" JEE
Warning!

m We try to make everything easy to understand.
m We often do not mention crucial details.

m We use both 4- and 8-neighbor grids.

m Values in cells are h-values unless stated otherwise.
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Al Benchmarks Al Benchmarks
Standard Search Problems in Artificial Intelligence Path-Planning Problems for Agents

States are given and discrete

Off-line search: one can concentrate on planning (execution follows)
Real-time constraints do not exist

Search space does not fit into memory

How to search larger and larger search spaces?

Use big-O time and space analysis

States are not given, continuous and often hard to characterize
On-line search: planning and execution have to be interleaved
Real-time constraints exist

Search space might or might not fit into memory

How to search faster and faster?

Cannot use big-O time and space analysis

Hardware and implementation details matter

[from Wikipedia] Robotics [from JPL] Games [from Cavedog]
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Alternatives to Path Planning

m Behavior-based methods [Arkin, 1987]

goal X

Table of Contents

m Overview of path planning
Path planning vs Al benchmarks
Alternatives to path planning
Search spaces and their discretization
Searching the search space with A*

m Any-angle path planning with A*

m Speeding up Path Planning with A*

Alternatives to Path Planning

m Bug Algorithms [Lumelsky and Stepanov, 1987]

Alternatives to Path Planning

m Properties
+ fast
+ need only local terrain information
- do not necessarily find short paths to the goal
- might not find paths to the goal at all

Work vs Configuration Space

Path Planning Problems for Agents

m  States are not given, continuous and often hard to characterize
= On-line search: planning and execution have to be interleaved
= Real-time constraints exist

= Search space might or might not fit into memory

= How to search faster and faster?

Kl =

Games [from Cavedog Entertainment] ~ Robotics [from JPL]




Work vs Configuration Space Work vs Configuration Space

m Configuration spaces are often
continuous
high-dimensional

[from Stuart Russell and Peter Norvig] , 1
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Work vs Configuration Space Discretizing Configuration Space

m Configuration spaces are often
continuous
high-dimensional

Gy
.-

m Discretize them with ‘ J_ ,"
skeletonization methods (pzadmaps) %

cell-decompositio ods

m Skeletonization methods

[from Stuart Russell and Peter Norvig — the figure has slight problems]
Voronoi graph

Discretizing Configuration Space Discretizing Configuration Space

m Skeletonization methods m Skeletonization methods:

visibility graph

roadmap using random points [Kavraki et al, 1994] =
(there are also roadmaps using RRTs [LaValle, 1998]) [from Steve LaValle]
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Work vs Configuration Space

m Configuration spaces are often
continuous
high-dimensional

m Discretize them with
skeletonization meth
cell-decompositio
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Discretizing Configuration Space

m Cell decomposition methods

coarse-grained discretization fine-grained discretization
might not be able to find a path Is very inefficient
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Discretizing Configuration Space

m Cell dg)mposition mﬂods -
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This is a deterministic
version of the parti-game

'/'CI)«%?\%O T algorithm [Moore and
(f\?“’?/ { [ ?‘”‘?/? Atkeson, 1995].
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Discretizing Configuration Space

m Cell decomposition methods:
systematic and resolution complete

=

[from Stuart Russell and Peter Norvig]

vertical strips grid
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Discretizing Configuration Space

m Cell decomposition methods

| e .
‘ 5 [from unknown]

non-uniform discretization
avoids these problems

" JEE
Discretizing Configuration Space

m Cell decomposition methods

m The search space is really nondeterministic and we thus
need to use a minimax search
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Discretizing Configuration Space

m Cell decomposition methods

m PDRRTs implements the local controllers of the parti-
game algorithm with RRTS [Ranganathan and Koenig, 2004].
PDRRTSs need no user-supplied local controllers.
PDRRTSs need to split fewer cells.
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A*

A*
1. Create a search tree that contains only the start state

2. Pick a generated but not yet expanded state s
with the smallest f-value

3. If state s is a goal state: stop
4. Expand state s
5. Goto2
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Discretizing Configuration Space

m We use examples with configuration space = 2d work space
increase the size of obstacles by the radius of the robot
make the robot a point
ignore kinematic constraints

A*

m A* [Hart, Nilsson and Raphael, 1968] uses user-supplied h-
values to focus its search

m The h-values approximate the goal distances
m We always assume that the h-values are consistent!

m The h-values h(s) are consistent succ(s,a)
if they satisfy the triangle inequality:  c(s,a *~.h(succ(s.a))
h(s) =0ifsis the goal state =~ (- e @)

h(s) < c(s,a) + h(succ(s,a)) otherwise S goal state
m Consistent h-values are admissible.

m The h-values h(s) are admissible
if they do not overestimate the goal distances.

A*

m Search problem with uniform cost

4-neighbor grid



A*

m Possible consistent h-values
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order of expansions

A*

= Fourth iteration of A* 3|1 E
2
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order of expansions

A*

m First iteration of A* 1 E
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order of expansions

A*
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A*
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4-neighbor grid



order of expansions

A*

4|56

m Sixth iteration of A* 3|1

2
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Uniform-cost search

A* Breadth-first search
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order of expansions

A*
415|6
= Seventh and last iteration of A* 3|1 (7)
2
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4-neighbor grid

A*

m We say that h-values h,(s) dominate h-values h,(s) iff
hy(s) 2 hy(s) for all states s.

m A* with consistent h-values h(s) [Pearl,1984]
expands every state at most once

has found a shortest path from the start state to a
state when it is about to expand the state

has found a shortest path from the start state to the
goal state when it terminates

expands no more states than with consistent h-values
dominated by the h-values h(s)

" JE
Any-Angle Path Planning

m A* on eight-neighbor grids

grid path any-angle path

8-neighbor grid
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Any-Angle Path Planning

A* on the grid

A* with Post-Smoothing on the grid

Field D* on the

Path Length

Theta* on the grid

any-angle path planning

A* on the visibility graph

Runtime

" JEE
Any-Angle Path Planning

m A* on eight-neighbor grids

" " " - B " " "
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grid path any-angle path

8-neighbor grid
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Any-Angle Path Planning

A* on the grid

A* with Post-Smoothing on the grid

Field D* on the

Path Length

Theta* on the grid

any-angle path planning

A* on the visibility graph

Runtime

" JE
Any-Angle Path Planning

A* on the grid

A* with Post-Smoothing on the grid

Field D* on the

Path Length

Theta* on the grid A* on the visibility graph

any-angle path planning

Runtime

" JEE
Any-Angle Path Planning

m A* on other tessellations
[Bjoernsson, Enzenberger, Holte, Schaeffer and Yap, 2003]

/ \

generalization: framed quadtrees

" JE
Any-Angle Path Planning

m A* on eight-neighbor grids with smoothing

" " " - " " - - = "
E N n a u B & " N n
grid path any-angle path

8-neighbor grid



Any-Angle Path Planning Any-Angle Path Planning

m A* on eight-neighbor grids with smoothing m A* on eight-neighbor grids with smoothing
- S e AR P S - S S - S
in " - " " En " i " n v - - EY " En - o . a
" o - N n B i ® " n 1.-_' " " s El B & " N n
grid path any-angle path grid path any-angle path
8-neighbor grid 8-neighbor grid
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Any-Angle Path Planning Any-Angle Path Planning

m A* on eight-neighbor grids with smoothing m A* on eight-neighbor grids with smoothing
Ir " " - + Ir El w » -| * L # L + Ir L " ] £l
" il W . e [ i " " L1 * * L " En = = " .
B " . - . ] . " . . * & & # 8 b . - " .
grid path any-angle path grid path any-angle path
8-neighbor grid 8-neighbor grid
" JEE " JEE

Any-Angle Path Planning Any-Angle Path Planning

A* on the grid

m A* on eight-neighbor grids with smoothing

'%, A* with Post-Smoothing on the grid

® 9 c
)
|
E Field D* on Thegrid
o

Theta on the grid A* on the visibility graph
C}
grid path any-angle path any-angle path planning

Runtime

8-neighbor grid
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Any-Angle Path Planning

m A* on visibility graphs

" " - E "

i L] - - ']

- - a - . n
path on visibility graph shortest path
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Field D*

m Field D* (a version of D* Lite with any-angle path
planning) [Ferguson and Stentz, 2005] on eight-neighbor grids

1 performs an A* search

[ propagates information along the grid edges
(= good runtime)

1 does not constrain the path to be on grid edges
(= short paths)

"
g-value
Field D*
m Field D* on eight-neighbor grids

200 232

1.00 |1.41

0.00 [1.00 |2.00 |3.00

[from JPL]

Tl.OO 141 232 |3.27

8-neighbor grid
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Any-Angle Path Planning

A* on the grid

A* with Post-Smoothing on the grid

Field D* on thegrid

Path Length

Theta* on the grid A* on the visibility graph

any-angle path planning

Runtime

" T
g-value
Field D*
m Field D* on eight-neighbor grids

200 232 283

1.00 |1.41 |2.41

0.00 [1.00 |2.00 |3.00

[from JPL]

TI.OO 141 |2.32 |3.27

8-neighbor grid
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g-value
Field D*
m Field D* on eight-neighbor grids

200 232 283

1.00 |1.41 |2.41

0.00 [1.00 ‘00 |3.0 [from JPL]

Tl.OO 141 |2.32 |3.27

8-neighbor grid
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g-value
Field D*
m Field D* on eight-neighbor grids

200 232 283

1.00 |1.41 |241

0.00 [1.00 |2.00 |3.00 [from JPL]

Tl.OO 141 232 |3.27

8-neighbor grid
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Field D* T&

m Field D* on eight-neighbor grids

200 232 283

2.62 K1.12
1.00 |1.41 |2.
0.00 [1.00 |2.00 |3.00 ffrom JPL]

TLOO 141 |232 |3.27

8-neighbor grid

" S
Field D*

m Field D* on eight-neighbor grids does not necessarily
find shortest paths

—T—

- [from JPL]

—— Field D* path — any-angle path

8-neighbor grid
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Field D* TL

m Field D* on eight-neighbor grids

200 232 283

4
100 |1.41 |241

0.00 [1.00 |2.00 |3.00 [from JPL]

Tl.OO 141 |2.32 |3.27

8-neighbor grid
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g-value
Field D*
m Field D* on eight-neighbor grids

200 232 283

1.00 |1.41 |241

0.00 [1.00 §2.00 |3.00 [from JPL]

TI.OO 141 |2.32 |3.27

8-neighbor grid

" S
Field D*

m Terrain often has uniform movement costs

[April 29, 2007; from JPL]

11
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Any-Angle Path Planning

A* on the grid

A* with Post-Smoothing on the grid

Field D* on the

Path Length

Theta* on the grid A* on the visibility graph

any-angle path planning

Runtime

"
Theta*

m A* on eight-neighbor grids with smoothing
but now we interleave smoothing with search

grid path any-angle path

8-neighbor grid

Theta*

m Theta* [Nash, Daniel, Koenig and Felner, 2007'] on eight-neighbor

grids

performs an A* search

propagates information along the grid edges

(= good runtime)

does not constrain the path to be on grid edges

(= short paths)

“ Note: A mistake in the pseudo code of AP-Theta* in the original paper is corrected.

Theta*

Key insight behind Theta* on eight-neighbor grids

m The parent of a state does not need to be its neighbor.

m When expanding a state s, its children consider not only
state s but also the parent of state s as possible parent
since it is shorter to go directly to the parent of state s (if
that path is unblocked) than first to state s and then to
the parent of state s, due to the triangle inequality.

8-neighbor grid

fm

£ L]
- e
# #

12



g-value
Theta* parent

8-neighbor grid

g-value
Theta* paren

o

Lo — il

If path 2 is not blocked, then it is shorter than path 1 (triangle inequality)

8-neighbor grid

g-value
Theta* parent

8-neighbor grid

g-value
Theta* parent

8-neighbor grid

g-value
Theta* paren

st

— s | — s I

If path 2 is not blocked, then it is shorter than path 1 (triangle inequality)

8-neighbor grid

g-value
Theta* parent

s e

®

i w L
[ - L.l

8-neighbor grid
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g-value
T h et a* parent

8-neighbor grid

g-value
Theta* parent

8-neighbor grid

'_
Theta*

m Theta* does not necessarily find shortest paths since the
parent of a state can only be a neighbor or the parent of
a neighbor

//
—

8-neighbor grid

g-value
Theta* parent

8-neighbor grid

8-neighbor grid

'_
Theta*

m Theta* does not necessarily find shortest paths since the
parent of a state can only be a neighbor or the parent of
a neighbor

/%
I

8-neighbor grid

14



Theta* Theta*

m Theta* does not necessarily find shortest paths since the m Theta* does not necessarily find shortest paths since the
parent of a state can only be a neighbor or the parent of parent of a state can only be a neighbor or the parent of
a neighbor a neighbor
L1 L]
The path of Theta* is still within 0.2% of optimal for this example
8-neighbor grid 8-neighbor grid
" JEE " JEE

Any-Angle Path Planning Table of Contents

A* on the grid

p m Overview of path planning
Path planning vs Al benchmarks
- Alternatives to path planning
5 A* with Post-Smoothing on the grid Search spaces and their discretization
E) Searching the search space with A*
< Field D+ onThe grid m Any-angle path planning with A*
S m Speeding up Path Planning with A*
N )
Theta* on the grid A* on the visibility graph
any-angle path planning
Runtime
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Speeding Up A* Search Speeding Up A* Search

Path Planning Problems for Agents How to search faster and faster is important:
= States are not given, continuous and often hard to characterize

= On-line search: planning and execution have to be interleaved r ,“

= Real-time constraints exist Vf E ;,- ; E
= Search space might or might not fit into memory

m  How to search faster and faster? j)

e

Robotics [from JPL] Games [from Cavedog] « Slow execution « Fast execution
& 20(!) megahertz RAD6000 processor [from Maxim Likhachev]

&

'-*a_.f L

2d (x, y) planning 4d (x, y, 6, v) planning
* 54,000 states * > 20,000,000 states
« Fast planning « Slow planning
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Speeding Up A* Search Speeding Up A* Search

How to search faster and faster is important: How to search faster and faster is important:
m Games need to run on older computers

.’: {2 El ,’: - E m Graphics gets most of the processor time
. : ) m The number of agents gets larger and larger
.-":l'"" = A
= L, o :\.‘
A / R
2d (x, y) planning 4d (x, 'y, 6, v) planning
* 54,000 states * > 20,000,000 states
« Fast planning « Slow planning
» Slow execution « Fast execution Games [from Cavedog]
[from Maxim Likhachev]
" A " A

Speeding Up A* Search Table of Contents

Ways of speeding up A* »  Speeding up path planning with A*
m [Incremental versions of A* (incremental heuristic search) Incremental versions of A* (incremental heuristic search)
find shortest paths by exploiting experience with similar searches = Fringe Saving A* (FSA*)
typically run faster than A* = Adaptive A* (AA¥)
m A* with weighted h-values (weighted A*) = Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
finds suboptimal paths by focusing the search more than A* = Comparison of D* Lite and Adaptive A*
typically runs faster than A* = Eager and Lazy Moving-Target Adaptive A* (MTAA*)
m Real-time versions of A* (real-time heuristic search) A* with weighted h-values
find suboptimal paths by interleaving searches in local search = Weighted A* (WA*)
spaces around the current state and executions = Anytime Repairing A* (ARA%)

can run faster or slower than A*

" X Real-time versions of A* (real-time heuristic search)
each search runs in constant time

= Learning-Real Time A* (LRTA*)
= Comparison of D* Lite and Learning-Real-Time A*
= Real-Time Adaptive A* (RTAA*)

" B " JEE
Incremental Heuristic Search Incremental Heuristic Search

m Incremental heuristic search speeds up A* searches for
a sequence of similar search problems by exploiting

experience with earlier search problems in the search task 1 dlightly different dlightly different
) search task 2 search task 2
sequence. It finds shortest paths.
m In the worst case, incremental heuristic search cannot be
more efficient than A* searches from scratch
[Nebel and Koehler 1995].
search task 1 dightly dightly dightly

different different different
searchtask 2 | searchtask 3 search task 4




Incremental Heuristic Search

Incremental Heuristic Searc

[from slate.com]

8-neighbor grid

" JEE
Stationary Target

Stationary target search:

= How to move a computer-controlled agent autonomously
to a goal state in initially unknown terrain?

Stationary Target

N

8-neighbor grid

8-neighbor grid

Stationary Target

Our approach to stationary-target search,

called Planning with the Freespace Assumption:

m Repeatedly move the agent along a shortest path from
its current state to the goal state under the assumption
that states are unblocked unless the agent knows
otherwise (freespace assumption). The agent needs to
replan its path only if the path becomes blocked.

m Repeatedly find a shortest path from some start state to
the same goal state with A* on a graph whose
movement costs can increase over time.

Stationary Target

N

8-neighbor grid

17
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Stationary Target

m Used in robotics and usable in games

"
Stationary Target

m Clearly, the number of movements is small if the

freespace assumption is approximately satisfied, that is,

if the obstacle density is small

" JEEE
Stationary Target

e nlooked graph

o IF-Q-I:I %ﬁ
e
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4-neighbor grid
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[Stentz and Hebert, 1995] [from JPL] [from Cavedog Entertainment]

" JEE
Stationary Target

"
Stationary Target

m Mazes of size 25 x5—-25x 75

=l il
5

wiridw el Ladies

" JEE
Stationary Target

m The worst-case number of movements is
Q(log(#states)/log log(#states) x #states) on undirected
vertex-blocked graphs, where #states is the number of
unblocked vertices [Koenig, Tovey and Smirov, 2003].

18
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Stationary Target

m The worst-case number of movements is

Q(log(#states)/log log(#states) x #states) on undirected

vertex-blocked graphs, where #states is the number of
unblocked vertices [Koenig, Tovey and Smirnov, 2003].

= Proof:
Length of rim = n" for some n

Rim gets traversed n times,
resulting in n"*! movements

There are about at most n"! spokes for each of the at most n
heights, resulting in n" states

Stationary Target

B

8-neighbor grid
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= Speeding up path planning with A*
Incremental versions of A* (incremental heuristic search)
m Fringe Saving A* (FSA*)
= Adaptive A* (AA*)
= Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
= Comparison of D* Lite and Adaptive A*
= Eager and Lazy Moving-Target Adaptive A* (MTAA*)
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= Real-Time Adaptive A* (RTAA*)

Stationary Target

m The worst-case number of movements is log?(#states)
#states on undirected vertex-blocked graphs and
log(#states) #states on vertex-blocked grids, where
#states is the number of unblocked vertices [Mudgal, Tovey,
Greenberg and Koenig, 2005].

Incremental Heuristic Search

Incremental heuristic search

m Fringe Saving A* (FSA*) and similar (iA*)
starts A* at the point where the current search could differ from
the previous one

m Adaptive A* (AA*) and similar (MTAA*, RTAA¥)
improves the h-values between searches

m Lifelong Planning A* (LPA*) and similar (D*, D* Lite, ...)
transforms the previous search tree into the current one

m |t is future work to combine the principles behind AA*
and LPA*.

Fringe Saving A* (FSAY*)

m Fringe Saving A* (FSA¥) [Sun and Koenig, 2007] speeds up A*
searches for a sequence of similar search problems by
starting each search at the point where it could differ
from the previous one

m FSA* is similar to but faster than iA* [yap, unpublished]

sesealoap suoisuedxa Jo Jaquinu

sasealoul uoisuedxs Jad awnuni
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Fringe Saving A* (FSA*)

start start
old new
search search
tree tree
goal goa
A* FSA*

" JEE
order of expansions

Fringe Saving A* (FSA¥)

m One state becomes blocked

23]al|[7]6]5]4]3]2
2|13 |[6][5]4]3]2]1
2|10 4|[5]4]3][2]1]0
2|1l |le]s]4]3]2]1
g-values + h-values = f-values

cost of the shortest path
found so far from the start
state to the given state

] generated but not expanded state (OPEN list)
[ expanded state (CLOSED list)

4-neighbor grid

Fringe Saving A* (FSA*)

mr?
time-consuming
operations

" JEE
order of expansions

Fringe Saving A* (FSA*)
4|56
» Seventh and last iteration of A* 3|1 (7)
2
2[3]4|[7]6]5]4]3]2 6|66
2l1/2]3||6|5]al3]2]1 6|atdss
ARG BIBRBRRG 6+ 4 @
2)1 6/5[a|3]2]1 6+ 4
g-values + h-values = f-values

inctor?; Ztat:r?:r? ?éréef?;r%attrqe [ generated but not expanded state (OPEN list)
start state to the given state B expanded state (CLOSED list)

4-neighbor grid

" JE
order of expansions

Fringe Saving A* (FSA*)

m One state becomes blocked

7/6|/5[4]3]|2

2 6/5(4[3]2]1

201 5(4(3[2]1]0

2 6|/5(4(3]2]|1
g-values + h-values = f-values

cost of the shortest path [ generated but not expanded state (OPEN list)

found so far from the start :
state to the given state [ expanded state (CLOSED list)

4-neighbor grid

" JEE
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Adaptive A* (AA¥)

m Adaptive A* (AA*) [Koenig and Likhachev, 2005] speeds up A*
searches for a sequence of similar search problems by
making the h-values more informed after each search.

m The principle behind AA* was earlier used in Hierarchical
A* [Holte et al., 1996].

" JEE
Adaptive A* (AA*)

m Consider a state s that was expanded ®\
by A* with consistent h-values hgg: Gtard (goaD

distance(start,s) + distance(s,goal) = distance(start,goal)
distance(s,goal) = distance(start,goal) — distance(start,s)
distance(s,goal) =
= The h-values h,, are again consistent.
= The h-values h, dominate the h-values h.
m These properties continue to hold even if the start state
changes or the movement costs increase.
= The next A* search with h-values h,, expands no more
states than an A* search with h-values h,4 and likely many
fewer states.

"
g f
Adaptlve A* (AA*) hold hne

1 m 1l @ i

o Wi 4 i E 1 '] L3 i
3 me w7 on i FaE T PR EIE
[ 3 4 I ERE ITERE!
T | 2|0 1 TR
1] ] L ‘*T a1
1 |3 330 T vin]?
A4 ¥ )b W 1 L1
: [ | 112 1] '-"

4 &2 1

first AA* search second AA* search

4-neighbor grid

" JEE
Adaptive A* (AA¥)

start start
goal goal
A* AA*

"

g

Adaptive A* (AA*) h
T oW ild
] fi b ] E T ] L ]
Lo M R g Fl2 ddE T
F [ 4 B | 5 4 A1
I i £}
] ] } a
i 3 .3 3 w A
L] L] 4 1 i
1 a7 %3 s ]
d El 1 b | i
first A* search second A* search

4-neighbor grid

" JEE
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Lifelong Planning A* (LPAY¥)

m Lifelong Planning A* (LPA*) [Koenig and Likhachev, 2002]
speeds up A* searches for a sequence of similar search
problems by recalculating only those g-values in the
current search that are important for finding a shortest
path and have changed from the previous search.

m This can often be understood as transforming the search
tree from the previous search to the one of the current
search.

" JEE
Lifelong Planning A* (LPAY¥)

8-neighbor grid

" JE
Lifelong Planning A* (LPAY¥)

8-neighbor grid

" JE
Lifelong Planning A* (LPAY*)

start start
old new
search search
tree tree
goal goal
A* LPA*

[from slate.com]

" S .
Lifelong Planning A* (LPA*)%

8-neighbor grid

" =
Lifelong Planning A* (LPA*)%

[from slate.com]

8-neighbor grid www.slate.com

22



I
Lifelong Planning A* (LPAY¥)

artificial intelligence algorithm theory

heuristic search . incremental search

how to search efficiently how to search efficiently by
using h-valuesto focusthe  reusing information from

search previous similar searches
" JE
Lifelong Planning A* (LPAY¥)
uninformed search heuristic search
5
[]
T
G
B
5
o
"

Lifelong Planning A* (LPAY¥)

Lifelong Planning A* (LPAY*)

uninformed search

heuristic search

breadth-first search

A*
[Hart, Nilsson, Raphael, 1968]

DynamicSWSF-FP

incremental search complete search

with early termination (our addition)
[Ramalingam and Reps, 1996]

Lifelong Planning A* (LPA*)
[Koenig and Likhachev, 2002]

3
Lifelong Planning A* (LPA*)%

‘ uninformed search

[from slate.com]
heuristic search

incremental search complete search

. . g
Lifelong Planning A* (LPAY*)
1 2 start 5 6
Al 2 1 0 2 3
5| 3 4
.| 4 5
ol 5 6
goal
4-neighbor grid
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Lifelong Planning A* (LPAY¥)

L2 wm 4 s
2l 1]of1]2]3
|3 4
ol 4 5
5| 5 6

goal
4-neighbor grid

Lifelong Planning A* (LPAY¥)

1 2 start 4 5 6
Al 2 1 0 1 2 3
6| 3 4
c 4 © 5
o
b 5 4 3 4 5 6
min(5)1
min(3,4)

goa
4-neighbor grid

Lifelong Planning A* (LPAY¥)

priority queue
D3:[4;3]; C3:[6;4]

L2 wm 4 s
2l 1fof1]2]3
|3 4
ol 4 5
5| 5 6

4-neighbor grid

priority queue
D4:[6;4]; D3:[6;5]; D2:[6;6]

Lifelong Planning A* (LPAY*)

1 2 start 5 6
2101 ]2]3
|3 4
.| 4 5

g
5| 5 6

4-neighbor grid

Lifelong Planning A* (LPAY¥)

priority queue
C3:[4,2]

L2 am s s
2101 ]2]3
13 4
.| 4 5
o 5 6

4-neighbor grid

Lifelong Planning A* (LPAY*)

priority queue
D2:[4;4]; D4:[6;4]; D3:[6;5]

1 2 start 5 6
210 1]2 3
B 3 4
c 4 5
ol 5 00 o0 00 5 6

min(,6)+0 min(=,6)+2 | min(57)+3
min(,6) min(,6) min(5,7)
goal priority queue

4-neighbor grid

D2:[6;6]; D5:[8;5]; D4:[8;6]
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4-neighbor grid

Lifelong Planning A* (LPAY¥)

1 2 start 4 5 6

2l 1]of1]2]3
|3 4
ol 4 5
5| 5 6

goal priority queue
D5:[8;5]; D4:[8;6]; D3:[8;7]

Lifelong Planning A* (LPAY¥)

Lifelong Planning A* (LPAY*)

1 2 start 5 6
21101 ]2]3
B 4
4 5
o 5 6

4-neighbor grid

goal

priority queue

D5:[8;5]; D4:[8;6]; D3:[8;7]

Lifelong Planning A* (LPAY¥)

m Theorem [Koenig, Likhachev and Furcy, 2004]
Each search expands every state at most twice and
thus terminates.
= LPA* terminates

m Theorem [Koenig, Likhachev and Furcy, 2004]

After a search terminates, one can trace back a shortest

path from the start to the goal by always moving from
the current state s, starting at the goal, to any
predecessor s’ that minimizes g(s’) + c(s',s) until the
start is reached.

= LPA* is correct

Lifelong Planning A* (LPAY¥)

m Theorem [Koenig, Likhachev and Furcy, 2004]
No search expands a state whose g-value before the
search was already equal to its start distance.
= LPA* is efficient because it uses incremental search
m Theorem [Koenig, Likhachev and Furcy, 2004]
Each search expands at most those states s with
[f(s);9%(s)] < [f(goal); g*(goal)] or [gy4(s) + h(s); Gaa(S)] <
[f(goal); g*(goal)], where f(s) = g*(s) + h(s) and g,4(s) is
the g-value of s before the search.
= LPA* is efficient because it uses heuristic search

Lifelong Planning A* (LPAY*)

m Grids of size 101 x 101

start start
old new old new
search search search search
tree tree tree tree
goal goal

Start of the search must remain unchanged

LPA* can expand more states and run slower than A*
- if the number of changes is large

- if the changes are close to the start of the search

m Movement costs are one or two with equal probability

number of | planning time | first planning replanning replanning
movement of A* time of LPA* | time of LPA* | time of LPA*
cost changes planning time
of A*
0.2% |0.299ms |0.386 ms |0.029 ms| 10.4x
0.4% |0.336 ms |0.419 ms | 0.067 ms 5.0 x
0.6% |0.362ms |0.453 ms | 0.108 ms 3.3x
0.8% |0.406 ms|0.499 ms | 0.156 ms 26X
1.0% |0.370ms |0.434 ms|0.174 ms 2.1x




Stationary Target

N

8-neighbor grid

D* Lite

agent agent

old new old new
search search search search
tree tree tree | tree
goal goal
LPA* LPA*

"
D* Lite

m D~ Lite: Basic Version [Koenig and Likhachev, 2002]

= If the agent moves from S;gagent 1O Snewagens then the goal
of the search moves from s gagent t0 Snewagent: THIS
changes the priorities of the states in the priority queue

from [min(g(s), rhs(s)) + N(Sguagen:S): MIn(g(s), hs(s))]
to  [min(g(s), ths(s)) + N(S eyagensS), MIN(G(S), rhs(s))]

(but not which states are in the priority queue).
m Thus, one needs to reorder the priority queue [Stentz, 1994].

D* Lite

m LPA* needs to search from the goal of the agent to the
agent itself because the start of the search needs to

remain unchanged.

m LPA* s efficient because the agent observes blockages
around itself. Thus, the changes are close to the goal of

the search.

goal
distance

8-neighbor grid

D* Lite

m D* Lite: Basic Version [Koenig and Likhachev, 2002]
Priority queue: A [8,5]; B [8,6]; C [8,7]

Agent moves

Priority queue: C [7,7]; B [8,6]; A[9,5]

5|4(3[3|3]3 5|4[3|3|3]3 5 3
5043222 5043|222 5 2
5 fdt-3—t2-4 | 1 5 2|11 5 1
5]al3]2]1 5%~1m 5
5/4|3[3|3]3 5|43|3|3]3

5|4 202 5|4 (34R]2]2

5 1 54 1

5/5]5 1 5/5|5 1
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"
D* Lite

m D~ Lite: Final Version [Koenig and Likhachev, 2002]

m One uses lower bounds on the new priorities instead of
the new priorities themselves
[min(g(s), rhs(s)) + h(Sygagen:S), MIN(G(S), rhs(s))]
< [min(g(s), () + N(Sggagent:Snewagent) * N(Snewagent'S), MIN(Y(S), rhs(s))]
[min(g(s), rs(s)) + h(SpaagentS) - N(SoaagentSnewagend: MING(S), rhs(s))]
< [min(g(s), hs(s)) + h(SpewagensS): MIN(G(S), rhs(s))]

B The term h(s,y.yeeShensgen) IS the Same across all states in
the priority queue. Instead of deleting it from all states in
the priority queue, we add it to all states added to the
priority queue in the future [Stentz, 1995].

" S
D* Lite

D* Lite: Final Version [Koenig and Likhachev, 2002]
Priority queue: A [8,5]; B [8,6]; C [8,7]
Agent moves: h(Syystart:Snewstar) = 2 (Changes accumulate)
Priority queue: A [8,5]; B [8,6]; C [8,7]
Add state D with priority [10,5]
Priority queue: A [8,5]; B [8,6]; C[8,7]; D [12,5]
correct priority is [9,5]
m Priority queue: B [8,6]; C [8,7]; A [9,5]; D[12,5]
l correct priority is [8,6]

expand B

"
Minimax LPA*

m Cell decomposition methods

Y N Y

R RLRENE RN
044.04»04—-“ (O - (u% Od—»‘d—Od—»Qa

=+

hii= This is a deterministic
/'m@\o OO, versm_)n of the parti-game
NUPIRS i ?\@.4'0/? algorithm [Moore and
H H H H Atkeson, 1995]
5 5 SRR ot S 95 %)
AO==0* gu —=O* Ao

" S
D* Lite

m D* Lite: Final Version [Koenig and Likhachev, 2002]

m When one selects a state for expansion, one first checks
whether its priority is correct.

m |f so, then one expands the state.

m |f not (=it is a lower bound), then one re-inserts the state
into the priority queue with the correct priority.

= S
D* Lite

m Random Grids of size 129 x 129

replanning time

—| uninformed search from scratch 296.0 ms
. informed search from scratch 10.5ms
3 uninformed incremental search 6.1 ms
3? informed incremental search
%i D* [stentz, 1995] 4.2 ms
@ D* was probably the first true incremental heuristic

search algorithm, way ahead of its time!
g D* Lite 2.7 ms

"
Minimax LPA*

m Cell decomposition methods

m The search space is really nondeterministic and we thus
need to use a minimax version of LPA*
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Minimax LPA* D* Lite for Mapping

m Terrain of size 2000 x 2000 Our approach to mapping, called Greedy Mapping:
- m Repeatedly move the agent along a shortest path from
planning its current state to a closest unvisited or unobserved
time state [Thrun et al. 1998] [Romero, Morales, Sucar, 2001] [Koenig, Tovey
5 uninformed search from scratch | 363 minutes and Halliburton, 2001].
N . .
g informed search from scratch 135 minutes
- . . -
2 uninformed incremental search 15 minutes
Q)
? informed incremental search 14 minutes
(Minimax LPA* [Likhachev and Koenig, 2003])
" A "
D* Lite for Mapping D* Lite for Mapping
m Transforming Greedy Mapping to Planning with the
| | | [l ] Freespace Assumption [Likhachev and Koenig, 2002]
| 1
L I { )
| | ]
‘_.\‘.‘ftﬁ.'
| | S
I:_%l-‘—ll- it #}" \l' ‘i
8-neighbor grid 8-neighbor grid
" "
Table of Contents D* Lite vs AA*

D* Lite AA*

= Speeding up path planning with A*

Incremental versions of A* (incremental heuristic search) = Adapt previous search tree | m  Improve previous h-values
= Fringe Saving A* (FSAY) = Start node must remain = Goal node must remain
Ve A* (AAX
= Adaptive A (AA%) unchanged unchanged
= Lifelong Planning A* (LPA*), D* Lite and Minimax LPA* i
= Comparison of D* Lite and Adaptive A* = Movement cost = Movement cost increases
= Eager and Lazy Moving-Target Adaptive A* (MTAA*) in/decreases only*

A* with weighted h-values

! m  Can result in more node m  Guaranteed no more node
= Weighted A* (WA*)

J v expansions than A* expansions than A*
= Anytime Repairing A* (ARA*)
Real-time versions of A* (real-time heuristic search) m  Fewer node expansions on| m More node expansions on
= Learning-Real Time A* (LRTA*) average average
= Comparison of D* Lite and Learning-Real-Time A* = Slow node expansions = Fast node expansions

= Real-Time Adaptive A* (RTAA*)
*actually, movement cost in/decreases but AA* is more efficient for movement cost increases
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D* Lite vs AA*

m Safely explorable torus-shaped mazes of size 100 x 100

Table of Contents

= Speeding up path planning with A*
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= Fringe Saving A* (FSA*)
= Adaptive A* (AA*)
= Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
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Moving Target

Our approach to moving-target search,

called Planning with the Freespace Assumption:

m Repeatedly move the agent along a shortest path from
its current state to the current state of the target under
the assumption that states are unblocked unless the
agent knows otherwise (freespace assumption). The
agent needs to replan its path only if the path becomes
blocked or the target leaves the path.

m Repeatedly find a shortest path from some start state to
some goal state with A* on a graph whose movement
costs can increase over time.

" S
D* Lite vs AA*

expansions| runtime
per search [per search

Forward A* 3711 581
Backward A* 4104 644
(Forward) AA* 391 81
(Backward) D* Lite 31 15

"
Moving Target

Moving-target search:

= How to move a computer-controlled agent autonomously

to catch a moving target in initially unknown terrain?

Moving Target

4-neighbor grid



D* Lite

D* Lite vs AA*

AA*

Adapt previous search tree

m Improve previous h-values

Start node must remain
unchanged

Movement cost
in/decreases

m  Goal node must remain
unchanged

= Movements cost increases
only*

Can result in more node
expansions than A*

Fewer node expansions on
average

Slow node expansions

m  Guaranteed no more node
expansions than A*

More node expansions on
average

m  Fast node expansions

*actually, movement cost in/decreases but AA* is more efficient for movement cost increases

D* Lite

— 4

A
4-neighbor grid
" JE
D* Lite
]
M
A T

4-neighbor grid

4-neighbor grid target-centric map [from Tony Stentz]

4-neighbor grid

4-neighbor grid
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D* Lite

4-neighbor grid

" S
D* Lite

m Safely explorable torus-shaped mazes of size 100 x 100

= Randomly moving target that pauses every 10t move

start start
old new old new
search search search search
tree tree tree tree
goal goal

Start of the search must remain unchanged

LPA* can expand more states and run slower than A*
- if the number of changes is large

- if the changes are close to the start of the search

4-neighbor grid agent-centric map [from Tony Stentz]

D* Lite

expansions| runtime
per search | per search

Forward A* 3703 570
Backward A* 4519 722
Agent-Centric D* Lite 2229 1481
Target-Centric D* Lite 806 833

m the map needs to get shifted
m a large number of blockages change
m changed blockages can be close to the start node

4-neighbor grid
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Eager Moving-Target Adaptive A*

m We can build an incremental heuristic search method
that does not need to shift the map on AA*, resulting in
Lazy Moving-Target (MT) AA* [Koenig, Likhachev and Sun,
2007].

m Adaptive A* = Eager Moving-Target (MT) AA* = Lazy
Moving-Target (MT) AA*

" JEE
Eager Moving-Target Adaptive A*

m Consider a state s after the goal changed: |
distance(s,newgoal) + h,,(newgoal) = h,(s) (s > (goaD
distance(s,newgoal) 2 h 4(s) — h,q(newgoal)
distance(s,newgoal) = max(h4(s) — hyg(newgoal), h .(s)) = h,e,(S)

= The h-values h,,, are again consistent.

m The h-values h,, dominate the h-values h,.

m These properties continue to hold even if the start changes

or movement costs increase.

= The next A* search with h-values h,, expands no more

states than an A* search with h-values h,, and likely many
fewer states.

Lazy Moving-Target Adaptive A*

Eioms mmsmn e e

update the h-values only when they are needed

Eager Moving-Target Adaptive A*

h-values

A* search

update all expanded states
h-values become more informed

updated h-values

Eager Moving-Target Adaptive A*

A* search

update all expanded states

updated h-values h-values become more informed

goal moves
corrected h-values

update all states

h-values become less informed
but remain more informed

than the user-supplied h-values

D* Lite vs MTAA*

m Safely explorable torus-shaped mazes of size 100 x 100
m Randomly moving target that pauses every 10" move
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D* Lite vs MTAA*

expansions| runtime

per search |per search
Forward A* 3703 570
Backward A* 4519 722
Forward Lazy MTAA* 2334 465
Backward Lazy MTAA* 2025 411
Agent-Centric D* Lite 2229 1481
Target-Centric D* Lite 806 833

Weighted A*

m Weighted A* [pohl, 1970] Solves search problems faster
than A* by multiplying consistent h-values with a
constant larger than one. It typically does not find

shortest paths.

Weighted A*

m Assume that the h-values h(s) are consistent
m A* with the h-values w h(s) for w > 1 [Pearl, 1984; Likhachev,

Gordon and Thrun, 2004]

can be forced to expand every state at most once
typically expands many fewer states the larger w is
has found a path from the start state to a state that is
at most a factor of w longer than minimal when it is
about to expand the state
has found a path from the start state to the goal state
that is at most a factor of w longer than minimal when

it terminates

Table of Contents

= Speeding up path planning with A*

Incremental versions of A* (incremental heuristic search)

= Fringe Saving A* (FSA*)

= Anytime Repairing A* (ARA*)

Adaptive A* (AA*)

Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
Comparison of D* Lite and Adaptive A*

Eager and Lazy Moving-Target Adaptive A* (MTAA*)
A* with weighted h-values

Weighted A* (WA*)

Real-time versions of A* (real-time heuristic search)

= Learning-Real Time A* (LRTA*)

= Comparison of D* Lite and Learning-Real-Time A*

= Real-Time Adaptive A* (RTAA*)

Weighted A*

start

goal
A*

Weighted A*

start

goa
Weighted A*

8-neighbor grid

w=25
13 expansions
11 movements

w = 1.0 (A%
20 expansions
10 movements

[from Maxim Likhachev]
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" JEE
Anytime Repairing A* (ARA¥)

w=25 w=15 w=1.0
13 expansions 15 expansions 20 expansions
11 movements 11 movements 10 movements

8-neighbor grid [from Maxim Likhachev]

Anytime Repairing A* (ARAY*)

oz Bl "ot

7, &,

4d search with A* (after 25 s) 4d search with ARA* (after 25 s, w = 1.0)

[from Maxim Likhachev]

" JE
Anytime Repairing A* (ARAY*)

m Find a suboptimal path quickly and then make it shorter
and shorter (while the agent starts to traverse the path)

m ARA* [Likhachev, Gordon and Thrun, 2004] runs a series of WA*
searches with smaller and smaller weights w until a
shortest path has been found (or the agent reaches the
goal)

" JEE
Anytime Repairing A* (ARA¥)

w=25 w=15 w=10
13 expansions 1 expansion 9 expansions
11 movements 11 movements 10 movements

8-neighbor grid [from Maxim Likhachev]

" JE
Anytime Repairing A* (ARAY*)

[from Maxim Likhachev]
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= Comparison of D* Lite and Learning-Real-Time A*
= Real-Time Adaptive A* (RTAA*)

Learning Real-Time A* (LRTAY)

start start

goal goal

A agent-centered search [Koenig, 2001]
(e.g. LRTA¥)
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Learning Real-Time A* (LRTA¥)

m Repeatedly move to the most promising adjacent state,
using and updating the h-values

5/4(8p2|1|0 5| 4| 3«44 0 5|4 (5p4 0
6 5%321 6 5% 65%
7/6|5|4(3|2 7/6|5|4(3]|2 7/6|5]4|3|2
8|7|6|5|4|3 87|86 4|3 8/7|6|5|4|3

o| o &
o
o
N
| o
~|o|wo
o (o)
o
o
N
| O

| ~N| | o
~N|o| | a
o
o

N
| o
~N| oo

65|43 8/7|6|5|4 8|7|6|5]|4

local minima are overcome by updating the h-values

Learning Real-Time A* (LRTA¥)

m Real-time heuristic search [Korf, 1990] solves search
problems with a constant search time between
movements by interleaving partial searches around the
current state with movements. It updates the h-values
after every search to avoid cycling without reaching the
goal state. It typically does not follow a shortest
trajectory.

m There are many different real-time heuristic search
algorithms. We present one of them.

"
1 i * *
Learning Real-Time A* (LRTAY¥)
m Repeatedly move to the most promising adjacent state,
using the h-values
5/4((3p2|1|0 5|4 |342 0 514(3p2 0
6|5 3|21 6|5 21| |65 2|1
7|6|5|4|3]|2 7|6 2 7|6|5|4|3]|2
8|7|6|5|4]|3 8|7]|6 413 817]|6 413
5|4 | 3«2 0 514(3p2 0 5|4 | 3«2 0
6|5 21| |65 2|1 6|5 2|1
7/6|5|4|3]|2 7/6|5|4|3|2 716(5|4|3]|2
8|7|6|5|4]|3 8|7|6|5|4|3 8|7|6|5|4]|3

4-neighbor grid

local minima are a problem

Learning Real-Time A* (LRTA¥)

m Repeatedly move to the most promising adjacent state,

using and updating the h-values

goal

4-neighbor grid
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Properties of Learning Real-Time A* (LRTAY) [Korf, 1990]:

m The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
informed over time.

m The h-values remain consistent.

m The agent reaches a goal state with O(#states?)

movements if the goal distance of every state is finite
[Koenig, 2001].

m [f the agent is reset into the start state whenever it reaches
a goal state then the number of times that it does not
follow a cost-minimal trajectory from the start state to a
goal state is bounded from above by a constant if the cost
increases are bounded from below by a positive constant.

" JEE
Learning Real-Time A* (LRTAY)

m The worst-case number of movements is O(#states?) if
the goal state is reachable from every state and all
movement costs are one, where #states is the number of
unblocked vertices [oenig, 2001].

= Proof under the assumption that all movements change state:
Consider the sum of all h-values minus the h-value of the current
state. The initial sum is at least zero. The final sum is at most
#states x diameter since the h-value of every state is at most its goal
distance. Every movement increases the sum by at least one.

before: afterwards: @—@
before: afterwards: @—-@
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Learning Real-Time A* (LRTA¥)

We need larger lookaheads.
The possible design choices differ as follows:
= Which states to search?

m The h-values of which states to update?

m How many moves to make before the next search?

Learning Real-Time A* (LRTA¥)

m LRTA* reaches the goal state if it is reachable from
every state (= the search space is safely explorable).

= Proof:

Learning Real-Time A* (LRTAY¥)

m Repeatedly move to the most promising adjacent state,
using and updating the h-values

goal

4-neighbor grid

Learning Real-Time A* (LRTA¥)

We need larger lookaheads.

We make the following design choices [Koenig, 2004]:

m Which states to search?
The number x of states to search is determined by the available time
and is thus a parameter. We use the first x states expanded by an
A* search. An A* search uses h-values to focus the search and
always tries to disprove the path currently believed to be shortest.

m The h-values of which states to update?
We use Dijkstra’s algorithm to update the h-values of all x states
searched.

= How many moves to make before the next search?

We move the agent until it reaches a state different from the x states
searched.
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Learning Real-Time A* (LRTA¥)

5/14(3)2 1|0
6 SQS 2|1
7/6|5|4|3]|2
8|7 |6 |5|4]|3

4-neighbor grid
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Learning Real-Time A* (LRTAY)

m Step 1: Forward A* search

5| 4
6 SQE;
71|16
8 | 7

514

»l w| N| P
wW| N| »,| O

6 | 5

second A* state expansion

4-neighbor grid
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m Step 1: Forward A* search

T T
SHS 2
6
7

54| 3

w| N| k| O

5
6
7
8 6|54

third A* state expansion

4-neighbor grid
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m Step 1: Forward A* search

51| 4 2|10
6 593 2|1
7|/6|5|4|3|2
8| 7(6|5|4)|3

first A* state expansion

4-neighbor grid
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Learning Real-Time A* (LRTAY¥)

m Step 1: Forward A* search

51| 4 0
6 593 211
7/6|5|4|3|2
8| 7|6 |5,4]3

third A* state expansion

4-neighbor grid
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Learning Real-Time A* (LRTA¥)

m Step 1: Forward A* search

51| 4 0
6 593 2|1
7|/6|5|4|3|2
8| 7(6|5|4)|3

third A* state expansion

4-neighbor grid
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| N| o 0
~N| o g &
0

8

Al w| M| 8
w| N k| O

4-neighbor grid
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m Step 2: Updating the h-values with Dijkstra’s algorithm

5(4(=2)2|1|0
6 5Q3 2|1
7/6|5|4|3]|2
876|543

second iteration of Dijkstra’s algorithm

4-neighbor grid

" JE
Learning Real-Time A* (LRTA¥)

m Step 2: Updating the h-values with Dijkstra’s algorithm

-

5|4 2
6 | 5 3
71654
8|7 5

w| N| »r| O

1
2
3
4

4-neighbor grid
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m Step 2: Updating the h-values with Dijkstra’s algorithm

5 1|0
6 2|1
7 5| 43|2
8 4|3

first iteration of Dijkstra’s algorithm

4-neighbor grid
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Learning Real-Time A* (LRTAY¥)

m Step 2: Updating the h-values with Dijkstra’s algorithm

514(3)2|1 |0
6 5Q3 211
7/6|5|4|3|2
8| 7|6 |5,4]3

third iteration of Dijkstra’s algorithm

4-neighbor grid
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Learning Real-Time A* (LRTA¥)

m Step 3: Moving along the path

514 (30211 1,0
6 SHS 2|1
7|/6|5|4|3|2
8| 7(6|5|4)|3

follow the path

4-neighbor grid
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m Step 3: Moving along the path

4-neighbor grid

514 |3(2 0
716 4| 3|2
8 | 7 54 |3

follow the path

Learning Real-Time A* (LRTAY)

m Repeatedly move to the most promising adjacent state,
using and updating the h-values with a lookahead > 1

4-neighbor grid

-
7
—

Learning Real-Time A* (LRTA¥)

lookahead |Manhattan distance | octile distance
planning| path |planning| path
time length time length

1 28280 499 28293 363
11 28698 315 28878 315
21 29153 302 29477 311

31 29615 299

41

Learning Real-Time A* (LRTA¥)

m Repeatedly move to the most promising adjacent state,
using and updating the h-values with a lookahead > 1

54@»2—-1—’0 5464748 0 \1/678F0
6|5 3121 6|5 2|1 65 2|1
716|5|4|3|2 716(5]4|3]|2 7/6|5]4|3|2
8|7|6|5|4|3 8|7|6|5|4|3 8|7 5|43
7
6
7
8

4-neighbor grid

Learning Real-Time A* (LRTAY)

m Safely explorable random grids of size 301 x 301

Grids with 25% Random Obstacles
h-values generally not misleading
larger lookaheads less helpful

Learning Real-Time A* (LRTA¥)

lookahead LRTA* with A* LRTA* with BFS
state path state path
exp. length exp. length
1 499 499 497 497
5 686 338 883 341
11 1014 315 1377 318
15 1238 307 1717 314
21 1579 302 2169 310
25 1822 301 2465 308
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Learning Real-Time A* (LRTA¥) Learning Real-Time A* (LRTA¥)

m LRTA* with small lookaheads does well in terms of path
length since the h-values are generally not misleading.

m Dominating h-values draw the agent towards the goal
and result in smaller planning time and path lengths for
LRTA* because the h-values are generally not
misleading and there are thus only a small number of
local minima.

m LRTA* with A* to determine which states to search does
better than LRTA* with breadth-first search, both in
terms of “planning time” and path length, because the h-
values are generally not misleading.

m Safely explorable mazes of size 301 x 301

Acyclic Mazes (generated with DFS)
h-values generally misleading
larger lookaheads very helpful

Learning Real-Time A* (LRTAY) Learning Real-Time A* (LRTAY)

lookahead | Manhattan distance | octile distance lookahead LRTA* with A* LRTA* with BFS
planning path  |planning| path state path state path
time length time length exp. length exp. length
1 985362 | 1987574 | 628175 | 1259958 1 1259958 | 1259958 | 1244573 | 1244573
11 313998 | 337704 | 277974 | 272842 5 765645 | 477525 | 608564 | 339733
21 279856 | 205370 | 273280 | 177143 11 531955 | 272842 | 437527 | 189937
31 310131 | 135554 15 517913 | 239073 | 460207 | 177181
41 . . 348330 | 114917 21 459566 | 177143 | 448383 | 144254
25 456752 | 155736 | 473433 | 138035
" JE " JE

Learning Real-Time A* (LRTA¥) Table of Contents

m Mazes are easier than grids with random obstacles since » Speeding up path planning with A*
their branching factor is smaller. They are harder than grids
with random obstacles since the paths between locations » Fringe Saving A* (FSA%)
are longer and the h-values are generally misleading.

g . = Adaptive A* (AA¥)
= LRTA* with small lookaheads does poorly in terms of path = Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
length since the h-values are generally misleading

o = Comparison of D* Lite and Adaptive A*
= Dominating h-values draw the agent towards the goal and u Eager and Lazy Moving-Target Adaptive A* (MTAA®)
result in larger planning time and path lengths for LRTA*

Incremental versions of A* (incremental heuristic search)

. . . A* with weighted h-values
because the h-values are generally misleading and it takes « Weighted A* (WAY)
longer to update the h-values to eliminate local minima. Any‘gime Repairing A* (ARAY)
) h - .
= LRTA* with A* 10 determme WhICh states to search does Real-time versi:ns ong* (real-time heuristic search)
worse than LRTA* with breadth-first search, both in terms of ! N "
“planning time” and path length, because the h-values are = Learning-Real Time A* (LRTA)
generally mis|eading. = Comparison of D* Lite and Learning-Real-Time A*

= Real-Time Adaptive A* (RTAA*)
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LRTA* vs D* Lite LRTA* vs D* Lite

D* Lite m Safely explorable random grids of size 301 x 301
m can detect that the goal state is unreachable

m cannot satisfy hard real-time requirements

m has worst-case number of movements of
O(#states log #states)

LRTA*
m cannot detect that the goal state is unreachable
m can satisfy hard real-time requirements

m has worst-case number of movements of Grids with 25% Random Obstacles

O(#states? h-values generally not misleading
( ) larger lookaheads less helpful

" JEE "
LRTA* vs D* Lite LRTA* vs D* Lite
lookahead |Manhattan distance octile distance m Minimize sum of planning and plan-execution time:
- - planning time + x plan-execution time
planning path |planning| path
time length time length range of x for LRTA* optimal
D*Lite  |136826 |1 809 1 40737 | 314 lookahead |
1 28280 | 499 | 28293 | 363 Pamerjouonts s L0~400-1070-09 1 e of RTa
11 28698 315 | 28878 | 315 10008-10*014 3
21 20153 | 302 | 29477 | 311 1070-15-10*10 5 reneas
31 29615 299 10*107-10*197 7
41 " .. .. .. D exjouon s sow
" "
LRTA* vs D* Lite LRTA* vs D* Lite
= Safely explorable mazes of size 301 x 301 lookahead | Manhattan distance | octile distance
planning path |planning| path
time length time length
D* Lite 357417 | 21738 | 373561 | 21140
1 985362 | 1987574 | 628175 | 1259958
11 313998 | 337704 | 277974 | 272842
21 279856 | 205370 | 273280 | 177143
: : 31 310131 | 135554
Acyclic Mazes (generated with DFS)
h-values generally misleading 41 . . 348330 114917
larger lookaheads very helpful
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LRTA* vs D* Lite

1400000 T T T T T

1200000

D* Lite

1000000

800000

average total planning fime
‘average total number of movements (= path length) ~------

LRTA*

larger lookaheads decrease path length
. larger lookaheads increase planning time per planmnc episode
smaller path length decreases number of planning episodes

LRTA* vs D* Lite

1400000 T T T T T

average total number of movements (= path length) ~------

average total planning fime

600000 -

400000

200000 |

h-values are misleading

0 5 10 15 20 2 30 35 40 a5 50
state expansions per planning episode (= lookahead)

" S
LRTA* vs D* Lite

m Minimize sum of planning and plan-execution time:
planning time + x plan-execution time

planning time

oo | D* Lite LRTA* |
1000000 - | minimum planning planning time of LRTTA* =
time of LRTA* planning time of DT Lite
aooooo | |; b
600000 1
planfing time

400000

— pathler

I
200000 ¥ length

0 5 10 15 20 2 20 35 40 45 50

state expansions per planning episode (= lookahead)
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Table of Contents

= Speeding up path planning with A*
Incremental versions of A* (incremental heuristic search)
= Fringe Saving A* (FSA*)
= Adaptive A* (AA¥)
= Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
= Comparison of D* Lite and Adaptive A*

range of x for LRTA* optimal
lookahead

lanni I B ~ . Janni
pan-exeduion s fast £074+00-10-0-31 21 "ime of LRTA"

10-0.30.1(-0-16 25

10-0.15_10+0.29 33 increases
planning [s fast
plan-exedution is slow

D* Lite should be preferred for x > 10-027

"
Real-Time Adaptive A* (RTAA¥)

m We use AA* to create Real-Time Adaptive A* (RTAA*)
[Koenig and Likhachev, 2006], @ real-time heuristic search
method with similar properties as LRTA*. RTAA*
improves on LRTA* by updating the h-values much
faster although they are not quite as informed.

= Eager and Lazy Moving-Target Adaptive A* (MTAA*)
A* with weighted h-values

= Weighted A* (WA¥*)

= Anytime Repairing A* (ARA*)
Real-time versions of A* (real-time heuristic search)

= Learning-Real Time A* (LRTA*)

= Comparison of D* Lite and Learning-Real-Time A*

= Real-Time Adaptive A* (RTAA*)

Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search
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w|blo

so|lo|~|®

w|s|o|o|~
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ok |N|w|s

of

4-neighbor grid
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m LRTA* step 1: forward A* search
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m LRTA* step 1: forward A* search
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m LRTA* step 1: forward A* search

8/7|6|5]|4
716|543
6 5(4]3]|2
1
0

o

4-neighbor grid
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m LRTA* step 1: forward A* search
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4-neighbor grid
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Real-Time Adaptive A* (RTAA¥)

m LRTA* step 1: forward A* search
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4-neighbor grid
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 1: forward A* search

sl oo
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olkr|N|w|lhs

4-neighbor grid
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Real-Time Adaptive A* (RTAA¥)

m LRTA* step 1: forward A* search
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m LRTA* step 2: updating the h-values
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m LRTA* step 2: updating the h-values
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m LRTA* step 1: forward A* search

state about to be
7 ‘ 6|54 expanded

6‘54
1 | 2
2|1

[«

~

4-neighbor grid
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Real-Time Adaptive A* (RTAA¥)

m LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA*)

m LRTA* step 2: updating the h-values
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m LRTA* step 2: updating the h-values
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m LRTA* step 2: updating the h-values
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m LRTA* step 2: updating the h-values
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m LRTA* step 2: updating the h-values
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m LRTA* step 2: updating the h-values
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m LRTA* step 2: updating the h-values
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Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA*)

m LRTA* step 3: moving along the path m LRTA* step 3: moving along the path
8|7]6|5]4 8|7]6[5]4
7/6|5|4]|3 7|6|5|4]|3
6 43 | 2 6|5(4]|3]2
7 21 706 2|1
8 h&z 8(7)8 0

4-neighbor grid 4-neighbor grid

Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA¥)

m LRTA* step 3: moving along the path m LRTA* step 3: moving along the path
8|7]6|5]|4 8|7 ‘ 6 ‘ 54
7|/6|5|4]|3 7 3
65]4|3]|2 6 2
716 2|1 7 1
8|7|8 h 0 8 0

4-neighbor grid 4-neighbor grid
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Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA*)

Properties of LRTA* [Korf, 1990] m RTAA* step 1: forward A* search

m The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
informed over time.

= The h-values remain consistent.

m The agent reaches a goal state if the goal distance of
every state is finite.

m [f the agent is reset into the start state whenever it reaches
a goal state then the number of times that it does not
follow a cost-minimal trajectory from the start state to a
goal state is bounded from above by a constant if the cost
increases are bounded from below by a positive constant.
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Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA*)

m RTAA* step 1: forward A* search m RTAA* step 1: forward A* search

8|7|6|5)|4 8|7|6|5)|4
7/6|5[4]3 7/6|5|4|3
6|5|4|3|2 6|5[4[3|2
5|4 2|1 5| 4 21
4130 0 4,11(0 0
bold =g-value bold =g-value
4-neighbor grid regular = h-value 4-neighbor grid regular = h-value
" B "

Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA¥)

m RTAA* step 1: forward A* search m RTAA* step 1: forward A* search

8|7|6|5]|4 8|76 |5]|4
7|/6|5|4]|3 716|543
65432 665|432
5|4 2|1 512 2|1
2(1(0 0 2|1(0 0
bold =g-value bold =g-value
regular = h-value regular = h-value

4-neighbor grid 9 4-neighbor grid 9
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Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA*)

m RTAA* step 1: forward A* search m RTAA* step 1: forward A* search

8|7|6|5)|4 8|7|6|5)|4
716|543 7/6|5]4|3
6|5|4|3|2 618|432
3|2 2|1 3|2 2|1
2|1 &Z 2[1(0 0
bold =g-value bold =g-value
regular = h-value regular = h-value

4-neighbor grid 4-neighbor grid



" JE
Real-Time Adaptive A* (RTAA¥)

m RTAA* step 1: forward A* search
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Iy

o

oO|lr|(N| W s

bold =g-value

4-neighbor grid regular = h-value

Real-Time Adaptive A* (RTAA¥)

= RTAA* step 2: updating the h-values i anout to be expanded)

RTAA*: For each expanded state s: h,,(s) = f(geél) — g(s)
LRTA*: For each expanded state s: use Dijkstfa to determine h,,(s)

state about to be

8|7[6]|5]| 4]/ expanded
716 4 g-value =5

h-value =3
613141312] fyale =8
3|2 2|1

bold =g-value

regular = h-value
4-neighbor grid 9
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m RTAA* step 2: updating the h-values

state about to be

8|7|6|5]|4 / expanded

716 4 g-value =5
h-value =3

651432 f-value =8

5|6 21

6|78 0

4-neighbor grid
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m RTAA* step 1: forward A* search

state about to be

87|6|5]|4 / expanded

71654 g-value =5

s R S h-value =3
f-value =8

3| 211

2 0

bold =g-value

4-neighbor grid regular = h-value
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Real-Time Adaptive A* (RTAA¥)

m RTAA* step 2: updating the h-values

state about to be

87|65/ 4|/ expanded

71654 g-value =5
h-value =3

6 |8a|sa| 3|2 fvalue =8

83|82 2|1

82| 81(80 0

4-neighbor grid
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m RTAA* step 2: updating the h-values

olu|o| | o
Nlo|o|lo|~N
IS
N w| |
olkr|N|w|lhs

4-neighbor grid
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m RTAA* step 3: moving along the path m RTAA* step 3: moving along the path
8|7]6|5]4 8|7]6[5]4
7/6|5|4]|3 7|6|5|4]|3
6 43 | 2 6|5(4]|3]2
5 21 5(6 2|1
6 h&z 6(7)8 0

4-neighbor grid 4-neighbor grid

Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA¥)

m RTAA* step 3: moving along the path m RTAA* step 3: moving along the path
8|7]6|5]|4 8|7 ‘ 6 ‘ 54
7|/6|5|4]|3 7 3
65]4|3]|2 6 2
5(6 2|1 5 1
6|7|8 h 0 6 0

4-neighbor grid 4-neighbor grid
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Real-Time Adaptive A* (RTAA¥) Real-Time Adaptive A* (RTAA*)

Properties of RTAA* [Koenig and Likhachev, 2006] n RTAA* m LRTA*

m The h-values of the same state are monotonically
nondecreasing over time and thus indeed become more
informed over time.

m The h-values remain consistent.

m The agent reaches a goal state if the goal distance of
every state is finite.

m [f the agent is reset into the start state whenever it reaches
a goal state then the number of times that it does not
follow a cost-minimal trajectory from the start state to a
goal state is bounded from above by a constant if the cost
increases are bounded from below by a positive constant.

olo| o] N| o
~N|lo|u)o| N
ol | N W|»
| ~N| o N| o

4-neighbor grid



Real-Time Adaptive A* (RTAA¥)

m RTAA* m LRTA*
87‘6‘54 8|7]6|5]|4
7 3 7
3|2 3|2
2|1 7 201
6|78 0 878 0

4-neighbor grid
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Real-Time Adaptive A* (RTAA¥)

m Safely explorable mazes of size 151 x 151

Real-Time Adaptive A* (RTAA¥)

Real-Time Adaptive A* (RTAA*)

Relationship of RTAA* and LRTA*

m RTAA* with only one expanded state per A* search
behaves exactly like LRTA* with only one expanded state
per A* search.

m If RTAA* and LRTA* have the same h-values before they
update the h-values then the h-values of RTAA* after the
update are dominated by the h-values of LRTA*,

Real-Time Adaptive A* (RTAA¥)

RTAA* LRTA*
expansions | trajectory time per | expansions | trajectory | time per
length search length search
[ms] [ms]
1 248538 248538 0.20 248538 248538 0.27
9 104229 56708 2.01 87613 47291 2.80
17 85866 33853 4.37 79313 30470 6.25
25 89258 26338 6.86 82851 23270 10.23
33 96840 22022 9.41 92908 /@016 D 1431
41 105703 18629 11.99 /Iﬁ&& 17274 18.50
49 117036 @638 )446 113140 15398 22.67
57 128560 15367 16.83 125013 14285 26.69

RTAA* LRTA*
expansions |trajectory |time per |expansions | trajectory |time per
length search length search
[ms] [ms]
1 248538 248538 0.20 248538 248538 0.27
9 104229 56708 2,01 87613 47291 2.80
17 85866 33853 4.37 79313 30470 6.25
25 89258 26338 6.86 82851 23270 10.23
33 96840 22022 9.41 92908 20016 14.31
41 105703 18629 11.99 102788 17274 18.50
49 117036 16638 14.46 113140 15398 22.67
57|  128s60| (5367 D(36.83D 125013 14285 DC_26.69 D
T i T+7%

I -59%

Tom Mitchell Slide

m We are only at the beginning of exploring the theory and
applications of incremental heuristic search algorithms.
m This is a good topic for dissertations!
What other principles exist?
What are the properties of these principles?
How can these principles be combined?
How to broaden their applications?
= How to do memory-limited incremental heuristic search?
= How to do probabilistic incremental heuristic search?
What other problems can they be applied to?
= How to apply them to symbolic planning?
= How to apply them to constraint optimization?
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Summary

= Joint work with K. Daniel, A . Felner, S. Greenberg, W.
Halliburton, M. Likhachev, A. Mudgal, A. Nash, A.
Ranganathan, Y. Smirnov, X. Sun and C. Tovey

m Many thanks to Vadim Bulitko and Maxim Likhachev for
making their movies available

m Funded in part by NSF, IBM and JPL

m For more information, see idm-lab.org/projects.html
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