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Abstract

We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG)
into a minimum number of cliques. The problem is NP-hard and various constant factor ap-
proximations are known, with the current best ratio of 3. Our main result is a weakly robust
polynomial time approximation scheme (PTAS) for UDGs expressed with edge-lengths, it either
(i) computes a clique partition or (ii) gives a certificate that the graph is not a UDG; for the case
(i) that it computes a clique partition, we show that it is guaranteed to be within (1+ε) ratio of
the optimum if the input is UDG; however if the input is not a UDG it either computes a clique
partition as in case (i) with no guarantee on the quality of the clique partition or detects that it
is not a UDG. Noting that recognition of UDG’s is NP-hard even if we are given edge lengths,

our PTAS is a weakly-robust algorithm. Our algorithm can be transformed into an O
(

log∗

n

ε
O(1)

)

time distributed PTAS.
We consider a weighted version of the clique partition problem on vertex weighted UDGs

that generalizes the problem. We note some key distinctions with the unweighted version, where
ideas useful in obtaining a PTAS breakdown. Yet, surprisingly, it admits a (2+ε)-approximation
algorithm for the weighted case where the graph is expressed, say, as an adjacency matrix. This
improves on the best known 8-approximation for the unweighted case for UDGs expressed in
standard form.

Keywords: Computational Geometry, Approximation Algorithms.

1 Introduction

A standard network model for homogeneous networks is the unit disk graph (UDG). A graph
G = (V,E) is a UDG if there is a mapping f : V 7→ R

2 such that ‖f(u)− f(v)‖2 ≤ 1⇔ {u, v} ∈ E;
f(u)1 models the position of the node u while the unit disk centered at f(u) models the range of
radio communication. Two nodes u and v are said to be able to directly communicate if they lie in
the unit disks placed at each others’ centers. There is a vast collection of literature on algorithmic
problems studied on UDGs. See the survey [2].

Clustering of a set of points is an important subroutine in many algorithmic and practical
applications and there are many kinds of clusterings depending upon the application. A typical
objective in clustering is to minimize the number of “groups” such that each “group” (cluster)
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1f(.) is called a realization of G. Note that G may not come with a realization.
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satisfies a set of criteria. Mutual proximity of points in a cluster is one such criterion, while points
in a cluster forming a clique in the underlying network is an extreme form of mutual proximity. We
study an optimization problem related to clustering, called the minimum clique partition problem
on this UDGs.

Minimum clique partition on unit disk graphs (MCP): Given a unit disk graph, G =
(V,E), partition V into a smallest number of cliques.

Despite being theoretically interesting, MCP has been useful for other problems. For example,
[17] shows how to use a small-sized clique partition of a UDG to construct a large collection of
disjoint (almost) dominating sets. They [18] also show how to obtain a good quality realization
of UDGs, and an important ingredient in their technique was to construct a small-sized clique
partition of the graph. It is shown [12] how to use a small-sized clique partition to obtain sparse
spanners with bounded dilation, which also permit guaranteed geographic routing on a related
class of graphs. [14] employ MCP to obtain an O(log∗ n) time distributed algorithm which is an
O(log n)-approximation for the facility location problem on UDGs without geometry; they also
give an O(1) time distributed O(1)-approximation to the facility location problem on UDGs with
geometry also using MCP. Recently, [15] shows how to obtain a first O(1) approximation to the
domatic partition problem on UDGs using MCP.

On general graphs, the clique-partition problem is equivalent to the minimum graph coloring
on the complement graph which is not approximable within n1−ε, for any ε > 0, unless P=NP
[22]. MCP has been studied for special graph classes. It is shown to be MaxSNP-hard for cubic
graphs and NP-complete for planar cubic graphs [5]; they also give a 5/4-approximation algorithm
for graphs with maximum degree at most 3. MCP is NP-hard for a subclass of UDGs, called unit
coin graphs, where the interiors of the associated disks are pairwise disjoint [6]. Good approxi-
mations, however, are possible on UDGs. The best known approximation is due to [6] who give
a 3-approximation via a partitioning the vertices into co-comparability graphs, and solving the
problem exactly on them. They give a 2-approximation algorithm for coin graphs. MCP has also
been studied on UDGs expressed in standard form. For UDGs expressed in general form [18] give
an 8-approximation algorithm.

Our Results and Techniques:

In this paper we present a weakly-robust2 PTAS for MCP on a given UDG. For ease of exposition,
first we prove this (in Section 2.1) when the UDG is given with a realization, f(.). The holy-grail is
a PTAS when the UDG is expressed in standard form, say, as an adjacency matrix. However, falling
short of proving this, we show (in Section 2) how to get a PTAS when the input UDG is expressed
in standard form along with associated edge-lengths corresponding to some (unknown) realization.
The algorithm is weakly-robust in the sense that it either (i) computes a clique partition of the
input graph or (ii) gives a certificate that the input graph is not a UDG. If the input is indeed a
UDG then the algorithm returns a clique partition (case (i)) which is a (1+ε)-approximation (for a
given ǫ > 0). However, if the input is not a UDG, the algorithm either computes a clique partition
but with no guarantee on the quality of the solution or returns that it is not a UDG. Therefore, this

2An algorithm is called robust if it either computes an answer or declares that the input is not from the restricted
domain; if the algorithm computes an answer then it is correct [20]. We call our algorithm weakly-robust in that it
always computes a clique partition or declares that the input is not from the restricted domain (i.e. not a UDG); if
the input happens to be a UDG then the answer is a (1 + ǫ)-approximate clique partition. Otherwise, it still returns
a clique partition but there is no guarantee on the quality of the clique partition.
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algorithm should be seen as a weakly-robust PTAS. The generation of a polynomial-sized certificate
which proves why the input graph is not a UDG should be seen in the context of the negative result
of [1] which says that even if edge lengths are given, UDG recognition is NP-hard. We show (in
Section 4) how this algorithm can be modified to run in O( log∗ n

εO(1) ) distributed rounds.
In Section 3 we explore a weighted version of MCP where we are given a vertex weighted UDG.

In this formulation, the weight of a clique is the weight of a heaviest vertex in it, and the weight
of a clique partition is the sum of the weights of the cliques in it. We note some key distinctions
between the weighted and the unweighted versions of the problem and show that the ideas that
help in obtaining a PTAS do not help in the weighted case. Yet, surprisingly, we show that the
problem admits a (2+ε)-approximation algorithm for the weighted case using only adjacency. This
result should be contrasted with the unweighted case where it is not clear as to how to remove the
dependence on the use of edge-lengths, which was crucially exploited in deriving a PTAS.

We use OPT to denote an optimum clique partition and opt to denote the size (or, in Section 3,
weight) of an optimum clique partition. We also use n and m to denote the number of points (i.e.
nodes of G = (V,E)) and the number of edges, respectively.

2 A Weakly-Robust PTAS for UDG Expressed with Edge-lengths

For simplicity, we first describe an algorithm when the input is given with a geometric realization.

2.1 A PTAS for UDGs With a Geometric Realization

We assume the input UDG is expressed with geometry of its points. Using a randomly shifted grid
whose cell size is k× k (for k = k(ε)) we partition the plane. Since the diameter of the convex hull
of each clique is at most 1, for large values of k, a fixed clique is cut by this grid (and therefore
belongs to at most four cells) with probability at most 2

k . Therefore, if we could efficiently compute
an optimal clique partition in each k×k cell, then taking the union of these cliques yields a solution
whose expected size at most (1 + ε)opt. We can easily repeat this process O(log n) times to obtain
a solution with size at most (1 + ε)opt w.h.p. We call the algorithm MinCP1, formalized below.

Theorem 1. Algorithm MinCP1 (given below) returns, in poly-time, a clique partition of size at
most (1 + ε)opt w.h.p.

Algorithm 1 MinCP1(G, ε)

1: Let k = ⌈16ε ⌉. Place a grid whose squares have size k × k, on the plane. Call it G0,0.
2: Pick (a, b) ∈ [0, k) × [0, k) uniformly at random.
3: Shift G0,0 by (a, b) to get Ga,b which is a grid shifted a units to the right and b units above. Ga,b

induces a random partition of V into points in k × k regions.
4: for all k × k regions of Ga,b do
5: Obtain an optimal partition Ci for point-set P in the k × k square.
6: Let Ca,b =

⋃t
i=1 Ci be the union of clique partitions obtained for the points in each k×k square.

7: Repeat “Step 2–6” ⌈log n⌉ times and return the smallest Ca,b over the ⌈log n⌉ independent trials.

We begin with a simple observation.
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Observation 2. The diameter of the convex hull of every clique is at most 1.

In the next subsection we argue how to perform “Step 5” of the algorithm MinCP1 efficiently.
Assuming this, we prove Theorem 1. For a random shift Ga,b and a clique C, we say that Ga,b “cuts”
C if some line of Ga,b crosses an edge of C. It is easy to see that:

Pr
[

C is cut
by Ga,b

]

≤ Pr
[

a vertical or horizontal line of Ga,b

crosses an edge of C

]

≤ 2

k

Thus, the expected number of cliques in an optimal partition that are “cut” by Ga,b is at most
2
k · opt. So, by Markov’s inequality, with probability at least 1/2 there are no more than 4

k · opt
cliques cut by Ga,b. Therefore, if we compute an optimal solution for each of the k×k grid cells and
take the union of them, with probability at least 1/2 we get an excess of at most 4× 4

k · opt cliques
with respect to optimum since each clique that is “cut” by the grid can be counted up to four
times. If we repeat this process for ⌈log n⌉ independent random trials, we get that with probability
at least 1− 1

n the size of the solution we obtain is at most opt + 16
k · opt ≤ (1 + ε)· opt.

2.1.1 Optimal Clique Partition of a UDG in a k × k Square

Unlike optimization problems such as maximum (weighted) independent set and minimum domi-
nating set, where one can “guess” only a small-sized subset of points to obtain an optimal solution,
the combinatorial complexity of any single clique in an optimal solution can be high. Therefore, it
is unclear as to how to “guess” even few cliques, each of which may be large. A result of Capoyleas
et al. [4] comes to our aid; a version of their result says that there exists an optimal clique partition
where the convex hulls of the cliques are pair-wise non-overlapping. This phenomenon of separa-
bility of an optimal partition, coupled with the fact that the size of an optimal partition in a small
region is small, allows us to circumvent the above difficulty. The following simple lemma bounds
the size of an optimal solution of an instance of bounded diameter.

Lemma 3. Any set of points P in a k × k square has a clique partition of size O(k2).

Proof. Place a grid whose cells have size 1/2×1/2. This grid induces a vertex partition where each
block in the partition consists of the points that share a common grid cell (and therefore form a
clique).

We state a variant of a result by Capoyleas et al. [4] according to which there exists an optimal
clique partition where the convex hulls of the cliques are non-overlapping, that is, for any pair of
cliques in an optimal partition, there is a straight line which separates them.3

Theorem 4 ([4]). For a clique partition in which the convex hulls of the cliques are pairwise non-
overlapping, there is a straight line lij that separates a pair of cliques Ci, Cj such that all vertices
of Ci are on one side of lij , and all the vertices of Cj are on the other side of lij . (see Figure 1).
Furthermore, this partition can be computed in poly-time.

The general structure of the algorithm for computing optimal solution of a k × k cell is as
follows. In order to reduce the search space for separator lines, one can find a characterization of
the separator lines with some extra properties. Let Ci, Cj be a pair of cliques each having at least

3 We gave a proof of this theorem [19] before it was brought to our attention that Capoyleas, Rote, and Woeginger
[4] proved this much earlier in a different context.
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Figure 1: (a) An optimal clique partition of UDG points in a bounded region; each light convex
shape corresponds to a clique in the clique partition. The heavy line-segments represent segments
of the corresponding separators. (b) A close-up view of Ci and Cj . A separator line, lij is shown
which separates Ci and Cj , corresponding to the segment in (a). Note that l′ij is also a separator
for Ci and Cj and l′ij is passing through points x and y in Ci.

two points. Let Lij be the (infinite) set of distinct separator lines. Since Ci and Cj are convex,
there exists at least one line in Lij that goes through two points of Ci (or Cj) (see Figure 1(b)).
Therefore, given two cliques Ci and Cj in a clique partition (with pairwise non-overlapping parts)
there is a separator line lij that goes through two vertices of one of them, say u, v ∈ Ci such that
all the vertices of Cj are on one side of this line and all the vertices of Ci are on the other side or on
the line. Since there are O(k2) cliques in an optimal partition of k× k cell, there are O(k4) pairs of
cliques in the partition and their convex hulls are pairwise non-overlapping. In fact, a more careful
analysis shows that the dual graph of the regions is planar (see Figure 1(a)); thus there are O(k2)
distinct straight lines, each of which separate a pair of cliques in our optimal solution. For every
clique Ci, the separator lines lij (for all values of j) define a convex region that contains clique
Ci. So once we guess this set of O(k2) lines, these convex regions define the cliques. We will try
all possible (non-equivalent) sets of O(k2) separator lines and check if each of the convex regions
indeed defines a clique and if we obtain a clique partition. This can be performed in O(nk2

) time
(see [4] for more details).

2.2 A PTAS for UDGs With Edge-Lengths Only

We weaken our assumption on having access to geometry; we assume only edge-lengths are known
with respect to a feasible (unknown) realization of the UDG. We prove that,

Theorem 5. Given a graph G with associated (rational) edge-lengths and ε > 0, there is a poly-
nomial time algorithm which either computes a clique partition of G or gives a certificate that G
is not a UDG. If G is a UDG, the size of the clique partition computed is a (1 + ε)-approximation
of the optimum clique partition (but there is no guarantee on the size of the clique partition if the
input graph is not UDG).

The high level idea of the algorithm is as follows. As in the geometric case, we first decompose
the graph into bounded diameter regions and show that if we can compute the optimum clique
partition of each region then the union of these clique partitions is within (1 + ε) fraction of the
optimum. There are two main difficulties here for which we need new ideas. The first major
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difference is that, we cannot use the random shift argument as in the geometric case. To overcome
this, we use a ball growing technique that yields bounded diameter regions. This is inspired by
[13] who give local PTAS for weighted independent set, and minimum dominating set for UDGs
without geometry. The second major difference is that, even if we have the set of points belonging
to a bounded region (a ball) it is unclear as to how to use the separation theorem to obtain an
optimal solution for this instance. Note that we are not guaranteed to have a UDG as input. We
show that we can either compute a clique partition for each subgraph induced by a ball, or give a
certificate that the subgraph is not UDG. If it is a UDG, then our clique partition is optimal but
if it is not a UDG there is no guarantee on its size.

Let Br(v) = {u : d(u, v) ≤ r}, where by d(u, v) we mean the number of edges on a shortest path
from u to v. So, Br(v) can be computed using a breadth-first search (BFS) tree rooted at v. We
describe our decomposition algorithm which partitions the graph into bounded diameter subgraphs
in Algorithm 2. We will describe a procedure, called OPT-CP which, given a graph induced by
the vertices of Br(v) and a parameter ℓ = poly(r), runs in time |Br(v)|O(ℓ2) ≤ nO(ℓ2) and either
produces a certificate that Br(v) is not a UDG or computes a clique partition of Br(v); this clique
partition is optimum if Br(v) is a UDG. We only call this procedure for “small” values of r.

Algorithm 2 MinCP2(G, ε)

1: C ← ∅; β ← ⌈c0
1
ε log 1

ε⌉; ℓ← c1β
2.

{where c0 is the constant in Lemma 9, and c1 is the constant in inequality (1).}
2: while V 6= ∅ do
3: Pick an arbitrary vertex v ∈ V
4: r ← 0

{Let Cr(v) denote a clique partition of Br(v) computed by calling OPT-CP}
5: while |Cr+2(v)| > (1 + ε)· |Cr(v)| do
6: r ← r + 1
7: if (r > β) or (OPT-CP(Br(v)) returns “not a UDG”) then
8: return “G is not a UDG” and produce Br(v) as the certificate
9: C ← C ∪ Cr+2(v)

10: V ← V \Br+2(v)
11: return C as our clique partition

Clearly, if the algorithm returns C on “Step 11”, it is a clique partition. Let us assume that
each ball Br(v) we consider induces a UDG and that the procedure OPT-CP returns an optimal
clique partition Cr(v) for ball Br(v). We show that in this case |C| ≤ (1+ε)opt. We also show that
for any iteration of the outer “while–loop”, “Step 5” of MinCP2 is executed in time polynomial in
n, by using edge-lengths instead of Euclidean coordinates.

For an iteration i of the outer loop, let vi be the vertex chosen in “Step 3” and let r∗i be the
value of r for which the “while-loop” on “Step 5” terminates, that is, |Cr∗i +2(vi)| ≤ (1+ε) · |Cr∗i

(vi)|.
Let k be the maximum number of iterations of the outer loop. The following lemmas show that two
distinct balls grown around vertices are far from each other, that the union of the optimal solutions
to the balls form a lower-bound on the cost of the entire instance, and that the cost of C and opt
is within a factor (1 + ε) of opt.

Lemma 6. For every i 6= j, every pair v ∈ Br∗i
(vi) and u ∈ Br∗j

(vj) are non-adjacent.
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Proof. Without loss of generality, let i < j. Therefore, every vertex in Br∗j
(vj) is at a level larger

than r∗i + 2 of the BFS tree rooted at vi, otherwise it would have been part of the ball Br∗i +2(vi)
thus removed from V . Note that in a BFS tree rooted at vi, there cannot be an edge between a
level r and r′ with r′ ≥ r + 2. Thus there cannot be an edge between a node in v ∈ Br∗i

(vi), which
has level at most r∗i and a node u ∈ Br∗j

(vj), which would been at a level at least r∗i + 3 in the BFS
tree rooted at vi.

Next, we derive a lower-bound on opt.

Lemma 7. opt ≥
k
∑

i=1

|Cr∗i
(vi)|

Proof. Note that Br∗i
(vi) is obtained by constructing a BFS tree rooted at vertex vi up to some

depth r∗i . According to Lemma 6, there is no edge between any two nodes v ∈ Br∗i
(vi) and

u ∈ Br∗j
(vj). So, no single clique in an optimum solution can contain vertices from distinct Br∗i

(vi)

and Br∗j
(vj). Consider the subset of cliques in an optimal clique partition of G that intersect Br∗i

(vi)
and call this subset OPTi. The argument above shows that OPTi is disjoint from OPTj . Also,
each OPTi contains all the vertices in Br∗i

(vi). Since Cr∗i
(vi) is an optimal clique partition for

Br∗i
(vi), |OPTi| ≥ |Cr∗i

(vi)|. The lemma immediately follows by observing that OPTi and OPTj

are disjoint.

The next lemma relates the cost of our solution to opt.

Lemma 8. If |Cr∗i +2(vi)| ≤ (1 + ε)· |Cr∗i
(vi)|, then

∣

∣

∣

∣

∣

k
⋃

i=1

Cr∗i +2(vi)

∣

∣

∣

∣

∣

≤ (1 + ε)· opt

Proof.

∣

∣

∣

∣

∣

k
⋃

i=1

Cr∗i +2(vi)

∣

∣

∣

∣

∣

=

k
∑

i=1

∣

∣Cr∗i +2(vi)
∣

∣ ≤ (1 + ε)·
k
∑

i=1

∣

∣Cr∗i
(vi)
∣

∣ ≤ (1 + ε)· opt

Finally, we show that the inner “while-loop” terminates in Õ(1
ε ), so r∗i ∈ Õ(1

ε ). Obviously, the
“while-loop” on “Step 5” terminates eventually, so r∗i exists. By definition of r∗i , for all smaller
values of r < r∗i : |Cr(vi)| > (1 + ε)· |Cr−2(vi)|. Since diameter of Br(vi) is O(r), if Br(v) is a UDG,
there is a realization of it in which all the points fit into a r × r grid. Thus, |Cr(vi)| ∈ O(r2). So
for some α ∈ O(1):

α· r2 > |Cr(vi)| > (1 + ε)· |Cr−2(vi)| > . . . > (1 + ε)
r
2 · |C0(vi)| = O(

(√
1 + ε

)r
),

when r is even (for odd values of r we obtain |Cr(vi)| > (1 + ε)
r−1
2 · |C1(vi)| ≥ O(

(√
1 + ε

)r−1
).

Therefore we have:

Lemma 9. There is a constant c0 > 0 such that for each i: r∗i ≤ c0/ε· log 1/ε.

In the next subsection, we show that the algorithm OPT-CP, given Br(v) and an upper bound
ℓ on |Cr(v)|, either computes a clique partition or declares that the graph is not UDG; the size
of the partition is optimal if Br(v) is a UDG. The algorithm runs in time nO(ℓ2). By the above
arguments, if Br(v) is a UDG then, there is a constant c1 > 0 such that:

|Cr(v)| = O(r∗i
2) ≤ c1 ·

c2
0

ε2
log2 1

ε
. (1)
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We can set ℓ = ⌈c1
c20
ε2 log2 1

ε ⌉ for any invocation of OPT-CP as an upper bound, where c1 is the

constant in O(r∗i
2). So, the running time of the algorithm is nÕ(1/ε4).

2.3 An Optimal Clique Partition for Br(v)

Here we present the algorithm OPT-CP that given Br(v) (henceforth referred to as G′) and an
upper bound ℓ on the size of an optimal solution for G′, either computes a clique partition of it or
detects that it is not a UDG; if G′ is a UDG then the partition is optimal. The algorithm runs in
time nO(ℓ2). Since, by Lemma 9, ℓ is a constant in each call to this algorithm, the running time of
OPT-CP is polynomial in n. Our algorithm is based on the separation theorem [4]. Even though
we do not have a realization of the nodes on the plane, assuming that G′ is a UDG, we show how
to apply the separation theorem [4] as in the geometric setting. We use node/point to refer to a
vertex of G′ and/or its corresponding point on the plane for some realization of G′. We will use
the following technical lemma.

Lemma 10. Suppose we have four mutually adjacent nodes p, a, b, r and their pairwise distances
with respect to some realization on the Euclidean plane. Then there is a poly-time procedure that
can decide if p and r are on the same side of the line that goes through a and b or are on different
sides.

Proof. First, we describe how to detect if the quadrilateral on these four points is convex or concave.
If the quadrilateral is concave, then one of the points will be inside the triangle formed by the other
three. There are three possible cases: r is inside, p is inside, or one of a or b is inside (see
Figure 2(c)-(e)). There are four triangles each of which is over three of these four points. The
quadrilateral is concave if the sum of the areas of three of these triangles is equal to the area of
the fourth triangle. Equivalently, it is convex if sum of areas of two of the triangles is equal to the
sum of areas of the other two. Given a triangle with edge lengths x, y, z, using Heron’s formula,
the area of the triangle is equal to

√

2(x2y2 + y2z2 + z2x2)− (x4 + y4 + z4))/4. So the area of a
triangle is of the form

√
A where A is a polynomial in terms of lengths of the edges of the triangle.

Suppose that the areas of the four triangles over these four points are
√

A1,
√

A2,
√

A3, and
√

A4.
We need to check if the sum of two is equal to the sum of the other two and we would like to
do this without computing the square roots of numbers. For instance, suppose we want to verify√

A1+
√

A2 =
√

A3+
√

A4. For this to hold, we must have A1+A2+2
√

A1A2 = A3+A4+2
√

A3A4.
Verifying this is equivalent to verifying D +

√
A1A2 =

√
A3A4 where D = 1

2(A1 + A2 −A3 − A4).
Taking the square of both sides, we need to have D2 + A1A2 + 2D

√
A1A2 = A3A4, which is the

same as 1
4 (A3A4 −D2 − A1A2)

2 = A1A2D
2. Thus by comparing two polynomials of edge-lengths

(and without computing square roots) we can check if the quadrilateral is convex or concave.
Suppose the quadrilateral is convex. If r and p are on two opposite corners (see Figure 2(a)),

then r and p are on different sides. In this case |rp|+ |ab| > |ra|+ |bp| and |rp|+ |ab| > |rb|+ |ap|.
If rp is one of its sides (see Figure 2(b)), then |rp|+ |ab| is not the largest of the above three pairs
of sums.

Now suppose that the quadrilateral is concave. The only case in which r and p are on two sides
of line ab is when one of a or b is inside the triangle obtained by the other three (see Figure 2(e)).
In this case, the area of the largest triangle is the one that does not contain a or b. Thus, if we
compute the square of the areas of the four triangle, we can detect this case too.
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Figure 2: The five non-isomorphic configurations needed to consider for a quadrilateral on four
points in Lemma 10

Assume that G′ is a UDG and has an optimum clique partition of size α ≤ ℓ. The cliques fall
in two categories: small (having at most 2α− 2 points), and large (having at least 2α− 1 points).
We focus only on finding the large cliques since it is easy to guess all the small cliques. Suppose
for each pair Ci, Cj ∈ OPT of large cliques, we guess their respective representatives, ci and cj .
Further, suppose that we also guess a separating line lij correctly which goes through points uij

and vij . For a point p that is adjacent to ci or cj we want to efficiently test if p is on the the same
side of line lij as ci (the positive side), or on cj ’s side (the negative side), using only edge-lengths.
Without loss of generality, let both uij and vij belong to clique Ci. For every node p different from
the representatives:

• Suppose p is adjacent to all of ci, uij , vij , cj . Observe that we also have the edges ciuij and
civij. Given the edge-lengths of all the six edges among the four vertices ci, uij , vij , p using
Lemma 10 we can decide if in a realization of these four points, the line going through uij , vij

separates the two points p and ci or not. If p and ci are on the same side, we say p is on the
positive side of lij for Ci. Else, it is on the positive side of lij for Cj.

• Suppose p is adjacent to ci (and also to uij and vij) but not to cj . Given the edge-lengths of
all the six edges among the four vertices ci, uij , vij , p using Lemma 10 we can decide if in a
realization of these four points, the line going through uij , vij separates the two points p and
ci or not. If p and ci are on the same side, we say p is on the positive side of lij for Ci. Else,
it is on the positive side of lij for Cj.

For each Ci and all the lines lij, consider the set of nodes that are on the positive side of all
these lines with respect to Ci; we place these nodes in Ci. After obtaining the large and the small
cliques, we obtain sets C1, . . . , Cα. At the end we check if each Ci forms a clique and if their union
covers all the points. The number of guesses for representatives is nO(α) and the number of guesses
for the separator lines is nO(α2). So there are a total of nO(α2) configurations that we consider.

Clearly, if G′ is a UDG then some set of guesses is a correct one, allowing us to obtain an
optimum clique partition. If G′ is not a UDG, we may still find a clique partition of G′. However,
if we fail to obtain a clique partition in our search then the subgraph is a certificate that G′ is not
a UDG.

9



3 (2 + ε)-Approximation for Weighted Clique Partition using Ad-

jacency

In this section we consider a generalization of the minimum clique partition on UDGs, which we call
minimum weighted clique partition (MWCP). Given a node-weighted graph G(V,E) with vertex
weight wt (v), the weight of a clique C is defined as the weight of the heaviest vertex in it. For a
clique partition C = {C1, C2, . . . , Ct}, the weight of C is defined as sum of the weights of the cliques
in C, i.e. wt (C) = wt

(
⋃t

i=1 Ci

)

=
∑t

i=1 wt (Ci). The problem is, given G in standard form, say,
as an adjacency matrix, construct a clique partition C = {C1, C2, . . . , Ct} while minimizing wt (C).
The weighted version of the problem as it is defined above has also been studied in different contexts.
See [7, 3, 8] for study of weighted clique-partition on interval graphs and circular arc graphs.

Observe that MWCP distinguishes itself from MCP in two important ways: (i) The separability
property which was crucially used earlier to devise a PTAS does not hold in the weighted case, and
(ii) the number of cliques in an optimal solution for a UDG in a region of bounded radius is not
bounded by the diameter of the region anymore, i.e. it is easy to construct examples of weighted
UDGs in a bounded region where an optimal weighted clique partition contains an unbounded
(in terms of region diameter) number of cliques. In addition, examples where two cliques in an
optimal solution are not separable, that is, their convex hulls overlap, is easy to construct. (See
the examples given in Figure 3.) To the best of our knowledge, MWCP has not been investigated
before on UDGs. We, however, note that a simple modification to the algorithm by [18] also yields
a factor-8 approximation to the weighted case, a generalization which they do not consider. Here,

a1

b1

p1

p2
α

α

2

α

4

α

2i

α

2t

α α

2

α

4

α

2i

α

2t

(a) (b)

Figure 3: (a) Two overlapping weighted cliques, A = {a1, . . . , ak} and B = {b1, . . . , bk} are shown,
ai, bi are independent for all i. The heavy polygon has vertices weighted k while the dashed ones
are weighted 1. opt = k + 1 while any separable partition must pay a cost of at least 2k. (b) A
UDG which is a matching between two cliques for which OPT contains t cliques. The weight is
less than 2·α.

we give an algorithm which runs in time O(npoly(1/ε)) for a given ε > 0 and computes a (2 + ε)-
approximation to MWCP for UDGs expressed in standard form, for example, as an adjacency
matrix. Our algorithm is weakly robust in that it either produces a clique partition or produces a
polynomial-sized certificate proving that the input is not a UDG. When the input is a UDG, the
algorithm returns a clique partition and it is guaranteed to be a (2 + ε)-approximation; but if the
input is not UDG there is no guarantee on the quality of the clique partition (if it computes one).

Theorem 11. Given a graph G expressed in standard form, and ε > 0, there is a polynomial

10



time algorithm which either computes a clique partition of G or gives a certificate that G is not a
UDG. If G is a UDG, the weight of the clique partition computed is a (2 + ε)-approximation of the
minimum weighted clique partition (but there is no guarantee on the weight of the clique partition
if the input graph is not UDG).

Our algorithm will borrow some ideas developed in Section 2 and in [18]. The high level idea of
the algorithm is as follows. Similar to the algorithm in Section 2, we first decompose the graph into
bounded diameter regions and show that if we can compute a (2 + ε)-approximate clique partition
of each region then the union of these clique partitions is within (2 + ε) fraction of opt. We will
employ a similar ball growing technique (as in Section 2) that will give us bounded diameter regions.
We then show that we can either compute a clique partition or give a certificate that the subgraph
is not a UDG. If the subgraph is a UDG, then our clique partition is within a factor (2 + ε) of
the optimal. For the case of bounded diameter region, although the optimum solution may have a
large number of cliques, we can show that there is a clique partition with small number of cliques
whose cost is within (1 + ε)-factor of the optimum solution. First we describe the main algorithm.
Then in Subsection 3.1 we show that for each subgraph Br(v) (of bounded diameter) there is a
near optimal clique partition with Õ(r2) cliques. Then in Subsection 3.2 we show how to find such
a near optimal clique partition.

Let us denote the weight of the optimum clique partition of G by opt. As before, let Br(v) =
{u : d(u, v) ≤ r}, called the ball of (unweighted) distance r around v, be the set of vertices that
are at most r hops from v in G. Our decomposition algorithm described below (see Algorithm 3)
is similar to Algorithm 2 and partitions the graph into bounded diameter subgraphs below. The
procedure CP, given a graph induced by the vertices of Br(v) and a parameter ℓ = poly(r), runs in
time nO(ℓ2)) and either gives a certificate that Br(v) is not a UDG or computes a clique partition
of Br(v); this clique partition is within a factor (2 + ε) of the optimum if Br(v) is a UDG. We only

call this procedure for constant values of r. In the following, let 0 < γ ≤
√

9+4ε−3
2 be a rational

number. See Algorithm 3.

Algorithm 3 MinCP(G, γ)

1: C ← ∅; β ← ⌈c0
1
γ log 1

γ ⌉; ℓ← c1β
2.

{where c0 is the constant in Lemma 15, and c1 is the constant in inequality (2).}
2: while V 6= ∅ do
3: v ← arg maxu{wt (u)}
4: r ← 0

{Let Cr(v) denote a factor-(2 + γ) partition of Br(v) computed by calling CP}
5: while wt (Cr+2(v)) > (1 + γ)·wt (Cr(v)) do
6: r ← r + 1
7: if (r > β) or (CP(Br(v), ℓ) returns “not a UDG”) then
8: return “G is not a UDG” and produce Br(v) as the certificate
9: C ← C ∪ Cr+2(v)

10: V ← V \Br+2(v)
11: return C as our clique partition

Let k is the maximum number of iterations of the outer “while-loop”. The proof of the following
Lemma is identical to the proof of Lemma 6.

Lemma 12. Every two vertices v ∈ Br∗i
(vi) and u ∈ Br∗j

(vj) are non-adjacent.

11



The following lemma shows a lower-bound for opt.

Lemma 13. (2 + γ)· opt ≥ wt

(

k
⋃

i=1

Cr∗i
(vi)

)

Proof. Note that Br∗i
(vi) is obtained by constructing a BFS tree rooted at vertex vi up to some

depth r∗i . Since the algorithm removes a super-set, Br∗i +2(vi), which has two more levels of the BFS
tree, using the previous lemma there is no edge between any two nodes v ∈ Br∗i

(vi) and u ∈ Br∗j
(vj)

for any pair i 6= j. So, no single clique in an optimum solution can contain vertices from distinct
Br∗i

(vi) and Br∗j
(vj). Consider the subset of cliques in an optimal clique partition of G that intersect

Br∗i
(vi) and call this subset OPTi. The argument above shows that OPTi is disjoint from OPTj .

Also, each OPTi contains all the vertices in Br∗i
(vi). Since Cr∗i

(vi) is a factor-(2+γ) approximation

for Br∗i
(vi), (2 + γ)·wt (OPTi) ≥ wt

(

Cr∗i
(vi)
)

. The lemma immediately follows by observing that
OPTi and OPTj are disjoint.

We can relate the cost of our clique partition to opt as follows.

Lemma 14. If wt

(

Cr∗i +2(vi)
)

≤ (1 + γ)wt

(

Cr∗i
(vi)
)

, then wt

(

k
⋃

i=1

Cr∗i +2(vi)

)

≤ (2 + ε)opt.

Proof.

wt

(

k
⋃

i=1

Cr∗i +2(vi)

)

=
k
∑

i=1

wt
(

Cr∗i +2(vi)
)

≤ (1 + γ)·
k
∑

i=1

wt
(

Cr∗i
(vi)
)

≤ (2 + γ)(1 + γ)· opt,

where the last inequality uses Lemma 13.

Next, we show that the inner “while-loop” terminates in Õ( 1
γ ), that is each r∗i is bounded

by Õ( 1
γ ). This is similar to the proof of Lemma 9. Since the while loop terminates, r∗i exists

and by definition of r∗i , it must be the case that for all smaller values of r < r∗i , wt (Cr(vi)) >
(1 + γ)·wt (Cr−2(vi)). Because the diameter of Br(vi) is O(r), if Br(v) is a UDG, there is a
realization of it in which all the points fit into a r × r grid. Also, since vi is a heaviest vertex in
the (residual) graph, there is a clique partition whose weight is at most α·wt (vi) · r2. Therefore,
wt (Cr(vi)) < α·wt (vi) · r2, for some constant α. So:

α·wt (vi) · r2 > wt (Cr(vi)) > (1+γ)·wt (Cr−2(vi)) > . . . > (1+γ)
r
2 ·wt (C0(vi)) = wt (vi) ·

(

√

1 + γ
)r

,

which implies α· r2 >
(√

1 + γ
)r

, for the case that r is even. If r is odd we obtain α· r2 >
(√

1 + γ
)r−1

. Thus, the following lemma easily follows:

Lemma 15. There is a constant c0 > 0 such that for each i: r∗i ≤ c0/γ· log 1/γ.

In Subsection 3.2, we show the algorithm CP that given Br(v) and an upper bound ℓ on |Cr(v)|,
either computes a clique partition (which is within a factor 2+γ of opt if Br(v) is a UDG) or detects
that the graph is not UDG; the algorithm runs in time nO(ℓ2). By the above arguments, if Br(v) is
a unit disk graph then there is a constant c1 > 0 such that:

|Cr(v)| = O(r∗i
2) ≤ c1·

c2
0

γ2
log2 1

γ
(2)

12



We can set ℓ = ⌈c1
c20
γ2 log2 1

γ ⌉ for any invocation of OPT-CP as an upper bound, where c1 is the

constant in O(r∗i
2). So, the running time of the algorithm is nÕ(1/ε4).

3.1 Existence of a Small Clique Partition of Br(v) having Near-optimal Weight

Unlike the unweighted case, an optimal weighted clique partition in a small region may contain a
large number of cliques. Yet, there exists a partition whose weight is within a factor (1 + γ

2 ) of the
minimum weight which contains few cliques (where by “few” we mean ℓ as in Algorithm 3). The
existence of a light and small partition allows us to enumerate them in the same manner in the
algorithm of subsection 2.3, yielding a (2 + γ)-approximation for the problem instance in a ball of
small radius. In the following, let r ∈ Õ( 1

γ ); we focus on the subproblem that lies in some Br(v).

Recall that any ball of radius r can be partitioned into O(r2) cliques (Lemma 3). We begin with a
simple lemma which states that for any clique partition C, if the set of vertices can be be covered
by another clique partition C′ containing x cliques then the sum of the weights of the x cliques in
C′ is not significantly more than the weight of the heaviest clique in C.

Lemma 16. For any collection of disjoint cliques C = {C1, C2, . . . , Ct} having weights such that
wt (C1) ≥ wt (C2) ≥ . . . ≥ wt (Ct) suppose the vertices of C can be partitioned into x cliques
C′ = {C ′

1, C
′
2, . . . , C

′
x}. Then wt (C′) = wt (

⋃x
l=1 C ′

l) =
∑x

l=1 wt (C ′
l) ≤ x·wt (C1)

Proof. Without loss of generality, let wt (C ′
1) ≥ wt (C ′

2) ≥ . . . ≥ wt (C ′
x). Since C′ partitions

vertices in C, wt (C ′
1) = wt (C1). Since |C′| = x, wt (C′) =

∑x
l=1 wt (C ′

l) ≤ x·wt (C ′
1) = x·wt (C1).

In an optimal partition of a ball of radius r, the sum of the weights of the lighter cliques is not
significantly more than its weight.

Lemma 17. Let C = {C1, C2, . . . , Ct} be an optimal clique partition and let wt (C1) ≥ wt (C2) ≥
. . . ≥ wt (Ct). Suppose there is another clique partition C′ = {C ′

1, . . . , C
′
x} of the vertices of C.

Then, for every 1 ≤ i < t: (x− 1)·wt (Ci) ≥
∑t

l=i+1 wt (Cl).

Proof. By way of contradiction, suppose there exists an index 1 ≤ j < t such that (x−1)·wt (Cj) <
∑t

l=j+1 wt (Cl). Because
⋃t

l=1 Cl can be covered by C′, so can
⋃t

l=j Cl. Let the 2 ≤ x′ ≤ x be

the smallest index such that C′j = {C ′
1, C

′
2, . . . , C

′
x′} covers

⋃t
l=j Cl. On the other hand, (x′ −

1)·wt (Cj) ≤ (x− 1)·wt (Cj) <
∑t

l=j+1 wt (Cl), which implies

opt =
t
∑

l=1

wt (Cl) >

j
∑

l=1

wt (Cl) + (x′ − 1)·wt (Cj) =

j−1
∑

l=1

wt (Cl) + x′wt (Cj) . (3)

By Lemma 16, wt
(

C′j
)

≤ x′·wt (Cj). This, combined with inequality (3) implies opt >
∑j−1

l=1 wt (Cl)+
∑x′

l=1 wt (C ′
l). Therefore the cliques in C′′ = {C1, C2, . . . , Cj−1, C

′
1, C

′
2, . . . , C

′
x′} cover all the nodes

of cliques in C and has cost smaller than opt. If a vertex belongs to two or more cliques in C′′ we
remove it from all but one of them to obtain a clique partition with cost no more than cost of C′′
which is smaller than opt. This completes the proof.
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We now are ready to prove the main result of this section which states that for any optimal
weighted clique partition of a ball of radius r, there exists another clique partition whose weight
is arbitrarily close to the weight of the optimal partition, but has O(r2) cliques in it. Since the
radius of the ball within which the subproblem lies is small, r ∈ Õ( 1

γ ), this means that if we were

to enumerate all the clique partitions of the subproblem up to O(r2), we will see one whose weight
is arbitrarily close to the weight of an optimal clique. Choosing a lightest one from amongst all
such cliques guarantees that we will choose a one whose weight is arbitrarily close to the optimal
weight.

Lemma 18. Let γ > 0 and r ∈ Õ(1/γ) be two constants. Let C = {C1, C2, . . . , Ct} be an optimal
weighted clique partition of Br(v) and let C′ = {C ′

1, . . . , C
′
x} be another clique partition of vertices

of C with x ∈ O(r2). Let wt (C1) ≥ wt (C2) ≥ . . . ≥ wt (Ct). Then, there is a partition of vertices
of C into at most j + x cliques for some constant j = j(γ), with cost at most (1 + γ

2 )opt.

Proof. Without loss of generality, we assume that both x and t are at least two (as if Br(v) is a
clique we are done). Consider an arbitrary value of j ≤ t. Since

⋃t
l=1 Cl can be covered by x cliques

in C′, there is an index x′ (2 ≤ x′ ≤ x) such that
⋃t

l=j Cl can be covered by C′j = {C ′
1, C

′
2, . . . , C

′
x′}.

By applying Lemma 17 repeatedly:

opt ≥
j
∑

l=1

wt (Cl) ≥
1

x′ − 1

(

j
∑

l=2

wt (Cl)

)

+

j
∑

l=2

wt (Cl) ≥ . . . ≥
(

x′

x′ − 1

)j−1

·wt (Cj)

⇒ opt
(x′ − 1)j−1

x′j−2
≥ x′·wt (Cj) (4)

Using inequality (4):

opt +
opt· (x′ − 1)j−1

x′j−2
≥

j−1
∑

l=1

wt (Cl) + x′·wt (Cj) ≥
j−1
∑

l=1

wt (Cl) +
x′
∑

l=1

wt
(

C ′
l

)

, (5)

where the second inequality follows by applying Lemma 16. Let C′′ = {C1, . . . , Cj−1, C
′
1, . . . , C

′
x′}.

Thus, the cliques in C′′ cover all the vertices of C and has total cost at most
(

1 + (x′−1)j−1

x′j−2

)

opt by

inequality (5). If a vertex belongs to two or more cliques in C′′ we remove it from all but one of them
arbitrarily to obtain a clique partition of size j − 1 + x′ and whose total cost is upper bounded by
(

1 + (x′−1)j−1

x′j−2

)

opt. Note that, (x′−1)j−1

x′j−2 = (x′ − 1)
(

x′−1
x′

)j−2
and 0 < x′−1

x′ < 1 (because x′ ≥ 2).

Since r ∈ Õ( 1
γ ) and x′ ≤ x ∈ O(r2), for an appropriate choice of j = j(γ), (x′−1)

(

x′−1
x′

)j−2
< γ/2.

Thus we obtain a clique partition with j +x−1 cliques and cost at most (1+γ/2)· opt. This proves
the lemma.

3.2 (2 + γ)-Approximation for MWCP in Br(v)

Finally, we show how to compute a (2 + γ)-approximate MWCP of the graph Br(v) for any given
γ. For an edge ordering L = (e1, e2, . . . , em) of a graph G with m edges, let GL[i] denote the
edge induced subgraph with edge-set {ei, ei+1, . . . , em}. For each ei, let NL[i] denote the common
neighborhood of the end-points of ei in GL[i]. An edge ordering L = (e1, e2, . . . , em) is a CNEEO if
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for every ei in L, NL(i) induces a co-bipartite graph in G. It is known [20] that every UDG graph
admits a co-bipartite edge elimination ordering (CNEEO). In the following, let Gv denote Br(v).
We state a lemma of [18].

Lemma 19. [18] Let C be a clique in Gv, and let L be a CNEEO of Gv. Then, there is an i,
1 ≤ i ≤ m, such that NL[i] contains C.

Assume that Gv can be partitioned into α ≤ ℓ = Õ(1/γ2) cliques, O = {O1, O2, . . . , Oα}, such
that wt (O) ≤ (1+ γ

2 )·wt (OPTv), where OPTv is an optimal weighted clique partition of Gv . Note
that by Lemma 18 this is true for subgraph Br(v). Suppose that we are given the upper bound ℓ; we
will try all possible values of α. Without loss of generality, let wt (O1) ≥ wt (O2) ≥ . . . ≥ wt (Oα).
Observe that, without loss of generality, we can assume Oi is a maximal clique in

⋃α
j=i Oj . The

implication of the above lemma is that even though we do not know O1, hence we do not know
O, we do know that for every CNEEO L of Gv, there is an ei such that NL[i] can be partitioned
into at most two cliques that fully cover O1. Since O1 is a heaviest clique, the two cliques that
cover the subgraph NL[i] pay a cost of at most 2·wt (O1). This suggests an algorithm that guesses
an edge sequence (f1, f2, . . . , fα) of Gv . Then, the algorithm computes L, a CNEEO of Gv. The
algorithm’s first guess is “good” if f1 is an edge in O1 that occurs first in L. Suppose that this is
the case and suppose that f1 has rank i in L. Then, O1 is contained in NL[i], and we cover NL[i]
with at most two cliques. Call these C ′

1 and C ′′
1 and wt (C ′

1) + wt (C ′′
1 ) ≤ 2·wt (O1). So, when we

remove NL[i] from Gv , we get a UDG which can be partitioned into at most α− 1 cliques, namely,
O′ = {O2, . . . , Oα}. We then again construct a CNEEO, L′, of G′

v = Gv \NL[i]. Just like before,
our guess f2 is “good” if f2 is an edge in O2 and occurs first in L′. Let i′ be the rank of f2 in L′, we
see that NL′ [i′] fully contains O2, and we again cover it with at most 2 cliques. Next, delete NL′ [i′]
from G′

v to get a graph which can be partitioned into α − 2 cliques, and so on. See Algorithm 4
for details.

Algorithm 4 CP(Gv, ℓ)

1: C ← V ; min ← wt (C);
2: for all α ≤ ℓ do
3: for all α-edge sequence (f1, f2, . . . , fα) of Gv do
4: G0 ← Gv

5: for j = 1 to α do
6: Compute a CNEEO L of Gj−1

7: i← rank of fj in L
8: Partition NL[i] into two cliques C ′

j and C ′′
j

9: Gj ← Gj−1 \NL[i]

10: if Gα = ∅ and wt
(

⋃α
j=1{C ′

j , C
′′
j }
)

< min then

11: C ← ⋃α
j=1{C ′

j , C
′′
j }; min ← wt (C);

12: return C

Note that while Lemma 19 allows us to cover any clique with at most 2 cliques, it does not
find the clique. In the algorithm, note that if at any point, the algorithm is unable to construct
a CNEEO, we can declare that the graph Gv is not a UDG. Also, if for all invocations of the
algorithm by an external algorithm that guesses the value of opt we are unable to find a clique
partition, then again we can declare that Gv is not a UDG.
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4 O(log∗ n)-round Distributed PTAS for UDGs with Edge-Lengths

In this section, we give details of a distributed PTAS for MCP which runs in O( log∗ n
εO(1) ) rounds of

distributed computation under the LOCAL model of computation [16]. The model of computation
that we employ assumes a synchronous system where communication between neighboring nodes
takes place in synchronous rounds using messages of unbounded size [16]. So, in a single round
of communication, any node acquires the subgraph (information pertaining to the set of nodes,
edges, the states of local variables, etc.) within its immediate neighborhood. So, after k rounds of
communication, any node acquires complete knowledge about its k-neighborhood.

Observe that in Algorithm MinCP2, the radius r of any ball Bv(r) is bounded above by Õ(1/ε),
while the center, v, is an arbitrary vertex. Since the radius of any ball is “small”, the maximum
number of rounds of distributed computation that the sequential algorithm needs before terminating
the “while-loop” is also “small”. Therefore, for any pair of balls Bu(ri) and Bv(rj), such that
d(u, v) ∈ ω(1/ε), one should be able to run part of the sequential algorithm in parallel, as they
surely are independent of each other. We borrow some ideas from [10] and find regions that are far
apart such that we can run the sequential algorithm in those regions in parallel. See Algorithm 5
for details.

Algorithm 5 Distr-MCP-UDG(G, ε)

1: β ← ⌈c0
1
ε log 1

ε ⌉; ℓ← c1β
2; all vertices are unmarked.

{c0 is the constant in Lemma 9 and c1 is the constant inequality (1).}
2: Construct a maximal subset, Vc ⊂ V , such that for any pair u, v ∈ Vc, d(u, v) > β. Construct

a graph Gc = (Vc, Ec), where Ec = {{u, v} : u, v ∈ Vc, dG(u, v) ≤ 4β}. We call Vc, the set of
leaders.

3: Proper color Gc using ∆(Gc) + 1 colors, where ∆(Gc) is the maximum degree of Gc.
4: Every v ∈ V \ Vc, “assigns” itself to a nearest leader u ∈ Vc, with ties broken arbitrarily, and

colors itself the same color as the leader.
5: for i = 1 to ∆(Gc) + 1 do
6: For each leader j with color i let Gj

i be the subgraph induced by the vertices assigned to
leader j.

7: for all Gj
i in parallel do

8: Consider a fixed ordering on the unmarked vertices of Gj
i ;

9: Run the sequential ball growing algorithm on the next (in this ordering) unmarked vertex
v ∈ Gj

i , we compute Br(v); Note that Br(v) might contain vertices of different colors (from

outside Gj
i ).

10: Compute (using the sequential algorithm) the optimal clique-partition of Br(v) and “mark”
all those vertices

It should be pointed out that adapting the algorithm of [10] for maximum independent set and
minimum dominating set to our setting is not trivial. The reason is that MCP is a partition of the
entire vertex set and partitioning just a subset well enough will not do. Specifically [10] chooses a
subset of vertices upon which their ball-growing algorithm is run; it suffices for their purposes to
dispense with the remaining subset of vertices that were not picked by their ball-growing algorithm.
If we had followed a similar scheme then we would surely get a good clique partition on a subset
of vertices; however, it is unclear as to how to obtain a good partition of the remaining subset in
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terms of the optimal size for the original problem instance over the entire vertex set. As a means
to circumvent this issue, we first construct a “crude” partition of the vertex set, instead of just a
subset of vertices as done in [10].

4.1 Analysis

We now show that the algorithm constructs a (1 + ε)-approximation to MCP on UDGs given only
rational edge-lengths in O(log∗ n) rounds of distributed computation under the LOCAL model; we
first show correctness of the algorithm, followed by bounding the number of communication rounds.

Correctness: We prove that our algorithm is correct by showing that any execution of Distr-
MCP-UDG can be turned into a sequential execution of MinCP2. As stated, every vertex has the
same color as its leader; let a leader vertex be its own leader. We first show that the distance of
every vertex to its leader is small.

Lemma 20. For any vertex v /∈ Vc, there is a vertex u ∈ Vc such that dG(u, v) ≤ β.

Proof. Suppose not. So there is a v whose distance to every u ∈ Vc is more than β. But then
V ′

c = Vc ∪ {v} has the property that for all x, y ∈ V ′
c , dG(x, y) > β, contradicting the maximality

of Vc.

Next we show that for any pair of vertices u, v of the same color but with different leaders, the
minimum distance between them is large enough so that a pair of balls of radius at most β over
them will be disjoint, where β is defined in MinCP2 and Distr-MCP-UDG.

Lemma 21. Consider two leaders x, y of the same color, say i, and any two vertices u ∈ Gx
i and

v ∈ Gy
i (note that we might have u = x or v = y). Then for all values of r considered in the ball

growing algorithm, Br(u) and Br(v) are disjoint.

Proof. Since x and y have the same color d(x, y) > 4β. By Lemma 20, any vertex in either of Gx
i or

Gy
i is at a distance of at most β from the respective leader; so, dG(u, v) > 2β. The lemma follows

easily by noting the fact that r ≤ β in the ball growing algorithm.

We are now ready to prove the correctness of Distr-MCP-UDG by showing an equivalence
between any execution of it to some execution of MinCP2.

Lemma 22. Any execution of Distr-MCP-UDG from “Step 5” to “Step 10” can be converted to a
valid execution of MinCP2.

Proof. Consider an arbitrary execution of Distr-MCP-UDG. Suppose that V1, V2, V3, . . . is a se-
quence of disjoint sets of the vertices of V such that we run the ball growing algorithm in parallel
(during Distr-MCP-UDG) on vertices of V1 (and thus we compute an optimal clique partition on
each vertex of V1 in parallel) then we do this for vertices in V2, and so on. Note that the vertices
in Vi all have the same color and each has a different leader. Consider an arbitrary ordering πi

of the vertices in each Vi and suppose that we run MinCP2 algorithm on vertices of V1 based on
ordering π1, then on vertices of V2 based on ordering π2, and so on. Since the vertices in each Vi

have distinct leaders, by Lemma 21, the balls grown around them are disjoint. It should be easy
to see that the balls grown by algorithm MinCP2 is exactly the same as the ones computed by
Distr-MCP-UDG.

17



The following result follows immediately as a corollary to Lemma 22.

Corollary 23. Given an ε > 0, Distr-MCP-UDG constructs a clique partition of the input graph
G with associated edge-lengths, or produces a certificate that G is not a UDG. If G is a UDG then
the size of the partition is within (1 + ε) of the optimum clique partition.

Running Time: We now show that the algorithm runs in O( log∗ n
εO(1) ) distributed rounds under the

LOCAL model of computation.

Lemma 24. “Step 2” requires O(β· log∗ n) rounds of communication.

Proof. Observe that the result of “Step 2” is identical to constructing a maximal independent set
(MIS) in Gβ . Note that Gβ is also a UDG where the new unit is β. As a result, Gβ is a subclass
of growth-bounded graphs [9] where all the distances are scaled by β; computation of MIS on Gβ

takes O(β· log∗ n) rounds [21] while the construction of Gβ takes β rounds. Hence, the number of
rounds needed by “Step 2” can be bounded by O(β· log∗ n).

It is easy to see that constructing Gc requires at most 4β communication rounds. Next, we
show that the maximum degree of Gc, ∆(Gc) is bounded by a constant.

Lemma 25. ∆(Gc) ∈ O(1)

Proof. Let v be a vertex of Gc having maximum degree. Note that all its neighboring vertices in Gc

lie in a disk of radius at most 4β. Also note that due to “Step 2” the minimum distance between
any pair of vertices in Gc is more than β. As a result, any disk of diameter β contains at most 1
vertex of Gc. Using standard packing arguments of the underlying space, a crude upper bound on
the number of vertices of Gc in a disk of radius at most 4β is 256 vertices; this also upper bounds
the degree of v.

Next, we bound the number of rounds needed for “Step 3”

Lemma 26. “Step 3” requires O(β· log∗ n) rounds of communication.

Proof. For graphs whose maximum degree is ∆, a ∆ + 1 proper coloring requires O(∆ + log∗ n)
rounds [11]. Since ∆(Gc) ∈ O(1) (Lemma 25), and the fact that distances in Gc are scaled by a
factor of 4β as compared to the distances in G, a ∆(Gc) + 1 proper coloring of Gc can be obtained
in O(β· log∗ n) rounds.

“Step 4” requires at most β rounds of communication; according to Lemma 20, for every
v /∈ Vc, there is some u ∈ Vc that is at a distance at most β from it. The identity and color
of such a vertex can be obtained in β rounds. We can now bound the number of rounds that
Distr-MCP-UDG requires. First, note that for any iteration, i, of “Step 7”, only knowledge of a
subgraph up to radius β is required, and any node can obtain knowledge of the subgraph up to
radius β from it in β rounds of communication. So, for any vertex in Gj

i obtains knowledge about

the “marked/unmarked” status of all the vertices in Gj
i in β rounds of communication. Since the

diameter of each Gj
i is at most 2β, the number of balls to grow in “Step 9.” is at most O(β2).

Therefore:

Theorem 27. Distr-MCP-UDG requires O(β· log∗ n) rounds of communication under the LOCAL
model of computation.
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5 Concluding Remarks

Recall that the weakest assumption that we needed to obtain a PTAS for unweighted clique partition
problem was that all the edge lengths are given. This information was crucially used in obtaining
a robust PTAS. In the case of weighted clique partition, we gave a (2+ ε)-approximation algorithm
without the use of edge-lengths (using only the adjacency information). It will be interesting to
see if a PTAS exists for the unweighted case but with reliance only on adjacency.

It is also unclear if a PTAS is possible even with the use of geometry in the weighted case.
Recall that the PTAS given in Sections 2 crucially uses the idea of separability of an optimal clique
partition. However, in the weighted case, even though a near optimal clique partition in a small
region has few cliques, there are examples where any separable partition pays a cost at least factor-2
to that of a near optimal partition. We give an example in Figure 3(a). In the example shown
in Figure 3(a) two cliques of optimal weight are shown: one of them, A, whose vertices are the
vertices of the k-gon shown in dashed-heavy lines, and the other, B, whose vertices are the vertices
of the k-gon shown in solid-heavy lines. The example is that for k = 7. The vertices of A are
labeled a1, a2, . . . , ak in a counter-clockwise fashion. The vertices of B are labeled such that bi is
diametrically opposite to ai. The distance between ai and bi is more than 1 while the distance
between ai and bj , i 6= j is at most 1. So, there is an edge between ai to every al and to every
bj , j 6= i. This is also the case for bi. In the figure, the edges incident to a1 are shown by solid-light
lines. Also, the dashed arc shows part of the unit disk boundary that is centered at a1 – note that
it does not include b1. Let the weights of vertices in A be k and the weights of vertices in B be 1.
Clearly, opt ≤ k + 1. However, any separable clique partition pays a cost of at least 2k: if vertices
in A must all belong to a common clique, then every vertex in B must belong to a distinct clique
in a separable clique partition. Also, note that as-per separability, a line going through {p1, p2}
separates two cliques having weight 2k also.

Note that our results only apply in the Euclidean plane; they do not generalize. In particular,
Capoyleas et al. [4] give an “unseparable” instance in R

3. Our result in the weighted case also is
restricted to the plane; the concept of co-bipartite neighborhood edge elimination ordering (CNEEO)
does not generalize to R

3.
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