
New Approximation Algorithms for the Unsplittable Capacitated

Facility Location Problem∗

Babak Behsaz† Mohammad R. Salavatipour‡ Zoya Svitkina§

May 24, 2015

Abstract

In this paper, we consider the Unsplittable (hard) Capacitated Facility Location Problem
(UCFLP) with uniform capacities and present new approximation algorithms for it. This prob-
lem is a generalization of the classical facility location problem where each facility can serve at
most u units of demand and each client must be served by exactly one facility. This problem
is motivated by its applications in many practical problems including supply chain problems
of indivisible goods [36] and the assignment problem in the content distribution networks [9].
While there are several approximation algorithms for the soft capacitated version of this problem
(in which one can open multiple copies of each facility) or the splittable version (in which the
demand of each client can be divided to be served by multiple open facilities), there are very few
results for the UCFLP. It is known that it is NP-hard to approximate this problem within any
factor without violating the capacities. So we consider bicriteria (α, β)-approximations where
the algorithm returns a solution whose cost is within factor α of the optimum and violates the
capacity constraints within factor β. Shmoys, Tardos, and Aardal [35] were the first to consider
this problem and gave a (9, 4)-approximation. Later results imply (O(1), 2)-approximations,
however, no constant factor approximation is known with capacity violation of less than 2. We
present a framework for designing bicriteria approximation algorithms for this problem and show
two new approximation algorithms with factors (9, 3/2) and (29.315, 4/3). These are the first al-
gorithms with constant approximation in which the violation of capacities is below 2. The heart
of our algorithm is a reduction from the UCFLP to a restricted version of the problem. One
feature of this reduction is that any (O(1), 1+ε)-approximation for the restricted version implies
an (O(1), 1 + ε)-approximation for the UCFLP and we believe our techniques might be useful
towards finding such approximations or perhaps (f(ε), 1 + ε)-approximation for the UCFLP for
some function f . In addition, we present a quasi-polynomial time (1 + ε, 1 + ε)-approximation
for the (uniform) UCFLP in Euclidean metrics, for any constant ε > 0.

∗A preliminary version of this paper has appeared in the Proceedings of 13th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT), Pages 237-248, 2012.
†Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. e-mail:

behsaz@ualberta.ca. Supported in part by Alberta Innovates Graduate Student Scholarship.
‡Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. e-mail:

mrs@ualberta.ca. Supported by NSERC and an Alberta Ingenuity New Faculty Award.
§Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA, e-mail: zoya@cs.cornell.edu. Sup-

ported in part by Alberta Ingenuity.

1

1 Introduction

We consider the Unsplittable Capacitated Facility Location Problem (UCFLP) with uniform ca-
pacities. In this problem, we are given a set of clients C and a set of facilities F where each
client j has demand dj and each facility i has opening cost fi and capacity u. There is a metric
cost cij which denotes the cost of serving one unit of demand of client j at facility i. The goal
is to open a subset of facilities I ⊆ F and assign each client j to exactly one open facility φ(j)
to serve its entire demand dj so that the total amount of demand assigned to each open facility
is no more than u, while minimizing the total cost of opening facilities and connecting (serving)
clients, i.e., minimizing

∑
i∈I fi +

∑
j∈C djcφ(j)j . This problem generalizes the bin packing, the

minimum makespan, and some facility location problems. If the demands of clients can be served
by multiple open facilities, then we have the splittable capacitated version of the problem. If each
facility can be opened multiple times then we have the so-called soft capacitated version. Each of
these relaxations (i.e., allowing splitting the demands of clients and/or having multiple copies of
each facility) makes the problem significantly easier as discussed below. When each facility i has a
given capacity ui, the problem is called the non-uniform version.

Facility location problems have been studied extensively in operations research and manage-
ment sciences and even a few books are devoted to these problems (e.g., see [17, 29]). They are also
well studied in theoretical computer science and various approximation algorithms are designed.
While these problems arise in a wide range of practical applications, the most common context of
their employment has been supply chain. In a supply chain that consists of suppliers, distribution
centres, or warehouses and customers, these problems emerge in making location decisions [36].
When we deal with indivisible goods, the unsplittable demand assumption is a necessity. In par-
ticular, the UCFLP has been studied in operations research literature from the eighties, where it is
called the capacitated facility location problem with single sourcing or the capacitated concentrator
location problem [17]. The latter name comes from the problem of assigning a set of terminals or
workstations to some concentrator devices in telecommunications networks. Here, each terminal
has a demand that must be served by exactly one concentrator and each concentrator has a capacity
that shows the amount of traffic that it can manage.

As Bateni and Hajiaghayi [9] pointed out, solving the UCFLP without relaxation of capacities
is NP-hard even in very special cases. This is done via a simple reduction from the special case of
minimum makespan when the size of each client j is in a set {pj ,∞}. In fact, it can be shown that
unless P= NP, any approximation algorithm with a bounded approximation ratio for the UCFLP
violates the capacities of at least b |F |2 c facilities in some instances [10]. Thus, research has focused
on the design of bicriteria approximation algorithms. An (α, β)-approximation algorithm for the
UCFLP returns a solution whose cost is within factor α of the optimum and violates the capacity
constraints within factor β. It should be noted that if we violate capacity of a facility within factor
β, we must pay β times its opening cost. In the context of approximation algorithms, Shmoys,
Tardos, and Aardal [35] were the first to consider this problem and presented a (9, 4)-approximation
algorithm. They used a filtering and rounding technique to get an approximation algorithm for the
splittable version and used a rounding for the generalized assignment problem (GAP) [34] to obtain
their algorithm for the unsplittable version. This technique of reducing the unsplittable version
using the rounding for the GAP to the splittable version was a cornerstone of the subsequent
approximation algorithms. In addition, in the same place, by a randomized version of the filtering
technique, they got a new algorithm with the ratio (7.62, 4.29). Korupolu, Plaxton, and Rajaraman
[25] gave the first constant factor approximation algorithm for the splittable hard capacitated
version, and applied the GAP rounding technique of [35] to get a (O(1), 2)-approximation algorithm
for the UCFLP. Applying the current best approximation algorithms for the splittable capacitated

2

version with non-uniform capacities [37] and uniform capacities [1], it is straightforward to get
factor (9, 2) and (5, 2) approximation algorithms for the UCFLP with non-uniform and uniform
capacities, respectively [10].

Bateni and Hajiaghayi [9] designed the first approximation algorithms for the UCFLP having
violation ratio less than 2. They modelled an assignment problem in content distribution networks
by the UCFLP. This assignment problem has been first considered by Alzoubi et al. [2] and is
basically the assignment of downloadable objects, such as media files or softwares, to some servers.
We cannot split a downloadable object and we need to store it in a single server. As Alzoubi et al.
mention, the server capacities is very crucial in practice and a high overload amount on a server
can disrupt a large numbers of connections. Motivated by this strict requirement on capacities, the
authors of [9] designed a (1 + ε, 1 + ε)-approximation algorithm for tree metrics (for any constant
ε > 0) using a dynamic programming approach. They also presented a quasi-polynomial time
(1 + ε, 1 + ε)-approximation algorithm (again for trees) for the non-uniform capacity case. Using
Fakcharoenphol et al.’s [18] improvement of Bartal’s machinery [8], this implies a polynomial time
(O(log n), 1 + ε)-approximation algorithm for almost uniform capacities and a quasi-polynomial
time (O(log n), 1 + ε)-approximation algorithm for non-uniform version for an arbitrary constant
ε > 0.

1.1 Related Work

Perhaps the most well-studied facility location problem is the uncapacitated facility location problem
(UFLP). In this problem, we do not have the capacity constraints and we only need to decide
which facilities to open, as each client will be assigned to its closest open facility. The first constant
approximation for the UFLP was a 3.16-approximation algorithm by Shmoys, Tardos, and Aardal
[35]. This algorithm was based on a filtering method due to Lin and Vitter [28] and rounding a
linear programming (LP) formulation of the problem.

There is a long series of works that improve this constant approximation ratio for the UFLP.
Guha and Khuller [20] improved the ratio to 2.41 by combining a simple greedy heuristic with
the algorithm of [35]. This greedy heuristic adds unopened facilities one by one greedily based
on some measure of effectiveness for each facility. Later, the factor improved to 1 + 2/e ≈ 1.74
by Chudak [13] using generalized techniques of [35] for the LP rounding. A key element to this
improvement is the use of randomized rounding of some variables in conjunction with the approach
of Shmoys, Tardos, and Aardal. Meanwhile, Jain and Vazirani [22] gave a 3-approximation primal-
dual algorithm with a better running time and Korupolu et al. [25] gave a surprisingly simple local
search algorithm with factor 5 + ε for any ε > 0.

Charikar and Guha [12] slightly improved the ratio to 1.73 by combining primal dual algorithm
of [22] with cost scaling and greedy augmentation. The scaling technique exploits the difference
between approximation guarantees for the facility cost and the service cost. This can be used by
producing a new instance where the facility costs are multiplied by δ, then apply the algorithm
to the scaled instance, and then scale back to get a solution for the original instance. Mahdian
et al. [21] used a variant of the primal-dual method, called dual fitting, and a new analysis tech-
nique, called factor revealing LP, to bring down the factor to 1.61. Later, Mahdian et al. [32]
combined this algorithm with greedy augmentation of [12] to decrease the factor to 1.52. After-
wards, Byrka [11] combined this new algorithm of [32] with the algorithm of Chudak [13] to get a
1.5-approximation. Finally, Li [27] showed that by choosing a parameter of Byrka’s algorithm from
a specific distribution, one can get a factor 1.488 approximation algorithm, which is the current
best known factor.

On the negative side, a result of Guha and Khuller [20], combined with an observation of

3

Sviridenko (personal communication cited in [15]), implies 1.463-hardness for the Uncapacitated
Facility Location Problem (UFLP). As a result, unless P= NP, there is very little room to improve
the best known approximation algorithm for the UFLP.

The (soft and hard) capacitated facility location problems have also received a lot of attention.
In the soft capacitated facility location problem, despite having capacities, the fact that we can
open a facility multiple times makes the problem easier in comparison to the case of hard capacities.
Shmoys, Tardos, and Aardal [35] designed the first constant factor, namely a 5.69-approximation
algorithm for this problem by a similar LP rounding technique they used for the first constant
factor approximation for the UFLP. Then, Chudak and Shmoys [14] used the same LP and the
randomized LP-rounding technique to get a 3-approximation algorithm for this problem. For non-
uniform capacities, Jain and Vazirani [22] reduced this problem to the UFLP, and by solving the
UFLP, they obtained a 4-approximation algorithm. Arya et al. [6] proposed a simple local search
algorithm with an approximation ratio of 3.72 for the non-uniform version. Following the reduction
of Jain and Vazirani [22] to the UFLP, Jain et al. [21] showed that the soft Capacitated Facility
Location (CFLP) with non-uniform capacities (where one can open dx/uie copies of a facility
with capacity ui to serve x demands) can be solved within a factor 3 of optimum. This result
was improved to a 2.89-approximation algorithm for the non-uniform soft CFLP in [32]. Finally,
Mahdian et al. [31] improved this factor to 2, achieving the integrality gap of the natural LP
relaxation of the problem. To the best of our knowledge, this is the current best ratio for this
problem.

We should point out that all of the above algorithms except the local search algorithm of Arya
et al. [6] use the optimal value of a natural LP relaxation of the soft capacitated facility location
problem as a lower bound in their analysis. Therefore, they cannot obtain a better ratio than the
integrality gap of this relaxation. Mahdian et al. [31] also showed that the integrability gap of this
LP is 2 and hence, their analysis is tight.

If we add the constraint that the demand of a client cannot be split, it does not make the problem
much more difficult than its splittable counterpart in the soft setting. One can show that any α-
approximation algorithm for the unsplittable version of the soft CFLP yields a 2α-approximation
algorithm for the splittable version and vice versa [10]. As a result, the 2-approximation algorithm
of Mahdian et al. [31] yields a 4-approximation for unsplittable version of the soft CFLP. In fact, it
is not difficult to observe that this algorithm is a 2-approximation for this version. Their algorithm
assigns each client by utilizing a UFLP algorithm and hence, to a single facility, and its cost is
within factor 2 of the optimum value of soft CFLP. Clearly, the optimum value of the unsplittable
version is not less than the optimum value of the splittable version, because all feasible solutions
for the unsplittable version are feasible solutions with the same cost for the splittable version, too.
Thus, their algorithm gives a feasible solution for the unsplittable version of the soft CFLP which
is within factor 2 of the optimum value for the unsplittable version.

The (splittable) hard capacitated facility location problem has also received a lot of attention.
In contrast to the UFLP and soft capacitated facility location problem, there is an important
distinction between the splittable and unsplittable case in the presence of hard capacities, because
in the unsplittable case, even checking whether there exists a feasible solution becomes NP-hard
and we can only hope for a bicriteria algorithm. In contrast, in the splittale case, if we decide on
the set of open facilities, the best way of serving the clients can be determined by building a flow
network and using a minimum cost flow algorithm.

For the splittable case, Korupolu, Plaxton, and Rajaraman [25] gave a simple factor 8 + ε
local search algorithm. This was the first constant factor approximation algorithm for the hard
capacitated facility location problem.

Later, Chudak and Williamson [15] simplified their analysis and showed the actual ratio of

4

algorithm of Korupolu et al. [25] is at most 6 + ε. Pal, Tardos, and Wexler [33] gave a more
powerful local search with factor 8.54 + ε for the case of non-uniform capacities. Later, with a
series of more powerful local search algorithms, the ratio for the case of non-uniform capacities
decreased to 7.46 + ε [30], and 5.83 + ε [37]. Later, Aggarwal et al. [1] showed that the algorithm of
Korupolu et al. [25] is actually a 3-approximation for the uniform splittable CFLP and this ratio is
tight. Recently, Bansal et al. [7] showed that slightly more powerful versions of algorithm of Zhang
et al. [37] give a 5-approximation for the non-uniform splittable CFLP and this ratio is tight.

It should be noted that in contrast to the UFLP and soft CFLP, all the known LP relaxations
for this problem have super-constant integrality gap in the general case. The only LP-based result
is a 5-approximation algorithm by Levi et al. [26] for the non-uniform version in the special case
that all facility opening costs are equal.

1.2 Our Results

Recall that given an instance (F,C) of the UCFLP with facility opening costs fi, demands dj , and
connection costs cij , a solution is a subset I of facilities to open along with assignment function
φ : C → I. Since all capacities are uniform, by a simple scaling, we can assume that all of them
are 1 and all the client demands are at most 1.

All the known constant factor algorithms for the UCFLP violate the capacity constraints by
a factor of at least 2 which is mainly due to using the rounding algorithm for GAP [34]; and the
algorithm of [9] (although it has 1 + ε violation) is not a constant factor approximation. We are
interested in (O(1), β)-approximation algorithms for a β < 2. We define a restricted version of the
problem and show that finding a good approximation algorithm for this restricted version would
imply a good approximation for the general version. The definition of similar restricted versions
has been a common practice in solving bin packing type problems (e.g., see [16, 23]).

Definition 1 An ε-restricted UCFLP instance, denoted by RUCFLP(ε), is an instance of the
UCFLP in which each demand has size more than ε, i.e., ε < dj ≤ 1 for all j ∈ C.

The following theorem establishes the reduction from the general instances of the UCFLP to
the restricted version. Here, the general idea is that if we assign the large clients oblivious to small
clients, we can fractionally assign the small clients without paying too much in cost. We use the
maximum-flow minimum-cut theorem to show this. Then we can round this fractional assignment
of small clients with the GAP rounding technique [34].

Theorem 1 If A is an (α(ε), β(ε))-approximation algorithm for the RUCFLP(ε) with running
time τ(A) then there is an algorithm AC which is an (η(1+ε)α(ε),max{β(ε), 1+ε})-approximation
algorithm for the UCFLP, for some constant η, whose running time is polynomial in τ(A) and the
instance size.

Corollary 1 For any constant ε > 0, an (α(ε), 1+ ε)-approximation algorithm for the RUCFLP(ε)
yields an (O(α(ε)), 1 + ε)-approximation for the UCFLP. Particularly, when α(ε) is a constant,
we have a constant approximation for the UCFLP with a (1 + ε) factor violation of capacities in
polynomial time.

This reduction shows that to get a (O(1), 1 + ε)-approximation, it is sufficient to consider
large clients only, which may open the possibility of designing algorithms using some of the tech-
niques used in the bin packing type problems. If one finds such an algorithm for large clients,
the above corollary shows that we have an (O(1), (1 + ε))-approximation for the UCFLP. As an

5

evidence for this, we find approximation algorithms for the RUCFLP(12) and the RUCFLP(13). For
the RUCFLP(12), we present an exact algorithm and for the RUCFLP(13), we present a (21, 1)-
approximation algorithm. These, together with Theorem 1, yield:

Theorem 2 There is a polynomial time (9, 32)-approximation algorithm for the UCFLP.

Theorem 3 There is a polynomial time (29.315, 43)-approximation algorithm for the UCFLP.

Finally, we give a quasi polynomial time approximation scheme (QPTAS) for the UCFLP re-
stricted to Euclidean metrics. Here, we employ a dynamic programming based algorithm and
combine the shifted quad-tree dissection of Arora [3], some ideas from [9], and some new ideas.

Theorem 4 There exists a (1 + ε′, 1 + ε′)-approximation algorithm for the Euclidean UCFLP in
R2 with quasi-polynomial running time for any constant ε′ > 0.

Although this theorem is presented for R2, it can be generalized to Rd for any constant d > 2.
In the following discussions, for a solution (I, φ), where I is the set of open facilities and

φ : C → I is the assignment of clients to open facilities, we use cf (φ) to denote the total facility
opening cost and cs(φ) to denote the total service cost, and c(φ) to denote the total cost of the
solution. Thus, we have c(φ) = cf (φ) + cs(φ). In the splittable versions, the assignment function is
φ : C × F → R≥0, where φ(i, j) shows the amount of demand of client j served by facility i.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1. In the next
section, we present approximation algorithms for the RUCFLP(1/2) and RUCFLP(1/3), which
also prove Theorems 2 and 3. In Section 4, we give a QPTAS for Euclidean metrics. Finally, in
Section 5, we conclude the paper with a discussion of results, future works and open problems.

2 Reduction to the Restricted UCFLP

Let L = {j ∈ C : dj > ε} be the set of large clients and S = C\L be the set of small clients1. We
call two assignments φ1 : C1 → F1 and φ2 : C2 → F2 consistent if φ1(j) = φ2(j) for all j ∈ C1 ∩C2.
The high level idea of the algorithm is as follows. We first ignore the small clients and solve the
problem restricted to only the large clients by running algorithm A of Theorem 1. We can show that
given a good assignment of large clients, there exists a good assignment of all the clients (large and
small) that is consistent with this assignment of large clients, i.e., a solution which assigns the large
clients the same way that A does, whose cost is not far from the optimum cost. More specifically,
we show there exists a fractional (i.e., splittable) assignment of small clients that together with
the assignment of large clients obtained from A gives an approximately good solution. Then, we
try to find a fractional assignment of small clients. To do this, we update the capacities and the
opening costs of facilities with respect to the assignment of large clients (according to the solution
of A). Then, we fractionally assign small clients and round this fractional assignment at the cost
of violating the capacities with additive factor ε by using a rounding algorithm for the Generalized
Assignment Problem (GAP).

The GAP is a generalization of the matching problem that can be described as a scheduling
problem which has similarities to the UCFLP. In the GAP, we have a collection of jobs J and a set
M of machines. Each job must be assigned to exactly one machine in M . If job j ∈ J is assigned

1We should point out that the definitions of L and S are with respect to a given parameter ε. Since throughout
the following sections, this parameter is the same for all statements, in the interest of brevity, we use this notation
instead of L(ε) and S(ε).

6

to machine i ∈M , then it requires pij units of processing time and incurs a cost rij . Each machine
i ∈ M can be assigned jobs of total processing time at most Pi. We want to find an assignment
of jobs to machines to minimize the total assignment cost. We should point out that rij values do
not necessarily satisfy the triangle inequality. Shmoys and Tardos [34] considered an LP relaxation
and showed that a feasible solution of this LP can be rounded, in polynomial time, to an integral
solution with the same cost that violates processing time limit Pi within additive factor maxj∈J pij .

Our algorithm is presented below. Here, φ−1(i) is the set of clients assigned to facility i by the
assignment φ and for a set F ′ ⊆ F , φ−1(F ′) = ∪i∈F ′φ−1(i).

Algorithm 1 Algorithm for the UCFLP by reduction to the RUCFLP(ε)

Input: An instance of the UCFLP, a parameter ε > 0, and an algorithm A for the RUCFLP(ε)
Output: A subset I ⊆ F to open and an assignment of clients φ : C → I

1: Let L = {j ∈ C : dj > ε} and S = C\L. Assign the clients in L by running A. Let IL be the
opened facilities and φL : L→ IL be the assignment found by A.

2: For i ∈ IL, set fi = 0, and set u′i = max{0, 1 −∑j∈φ−1
L (i) dj} as the new capacity of facility i.

Assign the clients in S with respect to updated opening costs and capacities by an approximation
algorithm for the splittable CFLP with non-uniform capacities. Let IS be the new set of opened
facilities and φ′S : S → I ′S be the assignment function, where I ′S ⊆ IS ∪ IL.

3: Round the splittable assignment φ′S using algorithm of [34] for GAP to find an unsplittable
assignment φS : S → I ′S .

4: Let I = I ′S ∪ IL and define φ : C → I as φ(j) = φS(j) if j ∈ S and φ(j) = φL(j), otherwise.
Return φ and I.

First, we formally prove the property that given assignment of large clients, there is a feasible
fractional assignment of small clients with an acceptable cost. A feasible fractional assignment is an
assignment of demands of clients to open facilities where each client’s demand might be served by
multiple facilities (instead of just one), i.e. we split their demands between multiple open facilities
while satisfying capacity constraints. Note that we do not open facilities fractionally (they are open
integraly). We should point out that the proof of this property is only an existential result and we
do not actually find the assignment in the proof. We only use this lemma to bound the cost of our
solution. Let OPT be an optimum solution which opens set I∗ of facilities and with assignment of
clients φ∗ : C → I∗. We use φ∗L : L → I∗ and φ∗S : S → I∗ to denote the restriction of φ∗ to large
and small clients, respectively.

Lemma 1 Suppose IL is a set of open facilities and φL : L → IL is an arbitrary (not necessarily
capacity respecting) assignment of large clients. Given the assignment φL, there exists a feasible
fractional assignment of small clients, φ′′S : S → I ′′S such that cs(φ

′′
S) ≤ cs(φ∗)+cs(φL) and cf (φ′′S) ≤

cf (φ∗).

Proof. Recall u′i is equal to max{0, 1−∑j∈φ−1
L (i) dj}, i.e., the amount of capacity left for facility

i after the assignment of large clients based on φL. We open all the open facilities in the optimum
solution, i.e., all facilities in I∗ (if not already open in IL). Let I ′′S = IL ∪ I∗. To show the existence
of φ′′S , first we move the demands of small clients to the facilities in I∗ based on φ∗S and we pay
cs(φ

∗
S) for this. So now the demands of small clients are located at facilities in I∗. However, a

facility i ∈ I ′′S has only u′i residual capacity left (after committing parts of its capacity for the large
clients assigned to it by φL) and this capacity may not be enough to serve the demands of small
clients moved to that location. In order to rectify this, we will fractionally redistribute the demands
of these small clients between facilities (in I ′′S) in such a way that we do not violate capacities u′i.

7

In this redistribution, we only use the edges used in φL or φ∗L and if an edge is used to assign large
client j to facility i (in φL or φ∗L), we move at most dj units of demands of small clients along
this edge. Therefore, we pay at most cs(φL) + cs(φ

∗
L) in this redistribution. Thus, by the triangle

inequality, the connection cost of the fractional assignment of small clients obtained at the end
is bounded by cs(φ

∗
S) + cs(φ

∗
L) + cs(φL) = cs(φ

∗) + cs(φL). Since we only open facilities in the
optimum solution (on top of what is already open in IL) the extra facility cost (for assignment φ′′S)
is bounded by the facility cost of the optimum.

This process of moving the small client demands can be alternatively thought of in the following
way. We start from the optimum assignment φ∗ and change the assignment of large clients to get
an assignment identical to φL for those in L. Specifically, we change the assignment of a large
client j from i′ = φ∗(j) to i = φL(j). This switch increases the amount of demands served at i
by dj and decreases the amount of demand served at i′ by dj . After doing all these switches, we
might have more demand at some facilities than their capacities. To resolve this problem, we try to
redistribute (fractionally) the demands of small clients so that there is no capacity violation due to
these clients and we use the max-flow min-cut theorem to show that this redistribution is possible.

Let s∗i be the total demand of small clients served by facility i in φ∗. Define a flow network H
as follows. H has set of vertices X ∪ Y ∪ {s, t} where X = {xi|i ∈ F} and Y = {yi|i ∈ F}, and
s is called the source and t is the sink. We add an edge from s to all the vertices in X and set
the capacity of edge sxi to s∗i (this represents the total demand of small clients that can be moved
from facility i). We connect each yi ∈ Y to t and set the capacity of edge yit to u′i (this represents
the residual capacity of facility i after the assignment of large clients according to φL). We connect
xi and yi bidirectionally with edges of unlimited capacity (because xi and yi represent the same
facility). Finally, for each large client j with φL(j) = i and φ∗(j) = i′ we add an edge from xi to
yi′ with capacity dj (see Figure 1). This means that we can transport dj units of (small clients)
demands from facility i to facility i′ since we switch the demand of large client j from being served
at i′ in the optimum to be served at i.

j

F

C

i i′

Our Assignment

Optimal Assignment

(a) Assignment of large client j in φ∗l and φL.

X Y

X −Xc

Yc
s t

xi

yi′dj

Xc

Cut c

Y − Yc

(b) The edge xiyi′ corresponding to the large client j shown in
part (a). Also, an arbitrary s−t cut of bounded value in H shown
with a dashed line. The portion above the dashed line shows the
partition s ∪Xc ∪ Yc.

Figure 1: The flow network used in the proof of Lemma 1.

8

A flow of value
∑

i s
∗
i in H represents a fractional redistribution of demands of small clients

between facilities in such a way that we do not violate capacities u′i. It follows that if there is a
flow of value

∑
i s
∗
i in H then we can redistribute the demands of small clients among facilities so

that large clients are served according to φL and no facility capacity is violated because of small
clients. We show that a maximum s-t flow in H has value at least

∑
i s
∗
i .

We show that the capacity of any s-t cut in H is at least
∑

i s
∗
i . Therefore, the capacity of

minimum cut is at least
∑

i s
∗
i and by the max-flow min-cut theorem, the value of max flow is at

least
∑

i s
∗
i . If for any i ∈ F , the vertices xi and yi are in different partitions of a cut, the cut has

unbounded capacity (because of the unlimited capacity of bidirectional edge xiyi) and clearly has
capacity at least

∑
i s
∗
i .

Now, consider an arbitrary cut in which for all i ∈ F , the vertices xi and yi are in the same
partition. Consider the partition containing s in this cut and let Xc ⊆ X and Yc ⊆ Y be the rest of
the vertices in this partition, i.e., the partition is s∪Xc ∪Yc. Let F ′ be the facilities corresponding
to the vertices in Xc (or equivalently, in Yc). Let C∗l be the large clients assigned to the facilities in
F ′ by φ∗ and Cl be the large clients assigned to the facilities in F ′ by φL. Since φ∗ does not violate
capacities, the total demand of clients assigned to facilities in F ′ is at most their total capacity,
i.e., |F ′|. In other words: ∑

i∈F ′
s∗i +

∑
j∈C∗l

dj ≤ |F ′| ≤
∑
i∈F ′

u′i +
∑
j∈Cl

dj ,

where the second inequality follows from the way that we defined u′i and Cl. Adding the term∑
i∈F\F ′ s

∗
i −

∑
j∈C∗l dj to both sides:∑

i∈F ′
s∗i +

∑
i∈F\F ′

s∗i ≤
∑

i∈F\F ′
s∗i +

∑
i∈F ′

u′i +
∑
j∈Cl

dj −
∑
j∈C∗l

dj ,

and by the simple fact that
∑

j∈Cl
dj −

∑
j∈C∗l dj ≤

∑
j∈Cl\C∗l dj , the above inequality implies∑

i∈F
s∗i ≤

∑
i∈F\F ′

s∗i +
∑
i∈F ′

u′i +
∑

j∈Cl\C∗l

dj .

Notice that the right hand side of the above inequality is exactly the capacity of the cut (see
Figure 1). The first term of the right hand side is the capacity of the edges leaving the cut from s
to X \Xc. The second term is the capacity of the edges leaving the cut from the vertices in Yc to
t. The third term is the capacity of the edges leaving the cut from Xc to Y \ Yc, because a client j
is in Cl\C∗l if and only if it is assigned to a facility in F ′ by φL and is assigned to a facility outside
of F ′ by φ∗ if and only if we have an edge of capacity dj from φL(j) ∈ Xc to φ∗(j) ∈ Y \Yc.

Remark 1 The above lemma can be generalized in the following way. Assume facility i has capacity
ui, i.e., we are in the non-uniform case. Let φC′ : C ′ → IC′ and φC : C → IC be two arbitrary
capacity respecting assignments, where C ′ can be any subset of C, and IC′ and IC are subsets of
F . Let C ′′ = C\C ′. Almost the same proof as above shows that given the assignment φC′, there
exists a feasible fractional assignment φC′′ : C ′′ → IC′′ such that cs(φC′′) ≤ cs(φC) + cs(φC′) and
cf (φC′′) ≤ cf (φC), where IC′′ ⊆ IC ∪ IC′. If we set C ′ = L and φC = φ∗, then C ′′ = S and we get
the above lemma.

We point out that the above lemma is tight. Consider a path P = v1v2v3 where the edges have
unit cost. Assume 1/2ε is an integer and denote this integer by q. There are q small clients of

9

demand ε on v1, there is a facility with opening cost 0 on v1, there is a large client with demand 1/2
on v2, there is another facility with opening cost 0 on v3 and there are 2q small clients of demand ε
on v3. In the optimal solution, we open both facilities and assign the large client on v2 to the facility
on v1. Thus, we have cs(φ

∗) = 1/2 and cf (φ∗) = 0. An algorithm which decides the assignment
of large clients oblivious to small clients (including Algorithm 1) may assign the large client on v2
to the facility on v3. After this assignment, any feasible fractional assignment of small clients, φ′′S ,
must assign at least 1/2 units of demands of small clients on v3 to the facility on v1. Thus, we have
cs(φ

′′
S) ≥ 1/2 + 1/2 = 1 = cs(φ

∗) + cs(φL), because cs(φL) = 1/2 and cf (φ′′S) = cf (φ∗) = 0. This
shows that Lemma 1 is tight. Note that this example shows that any algorithm which decides the
assignment of large clients oblivious to small clients is at least a factor 3 away from the optimum
even for simple metrics such as Euclidean, planar, and tree metrics.

v1
v2

v3
q clients of demand ε one client of demand 1

2
2q clients of demand ε

one facility with f1 = 0
1 1

one facility with f2 = 0

Figure 2: A tight example for Lemma 1.

One should note that when all facility costs and at least one of cs(φ
∗
L) or cs(φL) are non-zero,

Lemma 1 is not tight: remember that I∗ is the set of facilities opened by φ∗. Assume the facility
cost inequality of Lemma 1 is tight, i.e., for any feasible fractional assignment of small clients φ′′S ,
we have cf (φ′′S) = cf (φ∗). This means that none of the large clients is assigned to I∗ by φL or
equivalently, no small client is assigned to a facility opened by φL. Therefore, when we switch the
assignment of large clients from the one in the optimal solution to the one in φL, we do not need
to send back anything and change the assignment of small clients. Since at least one of cs(φ

∗
L) or

cs(φL) is non-zero, we have cs(φ
′′
S) < cs(φ

∗
S) + cs(φ

∗
L) + cs(φL) for a φ′′S that assigns small clients

the same way as φ∗S .
Now, we prove our main theorem using Lemma 1:

Proof of Theorem 1. Since the cost of the optimum solution for the instance consisting of only
the large clients is clearly no more than that of the original instance, after Step 1 of Algorithm 1,
we have an assignment φL such that c(φL) ≤ α(ε)c(φ∗L) and it violates the capacities by a factor of
at most β(ε). By Lemma 1, given φL, there is a feasible fractional assignment φ′′S for small clients
such that cs(φ

′′
S) ≤ cs(φ∗) + cs(φL) and cf (φ′′S) ≤ cf (φ∗).

In Step 2, consider the instance of the splittable CFLP consisting of the small clients and the
residual facility opening costs and capacities as defined. We use an approximation algorithm for the
splittable CFLP to find an approximate splittable (i.e., fractional) assignment φ′S for small clients.
Suppose that the approximation algorithm used for the splittable CFLP has separate factors λss,
λsf , λfs, λff such that it returns an assignment with service cost at most λsscs(φ̃S) + λsfcf (φ̃S)
and with opening cost λfscs(φ̃S) + λffcf (φ̃S) for any feasible solution φ̃S . Therefore, if we use the
fractional assignment φ′′S guaranteed by Lemma 1:

cs(φ
′
S) ≤ λsscs(φ′′S) + λsfcf (φ′′S), (1)

and
cf (φ′S) ≤ λfscs(φ′′S) + λffcf (φ′′S). (2)

The current best approximation for the non-uniform splittable CFLP is due to Bansal et al. [7]
with parameters λss = 1, λsf = 1, λfs = 4, and λff = 4.

10

In Step 3, we round the splittable assignment φ′S using the algorithm of Shmoys and Tardos
[34] for the Generalized Assignment Problem (GAP) to find an integer assignment φS . Given the
fractional assignment of clients to facilities φ′S , using the rounding algorithm of [34], we can round
φ′S to φS without increasing the connection cost, i.e., cs(φS) = cs(φ

′
S), such that the capacity

constraints are violated by at most an additive factor of maxj∈S dj . Since all the jobs in S have
demand at most ε, the capacity constraints are violated by at most a factor of 1 + ε.

After combining φS and φL in Step 4, the violation of capacities is within a factor of at most
max{β(ε), (1 + ε)}, because the facilities with violated capacities in Step 1 will be removed in Step
2 and will not be used in Step 3. So it only remains to bound the cost of this assignment:

cs(φS) = cs(φ
′
S) by rounding of the GAP [34]

≤ λsscs(φ
′′
S) + λsfcf (φ′′s) by Equation (1)

≤ λss(cs(φ
∗) + cs(φL)) + λsfcf (φ∗), by Lemma 1

cf (φS) ≤ (1 + ε)cf (φ′S) by rounding of the GAP [34]
≤ (1 + ε)λfscs(φ

′′
S) + (1 + ε)λffcf (φ′′S) by Equation (2)

≤ (1 + ε)λfs(cs(φ
∗) + cs(φL)) + (1 + ε)λffcf (φ∗). by Lemma 1

Therefore:

c(φ) = c(φS) + c(φL)

= cs(φS) + cf (φS) + cs(φL) + cf (φL)

≤ h1(ε)cs(φ
∗) + h2(ε)cf (φ∗) + (h1(ε) + 1)cs(φL) + cf (φL), (3)

where h1(ε) = λss + (1 + ε)λfs and h2(ε) = λsf + (1 + ε)λff . Since h1(ε) ≥ 0 for any ε > 0:
(h1(ε) + 1)cs(φL) + cf (φL) ≤ (h1(ε) + 1)c(φL) ≤ α(ε)(h1(ε) + 1)c(φ∗L) ≤ α(ε)(h1(ε) + 1)c(φ∗).
Combining this with Inequality (3), we obtain that the cost of φ is within factor:

g(ε, α(ε)) = max(h1(ε), h2(ε)) + α(ε)(h1(ε) + 1) (4)

of the optimum, where h1(ε) = h2(ε) = 5 + 4ε using the current best ratio in [7].

3 The RUCFLP(1
2) and RUCFLP(1

3)

In this section, we give two algorithms for the RUCFLP(12) and RUCFLP(13). Combined with
Theorem 1 (and using Algorithm 1) these imply two approximation algorithms for the UCFLP. We
start with the simpler of the two, namely the RUCFLP(12).

Theorem 5 There is a polynomial time exact algorithm for the RUCFLP(12).

Proof. Consider an optimal solution for a given instance of this problem with value OPTL.
Because dj >

1
2 for all j ∈ C, each facility can serve at most one client in the optimal solution.

Therefore, the optimal assignment function, φ∗L, induces a matching M = {jφ∗L(j) : j ∈ C}.
Let wij = cij .dj + fi and let w(H) =

∑
e∈H we for any subset of edges H ⊆ E. It follows that

w(M) = OPTL.
Let M∗ be a minimum weight perfect matching with respect to weights wij . Clearly, w(M∗) ≤

w(M) = OPTL. In addition, M∗ induces a feasible assignment of clients to facilities with cost
w(M∗). Thus, M∗ induces an optimal solution for the RUCFLP(12). Since we can find a minimum
weight perfect matching in polynomial time, there is an exact algorithm for the RUCFLP(12).

11

Corollary 2 There is a polynomial time (15, 3/2)-approximation algorithm for the UCFLP.

Proof. We run Algorithm 1, where we use the algorithm of Theorem 5 in the first step. Substituting
α(ε) = 1 and ε = 1/2, we have h1(

1
2) = 7, h2(

1
2) = 7, and g(ε, α(ε)) = 15. Since β(ε) = 1, the

overall ratio is (15, 3/2).

Remark 2 We can generalize the above Theorem. Let φL be the assignment induced by M∗ and
φ̃L be any feasible assignment for the RUCFLP(12) instance. The reader may verify that a similar

proof shows that cs(φL) + cf (φL) ≤ cs(φ̃L) + cf (φ̃L).

The algorithm for the RUCFLP(13) is more involved. First, we show how finding an approxima-
tion algorithm for the RUCFLP(ε) with zero facility opening costs leads to an approximation algo-
rithm for the general RUCFLP(ε). Then, we give an approximation algorithm for the RUCFLP(13)
with zero opening costs.

Lemma 2 Given an (α′(ε), β(ε))-approximation algorithm A′ for the RUCFLP(ε) with zero facility
opening costs, we can find a (α′(ε)1ε , β(ε))-approximation A for the general RUCFLP(ε).

Proof. Define a new connection cost c′ij = cij + fi and opening cost f ′i = 0 for all i ∈ F and j ∈ C.
Note that the new cost function is still metric. Then, we run A′ on this new modified instance and
let the solution returned by the algorithm be assignment φL. We use φL to assign the clients for
the original instance and we claim this is a (α′(ε)1ε , β(ε))-approximation. In the following, the costs
of all assignments are based on cij and fi values.

Let φ∗L be an optimal assignment for the original instance of the RUCFLP(ε) and OPTL be the
cost of φ∗L (including opening costs). Let Ci = φ∗L

−1(i). The cost of φ∗L in the new instance will be

∑
i

∑
j∈Ci

djc
′
ij =

∑
i

(∑
j∈Ci

djcij + (
∑
j∈Ci

dj).fi

)
≤
∑
i

(∑
j∈Ci

djcij + fi

)
≤ OPTL,

where we used the fact that
∑

j∈Ci
dj ≤ 1. Thus, there is a solution in the modified instance with

cost at most OPTL. Therefore, the value of the assignment found by A′ in the new graph is at
most α′(ε) ·OPTL. Let γ be the portion of this value that comes from the facility costs in c′ costs,
i.e., the cost of solution φL in the new graph is cs(φL)+γ ≤ α′(ε)OPTL. Since dj > ε for all j ∈ C,
each client j pays at least ε fraction of the opening cost of φL(j) embedded in costs c′ and hence,
cf (φL) ≤ 1

εγ. Therefore, we have

c(φL) = cs(φL) + cf (φL) ≤ cs(φL) +
1

ε
γ ≤ 1

ε
cs(φL) +

1

ε
γ ≤ 1

ε
α′(ε)OPTL

for ε ≤ 1.

Remark 3 Let φ̃L be any feasible assignment for the original instance of the RUCFLP(ε). A
similar proof shows that cs(φL) +γ ≤ α′(ε)(cs(φ̃L) + cf (φ̃L)). We use this fact in Section 3.1 to get
a better ratio for the RUCFLP(13).

In the following, we present a (7, 1)-approximation algorithm for the RUCFLP(13) with zero
opening costs (see Algorithm 2), which coupled with Lemma 2 yields a (21, 1)-approximation algo-
rithm for the RUCFLP(13).

Theorem 6 There is a (7, 1)-approximation algorithm for the RUCFLP(13) with zero opening costs.

12

Algorithm 2 Algorithm for solving the RUCFLP(13) with zero opening costs

Input: An instance of the RUCFLP(13) with zero opening costs
Output: A subset I ⊆ F and a function φ : C → I

1: Let L′ = {j ∈ C : dj >
1
2} and L′′ = C\L′. Assign the clients in L′ by running a minimum

weight perfect matching algorithm with edge weights wij = djcij . Let IL′ be the opened
facilities and φL′ : L′ → IL′ be the assignment function.

2: Build the flow network H as described in the proof of Theorem 6.
3: Find a minimum cost maximum flow in H. If the value of the flow is smaller than |L′′| then

return “Infeasible”. Else, let IL′′ be the subset of facilities in F\IL′ whose corresponding nodes
in Y (in H) have non-zero flow through them and φL′′ be the assignment function defined as:
if there is a unit flow from xj to yi in H then φL′′(j) = i.

4: Let I = IL′′ ∪ IL′ . Combine φL′′ and φL′ to form assignment function φL : C → I where
φ(j) = φL′′(j) if j ∈ L′′, otherwise φ(j) = φL′(j). Return φ and I.

Proof. Note that all the clients in the given instance have size > 1
3 . We break them into two

groups: L′ = {j ∈ C : dj >
1
2} and L′′ = C\L′ are those which have size in (13 ,

1
2]. In this proof

(and that of Lemma 3), we call clients in L′, huge clients and those in L′′, medium clients. The
algorithm assigns the huge clients by running a minimum weight perfect matching algorithm with
edge weights wij = djcij . Let IL′ be the opened facilities and φL′ : L′ → IL′ be the assignment
function. For medium clients (i.e., those in L′′), we define a flow-network H and show that minimum
cost maximum flows in H corresponds to minimum cost feasible assignment of clients in L′′ to
facilities (given the assignment φL′).

Directed network H has node set X ∪ Y ∪ {s, t} where there is a node xj ∈ X for every client
j ∈ L′′ and a node yi ∈ Y for every facility i ∈ F ; s is the source and t is the sink. The source is
connected to each node xj ∈ X, and all yi ∈ Y are connected to the sink. Each xj ∈ X is connected
to a node yi ∈ Y if either the corresponding facility i is in F\IL′ , i.e., unopened yet, or i is in IL′

and the remaining capacity of i is enough to serve the demand of client j. Set the capacity of the
edges between the source and the nodes in X to 1, set the capacity of the edges between X and
Y to 1, set the capacity of the edges between the nodes yi ∈ Y whose corresponding facility i is
unopened (i.e., not in IL′) and the sink to 2, and set the capacity of the edges between the nodes
yi ∈ Y whose corresponding facility is in IL′ and the sink to 1. The cost of an edge connecting xjyi
is dj · cij and all the other costs are 0. Algorithm 2 summarizes the algorithm for the RUCFLP(13)
with zero opening costs.

Let φ∗L be an optimal assignment for the given instance of the RUCFLP(13) with cost OPTL.
In Lemma 3, we will prove that there exists an assignment φ′ of clients consistent with assignment
φL′ found in Step 1, with cost at most 7OPTL. Below we prove that in Steps 2 and 3 the algorithm
finds the best possible feasible assignment of clients in L′′ (given φL′). Therefore, the cost of φ
formed in Step 4 is at most c(φ′) and hence, is at most 7OPTL.

Since for any j ∈ L′′: 1
3 < dj ≤ 1

2 , each unopened facility after Step 1 can serve any two
clients of L′′ (and no more than two). This fact is reflected in that we connect all the nodes in X
(corresponding to medium clients) to the nodes in Y corresponding to unopened facilities F\IL′
and we set the capacity of the edges between those nodes in Y and the sink to 2. In addition, each
facility in IL′ can serve at most one medium client, because more than 1

2 of its capacity is already
used by a huge client; accordingly we set the capacity of the edges from those nodes in Y to the
sink to 1 and we only connect to them the nodes of X whose corresponding client can be served by
them. Considering these two simple facts:

13

Claim 1 The maximum flow in H has value |L′′| if and only if the given instance is feasible and
there is a one to one correspondence between maximum flows in H and feasible assignment of
medium clients (i.e., in L′′) given φL′. Furthermore, a maximum flow in H and its corresponding
assignment of clients of L′′ to F have the same cost.

Proof. Since all the edges of H have integer capacities we may consider an integral maximum
flow. If a node xj ∈ X has a flow of one to a node yi ∈ Y we assume client j is assigned to facility
i, and vice-versa. First, suppose that the instance is feasible and let φ be an arbitrary feasible

assignment. We show that there is a feasible assignment consistent with φL′ . Let I
(φ)
L′ be the set of

open facilities in φ to which a client of L′ is assigned. Clearly, |I(φ)L′ | = |L′|. Since opening costs are

zero and all facilities have the same capacity, we can easily swap the facilities in I
(φ)
L′ with ones to

which a client of L′ is assigned to in φL′ so that we get a feasible assignment consistent with φL′ .
Then it is easy to see that H has a flow of value |L′′| (basically the edges between X and Y in H
with non-zero flow correspond to the assignment of clients of L′′ in the feasible solution consistent
with φL′). Conversely, if H has a flow of |L′′| then that corresponds to a feasible assignment of
medium clients to facilities (consistent with φL′). The correspondence between cost of a maximum
flow and an assignment of clients (of L′′) is immediate from the definition of costs of edges.

Therefore, the assignment φL′′ obtained from a minimum cost maximum flow in H has the
minimum cost among the assignments consistent with φL′ . This together with Lemma 3 implies
that φ as defined has cost at most 7OPTL.

Lemma 3 There exists an assignment φ′L of clients consistent with φL′ with cost at most 7OPTL,
where OPTL is the cost of an optimum assignment φ∗L for the given instance of the RUCFLP(13)
with zero opening costs.

Proof. Let φ∗L′ be the restriction of φ∗L to clients in L′, and GL′ be the graph induced by the
edges used in φL′ or φ∗L′ . Since at most one client in L′ is assigned to each facility by any feasible
solution, the degree of vertices in GL′ is at most 2; so GL′ is a collection of cycles and paths. For an
arbitrary path, we show how the assignment of huge clients in φ∗L (i.e., those in L′) can be changed
to the ones in φL′ without violating any capacity, while the cost increases by at most a factor of 7.
Similarly, each cycle can be fixed with at most a factor of 3 increase in its cost, which completes
the proof.

Let P = i1j1i2j2 . . . ikjkik+1 be an arbitrary path in GL′ where φ∗L′(jl) = il and φL′(jl) = il+1

for 1 ≤ l ≤ k (see Figure 3). Let Sl be the set of medium clients (i.e., in L′′) assigned to facility il
by φ∗L. In φ′, we assign jl and the clients in Sl to il+1 for 1 ≤ l ≤ k and we assign the clients in Sk+1

to i1. Since we used a min-cost maximum matching algorithm to find φL′ , we have c(φL′) ≤ c(φ∗L′),
and changing the assignment of clients in L′ does not increase the cost (compared to that of φ∗L).
Therefore, we only need to analyse the increase in cost because of the change in assignment of
medium clients. Note that due to uniformity, the capacity constraints remain satisfied.

14

F

C

S1 S2 Sk Sk+1

Our Assignment Optimal Assignment

. . .

i1 i2 ik ik+1

j1 j2 jkjk−1

Figure 3: An arbitrary path in GL′ . In φ′, the clients in Sl are assigned to the facility pointed to
by the gray arrow adjacent to Sl.

Consider an arbitrary l where 1 ≤ l ≤ k. Since djl >
1
2 , the total demand of clients in Sl is

less than djl (because 1 − djl < 1/2 < djl). Therefore, if we send the clients in Sl to il+1 over the
edges iljl and jlil+1, we increase the cost by at most djl(ciljl + cjlil+1

). Thus, in total over all paths
in GL′ , changing the assignment of clients in ∪1≤l≤kSl increases the cost by at most an additive
c(φL′) + c(φ∗L′) ≤ 2OPTL. Finally, the total demand of clients in Sk+1 is at most 1 < 2djl for any
1 ≤ l ≤ k. Therefore, sending back these clients to i1 over P increases the cost in total by at most
an additive 2c(φL′) + 2c(φ∗L′) ≤ 4OPTL. Cycles in GL′ are handled the same way as paths, but
with nodes i1 and ik+1 identified. We conclude that the reassignment of clients increases cost by
at most an additive 6OPTL, making the overall cost of φ′ at most 7OPTL.

The above lemma is essentially tight: there are instances of the RUCFLP(13) with zero costs that
after deciding the assignment of huge clients by a minimum weight perfect matching algorithm, any
feasible solution consistent with this assignment has cost at least 7OPTL (see Figure 4). Consider
a path P = v1v2v3 where the edges have unit cost. There are two facilities with zero opening cost
on v1 and v3. In addition, there is a medium client of demand 1/2−δ on v1, a huge client of demand
1/2 + δ on v2, and two medium clients of demand 1/2 on v3, where δ is a small positive number.
In the optimal solution, the client on v2 is assigned to the facility on v1 and OPTL = 1/2 + δ. In
our solution, the minimum weight perfect matching algorithm may assign the huge client on v2 to
the facility on v3. Then, in any feasible solution, we must move the medium client on v1 to v3
and move the two medium clients on v3 to v1, so the total cost of any feasible solution given the
assignment of the huge client, is at least (1/2− δ)× 2 + 1× 2 + (1/2 + δ)× 1 = 7/2− δ. This shows
any feasible solution is essentially a factor of 7 away from the optimum.

v1
v2

v3
one client of demand = 1

2
− δ one client of demand = 1

2
+ δ

one facility with f1 = 0 one facility with f2 = 01 1

two clients of demand = 1
2

Figure 4: A tight example for Lemma 3.

Combining Lemma 2 and Theorem 6:

Corollary 3 There is a polynomial time (21, 1)-approximation algorithm for the RUCFLP(13).

15

Corollary 4 There is a (160.334,4/3)-approximation algorithm for the UCFLP.

Proof. We run Algorithm 1, where we use the algorithm of Corollary 3 for A. That is, we first
run the (7, 1)-approximation algorithm of Theorem 6 as algorithm A′ in Lemma 2 to obtain A with
α(ε) = 21 and ε = 1/3. Thus h1(

1
3) = 19/3, h2(

1
3) = 19/3, and g(ε, α(ε)) = 19/3 + 21(22/3) <

160.334. Since β(ε) = 1, the overall ratio is (160.334, 4/3).
Notice that we solved the RUCFLP(12) and (13) without violation of capacities, but this is not

possible for smaller values of ε as shown below.

Theorem 7 The RUCFLP(ε) does not admit any (α(ε), 1)-approximation algorithm for ε < 1
3

unless P=NP.

Proof. This can be shown by a simple reduction from the 3-partition problem (which is NP-hard).
In the 3-partition problem, we are given a set of 3m integers a1, . . . , a3m, a positive integer bound
B where B

4 < aj <
B
2 for all 1 ≤ j ≤ 3m and mB =

∑
1≤j≤3m aj . The question is if there is a way

to partition these numbers into m sets of size 3 each such that the sum of the numbers in each set
is exactly B. This problem is NP-hard [19].

Starting from a given instance Ip of the 3-partition problem, we build an instance IR of the
RUCFLP(ε) in the following way. Let c be a constant dependent on ε, which we define soon. For

each 1 ≤ j ≤ 3m, let dj =
aj+cB
B(3c+1) and create a client j with demand dj . Also, create m facilities

with zero opening cost and capacity 1. We set all the connection costs cij = 0. We choose constant
c large enough such that ε < 1

3 − 1
12(3c+1) . Since B

4 < aj <
B
2 for all 1 ≤ j ≤ 3m, the value of the

demands are between 1
3 − 1

12(3c+1) and 1
3 + 1

6(3c+1) and clearly, are greater than ε by the choice of
c. This completes the description of instance IR.

First, note that if we define a′j = δ1aj + δ2 for all 1 ≤ j ≤ 3m and B′ = δ1B + 3δ2 for two
positive constants δ1 and δ2, then this new instance is a yes instance of the 3-partition problem
if and only if Ip is a yes instance. In the above reduction, we used δ1 = 1

B(3c+1) and δ2 = c
3c+1

to define dj values. Thus, Ip is a yes instance if and only if we can partition dj values to m sets
of size 3 each such that the sum of numbers in each set is exactly B′ = 1. Since any solution
for IR, that does not violate the capacity constraints, provides such a partition of dj values, an
(α(ε), 1)-approximation algorithm for the RUCFLP(ε) can be used to solve the 3-partition problem
in polynomial time. Therefore, unless P= NP, there is no such approximation algorithm.

It should be noted that to find an algorithm for the UCFLP that violates capacities within factor
1+ε, we do not need to find an algorithm that does not violate capacities in the RUCFLP(ε). Even
if we violate the capacities within factor 1 + ε in the RUCFLP(ε), using Theorem 1 we can get an
algorithm for the UCFLP that violates the capacities within factor 1 + ε. We think it is possible to
find an (α(ε), 1 + ε)-approximation for the RUCFLP(ε) for any constant ε > 0. This, together with
Theorem 1 would imply an (f(ε), 1 + ε)-approximation for the UCFLP, for any constant ε > 0.

3.1 Improving the ratios

With a more careful analysis and a simple scaling to balance the bi-factors of connection and facility
costs, we can bring down the factors of our algorithms. A similar scaling has been used to obtain
better ratios for several variations of facility location problems (for example see [12]). For certain
parameters δ1 and δ2 to be defined, we change Algorithm 1 as follows:

1. We multiply the original connection costs by δ1 to get a new cost function c(1), i.e., c
(1)
ij = δ1cij

for all i ∈ F and j ∈ C. Then, we perform Step 1 with cost c(1) to find φL.

16

2. After step 1, we multiply the original connection costs by δ2 to get a new cost function c(2)

i.e., c
(2)
ij = δ2cij for all i ∈ F and j ∈ C. Then, we do Steps 2 and 3 with cost c(2) to find φS .

In the following, for an assignment φ, we use cs(φ), c
(1)
s (φ), and c

(2)
s (φ) to indicate the service

cost of this assignment with respect to cost functions c, c(1), and c(2), respectively. In addition,
assignments φ∗ and φ∗L have the same definition as before and are defined with respect to the
original costs. As a result, they are not necessarily optimal with respect to cost functions c(1) and
c(2).

By Remark 1 (applied to φ∗) there exists an assignment φ′′S such that c
(1)
s (φ′′S) ≤ c

(1)
s (φ∗) +

c
(1)
s (φL). Thus:

c(2)s (φ′′S) =
δ2
δ1
c(1)s (φ′′S)

≤ δ2
δ1
c(1)s (φ∗) +

δ2
δ1
c(1)s (φL)

= c(2)s (φ∗) + c(2)s (φL). (5)

In addition, the inequalities for cs(φS) and cf (φS) at the end of proof of Theorem 1 change to:

c(2)s (φS) = c(2)s (φ′S)

≤ λssc
(2)
s (φ′′S) + λsfcf (φ′′s)

≤ λss(c
(2)
s (φ∗) + c(2)s (φL)) + λsfcf (φ∗), by Eq. (5), (6)

cf (φS) ≤ (1 + ε)cf (φ′S)

≤ (1 + ε)λfsc
(2)
s (φ′′S) + (1 + ε)λffcf (φ′′S)

≤ (1 + ε)λfs(c
(2)
s (φ∗) + c(2)s (φL)) + (1 + ε)λffcf (φ∗). by Eq. (5) (7)

Therefore, scaling down Equation (6) by δ2 and using definition of c(2):

cs(φS) ≤ λss(cs(φ∗) + cs(φL)) +
λsf
δ2
cf (φ∗).

Also, using definition of c(2) and Equation (7):

cf (φS) ≤ δ2(1 + ε)λfs(cs(φ
∗) + cs(φL)) + (1 + ε)λffcf (φ∗).

Adding these inequalities together and then, adding cs(φL) + cf (φL) to the result, we obtain:

c(φ) = cs(φS) + cf (φS) + cs(φL) + cf (φL)

≤ ĥ1(ε)cs(φ
∗) + ĥ2(ε)cf (φ∗) + (ĥ1(ε) + 1)cs(φL) + cf (φL) (8)

where ĥ1(ε) = λss + δ2(1 + ε)λfs and ĥ2(ε) =
λsf
δ2

+ (1 + ε)λff . Using algorithm of Aggarwal et al.

[1] for splittable CFLP, we have λss = λsf = 1 and λfs = λff = 4. Therefore, ĥ1(ε) = 1+4δ2(1+ ε)

and ĥ2(ε) = 1
δ2

+ 4(1 + ε). We use these equalities to get the improved results.

Proof of Theorem 2. We run the modified Algorithm 1 with δ1 = ĥ1(
1
2) + 1 and value of δ2 to

be defined soon. We have:

17

(ĥ1(
1

2
) + 1)cs(φL) + cf (φL) = c(1)s (φL) + cf (φL)

≤ c(1)s (φ∗L) + cf (φ∗L)

= (ĥ1(
1

2
) + 1)cs(φ

∗
L) + cf (φ∗L)

≤ (ĥ1(
1

2
) + 1)cs(φ

∗) + cf (φ∗),

where the first inequality follows from Remark 2. Combining this with Inequality (8):

c(φ) ≤ (2ĥ1(
1

2
) + 1)cs(φ

∗) + (ĥ2(
1

2
) + 1)cf (φ∗) = (12δ2 + 3)cs(φ

∗) + (1/δ2 + 7)cf (φ∗).

Solving the equation 12δ2 + 3 = 1/δ2 + 7 for δ2, we find δ2 = (4 +
√

64)/24 = 1
2 , which gives the

claimed ratio.
Proof of Theorem 3. Recall that we use Lemma 2 to obtain algorithm A used in Algorithm 1
for large clients. We first start with a more careful analysis in Lemma 2. By Remark 3, the proof
of this lemma implies:

cf (φL) ≤ 1

ε
γ and c(1)s (φL) + γ ≤ α′(ε)(c(1)s (φ∗L) + cf (φ∗L)).

In our case, we have ε = 1/3 and α′(ε) = 7. Thus: cf (φL) ≤ 3γ ≤ 3(7(c
(1)
s (φ∗L)+ cf (φ∗L))− c(1)s (φL))

which implies 3c
(1)
s (φL) + cf (φL) ≤ 21(c

(1)
s (φ∗L) + cf (φ∗L)). If we set δ1 = (ĥ1(

1
3) + 1)/3, we have

(ĥ1(
1

3
) + 1)cs(φL) + cf (φL) ≤ 7(ĥ1(

1

3
) + 1)cs(φ

∗
L) + 21cf (φ∗L)

≤ 7(ĥ1(
1

3
) + 1)cs(φ

∗) + 21cf (φ∗).

Combining this with Inequality (8):

c(φ) ≤ (ĥ1(1/3) + 7(ĥ1(1/3) + 1))cs(φ
∗) + (ĥ2(1/3) + 21)cf (φ∗)

= (8(16δ2/3 + 1) + 7)cs(φ
∗) + (1/δ2 + 16/3 + 21)cf (φ∗)

= (128δ2/3 + 15)cs(φ
∗) + (1/δ2 + 79/3)cf (φ∗)

By solving the equation 128δ2/3 + 15 = 1/δ2 + 79/3 for δ2, we find δ2 = (17 +
√

673)/128, which
gives the claimed ratio.

4 The Euclidean UCFLP

In this section, we present a quasi-polynomial time (1 + ε, 1 + ε)-approximation algorithm for the
UCFLP in Euclidean metrics. For these instances, we do not reduce our problem to the RUCFLP(ε)
as we did in the previous sections. The reason is that one cannot get a ratio better than (3, 1 + ε)
by applying this reduction as shown in the tight example of Lemma 1 (note that the cost function
in that example is Euclidean).

Our algorithm for Euclidean metrics assigns the large clients integrally using a dynamic pro-
gramming approach, while it assigns the small clients fractionally at the same time at low cost.
Then we can round the fractional assignment of the small clients by the algorithm of Shmoys and

18

Tardos [34] for the GAP, as we did in Section 2. This rounding will not increase the cost and yields
a blowup of factor at most 1 + ε in facility capacities. We should note that Bateni and Hajiaghayi
[9] used this approach in the design of their (1 + ε, 1 + ε)-approximation algorithm for the UCFLP
in the metrics induced by trees. We combine some of their ideas with techniques developed for
designing PTASs for some Euclidean optimization problems; most notably the algorithms of [3, 5].
While our algorithm has some similarities to that of [9] (such as the way we define client types),
there are some technical differences. In particular, our table entries in the dynamic program are
defined based on a shifted quad-tree that is obtained from a dissection of the plane and the way
we combine solutions for the subproblems is more complicated.

We assume that the input points are on a unit grid, the minimum inter-node distance is at
least 4 (which implies no two nodes are located on the same grid point), and the maximum inter-
node distance is at most O(n4). We can enforce all these assumptions by a preprocessing step
similar to the one used by Arora [4] to make the instances well-rounded for k-TSP and k-MST. For
completeness of exposition, we describe this perturbation step in Subsection 4.4.

We use the randomly shifted quad-tree dissection method due to Arora to partition the Eu-
clidean plane [3]. We briefly explain this method here (a reader familiar with this can skip this
paragraph). We start with the bounding square of the input points and recursively partition it
into smaller sub-squares. Suppose the length of this bounding square (box) is L and without loss
of generality, assume L is a power of 2. Each square is partitioned into four equal sub-squares
and we recursively proceed for each sub-square and stop partitioning a sub-square if it has unit
length (and therefore has at most one input point in it). There is an immediate 4-ary tree structure
corresponding to this dissection where each square in the dissection is a node of the tree. For two
integers a, b ∈ [0, L), the (a, b)-shift of dissections is obtained by shifting the x- and y- coordinates
of all the dissecting lines by a and b modulo L, respectively. We obtain an (a, b)-shifted quad-tree
from the 4-ary tree representing the corresponding shifted dissection by simply removing (from the
tree) the partitioning of squares without any input point.

For each square in a shifted dissection, we place a portal at each of its four corners and place m
evenly spaced points on each edge, where m is a power of 2 (to be defined later). In other words,
we put 4(m + 1) portals on each square and the portals of higher level squares are co-located on
some portals of lower level squares. Note however that each portal is owned by a distinct square
(so even if several portals are co-located at the same point each belongs to one unique square).
Let a portal-respecting path between two points be a path that crosses the squares only at portals.
Let S be a collection of pairs of input points in the plane and let c(S) be the total Euclidean
distance of pairs. Arora, Raghavan, and Rao [5] show that in presence of our assumptions, if we
pick 0 ≤ a, b < L uniformly at random and use m = O(log n/ε) portals on each side of each square,
then with probability at least 1

2 , there exist some portal-respecting paths between the pairs in S
with total length (cost) at most (1 + ε)c(S). We present a dynamic programming algorithm to find
a (1 + ε, 1 + ε)-approximate portal-respecting solution for the UCFLP instances. Then, we run this
algorithm for all possible values of a and b and return the best solution of these runs. Based on
the above result regarding portal respecting paths, this solution is a (1 + ε′, 1 + ε′)-approximate
solution for the Euclidean UCFLP for some ε′ depending on ε.

4.1 Grouping Clients and Rounding Demand Sizes

For the simplicity of description, we assume 1
ε is an integer and denote it by p. First, we apply a

grouping and rounding step which is essentially the same as the one in [9]. We partition the clients
into three groups of large, small, and tiny clients according to their demand sizes. We round down
the demands of large and small clients and show that the precision error (i.e., violation of facility

19

capacities) resulted from this rounding does not exceed 2ε. Also, this rounding does not increase
the cost by more than a (1 + ε) factor when we restore the original demands. As before, the clients
with demands greater than ε are called large but the definition of small clients are different from
before. We round down the demands of large clients to the nearest multiple of ε2. This yields
q = 1−ε

ε2
+ 1 = p2 − p + 1 distinct demand values. Since each facility can serve at most p large

clients, this rounding yields a blowup of at most pε2 = ε of facility capacities. Therefore, if we work
with these rounded down demand values from now on, we violate the facility capacities by at most
an additive value of ε. We define a client type corresponding to each of these q distinct demand
value; so far we have defined q client types.

A client j with demand ε/n < dj ≤ ε is called small. We round down the demands of small
clients to the nearest multiple of ε2/n. Similar to large clients, this yields an additive blowup of
at most ε of facility capacities (as there can be at most n/ε small clients adding a total of ε to
the demand of a facility). We intend to assign these clients fractionally. Therefore, we just need
to keep track of their total demand which is a multiple of ε2/n. For this purpose, we divide each
small client with rounded demand d into dn/ε2 clients each with demand ε2/n. Since d ≤ ε and
is a multiple of ε2/n, we break each small client into at most n/ε clients. These clients of demand
ε2/n form type q + 1.

Finally, we call all the other clients tiny. The demand of these clients are negligible with respect
to capacities, i.e., even if we assign all of them to an already full facility, it yields an additive blowup
of at most ε. We leave their demands intact. It should be noted that their assignment cost may
still be significant and we must be careful in their assignment. Now, we are ready to define the
dynamic programming tables with respect to the q+1 client types and tiny clients. Note that q+1
is a constant for a fixed ε > 0 and this is crucial in our algorithm.

4.2 The Dynamic Programming Tables

We define a set of subproblems for each square in the shifted quad-tree and solve it by combining
the solutions of its children. We treat the clients of type 1 through q + 1 separately from tiny
clients. First, we explain how we handle the clients of type 1 through q + 1. Consider a shortest
portal-respecting path from a client to a facility. It passes through some nodes of the quad-tree
(i.e., squares in the dissection): The client moves up to its least common ancestor in the quad-tree
and moves downward to the node (i.e., square) containing the facility. Equivalently, we can think
of moving up the facility to meet the client in their least common ancestor node in the tree and
each one pays its own movement cost. Looking at the problem this way, the portion of a facility
capacity serving a client must move to their least common ancestor. In fact, we are breaking each
facility i into some virtual facilities, one for each client j it must serve, and move that virtual facility
(corresponding to the portion of capacity for serving j) to meet j at the least common ancestor of
the two squares containing i and j.

Assume we have decided (in the dynamic programming) that a facility must serve n` clients of
demand type ` for each 1 ≤ ` ≤ q + 1 (we make this decision by enumerating all possible ways of
choosing n` values when we solve the base case corresponding to the leaf of quad-tree containing
this facility). We break this facility into n` virtual facilities of type ` for all 1 ≤ ` ≤ q + 1. A
virtual facility of type ` can only serve a client of type `. Considering the problem this way, in each
square some clients will be served by facilities inside, some clients will be shipped outside through
the portals of the square, some virtual facilities inside will serve the clients inside and some will be
sent outside through the portals to serve clients from outside. Thus, for each portal of a square, we
just need to keep track of how many of each demand type is sent to this portal to be served outside
and how many of each virtual facility type is sent to this portal to service clients from outside.

20

One nice feature of breaking the facilities into virtual facilities is that once we have decided how a
facility is going to be broken into virtual facilities (i.e., each n` is guessed for 1 ≤ ` ≤ q+1), we can
consider the subproblem of each demand type independent of other types since no client or virtual
facility of a type can interfere with other types.

To handle tiny clients, we first need to point out a simple observation. Assume some tiny clients
are sent to a portal of a square they belong to, to be sent to their facility. As we stated before,
tiny clients can be assigned to any open facility without a significant blowup in capacities. Thus,
we can send all the tiny clients sent to a portal to the nearest open facility, without increasing
the connection cost. In other words, there is a solution with cost no more than optimal cost in
which all the tiny clients sent to the same portal, head to the same facility (i.e., nearest open one)
and we seek such a solution in our algorithm. To find such a solution, we fix (by enumerating all
possibilities) the facility that should be used by tiny clients sent to each portal (of each square) in
our dynamic programming. Then, instead of assigning each tiny client to a facility, we assign it to
one of the portals around the square containing it and automatically all the tiny clients assigned
to that portal will be served at the “guessed” nearest open facility for that portal. After choosing
a portal for a tiny client, the client pays the cost of connection to the facility of that portal with a
portal-respecting path fully upfront.

Formally, an instance of a subproblem is defined as a tuple (s,D, F) where s is a square in
the quad-tree (i.e., the dissection) and D and F are two matrices containing information about
the demands and (virtual) facilities moved to portals of s: D is a 4(m + 1) × (q + 2) matrix (for
demands) where the ith row keeps track of the information regarding the ith portal of S. The first
q + 1 elements of this row show the number of clients of each client type (from 1 to q + 1) moved
to this portal. The (q + 2)th element shows the index of the facility that the tiny clients (inside
of s) that are moved to this portal plan to use. F is defined similarly for facilities, namely it is a
4(m+ 1)× (q+ 2) matrix where the ith row keeps track of the information regarding the ith portal
for facilities. The first q+1 elements of this row show the number of virtual facilities of each of q+1
virtual facility types moved to this portal. The (q + 2)th element shows the index of the nearest
open facility inside s to this portal (to be used for tiny clients moved to this portal). A value of
0 for facility index indicates that no tiny client can use this portal to reach an open facility. For
example, when there is no open facility available inside, this value is 0. We store in A[s,D, F] the
value of optimal solution of the subproblem (s,D, F), i.e., the minimum total cost to service the
clients in square s by opening facilities inside and sending clients and virtual facilities inside s to
outside of s through its portals according to matrices D and F . The tiny clients inside s pay their
connection cost fully upfront i.e., if they are to be served at a facility outside of s they contribute
their connection cost to those facilities to the total cost, while the other clients (large and small)
just pay the cost to move to their portal or to be served inside. The solution that we are seeking to
find is A[sr,0,0] with sr being the bounding box of all the input points. In the last step, we should
round the “fractional” assignment of small clients to an integer one, again using the algorithm of
Shmoys and Tardos [34] for the GAP. This rounding does not increase the cost but may violate the
capacity constraints by the maximum demand value. Since each small client has demand at most
ε, this will incur another additive of at most ε blow up in capacity constraints.

4.3 Computing the table

We now show how we can compute A[s,D, F] recursively. The leaves of the quad-tree have either
one client or one facility in them. We have three cases:

1. There is one client of type j (1 ≤ j ≤ q + 1) inside s: We must ship this client to one of the
portals. For the entries A[s,D, F] where F is the zero matrix and D has one non-zero value

21

equal to 1 in the jth column of exactly one of its rows, say row `, we set A[s,D, F] to the cost
of shipping the client to the `th portal. For all other entries, we set A[s,D, F] to undefined
(or infinity).

2. There is one tiny client inside s: For the entries A[s,D, F] where F is zero and D has exactly
one non-zero value, say i (corresponding to facility i), in the (p+ 2)th column of exactly one
of its rows, say `, we set A[s,D, F] to the cost of moving the client to the `th portal and then
moving it through the shortest portal-respecting path between the portal and facility i. For
all other entries, we set A[s,D, F] to undefined (or infinity).

3. There is a facility, say i, in the square. We set A[s,0,0] = 0. For the entries A[s,D, F] in
which D is the zero matrix, and the total capacity (i.e., virtual facilities) sent to the portals of
s according to F is not more than the capacity of facility i, and the (p+2)th column of F has
value i in its entries, we set A[s,D, F] to the opening cost of i plus the cost of moving virtual
facilities according to F to the portals. For all other entries, we set A[s,D, F] to undefined
(or infinity).

We update each non-leaf node as follows. Let s be a non-leaf node and s1, s2, s3, and s4 be
its four children. We enumerate all the combinations of matrices D and F for s and matrices Di

and Fi for si for all 1 ≤ i ≤ 4 where the subproblems are consistent (to be explained below). We
update A[s,D, F] with respect to subproblems (si, Di, Fi). As mentioned before, we can solve the
problem for each demand type and the corresponding virtual facility type separately, because there
is no dependencies between two different types. Let Ψ` be the extra cost for demand type ` in
sub-problem (s,D, F) in addition to the cost we paid in the subproblems (si, Di, Fi) (1 ≤ i ≤ 4).
We show how to compute Ψ` below.

Let m(`) and m
(`)
i (for 1 ≤ i ≤ 4) be the number of virtual facilities of type ` in F and Fi,

respectively. We define n(`) and n
(`)
i (for 1 ≤ i ≤ 4) for the number of clients of type ` in D and Di,

respectively. Note that n
(`)
1 + n

(`)
2 + n

(`)
3 + n

(`)
4 − n(`) is the total number of clients of type ` inside

s that are to be serviced inside s since only n(`) many demands of type ` are shipped outside from

a total of n
(`)
1 +n

(`)
2 +n

(`)
3 +n

(`)
4 . Similarly, of a total of m

(`)
1 +m

(`)
2 +m

(`)
3 +m

(`)
4 virtual facility of

type ` inside s, only m(`) is sent to portals and therefore m
(`)
1 + m

(`)
2 + m

(`)
3 + m

(`)
4 −m(`) virtual

facilities of type ` must be used inside s. Therefore, we must have

n
(`)
1 + n

(`)
2 + n

(`)
3 + n

(`)
4 − n(`) = m

(`)
1 +m

(`)
2 +m

(`)
3 +m

(`)
4 −m(`), (9)

or else the subproblems considered are inconsistent. Denote this quantity by r(`); so we must
assign exactly r(`) clients of type ` to r(`) facilities of this type inside s; otherwise this combination
of sub-problems is impossible and the solutions to the sub-problems are inconsistent. We can
assign these r(`) clients and facilities of type ` optimally in polynomial time by running a minimum
cost perfect matching algorithm as described below. Note that by Equation (9), we must have

n
(`)
1 +n

(`)
2 +n

(`)
3 +n

(`)
4 +m(`) = m

(`)
1 +m

(`)
2 +m

(`)
3 +m

(`)
4 +n(`). Since out of n

(`)
1 +n

(`)
2 +n

(`)
3 +n

(`)
4

clients of type `, n(`) are shipped outside, we must match each of n
(`)
1 +n

(`)
2 +n

(`)
3 +n

(`)
4 to one of n(`)

or one of m
(`)
1 +m

(`)
2 +m

(`)
3 +m

(`)
4 virtual facilities of type `. Similarly, out of m

(`)
1 +m

(`)
2 +m

(`)
3 +m

(`)
4

facilities of type `, only m(`) are sent to portals of s, thus each is either matched to one of m(`)

facilities or is used to serve one of n
(`)
1 + n

(`)
2 + n

(`)
3 + n

(`)
4 clients. This suggests to form a bipartite

graph H with n
(`)
1 + n

(`)
2 + n

(`)
3 + n

(`)
4 clients of the sub-squares s1, . . . , s4 and m(`) facilities of

s on one side and m
(`)
1 + m

(`)
2 + m

(`)
3 + m

(`)
4 facilities of the sub-squares and n(`) clients of s

on the other side. Put an edge between two vertices of the two partitions of H unless one of

22

them is from the m(`) facilities and the other is from the n(`) clients. In other words, H has

(n
(`)
1 + n

(`)
2 + n

(`)
3 + n

(`)
4 +m(`))(m

(`)
1 +m

(`)
2 +m

(`)
3 +m

(`)
4 + n(`))−m(`)n(`) edges. The cost of an

edge of H is the cost of the shortest portal-respecting path between its endpoints times d` (demand
of type `). It is not hard to see that this gives the best possible assignment for the demand type
` given the sub-problems, i.e., Ψ` is the weight of the minimum cost perfect matching of H. We
update A[s,D, F] to:

min(A[s,D, F], A[s1, D1, F1] +A[s2, D2, F2] +A[s3, D3, F3] +A[s4, D4, F4] +

p+1∑
`=1

Ψ`).

If for one of the types 1 ≤ ` ≤ p + 1, one of the sub-problems does not have a solution, then the
combinations of matrices that we have guessed are inconsistent (and we do not update A[s,D, F]).

One other consistency condition of the matrices D,F , and Di, Fi (for 1 ≤ i ≤ 4) that we need
to check is that for co-located portal points of s, s1, s2, s3, and s4, we must have consistency of
facilities devoted to tiny clients in those portal points. For instance, if t1 is a portal of s1 and t is
a portal point of s and the tiny clients of s1 shipped to t1 are to be served at facility i1 and the
tiny clients of s shipped to t are to be served at i and the shortest portal-respecting path from t1
to i1 goes through t then we must have i1 = i, or else the sub-problems are not consistent. Here is
how we check for this type of consistency. Let T be the set of all portals in s, s1, s2, s3, s4. Recall
that each portal point is “owned” by a square, so there might be several portal points in T that
are co-located. For each portal t ∈ T (where t is the portal of exactly one of s, s1, s2, s3, or s4) let
f(t) be the index of the facility that the tiny clients sent to t are assigned to; this index can be
found in row t and column (q + 2) of D or D1, D2, D3, or D4 (whichever sub-problem the portal t
belongs to). For each portal t ∈ T , let f ′(t) be the index of the nearest facility to this portal inside
the square of this portal, which can be found in column (q + 2) of F or F1, F2, F3, or F4 (again
depending on which square owns portal t). For each portal t ∈ T , if f(t) is non-zero, we check a
shortest portal-respecting path from t to f(t) and consider two cases:

Case 1: if f(t) is outside s then let ts ∈ T be the the last portal of T on this shortest path from t
to f(t) (note that ts must be a portal of s). Then we must have that f(ts) = f(t).

Case 2: if f(t) is inside s and belongs to one of the 4 sub-squares of it, say square si, then let ti
be the last portal of T on this shortest path from t to f(t) (note that ti must belong to si).
Then we must have that f(ti) = f(t).

If either of these conditions are not satisfied we have an inconsistency of facilities of tiny clients
and we skip the guessed matrices for the sub-problems.

4.4 Preprocessing Step

In this subsection we describe a perturbation step which enforces the assumptions we made about
the size of the bounding box containing the points. Recall that we want: all the points are on a
unit grid, the minimum inter-node distance is at least 4, and the maximum inter-node distance
is at most O(n4). Observe that if we scale the connection and opening costs, then the optimum
solution of the problem remains the same. Thus, we scale the costs by 4/cmin, where cmin is the
minimum non-zero inter-node distance. In the new instance with scaled costs, cmin is 4. From now
on, we work with this instance. Let OPT be the value of an optimal solution. We first compute
a crude approximation, A, of OPT. For instance, this can be done by using the O(log(n), 1 + ε)-
approximation algorithm of [9]. Therefore, we have A = O(log n) ·OPT. We pick random a and

23

b and construct a shifted quad-tree. This time, we stop as soon as the size of squares become less
than nA. We claim that the shifted quad-tree does not cut any edge of an optimal solution with
probability at least 1 − 4/n. Hence, we can treat each leaf of this quad-tree as an independent
instance where the length of the bounding box of each instance is at most nA.

To prove the claim, consider the case that the optimal solution consists of a collection of line
segments with length at least 4. By Lemma 4 of [4], each line segment of the optimal solution with
length s crosses at most 2s lines of unit grid. Therefore, at most 2OPT ≤ 2A lines of gird are
crossed by any segment in the solution. As a result, the probability that the shifted quad-tree cuts
any of these segments is at most 2A over the length of the leaf squares. Since the length of a leaf
square is at least nA/2, the probability is at most 4/n.

Let L be the size of the bounding box of the points. We overlay a grid of granularity εA/(4n2 log(n)).
We move the input nodes one by one to its nearest grid point whose neighbourhood of gird-
distance 4 is empty of any other node. It is not hard to see that each original node can be
assigned to a grid point of grid-distance at most 4n. Therefore, we move each point by at most
4nεA/(4n2 log(n)), and by the triangle equality, the cost of any solution increases by at most
nεA/(n log(n)) ≤ εOPT . Since L < nA, the size of the bounding box after scaling is at most
2(4n) + L/(εA/(4n2 log(n))) < 8n+ 41

εn
3 log(n) = O(n4).

4.5 Wrap-up

Proof of Theorem 4. Recall that in the preprocessing step, the cost of the solution increases by
a factor of at most (1 + ε). When we restrict our solution to be portal-respecting, we lose another
1 + ε factor. In the dynamic programming, we find the best solution under these restrictions with
respect to rounded demand values. When we restore the demands to their original values, we
increase them by a factor of at most 1 + ε, which increases the cost by at most another 1 + ε
factor. As a result, we find a solution whose cost is at most (1 + ε)3 factor away from the optimal
value. As we stated before, the total blow-up in facility capacities incurred due to rounding of large
and small clients is at most 2ε. In addition, the assignment of tiny clients may result in another
ε blowup of capacity for each facility. Finally, when we round the fractional assignment of small
clients using the Shmoys-Tardos algorithm, we may have another blowup of at most ε. Therefore,
in total, we may have a violation of capacities by at most 4ε. This shows that the bicriteria factor
of our algorithm is ((1+ ε)3, 1+4ε). By setting ε < ε′/4, we have the claimed performance, because
(1 + ε′/4)3 ≤ 1 + ε′ for 0 < ε′ ≤ 1.

Now, we analyse the time complexity. The preprocessing step and construction of the shifted
quad-tree can be done in time O(n log n) [4]. Let T be the number of table entries for each square
s. It can be seen that T = O(n8(m+1)(q+2)). When s corresponds to a leaf of the quad-tree all the
entries of the table can be computed in constant time. We compute the table entries corresponding
to each non-leaf square s in time O(T 5) which is to enumerate all combinations of possible entries
for s and its four children. Therefore, for any fixed ε > 0 the overall running time of the dynamic
programming algorithm is in nO(m) = nO(logn/ε).

Remark 4 We presented our algorithm and the proof for R2. One can generalize these to d dimen-
sions where the performance ratio remains the same and the running time increases to nO((logn/ε)d−1)

which is still quasi-polynomial time for constant d > 0.

24

5 Discussion

We presented a reduction from the UCFLP to a restricted version in which all demand values are
large (i.e., larger than ε) and presented two algorithms for the case of ε = 1

2 and 1
3 . These implied

two constant factor approximation algorithms for the UCFLP with capacity bounds within factor
3/2 and 4/3. We suspect similar results can be found with capacity violations bounded within
factor 1 + ε for any ε > 0. We also showed that at a loss of factor 1/ε, we can ignore the opening
cost of facilities, and that if there is an (α(ε), 1 + ε)-approximation for these instances then there
is an (α′(ε), 1 + ε)-approximation for the general case. We guess that it should be possible to
design constant factor (perhaps depending on ε) approximation for RCFLP(ε) with a violation of
at most 1 + ε on capacities. The elimination of small clients (and facility costs) makes the problem
a generalization of the bin packing, where there is an associated cost function for assigning each
item (client j) to each bin (facility i) and it seems one might be able to use the scaling/grouping
techniques used for bin-packing here. For instance, with a simple grouping technique and rounding
down each demand value to its closest power of 1+ ε, we can reduce the number of distinct demand
types to a function of ε. Using this, one can guess (enumerate) the number of different facility
“types” similar to what Fernandez de la Vega and Lueker [16] did for the bin packing problem.
Here, a facility type shows how many of each client type must be present in a facility. However, it
is not clear what the next step should be. Perhaps a suitable configuration LP at this step could
be useful.

The reader might wonder if local search algorithms analogous to the ones used in the splittable
CFLP might work here. The main issue in the splittable CFLP is to decide the subset of the facilities
that should be opened. As stated above, as a consequence of our reduction, we can assume there
is no opening costs and we can open all the facilities. Thus, the local search operations defined in
the splittable CFLP are ineffective here as the main difficulty is how to assign the clients to open
facilities. Another possibility is that after guessing the facility types as discussed above, we run a
local search to assign these facility types to the facilities. For each assignment of the facility types
to the facilities, we can run a min-cost max-flow algorithm for each type to decide where each client
should go. Unfortunately, the most natural local search operations we tried (for example swapping
facility types assigned to two facilities) have bad locality gaps.

For the case of Euclidean metrics, one might ask if the stronger structural theorem of Kolliopou-
los and Rao [24] for the standard facility location problem which only needs O(1/ε) portals instead
of O(log n/ε) portals for each square could be used to improve the running time of our algorithm
from quasi-polynomial to a true polynomial. The difficulty is that Kolliopoulos and Rao critically
use the fact that we can assign a client to any open facility in the solution of the UFLP in the proof
of their structural theorem, while in our case, this is not true. It is an interesting question whether
it is possible to find a similar structural theorem for the UCFLP with O(1/ε) portal points for each
square; that would imply a PTAS for the Euclidean UCFLP.

References

[1] Ankit Aggarwal, L Anand, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham Gupta,
and Surabhi Jain. A 3-Approximation for Facility Location with Uniform Capacities. In Integer
Programming and Combinatorial Optimization, volume 6080 of Lecture Notes in Computer
Science, pages 149–162. Springer-Verlag, 2010.

25

[2] Hussein A Alzoubi, Seungjoon Lee, Michael Rabinovich, Oliver Spatscheck, and Jacobus der
Merwe. Anycast CDNS revisited. In WWW ’08: Proceeding of the 17th international confer-
ence on World Wide Web, pages 277–286, New York, NY, USA, 2008. ACM.

[3] S Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric
problems. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
pages 2–12, Washington, DC, USA, 1996. IEEE Computer Society.

[4] S Arora. Nearly linear time approximation schemes for Euclidean TSP and other geometric
problems. In Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 554–563, Washington, DC, USA, 1997. IEEE Computer Society.

[5] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean
k-medians and related problems. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, STOC ’98, pages 106–113, New York, NY, USA, 1998. ACM.

[6] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In STOC
’01: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages
21–29, New York, NY, USA, 2001. ACM.

[7] Manisha Bansal, Naveen Garg, and Neelimam Gupta. A 5-approximation for capacitated
facility location. In 20th European Symposium on Algorithms, pages 133–144, 2012.

[8] Yair Bartal. On approximating arbitrary metrices by tree metrics. In STOC ’98: Proceedings
of the thirtieth annual ACM symposium on Theory of computing, pages 161–168, New York,
NY, USA, 1998. ACM.

[9] M H Bateni and M T Hajiaghayi. Assignment problem in content distribution networks:
unsplittable hard-capacitated facility location. In Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 805–814, 2009.

[10] Babak Behsaz. Approximation Algorithms for Clustering Problems. PhD thesis, University of
Alberta, Department of Computing Science, 2012.

[11] Jaroslaw Byrka. An Optimal Bifactor Approximation Algorithm for the Metric Uncapacitated
Facility Location Problem. In APPROX ’07/RANDOM ’07: Proceedings of the 10th Interna-
tional Workshop on Approximation and the 11th International Workshop on Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 29–43, Berlin, Heidelberg,
2007. Springer-Verlag.

[12] Moses Charikar and Sudipto Guha. Improved Combinatorial Algorithms for the Facility Loca-
tion and k-Median Problems. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, pages 378–388, Washington, DC, USA, 1999. IEEE Computer
Society.

[13] Fabián Chudak. Improved Approximation Algorithms for Uncapacitated Facility Location.
In Integer Programming and Combinatorial Optimization, volume 1412 of Lecture Notes in
Computer Science, pages 180–194. Springer Berlin / Heidelberg, 1998.

[14] Fabián A Chudak and David B Shmoys. Improved approximation algorithms for a capaci-
tated facility location problem. In SODA ’99: Proceedings of the tenth annual ACM-SIAM

26

symposium on Discrete algorithms, pages 875–876, Philadelphia, PA, USA, 1999. Society for
Industrial and Applied Mathematics.

[15] Fabián A Chudak and David P Williamson. Improved Approximation Algorithms for Capac-
itated Facility Location Problems. In Proceedings of the 7th International IPCO Conference
on Integer Programming and Combinatorial Optimization, pages 99–113, London, UK, 1999.
Springer-Verlag.

[16] W de la Vega and G S Lueker. Bin Packing can be solved within 1 + ε in linear time.
Combinatorica, 1(4):349–355, 1981.

[17] Zvi Drezner and Horst W Hamacher. Facility Location: Applications and Theory. Springer,
2004.

[18] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating ar-
bitrary metrics by tree metrics. In STOC ’03: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 448–455, New York, NY, USA, 2003. ACM.

[19] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York, NY, USA, 1979.

[20] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location algorithms.
In SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms,
pages 649–657, Philadelphia, PA, USA, 1998. Society for Industrial and Applied Mathematics.

[21] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In STOC ’02: Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 731–740, New York, NY, USA, 2002. ACM.

[22] Kamal Jain and Vijay V Vazirani. Primal-Dual Approximation Algorithms for Metric Fa-
cility Location and k-Median Problems. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, pages 2–13, Washington, DC, USA, 1999. IEEE
Computer Society.

[23] Narendra Karmarkar and Richard M Karp. An Efficient Approximation Scheme for the One-
Dimensional Bin-Packing Problem. In IEEE Symposium on Foundations of Computer Science,
pages 312–320, 1982.

[24] Stavros G Kolliopoulos and Satish Rao. A Nearly Linear-Time Approximation Scheme for the
Euclidean kappa-median Problem. In Proceedings of the 7th Annual European Symposium on
Algorithms, ESA ’99, pages 378–389, London, UK, 1999. Springer-Verlag.

[25] Madhukar R Korupolu, C Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local
search heuristic for facility location problems. In Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’98, pages 1–10, Philadelphia, PA, USA, 1998.
Society for Industrial and Applied Mathematics.

[26] Retsef Levi, David Shmoys, and Chaitanya Swamy. LP-based Approximation Algorithms for
Capacitated Facility Location. In Daniel Bienstock and George Nemhauser, editors, Integer
Programming and Combinatorial Optimization, volume 3064 of Lecture Notes in Computer
Science, pages 21–27. Springer Berlin / Heidelberg, 2004.

27

[27] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. In
Proceedings of the 38th international conference on Automata, languages and programming -
Volume Part II, ICALP’11, pages 77–88, Berlin, Heidelberg, 2011. Springer-Verlag.

[28] Jyh-Han Lin and Jeffrey Scott Vitter. e-approximations with minimum packing constraint
violation (extended abstract). In Proceedings of the twenty-fourth annual ACM symposium on
Theory of computing, STOC ’92, pages 771–782, New York, NY, USA, 1992. ACM.

[29] Robert F Love, James G Morris, and George O Wesolowsky. Facilities location: Facilities
location: models and methods. North-Holland, 1988.

[30] Mohammad Mahdian and Martin Pál. Universal Facility Location. In Giuseppe Di Battista
and Uri Zwick, editors, Algorithms - ESA 2003, volume 2832 of Lecture Notes in Computer
Science, pages 409–421. Springer Berlin / Heidelberg, 2003.

[31] Mohammad Mahdian, Yingyu Ye, and Jiawei Zhang. A 2-Approximation Algorithm for the
Soft-Capacitated Facility Location Problem. In RANDOM-APPROX, pages 129–140, 2003.

[32] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Improved Approximation Algorithms for
Metric Facility Location Problems. In APPROX, pages 229–242, 2002.

[33] M Pál, É Tardos, and T Wexler. Facility Location with Nonuniform Hard Capacities. In
Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, FOCS ’01,
pages 329–338, Washington, DC, USA, 2001. IEEE Computer Society.

[34] D B Shmoys and E Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62(3):461–474, 1993.

[35] D B Shmoys, E Tardos, and K Aardal. Approximation algorithms for facility location problems.
In Proceedings of the twenty-ninth annual ACM symposium on theory of computing, pages 265–
274, 1997.

[36] Vedat Verter. Foundations of Location Analysis, chapter 2. International Series in Operations
Research and Management Science. Springer, 2011.

[37] Jiawei Zhang, Bo Chen, and Yinyu Ye. A Multi-exchange Local Search Algorithm for the Ca-
pacitated Facility Location Problem. In Integer Programming and Combinatorial Optimization,
pages 1–4. Springer Berlin / Heidelberg, 2004.

28

