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Abstract
We prove semi-logarithmic inapproximability for a maximization problem called unique coverage:

given a collection of sets, find a subcollection that maximizes the number of elements covered exactly
once. Specifically, assuming that NP 6⊆ BPTIME(2nε

) for an arbitrary ε > 0, we prove O(1/ logσ n)
inapproximability for some constant σ = σ(ε). We also prove O(1/ log1/3−ε n) inapproximability, for
any ε > 0, assuming that refuting random instances of 3SAT is hard on average; and prove O(1/ log n)
inapproximability under a plausible hypothesis concerning the hardness of another problem, balanced
bipartite independent set. We establish an Ω(1/ log n)-approximation algorithm, even for a more
general (budgeted) setting, and obtain an Ω(1/ log B)-approximation algorithm when every set has
at most B elements. We also show that our inapproximability results extend to envy-free pricing, an
important problem in computational economics. We describe how the (budgeted) unique coverage
problem, motivated by real-world applications, has close connections to other theoretical problems
including max cut, maximum coverage, and radio broadcasting.

1 Introduction

In this paper we consider the approximability of the following natural maximization analog of set cover:

Unique Coverage Problem. Given a universe U = {e1, . . . , en} of elements, and given a
collection S = {S1, . . . , Sm} of subsets of U . Find a subcollection S ′ ⊆ S to maximize the
number of elements that are uniquely covered, i.e., appear in exactly one set of S ′.

We also consider a generalized form of this problem that is useful for several applications (detailed in
Section 2):

Budgeted Unique Coverage Problem. Given a universe U = {e1, . . . , en} of elements,
and a profit pi for each element ei; given a collection S = {S1, . . . , Sm} of subsets of U , and
a cost ci of each subset Si; and given a budget B. Find a subcollection S ′ ⊆ S, whose total
cost is at most the budget B, to maximize the total profit of elements that are uniquely
covered, i.e., appear in exactly one set of S ′.
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Motivation. Logarithmic inapproximability for minimization problems is by now commonplace, start-
ing in 1993 with a result for the celebrated set cover problem [42], which has since been improved to the
optimal constant [18] and to assume just P 6= NP [47], and has been used to prove other tight (not nec-
essarily logarithmic) inapproximability results for a variety of minimization problems, e.g., [33, 25, 13].
In contrast, for maximization problems, log n inapproximability seems more difficult, and relatively
few results are known. The only three such results of which we know are (1 + ε)/ lnn inapproxima-
bility for domatic number unless NP ⊆ DTIME(nO(log log n)) [21], 1/ log1/2−ε n inapproximability for
the maximum edge-disjoint paths problems unless NP ⊆ ZPTIME(npolylog n) [5, 6, 48], and 1/ log1−ε n
inapproximability for the maximum edge-disjoint cycles problems unless NP ⊆ ZPTIME(npolylog n) [38].
Although these problems are interesting, they are rather specific, and we lack a central maximization
problem analogous to set cover to serve as a basis for further reduction to many other maximization
problems.

The unique coverage problem defined above is a natural maximization version of set cover which
was brought to our attention from its applications in wireless networks. In one (simplified) application,
we have a certain budget to build/place some transmitters at a subset of some specified set of possible
locations. Our goal is to maximize the clients that are “covered” by (i.e., are within the range of) exactly
one transmitter; these are the clients that receive signal without interference; see Section 2.1 for details.
Another closely related application is the radio broadcast problem, in which a message (starting from
one node of the network) is to be sent to all the nodes in the network in rounds. In each round, some
of the nodes that have already received the message send it to their neighbors, and a node receives a
message only if it receives it from exactly one of its neighbors. The goal is to find the minimum number
of rounds to broadcast the message to all the nodes; see Section 2.5 for details. Therefore, every single
round of a radio broadcast can be seen as a unique coverage problem. These applications along with
others are studied in more detail in Section 2.

Known results. To the best of our knowledge, there is no explicit study in the literature of the unique
coverage problem and its budgeted version. However, the closely related radio broadcast problem has
been studied extensively in the past, and implicitly include an Ω(1/ log n) approximation algorithm for
the basic (unbudgeted) unique coverage problem; see Section 2.5 for details.

Concurrently and independently of our work, Guruswami and Trevisan [28] study the so called 1-in-k
SAT problem, which includes the unique coverage problem (but not its budgeted version) as a special
case. In particular, they show that there is an approximation algorithm that achieves an approximation
ratio of 1/e on satisfiable instances (in which all items can be covered by mutually disjoint sets).

Our results. On the positive side, we give an Ω(1/ log n)-approximation for the budgeted unique
coverage problem. We also show that, if each set has a bound B on the ratio between the maximum
profit of a set (where the profit of a set is the sum of profits of its elements) and the minimum profit of
an element, then budgeted unique coverage has an Ω(1/ log B)-approximation. Section 4 proves these
results.

The main focus of this paper is proving the following inapproximability results. We show that it is
hard to approximate the unique coverage problem within a factor of Ω(1/ logσ n), for some constant σ
depending on ε, assuming that NP 6⊆ BPTIME(2nε

) for some constant ε > 0. This inapproximability
can be strengthened to Ω(1/ log1/3−ε n) (for any constant ε > 0) under the assumption that refuting
random instances of 3SAT is hard on average (hardness of R3SAT as in [19]). The inapproximability can
be further strengthened to 1/(ε log n) for some constant ε > 0, under a plausible hardness hypothesis
about a problem called Balanced Bipartite Independent Set; see Hypothesis 3.22. Section 3 proves all
of these results.
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Our hardness results have other implications regarding the hardness of some well-studied problems.
In particular, for the problem of unlimited-supply single-minded (envy-free) pricing, a recent result
[27] proves an Ω(1/ log n) approximation, but no inapproximability result better than APX-hardness
is known. As we show in Section 2.2, our hardness results for the unique coverage problem imply the
same hardness-of-approximation bounds for this version of envy-free pricing. For the radio broadcast
problem, as we discuss in Section 2.5, there is essentially a gap of Ω(log n) between the approximation
and inapproximability factors (O(log2 n) vs. Ω(log n)). We believe that our technique to prove hardness
of unique coverage may shed some light on how to obtain a hardness of approximation beyond Ω(log n)
for this problem.

More generally, there are many maximization problems for which the best known approximation
factor is Ω(1/ log n)—see, e.g., [27, 9, 43]—and it is not known whether an Ω(1)-factor approximation
is possible. Often (as indeed is the case with unique coverage) these problems naturally decompose into
Θ(log n) subproblems, where at least an Ω(1/ log n) fraction of the optimum’s value comes from one of
these subproblems. In isolation, each subproblem can be approximated up to a constant factor, leading
to an Ω(1/ log n)-approximation algorithm for the whole problem. It may appear that this isolation
approach is too näıve to give the best possible approximation, and that by a clever combination of the
subproblems, it should be possible to get an Ω(1)-approximation algorithm. Our hardness results show
to the contrary that such intelligent combination can be hard, in the sense that the näıve isolation
approach cannot be substantially improved, and suggest how one might obtain better hardness results
for these problems.

2 Applications and Related Problems

2.1 Wireless Networks

Our original motivation for the budgeted unique coverage problem is a real-world application arising in
wireless networks.1 We are given a map of the densities of mobile clients throughout a service region
(e.g., the plane with obstacles). We are also given a collection of candidate locations for wireless base
stations, each with a specified building cost and a specified coverage region (typically a cone or a disk,
possibly obstructed by obstacles). This collection may include multiple options for base stations at the
same location, e.g., different powers and different orientations of antennae. The goal is to choose a set of
base stations and options to build, subject to a budget on the total building cost, in order to maximize
the density of served clients.

The difficult aspect of this problem (and what distinguishes it from maximum coverage—see Sec-
tion 2.4) is interference between base stations. In the simplest form, there is a limit k on the number
of base stations that a mobile client can reasonably hear without conflict between the signals; any
client within range of more than k base stations cannot communicate because of interference and thus
is not serviced. More generally, a mobile client’s reception is better when it is within range of fewer
base stations, and our goal is to maximize total reception. To capture these desires, the instance
specifies the satisfaction si of a client within range of exactly i base stations, such that s0 = 0 and
s1 ≥ s2 ≥ s3 ≥ · · · ≥ 0. The goal is to choose a set of base stations and options, again subject to the
budget constraint, in order to maximize the total satisfaction weighted by client densities.

When all si’s are equal, we just have the maximum coverage problem (Section 2.4). When s1 = 1
and si = 0 for all i 6= 1, this problem can be formulated as a budgeted unique coverage problem, by

1The application arises in the context of cellular networks at Bell Labs. The problem we consider here is a somewhat
simplified theoretical formulation of this application. In the real application, the interference patterns are more complicated,
but this problem seems to be the cleanest theoretical formulation.
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standard discretization of the density map. More generally, for any assignment of si’s, the problem can
be formulated as a generalization of budgeted unique coverage, the budgeted low-coverage problem. In
this problem, we are also given satisfaction factors si for an element being covered exactly i times, zero
for i = 0 and non-increasing for i > 0, and the goal is to maximize the total satisfaction, i.e., the sum
over all elements of the product of the element’s profit (here, density) and its satisfaction factor (the
appropriate si). We show that our approximation algorithms for the budgeted unique coverage problem
apply more generally to the budgeted low-coverage problem, yielding an Ω(1/ log n)-approximation
where n is the total number of options for base stations.

While similar problems about base-station placement have been considered before, very few works
consider maximization forms of the problem, which is the focus of this paper. Lev-Tov and Peleg [41]
consider the following very specialized form of the problem: base stations are unit disks in the plane,
and the goal is to maximize the number of uniquely receiving clients. For this problem they give an
nO(

√
n)-time algorithm, where n is the number of candidate disks. In the application of interest, we

believe that it is more natural to allow clients to be covered more than once, but reduce (or eliminate)
the satisfaction of these clients; this removal of an artificial constraint may enable substantially better
solutions to the problem. Other work [31, 22, 8] solves the problem of assigning powers to base stations
such that, when each client prefers its unique preferred base station, we do not violate the capacities of
the base stations, provided the number of clients is at most the total capacity of the network.

2.2 Envy-Free Pricing

Fundamental to “fair” equilibrium pricing in economics is the notion of envy-free pricing [49, 26].
This concept has recently received attention in computer science [1, 27], in the new trend toward an
algorithmic understanding of economic game theory; see, e.g., [14, 15] for related work.

The following version of envy-free pricing was considered in [27]. A single seller prices m different
items, I1, . . . , Im, each with a specified quantity (limited or unlimited supply). Each of n buyers bi

(1 ≤ i ≤ n) wishes to purchase a subset of items (a bundle), and the seller knows the maximum price
that each buyer is willing to pay for each bundle (the valuation). A buyer’s utility is the difference
between the valuation and the price of the bundle (sum of the prices of the items in the bundle) as
sold to the buyer. The seller must choose the item prices, price pi for item Ii, and which bundles are
sold to which buyers in such a way that is envy-free: each buyer should be sold a bundle that has the
maximum utility among all bundles. The goal is to maximize the seller’s profit, i.e., the total price of
the sold bundles.

Among other results, Guruswami et al. [27] give an Ω(1/(log n + log m))-approximation algorithm
for the unlimited-supply single-minded bidder problem, where each buyer bi considers only one par-
ticular bundle Bi and buys it if the cost is less than the valuation. They also give a constant-factor
hardness-of-approximation result for this problem, via a reduction from max-cut. Single-minded bid-
ders were considered before in the context of combinatorial auctions and mechanism design [7, 45, 40].
The unlimited-supply assumption in combination with single-mindedness simplifies the problem, as the
notion of envy does not play a role in this case. The general version of the envy-free pricing problem is
of course at least as difficult as this special case.

We now show that unlimited-supply single-minded (envy-free) pricing is as hard to approximate as
the unique coverage problem. The reduction is as follows. Each set Si in the collection (for the instance
of unique coverage) maps to an item Ii (for the instance of envy-free pricing). Each element ei of the
universe U maps to a buyer bi. Buyer bi has a valuation of 1 for one bundle, Bi, namely, the set of
items Ij that correspond to sets Sj containing the element ei. In this context, every price assignment
is envy-free, because we have unlimited supply for each item so the seller can always sell each buyer its
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desired bundle (if the buyer wants). Because the valuations are all 1, we can assume that all prices are
between 0 and 1. By randomized rounding (see Lemma A.1), we can assume that all prices are either
0 or 1, at a loss of a constant factor in profit. In this case, each buyer bi will buy its bundle precisely
if at most one item is priced at 1, and the rest of the items are priced at 0. If all items in a bundle are
priced at 0, then the seller makes no profit; if exactly one item is priced at 1 and the rest are priced at
0, then the seller profits by 1. Thus the effective goal is to assign prices of 0 or 1 in order to maximize
the number of bundles for which exactly one item is priced at 1, which is identical to the original unique
coverage problem.

Therefore our hardness-of-approximation results apply to unlimited-supply single-minded (envy-free)
pricing and establish semi-logarithmic inapproximability.

2.3 Max-Cut

Recall the max-cut problem: given a graph G, find a cut (S, S), where S ⊆ V (G) and S = V (G) − S,
that maximizes the number of edges with one endpoint in S and the other endpoint in S. The max-cut
problem can be seen to be equivalent to a special case of the unique coverage problem, in which every
element is in exactly two sets. Simply view every vertex as a set and every edge as an element.

Max-cut is 0.878567-approximable [24], 0.941177-inapproximable assuming P 6= NP [29], and 0.878568-
inapproximable assuming the Unique Games Conjecture [34]. From these results one can immediately
obtain constant-factor hardness for unique coverage, but in this paper we show that unique coverage is
in fact much harder.

2.4 Maximum Coverage

Our budgeted unique coverage problem is also closely related to the budgeted maximum coverage varia-
tion of set cover: given a collection of subsets S of a universe U , where each element in U has a specified
weight and each subset has a specified cost, and given a budget B, find a subcollection S′ ⊆ S of sets,
whose total cost is at most B, in order to maximize the total weight of elements covered by S′. For this
problem, there is a (1− 1/e)-approximation [30, 33], and this is the best constant approximation ratio
possible unless P = NP [18, 33].

At first glance, one might expect the greedy (1− 1/e)-approximation algorithm to work for unique
coverage as well: the only difference between the two problems is whether we count elements that are
covered (contained in at least one set) or uniquely covered (contained in exactly one set). Of course, we
show that the (in)approximability of the two problems is quite different. Indeed, a natural class of greedy
algorithms can be very bad for unique coverage. Consider the collection of sets Si = {i, k+1, k+2, . . . , n}
for i = 1, 2, . . . , k, with an infinite budget B. Consider a greedy algorithm that repeatedly chooses a set
to add to the cover, according to some (arbitrary) rule, with one of two stopping conditions: either when
the budget is exhausted, or when the number of uniquely covered elements would go down. Then the
approximation ratio is Θ(1/n) with the first stopping condition if k = 2, and with the second stopping
condition if k = n− 2.

2.5 Radio Broadcast

The unique coverage problem is closely related to a single “round” of the radio broadcast problem
[10]. This problem considers a radio network, i.e., a network of processors (nodes) that communicate
synchronously in rounds. In each round, a node can either transmit to all of its neighbors in an
undirected graph (representing the communicability between pairs of nodes), or not transmit. A node
receives a message if exactly one of its neighbors transmits a message in the round; otherwise the
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messages are lost because of radio interference. In the radio broadcast problem, initially one node has
a message, and the goal is to propagate this message to all nodes in the network.

Radio broadcast is one of the most important communication primitives in radio networks, and
the problem has been studied extensively in the literature. In summary, the current best algorithms
for approximating the minimum number of rounds are a (multiplicative) O(log2 n)-approximation [12,
10, 36, 35] and an additive O(log2 n)-approximation [23]. Alon, Bar-Noy, Linial, and Peleg [3] show
that, even for graphs with diameter 3, Ω(log2 n) rounds can be necessary. The problem has also been
considered in the context of distributed algorithms [39, 37] and low-energy ad-hoc wireless networks [4].
Elkin and Kortsarz prove a lower bound of inapproximability of a (multiplicative) Ω(log n) [16] and an
additive Ω(log2 n) [17] assuming NP 6⊆ BPTIME(nO(log log n)).

The unique coverage problem (but not the budgeted version) can be considered as a single round of
a greedy algorithm for the radio broadcast problem, which maximizes the number of nodes that receive
the message in each step. Specifically, consider the bipartite subgraph where one side consists of all
nodes that currently have the message and the other side consists of all nodes that do not yet have the
message. In one round of the greedy algorithm, the goal is to find a subset of nodes in the first side
to transmit in order to maximize the number of nodes in the second side that (uniquely) receive the
message. This problem is equivalent to unique coverage, viewing nodes on the first side as sets and the
nodes on the second side as elements of the universe.

One implication of the radio broadcasting work on unique coverage is an implicit Ω(1/ log n)-
approximation algorithm for the (unbudgeted) unique coverage problem. Namely, there is a randomized
broadcasting algorithm that, in each round, guarantees transmission to an Ω(1/ log r) fraction of the r
neighbors of nodes that currently have the message. Because r is an obvious upper bound on the number
of successful transmissions of the message, this result is an Ω(1/ log r) = Ω(1/ log n) approximation in
this special case. See, e.g., [10].

To avoid the possibility of misunderstanding, let us point out that the known hardness-of-approximation
results for radio broadcast [16, 17] do not give (neither explicitly nor implicitly) any useful hardness-
of-approximation result for the unique coverage problem (not even a constant factor). Likewise, our
hardness-of-approximation results for the unique coverage problem do not by themselves imply any new
hardness-of-approximation results for radio broadcast. However, they do introduce a component that
may be useful in future hardness-of-approximation results for the radio broadcast problem, as they show
that the greedy broadcast policy might need to lose a semi-logarithmic factor already in a single round
(a fact not used in [16, 17]).

3 Inapproximability

In this section we prove that it is hard to approximate unique coverage within a factor of Ω(1/ logc n)
for some constant c, 0 < c ≤ 1. Our main result is a general reduction from a variation of Balanced
Bipartite Independent Set (BBIS) problem (defined below) to the unique coverage problem. From this
reduction and the known hardness results for BBIS, we can derive an O(1/ logc n) hardness for unique
coverage. Under a plausible assumption about the hardness of BBIS, this bound can be improved to
O(1/ log n).

We consider the natural graph-theoretic model of the unique coverage problem. Define the bipartite
graph H(V ∪ W,F ) with a vertex vi ∈ V for every set Si ∈ S and a vertex wj ∈ W for every element
ej ∈ U , and with an edge f = (vi, wj) ∈ F precisely if ej ∈ Si. Then the unique coverage problem
asks to find a subset V ′ ⊆ V such that the subgraph induced by V ′ ∪W has the maximum number of
degree-1 vertices in W . We call the degree-1 vertices uniquely covered by the vertices in V ′.
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Definition 3.1 Given a bipartite graph G(A ∪ B,E) with |A| = |B| = n, the Balanced Bipartite
Independent Set (BBIS) problem asks to find the largest value of k such that there are sets Ã ⊆ A and
B̃ ⊆ B with |Ã| = |B̃| = k where the subgraph G̃ of G induced by Ã ∪ B̃ is an independent set.

As detailed below, this problem has known hardness results (see [19, 32]). In order to prove hardness
of the unique coverage problem, we define a variation of BBIS. Then we give a reduction from this
variation of BBIS. Before stating the main result, we need to define what we mean by an (a, b)-BIS
(Bipartite Independent Set). Let G(A ∪B,E) be a given a bipartite graph. If the subgraph G̃ induced
by Ã ⊆ A and B̃ ⊆ B, with |Ã| = a and |B̃′| = b, is an independent set then we call it an (a, b)-BIS.

Definition 3.2 Given bipartite graph G(A ∪ B,E) with |A| = |B| = n, and given parameters γ, γ′, δ,
and δ′ satisfying 0 < γ′ < γ ≤ 1 and 0 ≤ δ < δ′ ≤ 1, the BBIS(γ, γ′, δ, δ′) problem is to distinguish
between two cases:

1. Yes instance: G has an (nγ , n/ logδ n)-BIS.

2. No instance: G has no (nγ′ , n/ logδ′ n)-BIS.

The main theorem of this section is the following:

Theorem 3.3 There is a polynomial-time probabilistic reduction from BBIS to the unique coverage
problem with the following properties. Given a bipartite graph G(A ∪ B,E) with |A| = |B| = n and
given constants γ, γ′, δ, and δ′ satisfying 0 < γ′ < γ ≤ 1 and 0 ≤ δ < δ′ ≤ 1, the algorithm constructs in
randomized polynomial time an instance H(V ∪W,F ) of unique coverage with |W | = Θ((γ− γ′)n log n)
and |V | = n satisfying the following two properties:

1. If G is a Yes instance of BBIS(γ, γ′, δ, δ′), then H has a solution of size Ω((γ − γ′)n log1−δ n).

2. If G is a No instance of BBIS(γ, γ′, δ, δ′), then H has no solution of size O((γ − γ′)n log1−δ′ n).

Corollary 3.4 Assuming that BBIS(γ, γ′, δ, δ′) is hard for constants γ, γ′, δ, δ′, we get a hardness of
approximation within a factor of Ω(1/ logδ′−δ n) for unique coverage.

This theorem is proved in Section 3.1. Next we show how the known hardness results for BBIS can
be used to derive explicit hardness results for unique coverage. In particular, the following theorems
follow from Theorem 3.3.

Theorem 3.5 Let ε > 0 be an arbitrarily small constant. Assuming that NP 6⊆ BPTIME(2nε
), it

is hard to approximate the unique coverage problem within a factor of Ω(1/ logσ n) for some constant
σ = σ(ε).

Feige [19] makes the following hypothesis about average-case hardness of 3SAT.

R3SAT hardness hypothesis [19]: Let φ be a 3SAT formula with n variables and m = ∆n
clauses where every clause is generated independently at random by selecting three literals
independently at random. For arbitrary large constant ∆, there is no polynomial time
algorithm that accepts if φ is satisfiable and refutes at least half of the times for those
formulas that are not satisfiable.

Under this hypothesis, we can prove the same hardness result with an explicit value for σ:
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Theorem 3.6 Assuming R3SAT hardness hypothesis, unique coverage is hard to approximate within a
factor of Ω(1/ log1/3−σ n) for an arbitrarily small constant σ > 0.

Under a stronger (yet plausible) hardness assumption, explained in Section 3.2, we close the gap
between the approximation factor and the hardness of approximation, up to the constant multiplicative
factor, by proving an O(1/ log n)-hardness result for unique coverage.

Theorem 3.7 Assuming a specific hardness of factor Ω(nε) for BBIS for some constant ε > 0 (Hypoth-
esis 3.22), it is hard to approximate the unique coverage problem within a factor of Ω(1/ log n) where
the constant in the Ω term depends on ε.

Theorems 3.5 to 3.7 are proved in Section 3.2.

3.1 Reduction from BBIS to Unique Coverage and Proof of Theorem 3.3

Construction: Consider an instance of BBIS(γ, γ′, δ, δ′): a bipartite graph G(A ∪ B,E) with |A| =
|B| = n, and constants γ, γ′, δ, and δ′ with 0 < γ′ < γ ≤ 1 and 0 ≤ δ < δ′ ≤ 1. We construct a graph
H(V ∪W,F ) as an instance of unique coverage as follows.

First we construct a random graph G′(A′ ∪ B′, E′) where A′ is a copy of A and B′ is a copy of B.
For every a ∈ A′ and b ∈ B′ we place the edge (a, b) in E′ with probability 1/nγ . So the expected
degree of every vertex in G′ is n1−γ .

Now to construct H, let V be a copy of A. Then with γ′′ = γ−γ′

7 , create p = γ′′ log n copies of B,
named W1, . . . ,Wp. We define a bipartite graph Hi(V ∪ Wi, Fi), for every 1 ≤ i ≤ p, and at the end
H =

⋃p
i=1 Hi. Note that |V | = n and |W | = pn. The set of edges Fi (in Hi) consists of the union of two

edge sets: (i) the edges of the random graph G′ induced on the vertices V ∪Wi (V as A′ and Wi as B′),
plus (ii) the edges of another random graph Gi where Gi is defined recursively as follows. Initially, G1 is
G induced on V ∪W1. For every i ≥ 2, Gi is obtained from Gi−1 by deleting every edge independently
with probability 1

2 . The edges of G′ in Hi are called type-1 edges and the rest of the edges of Hi (which
come from Gi) are called type-2 edges of Hi. In a solution to V ′ ⊆ V for instance H, we say a vertex of
W is uniquely covered by a type 1 (type 2) edge if that vertex is adjacent to exactly one vertex of V ′

and that edge is a type 1 (type 2) edge.
Proof overview: Here is the general idea of the proof. Intuitively, the balanced independent sets

in G relate to the elements that will be uniquely covered by type-1 edges in H. The removal of edges
(randomly) from Gi to Gi+1 is to ensure that not too many edges are uniquely covered by type-2 edges.
More specifically, we will show that the number of vertices uniquely covered by type-2 edges (edges that
were originally in G) in this instance is O(n). So let us focus on the vertices uniquely covered by type-1
edges (i.e., edges from the random graph G′ in each Hi).

First suppose that G is a Yes instance, i.e., it has a (nγ , n
logδ n

)-BIS, say A∗ ∪ B∗ (with A∗ ⊆ A

and B∗ ⊆ B). Because the expected degree of every vertex in G′ is n1−γ , the expected number of
type-1 edges coming out of A∗ (in G′) is n, and because these edges are selected at random, we expect
a fraction of 1/e of the vertices in B′ (in G′) and in particular a fraction of 1/e of the vertices in B∗ to
have degree 1. This implies that the type-1 edges in each Hi uniquely cover a linear number of vertices
of B∗ (at least in expectation), i.e., it gives a solution of size Ω( n

logδ n
) in Hi. Because H =

⋃p
i=1 Hi and

p = γ′′ log n, we have a total of Ω(γ′′n log1−δ n) vertices uniquely covered by type-1 edges.
Now suppose that G is a No instance, i.e., it has no (nγ′ , n/ logδ′ n)-BIS. We will show that, although

we delete edges to construct Gi from Gi−1, the last (and most sparse) graph Gp will not have “too large”
a bipartite independent set with high probability. This property will be used to show that, in every
graph Hi, the number of vertices uniquely covered by type-1 edges in any solution of H is at most
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O(n/ logδ′ n) with high probability. Thus, the total number of vertices uniquely covered in H (by type-
1 or type-2 edges) in any solution is at most O(γ′′n log1−δ′ n+n) with high probability. Because δ′ ≤ 1,
this creates a hardness gap of Ω(1/ logδ′−δ n).

Now we give the details of the proof of Theorem 3.3. We use the following simplified version of the
Chernoff bound:

Lemma 3.8 (Chernoff bound) For independent 0/1 random variables X1, . . . , Xn, X =
∑n

i=1 Xi,
µ = E[X], and any 0 < δ < 1, we have

Pr[|X − E[X]| > δµ] ≤ e−δ2µ/3.

Lemma 3.9 For every selection of vertices V ′ ⊆ V as a solution for instance H, the number of vertices
uniquely covered by type-2 edges in any solution to H is O(n) with high probability.

Proof: Let b ∈ B be an arbitrary vertex (in G) and assume that w1, . . . , wp are its corresponding vertices
in W1, . . . ,Wp. Consider any subset V ′ ⊆ V . Assuming that V ′ is a solution to unique coverage, we We
compute the probability that exactly i vertices out of w1, . . . , wp are uniquely covered by type-2 edges
(of the vertices of V ′). Assume that j is the first index for which wj is uniquely covered by a type-2
edge and wj , . . . , wj+i−1 are the copies that are uniquely covered by a type-2 edge. Because every edge
is deleted with probability 1

2 from Gt to Gt+1 (for 1 ≤ t < p), the probability that a single edge survives
i rounds is 2−i. Let Xb be the number of copies of b (from w1, . . . , wp) that are uniquely covered by a
type-2 edge (by the vertices of V ′) and define X =

∑
b∈B Xb. Therefore,

E[X] =
∑
b∈B

E[Xb] = n
p∑

i=1

i

2i
≤ 3n.

Using the Chernoff bound (Lemma 3.8), we obtain

Pr[X ≥ 6n] ≤ e−4n.

Because there are 2n subsets V ′, a union bound shows that the probability that, for at least one of
those sets, the number of vertices in W that are uniquely covered by type-2 edges is ≥ 6n is at most
2n · e−4n ≤ e−Ω(n). This completes the proof of the lemma. 2

Completeness: Suppose that G is a Yes instance, i.e., it has a (nγ , n/ logδ n)-BIS, say, A∗ ∪ B∗

where A∗ ⊆ A and B∗ ⊆ B. Assume that V ′ and W ′
i are the subsets of vertices in Hi and A′′ and

B′′ are the subsets of vertices in G′ corresponding to A∗ and B∗, respectively. Because Gi is obtained
from G by deleting edges, there are no type-2 edges in V ′ ∪ W ′

i in Hi (for any 1 ≤ i ≤ p). Therefore,
every vertex w ∈ W ′

i (for all values of 1 ≤ i ≤ p) has degree 1 if and only if the corresponding vertex
w ∈ B′′ (in G′) has degree 1. For every w ∈ B′′, let Xw be a 0/1 random variable that is 1 if and only
if w ∈ B′′ has degree 1 (and so w is uniquely covered by a type-1 edge in Hi for all 1 ≤ i ≤ p). With
X =

∑
w∈B′′ Xw,

E[X] =
∑

w∈B′′

Pr[Xw = 1]

= |B′′| ·
(
|A′′|
1

)
· 1
nγ

(
1− 1

nγ

)|A′′|−1

≥ |B′′|
e

≥ n

e logδ n
.
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A simple application of the Chernoff bound shows that Pr[X ≤ n
6 logδ n

] ≤ e−Ω(n/ logδ n). Therefore,
if we select the subset of vertices in V (in H) corresponding to A∗ (in G) then, with high probability,
there are at least p · n

6 logδ n
= Ω(γ′′n log1−δ n) vertices in W uniquely covered (by type-1 edges). Thus,

we have proved the following:

Corollary 3.10 If G is a Yes instance then, with high probability, H has a unique cover of size
Ω(γ′′n log1−δ n).

Soundness: Suppose that G is a No instance, i.e., it has no (nγ′ , n/ logδ′ n)-BIS. Our goal is to
show that, with high probability, every solution to unique coverage for H has size O(γ′′n log1−δ′ n).
Because by Lemma 3.9 the number of vertices uniquely covered by type-2 edges is O(n), we only need
to prove that, with high probability, the number of vertices uniquely covered by type-1 edges is at most
O(γ′′n log1−δ′ n).

Consider any solution to unique coverage for H. By construction of the Hi’s, it is easy to see that,
for every vertex b ∈ B (in G), if the corresponding vertex in Wi is uniquely covered by a type-1 edge
in Hi, then all the corresponding vertices of b in the Wj ’s, for i ≤ j ≤ p, are also uniquely covered by
a type-1 edge. Therefore, if we prove that the number of vertices uniquely covered by type-1 edges in
Hp is upper bounded (with high probability) by O(n/ logδ′ n), then because p = γ′′ log n, we obtain the
claimed upper bound for the total number of vertices uniquely covered by type-1 edges.

Suppose that V ′ ⊆ V and W ′ ⊆ Wp are such that all the vertices in W ′ are uniquely covered by
V ′, and the edges that cover them are all type-1 edges. It is easy to see that V ′ ∪ W ′ must be a
bipartite independent set in Gp (otherwise there is some type-2 edge incident to some vertex w ∈ W ′

and therefore w is not uniquely covered).

Lemma 3.11 If V ′ ∪W ′ (with V ′ ⊆ V and W ′ ⊆ Wp) is a bipartite independent set in Gp, then with
high probability, either |V ′| < n(γ+γ′)/2 or |W ′| < 2n/ logδ′ n, i.e., Gp has no (n(γ+γ′)/2, 2n/ logδ′ n)-BIS.

Proof: Suppose that V ′ ⊆ V and W ′ ⊆ Wp satisfy |V ′| = n(γ+γ′)/2 and |W ′| = 2n/ logδ′ n. Partition V ′

into q = n(γ−γ′)/2 subsets V ′
1 , . . . , V

′
q , each of size nγ′ . Let A∗

i and B∗ (1 ≤ i ≤ q) be the subset of vertices
of A and B (in G) corresponding to V ′

i and W ′, respectively. Consider the subgraph of G induced by
A∗

i∪B∗. Because |A∗
i | = nγ′ , |B∗| = 2n/ logδ′ n, and because G has no (nγ′ , n/ logδ′ n)-BIS, it follows that

at least n/ logδ′ n vertices in B∗ must be connected to the vertices in A∗
i . Therefore, the total number of

edges in the subgraph induced by B∗∪
⋃q

i=1 A∗
i is at least q ·n/ logδ′ n = Ω(n1+(γ−γ′)/2/ logδ′ n). Because

G1 = G, V ′ ∪ W ′ forms an independent set in Gp only if all of these Ω(n1+(γ−γ′)/2/ logδ′ n) edges are
deleted while Gp is created. Because in creating Gi+1 from Gi, edges are deleted with probability 1

2 , we
have

Pr[V ′ ∪W ′ is an independent set in Gp] ≤ (1− 2−p)Ω(n1+(γ−γ′)/2/ logδ′ n). (1)

The number of such subsets V ′ ∪W ′ is(
n

n(γ+γ′)/2

)(
n

2n/ logδ′ n

)
. (2)

Thus, using (1) and (2), the expected number of bipartite independent sets V ′ ∪ W ′ with |V ′| =
n(γ′+γ)/2 and |W ′| = 2n/ logδ′ n in Gp is at most

(1− 2−p)Ω(n1+(γ−γ′)/2/ logδ′ n)

(
n

n(γ+γ′)/2

)(
n

2n/ logδ′ n

)
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≤ (1− n−(γ−γ′)/7)Ω(n1+(γ−γ′)/2/ logδ′ n) ·
(

en

n(γ+γ′)/2

)n(γ+γ′)/2

·
(

en

2n/ logδ′ n

)2n/ logδ′ n

≤ e−Ω(n1+(γ−γ′)/2−(γ−γ′)/7/ logδ′ n) · eO(n(γ+γ′)/2 log n) · eO(n log log n/ logδ′ n)

≤ e−Ω(n1+(γ−γ′)/3) · eO(n/ logδ′/2 n)

≤ e−Ω(n1+(γ−γ′)/3).

Therefore, with probability 1 − e−Ω(n1+(γ−γ′)/3), for every bipartite independent set V ′ ∪ W ′ of Gp,
either |V ′| < n(γ+γ′)/2 or |W ′| < 2n/ logδ′ n, i.e., Gp has no (n(γ+γ′)/2, 2n/ logδ′ n)-BIS. 2

Lemma 3.12 With high probability, for every selection of vertices V ′ ⊆ V as a solution to instance H,
for every Hi (1 ≤ i ≤ p), the number of vertices uniquely covered by type-1 edges is at most O(n/ logδ′ n).

Proof: Let V ′ ⊆ V be any fixed solution to instance H. Clearly, for every vertex uniquely covered by
a type-1 edge in Wi, its corresponding copy is also uniquely covered (by a type-1 edge) in Wj for every
i ≤ j ≤ p. So let us focus on the number of vertices uniquely covered by type-1 edges in Hp. If W ′

p ⊆ Wp

is the set of vertices uniquely covered by type-1 edges in Hp (by V ′), then V ′ ∪W ′
p is a (|V ′|, |W ′

p|)-BIS
in Gp. We are going to use Lemma 3.11 to prove that, with high probability (for all possible choices of
V ′), the size of W ′

p is small.
First consider the case that |V ′| ≥ n(γ+γ′)/2 and V ′,W ′

p form a (|V ′|, |W ′
p|)-BIS in Gp. By Lemma 3.11,

the probability that V ′ ≥ n(γ+γ′)/2 and |W ′
p| ≥ 2n/ logδ′ n is at most e−Ω(n1+(γ−γ′)/3). The number of

solutions to H (i.e. subsets V ′) that satisfy the bound on V ′ is clearly at most 2n. Thus, the proba-
bility that there is a solution V ′ such that V ′ ≥ n(γ+γ′)/2 and |W ′

p| ≥ 2n/ logδ′ n and V ′,W ′
p forms a

(|V ′|, |W ′
p|)-BIS in Gp is at most

2n · e−Ω(n1+(γ−γ′)/3) = e−Ω(n1+(γ−γ′)/3). (3)

Now consider the case that |V ′| < n(γ+γ′)/2 (and of course |W ′
p| ≤ n). In this case, we show that,

with high probability, |W ′
p| ≤ O(n1−(γ−γ′)/3), which is clearly O(n/ logδ′ n). Consider an arbitrary

vertex w ∈ W ′
p and let Xw be a 0/1 random variable that is 1 if and only if w is incident to exactly one

type-1 edge. With X =
∑

w∈W ′
p
Xw,

E[X] =
∑

w∈W ′
p

Pr[Xw = 1]

=
∑

w∈W ′
p

(
|V ′|
1

)
· 1
nγ

(
1− 1

nγ

)|V ′|−1

< n · n(γ+γ′)/2 · 1
nγ

≤ n1−(γ−γ′)/2.

Using the Chernoff bound,
Pr[X ≥ n1−(γ−γ′)/3] ≤ e−Ω(n1−(γ−γ′)/6).

The number of solutions V ′ such that |V ′| < n(γ+γ′)/2 is at most
( n
n(γ+γ′)/2

)
≤
(

en
n(γ+γ′)/2

)n(γ+γ′)/2

≤

eO(n(γ+γ′)/2·log n). Thus, the probability that there is a solution V ′ such that |V ′| < n(γ+γ′)/2 and
|W ′

p| > O(n1−(γ−γ′)/3) and V ′,W ′
p forms a (|V ′|, |W ′

p|)-BIS in Gp is at most

11



eO(n(γ+γ′)/2·log n) · e−Ω(n1−(γ−γ′)/6) ≤ e−Ω(n1−(γ−γ′)/6), (4)

since 1 > 2γ
3 + γ′

3 .
Therefore, using (3) and (4), with high probability over all possible solutions V ′, |W ′

p| ≤ O(n/ logδ′ n)
as wanted. 2

Corollary 3.13 If G is a No instance then, with high probability, every solution to unique coverage
for H has size at most O(γ′′n log1−δ′ n).

Proof: From Lemma 3.12 and because p = γ′′ log n, it follows that, with high probability, the number
of vertices uniquely covered by type-1 edges is at most O(γ′′n log1−δ′ n). Combining this bound with
Lemma 3.9 shows that, if G is a No instance (i.e., has no (nγ′ , n/ logδ′ n)-BIS), then the size of any
solution to unique coverage for H is at most O(γ′′n log1−δ′ n). 2

Proof of Theorem 3.3: Follows easily from Corollaries 3.10 and 3.13 and the assumption that
BBIS(γ, γ′, δ, δ′) is hard. 2

3.2 Proving Specific Hardness Results for Unique Coverage

In this subsection we prove Theorems 3.5, 3.6, and 3.7. In order to prove these theorems, we will prove
some hardness results for BBIS(γ, γ′, δ, δ′) and then combine them with Theorem 3.3.

Recently, two hardness results for BBIS were proved by Feige [19] and Khot [32] under different
complexity assumptions. Feige [19] proved a constant factor hardness result for BBIS under R3SAT
hardness hypothesis (for more details see [19]):

Theorem 3.14 [19] For every ε > 0 and a given bipartite graph G(A ∪ B,E) with |A| = |B| = n,
deciding between the following two cases is hard, under the complexity assumption that refuting random
instances of 3SAT is hard on average:

1. G has a BBIS of size at least (1
4 − ε)n,

2. Every BBIS of G has size smaller than (1
8 + ε)n.

More recently, Khot [32] proved a similar result, for some (unspecified) constants α and β instead
of (1

4 − ε) and (1
8 + ε), respectively, but under a more plausible assumption that NP problems do not

have subexponential-time algorithms. More specifically, he proved the following PCP theorem:

Theorem 3.15 [32] For every ε > 0 there is an integer d = O(1
ε log(1

ε )) such that the following holds:
there is a PCP verifier for SAT instances of size n such that:

1. The proof Π for the verifier has size 2nε
.

2. The verifier queries a set Q of size d bits from Π.

3. Every query bit is uniformly distributed over Π.

4. Completeness: If SAT is a Yes instance, Π is a correct proof, and Π0 is the set of 0-bits in the
proof (it contains half the bits from the proof), then:

Pr[Q ⊆ Π0] ≥ (1−O(
1
d
))

1
2d−1

,

where the probability is taken over the random tests of the verifier.
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5. Soundness: If SAT is a No instance and Π∗ is any set of half the bits from Π then:

Pr[Q ⊆ Π∗] =
1
2d

±O(
1

220d
).

A direct application of Theorem 3.15 implies the following (see [32]) 2:

Theorem 3.16 Let ε > 0 be an arbitrary constant and d = O(1
ε log(1

ε )). Consider an instance Φ of
SAT with n variables. Let α = 3

4
1

2d−1 and β = (1− 1
25d )α. We can construct a bipartite graph G(A∪B,E)

as an instance of BBIS from the PCP verifier of Theorem 3.15 with |A| = |B| = N where N = 2nε
such

that the following hold:

• Yes instance: If Φ is a Yes instance then G has a BBIS of size αN .

• No instance: If Φ is a No instance then no BBIS of G has size βN .

Corollary 3.17 Assuming that NP 6⊆ BPTIME(2nε
), it is hard to distinguish between the Yes and No

cases in the above theorem.

In order to get a hardness for BBIS(γ, γ′, δ, δ′), we need a stronger version of Theorem 3.16. For
this, we boost the gap in Theorem 3.16 using the standard technique of graph products (see for example
[20, 11]). Note that Theorem 1.2 in [32] amplifies the gap in Theorem 3.16 using the same technique.
However, we require a gap which is asymmetric with respect to the sizes of sets selected on different
parts, i.e., the bipartite independent set is not necessarily balanced. In particular, the gap created on
one side (say A) is polynomial whereas the gap created on the other side (that is B) is polylogarithmic.
Our proof is very similar to that of Theorem 1.2 in [32]. We need the following definition for our proof.

Definition 3.18 For a bipartite graph G(A ∪ B,E) and integers KA,KB ≥ 2 the bipartite graph
G(KA,KB) is defined as follows:

• Vertex set of GKA,KB is A′ ∪ B′, where A′ ∩ B′ = ∅, A′ = AKA, and B′ = BKB , i.e., A′ and B′

are the sets of all KA-tuples from A and all KB-tuples from B, respectively.

• Two vertices (a1, . . . , aKA
) ∈ A′ and (b1, . . . , bKB

) ∈ B′ are adjacent in G(KA,KB) if and only if
∃i, j, 1 ≤ i ≤ KA, 1 ≤ j ≤ KB, (ai, bj) ∈ E.

Suppose that G(A ∪ B,E) is a bipartite graph with |A| = |B| = N , 0 < α < 1 is a constant, and
KA,KB are integers such that

1
αKA

,
1

αKB
∈ O(N). (5)

Let G∗(A∗ ∪ B∗, E∗) be a random subgraph of GKA,KB (A′ ∪ B′, E′) with |A∗| = |B∗| = M where
M = N3 and every vertex of GKA,KB is selected uniformly at random but with different probabilities
for A′ and B′.

Lemma 3.19 If G(A∪B,E) has a BBIS of size αN then, with high probability, G∗ has a (1
2αKAM, 1

2αKBM)-
BIS.

2Khot defines the bi-clique problem and proves this theorem for bi-clique.
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Proof: Let AI ⊆ A and BI ⊆ B be subsets that form a BBIS of size αN in G. Clearly, the subgraph of
GKA,KB induced on AKA

I ∪BKB
I is an independent set. Because the vertices of G∗ are selected randomly,

each vertex of A∗ belongs to AKA
I with probability αKA . Also, each vertex of B∗ belongs to BKB

I with
probability αKB . Therefore, E[|A∗∩AKA

I |] = αKA |A∗| and E[B∗∩BKB
I ] = αKB |B∗|. Using the Chernoff

bound and (5):

Pr
[
|A∗ ∩AKA

I | ≤ 1
2
αKA |A∗|

]
≤ 2−Ω(N2).

Similarly, with high probability, |B∗ ∩BKB
I | ≥ 1

2αKB |B∗|. Therefore, with high probability, G∗ has
a (1

2αKA |A∗|, 1
2αKB |B∗|)-BIS. 2

Lemma 3.20 If G(A ∪ B,E) has no BBIS of size βN then, with high probability, G∗ does not have
any (2βKAM, 2βKBM)-BIS.

Proof: First, note that every maximal bipartite independent set of GKA,KB is of the form AKA
I ∪BKB

I

where AI ∪ BI is a bipartite independent set in G. Consider a fixed maximal bipartite independent
set of GKA,KB , say AKA

I ∪ BKB
I . Either |AKA

I | < βKANKA or |BKB
I | < βKBNKB . Without loss

of generality, assume |AKA
I | < βKANKA . Because the element in A∗ and B∗ are selected uniformly

randomly: E[|A∗ ∩AKA
I |] < βKA |A∗|. Using the Chernoff bound:

Pr
[
|A∗ ∩AKA

I | ≥ 2βKA |A∗|
]
≤ 2−Ω(N2).

Almost identical argument applies if |BKB
I | < βKBNKB . Because there are at most 2O(N) possible maxi-

mal bipartite independent sets in G, using union bound, the probability of having a (2βKA |A∗|, 2βKB |B∗|)-
BIS in G∗ is in o(1). 2

Let Φ be an instance of SAT and let ε > 0 be an arbitrary small constant. Define d, α, β, and
G(A ∪ B,E) as in Theorem 3.16, with |A| = |B| = N . Also let M = N3, KA = − (1−γ) log M

log α , and

KB = − δ log log M
log α , for some constants 0 < γ, δ < 1 such that 1/αKA ∈ O(N). Construct the graph

GKA,KB and the random subgraph of it G∗(A∗ ∪ B∗, E∗) where |A∗| = |B∗| = M as explained above.
By Theorem 3.16 and Lemmas 3.19 and 3.20 it follows that:

1. If Φ is a Yes instance then, by Theorem 3.16, G has a BBIS of size αN . So, by Lemma 3.19,
with high probability, G∗ has a (1

2αKAM, 1
2αKBM)-BIS. By definition of KA and KB, this is a

(Mγ

2 , M
2 logδ M

)-BIS in G∗.

2. If Φ is a No instance then, by Theorem 3.16, G has no BBIS of size βN . So, by Lemma 3.20, with
high probability, G∗ has no (2βKAM, 2βKBM)-BIS. With ` = logα(β/α), γ′ = γ − `(1 − γ), and
δ′ = δ(1 + `), this means that, with high probability, G∗ has no (2Mγ′ , 2M

logδ′ M
)-BIS.

Therefore, we have proved the following amplified version of Theorem 3.16.

Theorem 3.21 Let G(A∪B,E) be a given bipartite graph with |A| = |B| = n, together with an arbitrary
small constant ε > 0, and d = O(1

ε log(1
ε )), α = 3

4
1

2d−1 , β = (1− 1
25d )α. Furthermore let 0 < γ′ < γ ≤ 1

and 0 ≤ δ < δ′ ≤ 1 be such that δ is any constant and with ` = logα(β/α): γ′ = γ − `(1 − γ), and
δ′ = δ(1+`). Then it is hard to distinguish between the following two cases unless NP ⊆ BPTIME(2nε

):

1. G has a (nγ

2 , n
2 logδ n

)-BIS.
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2. G has no (2nγ′ , 2n

logδ′ n
)-BIS.

Proof of Theorem 3.5: Given a bipartite graph G(A ∪ B,E) with |A| = |B| = n as an instance
of bipartite independent set and parameters ε, α, β, δ, γ, δ′, and γ′ as in Theorem 3.21 we construct
H(V ∪ W,F ) as explained in the proof of Theorem 3.3. We choose δ = 1

1+` where ` = logα(β/α).
Therefore δ′ = 1 and by Corollaries 3.10 and 3.13 unless NP ⊆ BPTIME(2nε

) it is hard to approximate
unique coverage within a factor of Ω(1/ logδ′−δ n). Because δ′ − δ = `

1+` and ` is a function of ε, this
completes the proof of the theorem. 2

Proof of Theorem 3.6: If our starting point to prove Theorem 3.21 is Theorem 3.14 instead of
Theorem 3.16 then we have α = 1

4 − ε and β = 1
8 + ε, and ` = 1

2 + ε′ where ε′ = ε′(ε) is a constant.

Then the same argument as in the proof of Theorem 3.5 proves a hardness of O(1/ log
1/2+ε′

1+1/2+ε′ n) which
is O(1/ log

1
3
−σ n) for some σ = σ(ε). 2

We now turn to the proof of Theorem 3.7. It is based on the following hypothesis.

Hypothesis 3.22 Given a bipartite graph G(A∪B,E) with size |A| = |B| = n as an instance of BBIS
and for absolute constants 1 ≥ γ > γ′ > 0 it is hard to distinguish the following two cases:

1. G has an (nγ ,Ω(n))-BIS.

2. G has no (nγ′ , n/ log n)-BIS.

Now we show how Hypothesis 3.22 would imply an O(1/ log n)-hardness for unique coverage.

Proof of Theorem 3.7: Given a bipartite graph G(A ∪ B,E) with size |A| = |B| = n and 1 ≥ γ >
γ′ > 0 we construct H(V ∪W,F ), the instance of unique coverage, as in reduction of Theorem 3.3.

• If G has an (nγ ,Ω(n))-BIS then H has a unique coverage of size Ω((γ − γ′)n log1−δ n) with δ = 0,
which is Ω(n log n).

• If G has no (nγ′ , n/ log n)-BIS then every unique coverage solution for H has size at most O((γ −
γ′)n log1−δ′ n) with δ′ = 1, which is O(n).

This implies that, assuming Hypothesis 3.22, it is hard to distinguish between the two cases above, and
hence hard to approximate unique coverage within a factor of Ω(1/ log n). 2

The authors suspect that Hypothesis 3.22 will be difficult to refute in the near future. The BBIS
problem appears to be at least as hard to approximate as maximum independent set in general graphs.
(This is not a theorem, but merely an empirical observation concerning currently known approximation
algorithms.) For the latter problem, despite extensive work, no known polynomial-time algorithm
can distinguish between graphs with independent sets of size Ω(n/k) and graphs with no independent
set of size n1/k, where k is some sufficiently large constant. It is plausible (though not certain) that
any refutation of Hypothesis 3.22 would lead to major improvements in the approximation ratio for
maximum independent sets in general graphs.

4 Approximation Algorithms

4.1 Ω(1/ log m)-Approximation

In this section we develop our main logarithmic approximation algorithm:
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Theorem 4.1 There is an Ω(1/ log ρ) = Ω(1/ log m) approximation algorithm for the budgeted unique
coverage problem, where ρ is one more than the ratio of the maximum number of sets in which an
element appears over the minimum number of sets in which an element appears.

Proof: First we find an (1 − 1/e)-approximate solution S ′ to the maximum coverage problem with
the same universe, profits, sets, costs, and budget [33]. Because the total profit of uniquely covered
elements is always at most the total profit of all covered elements, the optimum solution value OPT to
the unique coverage problem must be at most the optimum solution value to the maximum coverage
problem. Thus the total profit of covered elements in S ′ is within an 1− 1/e factor of an upper bound
on OPT. Symbolically, if p(S) denotes the total profit of elements in set S and

⋃
S ′ denotes the union⋃

S∈S′ S, then p(
⋃
S ′) ≥ (1− 1/e) OPT.

We cluster the elements in
⋃
S ′ into lg ρ groups as follows: an element is in group i if it is covered by

between 2i and 2i+1−1 sets. The group i∗ with the most total profit must have at least a 1/ lg ρ fraction
of p(

⋃
S ′) ≥ (1 − 1/e) OPT. Now we randomly discard sets from S ′, keeping a set with probability

1/2i∗ . We claim that, in expectation, the resulting collection S ′′ uniquely covers a constant fraction of
the elements in group i∗, which is Ω(OPT / log ρ).

Fix an element x in group i∗, and suppose that it was covered d times in S ′, 2i∗ ≤ d ≤ 2i∗+1 − 1.
The probability that x is covered exactly once by S ′′ is (d/2i∗)(1 − 1/2i∗)d−1. (There is a factor of d
for the choice of which set covers x, a 1/2i∗ probability that this set is kept, and a 1− 1/2i∗ probability
that each of the d − 1 other sets is discarded.) By our bounds on d, the probability that x is covered
exactly once by S ′′ is at least (1− 1/2i∗)2

i∗+1 ≥ 1/e2.
The expected total profit of elements covered exactly once by S ′′ is at least

∑
{px/e2 | x in group i∗},

which is 1/e2 times the total profit of elements in group i∗, which we argued is at least (1−1/e) OPT / lg ρ.
Therefore the expected profit of our randomized solution is at least (1/e2−1/e3) OPT / lg ρ = Ω(OPT / log ρ).

We can derandomize this algorithm by the standard method of conditional expectation [44]. For
each set in S ′, we decide whether to keep it in S ′′ by trying both options, and choosing the option that
maximizes the conditional expectation of the total profit of elements in group i∗ uniquely covered by S ′′.
The conditional expectations can be computed easily in polynomial time according to the analysis above.

2

The approximate solution computed by this algorithm is not only within an Ω(1/ log m) factor of
the optimal unique coverage, but also within an Ω(1/ log m) of the optimal maximum coverage. As a
consequence, we also obtain an Ω(1/ log m)-approximation for the more general problem of budgeted
low-coverage described in Section 2.1.

4.2 Approximation with Bounded Set Size

In this section we consider the unique coverage problem with a bound B on the maximum set size,
or more generally, the budgeted unique coverage problem with a bound B on the ratio between the
maximum profit of a set and the minimum profit of an element (recall that the profit of a set is the sum
of profits of its elements). In both cases we obtain an approximation ratio of Ω(1/ log B). In particular,
B ≤ n, so this algorithm is an Ω(1/ log n)-approximation.

Theorem 4.2 There is an Ω(1/ log B)-approximation algorithm for instances of the budgeted unique
coverage problem in which the minimum element profit is 1 and the total profit of every set is at most B.

Proof: As before, we first find an (1−1/e)-approximate solution S ′ to the maximum coverage problem
with the same universe, profits, sets, costs, and budget [33]. As argued in the proof of Theorem 4.1,
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p(
⋃
S ′) ≥ (1 − 1/e) OPT, where p(S) denotes the total profit of elements in set S,

⋃
S ′ denotes the

union
⋃

S∈S′ S, and OPT denotes the optimum solution value to the unique coverage problem.
We modify S ′ to be minimal by removing any sets that do not uniquely cover any elements. Thus

the set of covered elements remains the same, so the same upper bound on OPT holds. Let X be the
set of elements covered by exactly one set of S ′. Because S ′ is minimal, each set must uniquely cover at
least one element in X, so |X| ≥ |S ′|. Because every element has profit at least 1, p(X) ≥ |X| ≥ |S ′|.

If p(
⋃
S ′) ≤ 2|S ′| ≤ 2p(X), then S ′ is already an Ω(1)-approximate solution to the budgeted unique

coverage problem. If p(
⋃
S ′) > 2|S ′|, then we claim that the total profit of elements covered at most B

times by S ′ is at least p(
⋃
S ′)/2. Otherwise, the elements covered more than B times by S ′ would be

at least p(
⋃
S ′)/2, and thus the total profit of the sets would satisfy

∑
S∈S′ p(S) > Bp(

⋃
S ′)/2 > B|S ′|,

contradicting that every set in S (and thus S ′) has total profit at most B. Now we apply Theorem 4.1
above to the elements covered at most B times by S ′, for which ρ ≤ B. Thus we obtain an Ω(1/ log B)-
approximation for this subproblem, whose optimal solution value is at least (1− 1/e) OPT /2. 2

We note that the unique coverage problem when every set has cardinality at most B = 3 and every
element appears in exactly two sets (ρ = 1), then the problem is exactly max-cut in maximum-degree-3
graphs, so the problem is APX-hard even in this restricted case [46, 2].
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A Randomized Rounding for Envy-Free Pricing

In this section we prove the necessary lemma about randomized rounding needed in Section 2.2 for the
reduction from unique coverage to unlimited-supply single-minded envy-free pricing.

Lemma A.1 In the setting of single-minded envy-free pricing, suppose all valuations are 1. Then there
is a price assignment that uses prices of just 0 and 1 and whose profit is within a constant factor of
optimal.

Proof: Consider the optimal assignment of prices pi to items Ii. If any price pi is larger than 1, we set
it to 1 at no cost. Now we round by setting the new price p′i of item Ii to 1 with probability 1

2pi and to
0 otherwise. We claim that, if ui =

∑
Ij∈Bi

pj < 1 (i.e., the optimal solution profits ui from buyer bi),
then the probability that the seller profits 1 from buyer bi is at least 1

2eui.
The probability that the seller profits 1 from buyer bi, who desires bundle Bi, is

∑
Ij∈Bi

1
2pj

∏
Ij 6=Ik∈Bi

(1−
1
2pk). This quantity can be rewritten as

∏
Ik∈Bi

(1− 1
2pk)

∑
Ij∈Bi

1
2pj/(1− 1

2pj). Because
∑

Ij∈Bi
pj ≤ 1

2 ,
it is easy to show that the quantity is minimized when all of the pj ’s, Ij ∈ Bi, are equal. Thus the
probability of profit from bi is at least (1 − 1

2ui/|Bi|)|Bi| 1
2ui/(1 − 1

2ui|Bi|). Because 1 − x ≥ e−2x for
0 ≤ x ≤ 1

2 , this probability is at least e−ui 1
2ui ≥ e−1 1

2ui as claimed.
Thus the expected total profit in the modified solution is at least

∑
i

1
2eui/e, which is 1

2e times the
profit of the optimal solution. We can derandomize this algorithm by the standard method of conditional
expectation [44]; see the proof of Theorem 4.1. 2
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