sliding-tile puzzle problems.

In contrast, parallel dovetailing outperforms wPBNF for
the larger weights while slightly underperforming a serial
WA* on the smallest weights (mostly because of the com-
parison of average performance to the best configuration).
Keep in mind that serial WA* requires the least amount of
time with the largest weights. As such, in this domain par-
allel dovetailing is able to effectively improve on the best
performance of WA* (in terms of search speed) despite its
simplicity, unlike wPBNF which has difficulties doing so.

Parallel Dovetailing and BULB

Beam Search using Limited Discrepancy Backtracking
(BULB) is a beam-search variant that is capable of quickly
finding solutions in very large state-spaces (Furcy and
Koenig 2005). While it does not have proven bounds on
suboptimality like other algorithms previously discussed, it
is quite effective in practice. As it uses a large amount of
memory, we only consider parallelizing this algorithm with
parallel dovetailing. To the best of our knowledge, there
have been no other attempts to parallelize BULB or any
other beam-search-like algorithms.

Consider dovetailing over 12 BULB instances with beam
widths ranging from 7 to 200 on 1007×7 sliding-tile puz-
zles. When dovetailing over all 12 configurations with 12
processors, we achieved a 2.2 times speedup when compared
to the single best beam width of 7. However, the average so-
lution length is 4 times shorter than that found by the beam
width of 7. When parallel dovetailing with BULB is com-
pared with the beam width with the most similar solution
quality, we see a 22 times speedup.

When dovetailing over 24 operator orderings, all with a
beam width of 7, the speedup achieved and the solution qual-
ity improvement were both 3.8. An analogous size 24 candi-
date set with beam width 10 saw both a speedup and solution
quality improvement of 5.9. When compared to the single
beam width with the most similar solution quality, the beam
width 7 and 10 candidate sets saw speedups of 44 and 43
times respectively.

7. Applications To Planning
We also tested the use of parallel dovetailing for classical
planning by using the WA*-based Fast Downward plan-
ner (Helmert 2006) on a set of 846 problems taken from
the satisficing track of the last planning competition. 36

different configurations were considered. The first 11 con-
figurations used only the FF heuristic and were identical
with the exception of the weight value used. Specifically,
the 10 integer weights from 1 to 10 inclusive were used,
as was the weight of infinity (thereby producing a pure
heuristic search). The next 11 configurations used only the
landmark cut heuristic (Helmert and Domshlak 2009) and
used the same set of weights. A third set of 11 configura-
tions used only the context-enhanced additive (CEA) heuris-
tic (Helmert and Geffner 2008), each with a different weight
from the set described above.

Three additional configurations were also used. The first
performs a pure heuristic search using preferred operators
and the FF heuristic. The second performs a pure heuristic
search using preferred operators and the CEA heuristic. The
final configuration performs a pure heuristic search version
of multi-heuristic best-first search with preferred operators
and both the FF and CEA heuristics.

In our experiments, each configuration was given 2 GB of
memory and 30 minutes to solve each of the problems on a
single processor of a dual quad-core 2.33 GHz Xeon E5410
machine with 6MB of L2 cache. Under this setup, each con-
figuration solved 653 of the 846 problems on average. The
single best configuration solved 746 of the problems.

After collecting this data, we simulated the use of paral-
lel dovetailing on a distributed cluster of 36 identical ma-
chines, each having been assigned a different configuration.
Such a system would solve 789 problems, 43 more than even
the single best configuration alone. In comparison, recent
work in optimal parallel planning (Kishimoto, Fukunaga,
and Botea 2009) showed an increase of 11 problems solved
when using their architecture on 128 machines. While our
results are not directly comparable since they were consider-
ing optimal planning and used a different test suite, they do
suggest that parallel dovetailing offers an effective alterna-
tive to the development and implementation of complicated
parallelization techniques for distributed parallel planning.

8. Conclusion
We have demonstrated that while offline tuning can find val-
ues with good average performance, systems that properly
find problem-specific parameters can outperform those that
rely on tuned parameters. Dovetailing was shown to signif-
icantly improve WIDA* and generally improve WRBFS by
taking advantage of this fact.

A trivial parallelization of dovetailing was also consid-
ered. It usually achieved super-linear speedups when ap-
plied with WIDA* and WRBFS. With WA*, it was shown to
outperform a state-of-the-art parallelization of this algorithm
for higher weights in the4×4 puzzle. It also helped improve
the solution quality of BULB with a significant speedup and
it increased the number of problems solved for a modern au-
tomated planning system.

While dovetailing requires the selection of a candidate set,
we have shown that it is still effective over a large range of
candidate sets. Moreover, we assert that the use of a single
configuration is more error-prone approach than is the selec-
tion of a candidate set. This is because the use of multiple

configurations helps overcome the deficiencies of any single
configuration at a linear cost in the candidate set size.

When using only a single configuration, there is no such
backup. Even if a strong single configuration is found, it
cannot be expected to do well on all problems. Having said
that, investigating policies for identifying good candidate
sets, either with offline or online computation, remains an
area of future work.

Acknowledgments
This research was supported by iCORE, NSERC, and JST
Presto.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artif. Intell. 129(1-2):5–33.
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2009a.
Parallel Best-First Search: Optimal and Suboptimal Solu-
tions. InProceedings of the International Symposium on
Combinatorial Search (SoCS-09).
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2009b.
Suboptimal and anytime heuristic search on multi-core ma-
chines. InICAPS.
Cook, D. J., and Varnell, R. C. 1997. Maximizing the
Benefits of Parallel Search Using Machine Learning. In
AAAI, 559–564.
Culberson, J. C., and Schaeffer, J. 1996. Searching with
Pattern Databases. In McCalla, G. I., ed.,Canadian Con-
ference on AI, volume 1081 ofLecture Notes in Computer
Science, 402–416. Springer.
Felner, A.; Kraus, S.; and Korf, R. E. 2003. Kbfs: K-best-
first search.Ann. Math. Artif. Intell.39(1-2):19–39.
Furcy, D., and Koenig, S. 2005. Limited Discrepancy
Beam Search. InIJCAI, 125–131.
Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-
tailed distributions in combinatorial search. In Smolka, G.,
ed.,CP, volume 1330 ofLecture Notes in Computer Sci-
ence, 121–135. Springer.
Hamadi, Y.; Jabbour, S.; and Sais, L. 2009. ManySAT:
a Parallel SAT Solver.Journal on Satisfiability, Boolean
Modeling and Computation6:245–262.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. InICAPS, 140–147.
Helmert, M. 2006. The fast downward planning system.J.
Artif. Intell. Res. (JAIR)26:191–246.
Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic
Algorithm Configuration Based on Local Search. InAAAI,
1152–1157. AAAI Press.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2009. Scal-
able, Parallel Best-First Search for Optimal Sequential
Planning. InICAPS, 201–208.
Knight, K. 1993. Are Many Reactive Agents Better Than
a Few Deliberative Ones? InIJCAI, 432–437.

Korf, R. E. 1985. Iterative-Deepening-A*: An Optimal
Admissible Tree Search. InIJCAI, 1034–1036.
Korf, R. E. 1993. Linear-Space Best-First Search.Artif.
Intell. 62(1):41–78.
Wintersteiger, C. M.; Hamadi, Y.; and de Moura, L. M.
2009. A Concurrent Portfolio Approach to SMT Solving.
In Bouajjani, A., and Maler, O., eds.,CAV, volume 5643 of
Lecture Notes in Computer Science, 715–720. Springer.

