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Abstract
We present algorithms with poly-logarithmic approximation
ratios for the buy-at-bulk network design problem in the
node-weighted setting. We obtain the following results
where h is the number of pairs in the input.

• An O(log h) approximation for the single-sink non-
uniform buy-at-bulk network design. Unless P = NP
this ratio is tight up to constant factors.

• An O(log4 h) approximation for the multi-commodity
non-uniform buy-at-bulk network design problem.

1 Introduction

Network design problems involve finding a minimum
cost (sub) network that satisfies various properties, of-
ten involving connectivity. Simple examples include
spanning trees, Steiner trees, and k-connected sub-
graphs. These problems are of fundamental importance
in combinatorial optimization and also arise in a number
of applications in computer science and operations re-
search. The cost in a typical network design problem is
some function of the chosen edges. In this paper we con-
sider network design problems with costs (or weights)
on both edges and nodes of the graph. We are motivated
by both theoretical as well as practical considerations.
The node-weighted problems are a natural generaliza-
tion of the edge weighted problems (weights on edges
can be translated to weights on nodes in an easy fash-
ion). It is often possible to reduce the node-weighted
problem to a corresponding edge-weighed problem, how-
ever this requires making the graph directed. Problems
on directed graphs are typically more complex (harder
to approximate for instance) than the ones in undirected
graphs and hence it is desirable to work directly on
node-weighted problems in undirected graphs. Node
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weights also arise naturally in a number of practical
applications. For example, in telecommunications, ex-
pensive equipment such as routers and switches are at
the nodes of the underlying network and it is natu-
ral to model some of these problems as node-weighted
problems. Often, these node weights are translated into
edge weights in an approximate fashion since the edge-
weighted problems are better understood. Klein and
Ravi [24] explored node-weighted network design and
gave an O(log h) approximation algorithm for the node-
weighted Steiner tree problem (h is the number of ter-
minals). They also showed that their approach yields
the same approximation ratio for the class of all 0, 1
proper functions and in particular for the Steiner forest
problem. In some subsequent work, Guha and Khuller
[14], Guha et al. [15] and Moss and Rabani [26] consid-
ered variants of the node-weighted Steiner tree problem.
Apart from these few papers the literature on node-
weighted problems is sparse in comparison to the work
on edge-weighted problems. We remark that some of
the work on network design problem for node and ele-
ment connectivity [12] is also in the edge-weight model.
Node-capacitated routing problems (see e.g. [8, 11, 19]
for some recent works) are also studied but those usually
do not involve cost minimization.

In this paper we consider the node-weighted ver-
sions of the buy-at-bulk network design problem. These
problems are motivated by economies of scale that arise
in a number of applications, most notably in telecom-
munications. These are studied as fixed charge network
flow problems in operations research. Approximation
algorithms, starting with the work of Salman et al. [27],
have been of much interest. All the known results are
for the edge-weighted problems. In this paper we ob-
tain the first non-trivial approximation algorithms for
the node-weighted versions of these problems. We give
a formal description of the problem before describing
our results and related work.

Node-weighted Non-uniform Buy-at-Bulk: We
are given an undirected graph G and node pairs
s1t1, s2t2, . . . , shth. The pairs have non-negative de-
mands; δi is the demand for pair siti. Each node
v ∈ V has a monotone sub-additive real valued function



fv : R+ → R+ associated with it. A feasible solution
consists of paths P1, P2, . . . , Ph such that Pi connects si

and ti. Given the paths, δi flow is routed along Pi for
1 ≤ i ≤ h. The cost of the flow is

∑
v∈V fv(xv) where

xv is the total flow that is routed through a node v,
namely, xv =

∑
i|v∈Pi

δi. We assume that a flow that
originates at a node v is also routed through v. The ob-
jective is to find a feasible solution (or routing) for the
pairs that minimizes the total cost. (A relaxation of the
problem would allow the flow for each pair to be split
among multiple paths. However this does not reduce
the cost for the class of sub-additive functions under
consideration.) We obtain a single-sink (or equivalently
single-source) problem if all pairs share a common sink
node, that is, the pairs are of the form st1, st2, . . . , stk
with s as the sink. We obtain a uniform instance if there
is a function f such that for each v, fv = c(v)f for some
c : V → R+.

Note that the node-weighted Steiner tree and the
node-weighted Steiner forest problems are special cases
of the (uniform) single-sink and multi-commodity prob-
lems respectively. A simple reduction from the set cover
problem [24] shows that the node-weighted Steiner tree
problem is hard to approximate to within a factor of
Ω(log n) unless P = NP . Thus the buy-at-bulk prob-
lems are also hard to approximate within an Ω(log n)
factor.

Results: We obtain the first poly-logarithmic approx-
imation ratios for the single-sink as well as the multi-
commodity versions of the problem. Prior to our work
no non-trivial results were known even for the uniform
version of the problems. The precise ratios are given
below.

• An O(log h) approximation and integrality gap for
the single-sink problem. Unless P = NP the ratio
we obtain is tight up to a constant factor.

• An O(log4 h) approximation for the multi-
commodity buy-at-bulk problem.

Related Work: Network design problems are of fun-
damental importance in combinatorial optimization and
there is a vast literature on problems and results. We
refer the reader to [28] for classical results on polynomial
time algorithms and to [13, 21, 30, 22, 12] for results and
pointers on approximation algorithms. Here we briefly
discuss the known results and techniques for some spe-
cific problems that are closely related to the problems
we consider.

The known results on approximation algorithms for
buy-at-bulk network design are essentially for the edge-
weighted problems. For the uniform case Awerbuch and

Azar [3] gave a reduction to the problem of approxi-
mating a finite metric via random tree metrics and this
results in an O(log n)-approximation using [10]. An im-
proved O(1)-approximation is obtained for the uniform
single-sink case first by Guha, Meyerson and Munagala
[16] with further improvements and simplifications in
[29, 17]. A special case of the multi-commodity flow
version, known as the rent-or-buy problem also admits
a constant factor approximation [18]. The non-uniform
versions of the problem turn out to be harder. For
the single-sink case, Meyerson, Munagala and Plotkin
[25] obtained an O(log h)-approximation. Their ran-
domized algorithm was derandomized via an LP relax-
ation in [7]. For the multi-commodity problem the first
non-trivial result is due to Charikar and Karagiazova
[5] who obtained an O(log D exp(O(

√
log h log log h)))-

approximation. Very recently, the authors of this pa-
per obtained a first poly-logarithmic approximation [6].
The ratio obtained is O(log4 h). Andrews [1] showed
an Ω(log1/4−ε n)-hardness for the uniform case and an
Ω(log1/2−ε n)-hardness for the non-uniform case, both
under the assumption that NP 6⊆ ZTIME(npolylog(n)).
For the non-uniform single-sink case Chuzhoy et al. [9]
showed an Ω(log log n)-hardness of approximation un-
der the assumption that NP 6⊆ DTIME(nlog log log n).
We note that the inapproximability results for the edge-
weighted problems apply to their node-weighted gener-
alizations.

Techniques: The results in this paper build upon sev-
eral ideas from the related work we described above.
The high level framework is based on our recent work
on the edge-weighted non-uniform buy-at-bulk problem
[6] which reduces a multi-commodity problem to essen-
tially a variant of its corresponding single-sink problem.
The main contribution of this paper is an O(log h)-
approximation algorithm (and integrality gap) for the
single-sink problem in the node-weighted case. The al-
gorithm adapts ideas from several papers [24, 15, 25, 7].

Organization: Several technical details including the
reduction of the buy-at-bulk problem to the two-cost
network design problem are described in Section 2. In
Section 3, we present the O(log h)-approximation algo-
rithm for node-weighted non-uniform single-sink buy-
at-bulk problem. We present approximation algorithm
for node-weighted non-uniform multi-commodity buy-
at-bulk in Section 4. In Section 5 we sketch a greedy
algorithm that obtains a ratio of O(log3 h log D) where
D =

∑
i δi is the total demand.

2 Preliminaries

All graphs we consider are undirected. As mentioned
earlier, we consider the settings in which both edges and



nodes have weights. However, we can easily transform
this settings into one in which only the nodes have
weights by subdividing every edge (i.e. replacing it with
a path of length 2) and giving the new node the weight
equal to the weight of original edge. Using the same
transformation, it is easy to see that the edge-weighted
versions of all the problems we mentioned earlier can be
reduced to their node-weighted counterparts.

It is algorithmically convenient to reduce the buy-
at-bulk problem to a two-cost network design problem
[25, 6]. This involves approximating the monotone sub-
additive cost function fv for each v by a collection of
linear cost functions as follows. Let D =

∑
i δi be

the total demand. Let ε > 0 be any fixed constant.
For 1 ≤ i ≤ dlog De we define f i

v : R+ → R+ as
f i

v(x) = fv((1 + ε)i)(1 + x/(1 + ε)i). We replace v
by a collection of nodes Sv = {vi : 1 ≤ i ≤ dlog De}
and the function associated with vi is f i

v. If uv was
an edge in the original graph G we add edges uivj

for all pairs i, j. Note that in the new instance each
function is of the form a + bx. It can be verified that
this transformation loses at most a factor of 2 + ε in
the approximation ratio. The linear functions allow us
to reformulate the objective function of the buy-at-bulk
network design problem. In this setting, an instance
of node-weighted non-uniform multi-commodity buy-at-
bulk (NMC-BB) consists of a graph G and demand
pairs T = {s1t1, s2t2, . . . , shth}. Each si, ti ∈ V has
a demand δi ≥ 0. We are given two separate functions
c : V → R+ and ` : V → R+; we call c(v) and `(v) the
cost and length of v, respectively. We think of cv as the
fixed cost of v and `v as the incremental or flow-cost of
v. The goal is to find a minimum cost feasible solution
where a feasible solution consists of a subset of nodes
V ′ ⊆ V that includes all the terminals. The subset V ′

implicitly specifies the induced subgraph G′ = G[V ′].
The cost of the solution specified by V ′ is given as

(2.1) c(V ′) +
h∑

i=1

δi · `G′(si, ti),

where c(V ′) =
∑

v∈V ′ cv and `G′(u, v) is the shortest `-
node-weighted path distance between u and v in G′ (the
length of the end points of a path are counted as well).
We obtain the single-sink problem (NSS-BB) when all
the pairs share a sink (root) r. A feasible solution is
a connected subgraph F containing r and spanning all
the terminals. The goal is to route δ(t) units of flow
from each terminal t to root r.

In the rest of the paper, we restrict our attention
to the two-cost network design formulation of NMC-BB
and NSS-BB.

Our algorithm for NMC-BB is a greedy iterative
algorithm. In each iteration the algorithm finds a partial

solution (a solution that connects some of the remaining
pairs) at low density, where the density is the ratio of the
cost of the partial solution to the number of new pairs
it connects. We will use the following basic lemma in
the analysis of these algorithms (see e.g., [23]).

Lemma 2.1. Suppose that an algorithm works in itera-
tions and in iteration i it finds a partial solution Vi ⊆ V
that routes a new subset Ti of the demands. Let opt be
the cost of an optimum solution and ui be the number of
unrouted demands at the time Vi is found. If for every
i, the cost of the partial solution G[Vi] over the num-
ber of pairs it routes is at most f(h) · opt

ui
, then the

cost of the solution returned by the algorithm is at most
f(h) · (lnh + 1) · opt.

3 The Single-Sink Problem

Recall that the instance to NSS-BB is an undirected
graph G = (V,E) with a designated root node r, a set of
terminals T ⊆ V , a demand function δ : T ∪ {r} → R+,
a cost function c : V → R+, and a length function
` : V → R+. Our main result of this section is:

Theorem 3.1. There is a deterministic O(log h)-
approximation algorithm for NSS-BB where h is the
number of terminals. Furthermore, the integrality gap of
a natural linear programming relaxation for the problem
is O(log h).

We assume without loss of generality that c(r) =
`(r) = 0; we can arrange this by adding a dummy root
to the original root. Thus we may assume that δ(r)
is large enough (technically ∞); this will subsequently
help simplify the description of our algorithm.

Since NSS-BB generalizes the node-weighted
Steiner tree, which has a Ω(log n)-hardness [24] (via a
simple reduction from set-cover):

Corollary 3.1. NSS-BB has an approximability
threshold of Θ(log n), unless P = NP.

The algorithm for Theorem 3.1 uses ideas from the
works of Klein and Ravi [24], Guha et al. [15], Meyerson
et al. [25] and Chekuri et al. [7]. In particular, we use
the spider ideas from [24] and randomized merging from
[25].

A spider is a tree with at most one node of degree
more than two and such that all its leaves are terminals.
Furthermore no internal node is a terminal. The center
of a spider is a node from which there are edge-disjoint
paths to the leaves of the spider. So if the spider has
a node of degree at least three, its center is unique.
The density of a spider is the ratio of its total cost
to the number of terminals in it where the total cost



depends on the problem definition. For the node-
weighted Steiner tree problem the total cost is just the
sum of the weights of the nodes in the spider. For this
problem, Klein and Ravi [24] showed the existence of
a decomposition of the optimum solution into spiders.
Therefore, there is always a spider whose density is
no more than the density of the optimum (which is
the ratio of the cost of the optimum to the total
number of terminals). They also show how to find a
minimum density spider in polynomial time. Given
this tool in hand, they iteratively find a minimum
density spider and contract the spider into a single node,
until all the terminals are contracted into r. Again,
using a standard set-cover type analysis, this yields an
O(log n)-approximation for the node-weighted Steiner
tree problem. Guha et al. [15] later showed that in fact
the density of the minimum density spider is no more
than the density of an optimum solution to the natural
linear programming relaxation to the problem.
A randomized algorithm for NSS-BB: We describe
a randomized algorithm for NSS-BB that is inspired by
the spider approach of [24] and the randomized merging
algorithm of [25] for the edge-weighted NSS-BB. To
describe the algorithm we first define the cost of a spider
in the setting of NSS-BB. Here we restrict our attention
to spiders for which the center is prescribed. For a
spider S we let T (S) be the terminals at the leaves of
the spider. The total cost of a spider S with center s is:

c(s) +
∑

t∈T (S)

(c(pt)− c(s) + δ(t) · `(pt)),

where pt is the path between t and s in S and c(pt) and
`(pt) being the sum of the costs and lengths of the nodes
on this path, respectively. Although the definition of a
spider requires the paths pt, t ∈ S to be internally node-
disjoint, we abuse notation and allow the paths to share
nodes. However in this case the cost of the spider would
count the cost of a shared node multiple times, one for
each of the paths containing it, as defined above. The
randomized algorithm RandSpider is described in Fig 1.
We make two observations. If the root is a terminal
in the minimum density spider then by our technical
assumption that δ(r) = ∞ the root will be chosen as
the proxy. In the last step, it is not necessary for a
non-proxy terminal to connect to the proxy terminal
using the path in S - there could be a cheaper direct
path, however the analysis carries through using the
path in S. We can prove, using ideas similar to those
in [25] that RandSpider yields a solution of expected
cost O(log h)opt where opt is the value of an optimum
integral solution. We prove a stronger theorem which
also yields a bound on the integrality gap of a natural
linear programming relaxation. First we show that a

minimum density spider can be computed in polynomial
time.

For a terminal t and a node v we let dt(v) denote
minp∈Ptv

(c(p)+δ(t)`(p)) where Ptv is the set of all paths
between t and v. In other words dt(v) is the shortest
path distance between t and v with the weight of a node
u set to c(u) + δ(t)`(u).

Lemma 3.1. Given an instance of NSS-BB we can find
a minimum density spider in polynomial time.

Proof. By enumerating over all nodes, we can assume
that we have correctly guessed the center s of the
minimum density spider in the given instance. For
simplicity, we assume that s is not a terminal - by
hanging dummy terminals this can always be ensured.
Without loss of generality assume that terminals are
ordered such that dt1(s) ≤ dt2(s) ≤ . . . ≤ dth

(s). Let Pi

be a path from ti to s that certifies dti
(s). For 2 ≤ j ≤ h,

let αj = 1
j · (c(s) +

∑
1≤i≤j(dti

(s) − c(s))) denote the
density of a subgraph obtained by connecting the first
j terminals (in the ordering) to s. Let j∗ = argminjαj .
We return the subgraph S obtained by the union of the
paths P1, P2, . . . , Pj∗ . It is easy to see that the density
of S is no more than the density of a minimum density
spider. 2

A linear programming relaxation for NSS-BB:
We first formulate NSS-BB as an IP for which we have
the following LP relaxation. For t ∈ T , let Pt denotes
the set of directed paths from root r to t. We assume
that the terminals are at distinct nodes and hence
Pt∩Pt′ = ∅ for t 6= t′. For v ∈ V , a variable x(v) ∈ [0, 1]
indicates whether v is chosen in the solution or not. For
p ∈ ∪tPt a variable f(p) ∈ [0, 1] indicates whether p is
used to connect a terminal to the root. We use `(p) to
denote

∑
v∈p `(v). The LP assigns fractional capacities

to nodes such that one unit of flow can be shipped from
each terminal t to the root.
LP-NSS:

min
∑
v∈V

c(v) · x(v) +
∑
t∈T

δ(t)
∑
p∈Pt

`(p) · f(p)

∑
p∈Pt|v∈p f(p) ≤ x(v) v ∈ V, t ∈ T∑

p∈Pt
f(p) ≥ 1 t ∈ T

x(v), f(p) ≥ 0 v ∈ V, p ∈ ∪tPt

Let optLP be the value of an optimum solution to
LP-NSS. We prove that RandSpider yields an integral
solution of expected cost O(log h)optLP . The key
technical lemma for this is the following.

Lemma 3.2. For any instance of NSS-BB there is a
spider of density at most optLP /h.



Algorithm RandSpider for NSS-BB:

1. If root is the only terminal return the tree {r}.

2. Compute a minimum density spider S.

3. Choose a proxy terminal t from T (S) such that
probability of t′ ∈ T (S) being chosen is exactly
δ(t′)/δ(T (S)). Set the demand of t to be equal
to δ(T (S)) and remove terminals in T (S)− {t}.

4. Recursively obtain a solution to the reduced
problem.

5. Connect each non-proxy terminal in T (S) to the
root via t using the path in S.

Figure 1: A randomized algorithm for NSS-BB

We assume the lemma and prove Theorem 3.1.
Although RandSpider is a randomized algorithm we will
be able to obtain a deterministic algorithm using the
linear programming relaxation using ideas similar to [7].

Let I be the given instance and let S be a minimum
density spider for I computed by RandSpider in Step 2.
Let I ′ be the reduced instance obtained after the proxy
terminal from S is chosen in Step 3 of the algorithm. Let
optLP (I) and optLP (I ′) denote the optimum values of
LP-NSS on I and I ′ respectively. Note that optLP (I ′)
is a random variable.

Lemma 3.3. E[optLP (I ′)] ≤ optLP (I).

Proof. Let x∗, f∗ be an optimal feasible solution to
the instance I. In the instance I ′ we have essentially
changed only the value of the demands; the proxy
terminal gets a demand equal to δ(T (S)) while the
removed terminals get demand 0. Thus the solution
x∗, f∗ is also a feasible solution to I ′. We show that
the expected cost of this solution for I ′ is the same as
optLP (I). For terminal t ∈ Ti let α(t) =

∑
p∈Pt

`(p) ·
f∗(p). We have optLP (I) =

∑
v∈V c(v) · x∗(v) +∑

t∈T δ(t) · α(t). For every terminal t 6∈ T (S), its
contribution to the total cost remains unchanged in
the solution for I ′. On the other hand, the expected
contribution of a terminal t ∈ T (S) in I ′ is exactly
δ(t)α(t) for the following reason; the probability that
t is chosen as a proxy terminal is δ(t)/δ(T (S)) and if it
is chosen then the contribution is δ(T (S))α(t). Thus it
can be seen that the expected cost of the solution x∗, f∗

for I ′ is at most optLP (I). 2

For a spider S let β(S) denote its cost as defined
earlier.

Lemma 3.4. In Step 5 of RandSpider, the expected cost
of routing non-proxy terminals to the chosen proxy
terminal is at most 2β(S).

Proof. We can bound the expected cost as follows. The
cost consists of two parts. The first part accounts for
the cost of each terminal t ∈ T (S) sending its demand
to the center s of S. This cost is deterministically equal
to β(S), by definition. The second part accounts for
the center sending the total demand δ(T (S)) to the
chosen proxy terminal. The expected cost of this second
part is seen to be

∑
t∈T (S) atδ(T (S))`(pt) where at is

the probability that t is chosen as the proxy terminal
and pt is the path from t to the center s in S. Since
at = δ(t)/δ(T (S)) it follows that the expected cost is∑

t∈T (S) δ(t)`(pt) which is at most β(S). Therefore the
total expected cost is at most 2β(S). 2

Proof of Theorem 3.1. We first prove that RandSpider
yields a solution of expected cost at most 3HhoptLP

where Hh = 1 + 1/2 + . . . + 1/h is the h’th Harmonic
number. This immediately proves that the integrality
gap of LP-NSS is O(log h). We then sketch a way to
derandomize RandSpider using pessimistic estimators.

Let I be the given instance of NSS-BB. If h = 1
then it can be easily checked that the algorithm returns
an optimum solution. Consider the steps of RandSpider
on I. Let S be the spider computed in Step 2 and let
k be the number of terminals in S. By Lemma 3.2,
we have that β(S)/k ≤ optLP (I)/h. Let I ′ be the
random problem that RandSpider generates in Step 3.
By induction the expected cost of the solution produced
by RandSpider to I ′ is at most 3Hh′optLP (I ′) where
h′ = h − k + 1 is the number of terminals in I ′. The
total cost of the solution for I is bounded by the cost
of the solution to I ′ and the cost of the routing of
non-proxy terminals in S to the chosen proxy terminal.
By linearity of expectation and using Lemma 3.3 and
Lemma 3.4, the expected cost of the solution to I is at
most

3Hh′optLP (I) + 2β(S) ≤ (3Hh′ + 2k/h)optLP (I)
≤ 3HhoptLP (I).

The algorithm RandSpider can be derandomized
using a solution to LP-NSS using the same ideas as
in [7]. Let x∗, f∗ be a feasible solution to LP-NSS
on I. In Step 3 of the algorithm, instead of choosing
the proxy terminal in S at random we can pick the
terminal deterministically as follows. For t ∈ T (S)
let I ′t be the instance obtained if t is chosen as a
proxy terminal. And let βt be the cost of routing the
terminals in T (S) − {t} to t using S and let αt be the
value of the solution x∗, f∗ on I ′t. The above analysis



shows that there exist a terminal t′ ∈ T (S) such that
3Hh′αt +2βt ≤ 3HhoptLP (I). Note that αt and βt can
be computed in polynomial time from x∗, f∗ and S and
thus we can identify t′ by evaluating 3Hh′αt + 2βt for
each t ∈ T (S). We deterministically choose t′ to be the
proxy terminal for S, solve the problem I ′t recursively
and connect the terminals in T (S)−{t′} to the root via
t′ using S. Inductively the cost of the solution on I ′t is
at most 3Hh′αt. Therefor the total cost of the solution
is 3Hh′αt + 2βt ≤ 3HhoptLP (I) as desired. 2

The remainder of this section is devoted to the proof
of Lemma 3.2. The proof is similar in spirit to that
of Guha et al. [15] for the node-weighted Steiner tree
problem. Let R be the density of a minimum density
spider for the given instance. We wish to show that
R ≤ optLP /h or in other words optLP ≥ hR. We
prove this by exhibiting a feasible solution to the dual
of LP-NSS which is given below.

DP-NSS:

max
∑
t∈T

y(t)

∑
t∈T zt(v) ≤ c(v) v ∈ V

y(t)−
∑

v∈p zt(v) ≤ δ(t) · `(p) p ∈ Pt, t ∈ T

y(t), zt(v) ≥ 0 v ∈ V, t ∈ T

We create a solution y′, z′ to DP-NSS as follows.
Recall that dt(v) = minp∈Ptv

c(p) + δ(t)`(p). We
set y′(t) = R for each terminal t. We set z′t(v) =
max{0,min{c(v), R − dt(v) + c(v)}} for each terminal
t and node v. Note that 0 ≤ z′t(v) ≤ c(v) for each t, v.
If y′, z′ is a feasible solution to DP-NSS then by weak
duality optLP ≥

∑
t y′(t) = hR; this is the desired

inequality.
We claim a simple property of z′.

Claim 3.5. Let γt(v) = minp∈Ptv
z′t(p)+δ(t)`(p). Then

min{R, dt(v)} ≤ γt(v) ≤ dt(v).

The above claim can be shown by an induction on
the length of the path defining γt(v) but the formal
details are cumbersome and we omit them.

Lemma 3.6. The solution y′, z′ is feasible for DP-NSS.

Proof. We claim that dt(r) ≥ R for each t. If not,
the spider obtained by connecting t to r would have
density dt(r) < R. Therefore by Claim 3.5, we have
y′(t) = R ≥ γt(r) which implies that for each p ∈ Pt,

y′(t) ≤
∑
v∈p

z′t(v) + δ(t)`(p).

Now consider any node v. We claim that∑
t

z′t(v) ≤ c(v).

Suppose the above fails for a node s, that is
∑

t z′t(s) >
c(s). Let Ts = {t | z′t(s) > 0}. Note that |Ts| ≥ 2 since
z′t(v) ≤ c(v) for all t, v. We will prove that the spider S
with center s and terminals Ts has density strictly less
than R, a contradiction. The cost of the spider S is

c(s) +
∑
t∈Ts

(dt(s)− c(s)) <
∑
t∈Ts

z′t(s) +
∑
t∈Ts

(dt(s)− c(s))

=
∑
t∈Ts

(dt(s)− c(s) + z′t(s))

≤
∑
t∈Ts

R

≤ |Ts|R.

Therefore the density of S is strictly less than R. The
penultimate inequality above follows from the definition
of z′t(s) and the fact that z′t(s) > 0 for each t ∈ Ts. 2

4 The Multi-Commodity Problem

In this section we prove the following.

Theorem 4.1. There is a polynomial time algorithm
for NMC-BB with an O(log4 h) approximation ratio,
where h is the number of pairs.

The general structure of the algorithm is similar to
that in [6] for the MC-BB and follows an iterative greedy
scheme. In each iteration we find a partial solution
that connects a subset of the pairs that remain at the
beginning of the iteration. The connected pairs are then
removed. The density of the partial solution is the ratio
of the total cost of the partial solution to the number
of pairs in the solution. We prove that the density
of the partial solution computed at every iteration is
a polylogarithmic factor away from the density of the
optimum solution. As in [6], a key ingredient in our
proof is to show the existence of a partial solution with
a very restricted structure, called a junction-tree. Given
a subset A of the pairs, a junction tree for A rooted at
r is a tree T containing the end points of all pairs in A
such that the unique path connecting every pair of A
goes via r. The cost of the junction-tree T is

∑
v∈V (T )

cv +
∑

siti∈A

δi · (`T (r, si) + `T (r, ti)).

In other words, the pairs in A connect via the
junction r. Note that if the set A and r are known, a



junction-tree is essentially an instance of the single-sink
problem NSS-BB. We prove that given an instance of
NMC-BB there is always a low density partial solution
that is a junction-tree. The problem of finding a low
density junction-tree is closely related to the density
variation of NSS-BB, called den-NSS-BB in which we
want to find a solution with minimum density i.e. the
ratio of total cost over the number of terminals spanned
(v.s. the total cost as in SS-BB). We use Theorem 3.1
and obtain an O(log2 h)-approximation for den-NSS-BB
and by a slight modification a similar ratio for finding a
minimum density junction-tree. Putting together these
ingredients give us the poly-logarithmic approximation
for NMC-BB.

4.1 A Junction Tree Lemma We prove the follow-
ing lemma on the existence of a junction tree with low
density.

Lemma 4.1. Given an instance of MC-BB on h pairs
there exists a junction-tree of density O(log h) · opt

h .

The rest of this subsection is devoted to the proof
of the above lemma. The proof for the node-weighted
case essentially follows the proof for the edge-weighted
case [6]. In [6] proofs are given for two lemmas with
slightly weaker bounds and a proof for a bound of
O(log h) · opt

h was claimed (the idea for this stronger
bound was suggested by Harald Räcke). Here we give
the details of the proof as adapted to the node-weighted
setting. We need the following technical lemma.

Lemma 4.2. ([6]) Given an instance of NMC-BB on
G = (V,E) there is an optimum solution G = G[V ∗]
such that the number of nodes in G∗ of degree more
than 2 is at most min(n, h2).

Given an instance of MC-BB on a graph G = (V,E),
let V ∗ ⊆ V induce an optimum solution for the given
instance. Using Lemma 4.2, we can assume that G[V ∗]
has O(min(n, h2)) nodes by suppressing non-terminals
that have degree at most 2 in G∗. Recall that the op-
timum solution value, opt is c(V ∗) +

∑
i δi`G∗(si, ti)

where `G∗(si, ti) is the `-node-weighted distance be-
tween si and ti in G∗.

The crucial ingredient in the proof is the existence
of a hierarchical decomposition of an undirected edge-
weighted graph that has certain useful properties to be
described below. Our focus is on node-weights and we
have two weight functions c and `. In the following we
use ` to define the edge-weights of G∗ by setting for
each edge uv ∈ E(G∗) a weight `(uv) = `(u) + `(v).
Note that for any x, y ∈ V (G∗) the distance in G∗ with
`-edge-weights is within a factor of 2 of the distance

with `-node-weights. The hierarchical decomposition of
this edge-weighted graph will be used later. We think
of the decomposition as induced by a laminar family
of subsets of nodes of the graph; it is convenient to
represent the laminar family by a rooted tree with the
leaves of the tree corresponding to the nodes of the
graph. Although the proof of the required laminar
family essentially follows from Bartal’s first construction
of metric embeddings of graphs into trees [4], we keep
the discussion somewhat abstract to isolate the desired
properties.

Given an edge-weighted graph G = (V,E) let T =
(VT , ET ) be a tree representing a laminar family on V .
We let dG(a, b) denote the distance in G between nodes
a and b where the distance is defined with respect to
the given edge-weights. For an internal node u ∈ VT let
Tu be the subtree of T rooted at u. We denote by Gu

the subgraph of G induced by the leaves in Tu. For a
pair of nodes a, b ∈ V (G), let GT

a,b denote the graph Gu

where u is the least common ancestor of a and b in T .
We denote by ∆T (a, b) the diameter of the graph GT

a,b.
Note that, trivially, ∆T (a, b) ≥ dG(a, b) where dG(a, b)
is the distance between a, b in G.

Given G and a laminar family T we say that a pair
of nodes a, b ∈ V (G) is α-good in T iff ∆T (a, b) ≤
α · dG(a, b).

Lemma 4.3. Given an n-node edge weighted graph G =
(V,E), there is a probability distribution on laminar
families on G such that for a tree T picked from
the distribution, the following is true: there exists a
universal constant c such that for any pair a, b ∈ V (G)

Pr[∆T (a, b) ≤ c log n · dG(a, b)] ≥ 1/2.

Proof. In [4], Bartal created a distribution of laminar
families that yields a probabilistic embedding of a graph
metric into trees with O(log2 n) distortion. The rest of
the argument below shows that the same distribution
satisfies the properties that we desire.

We briefly sketch the construction in [4]. Given a
graph G, a procedure is given that randomly partitions
V (G) into V1, V2, . . . , Vk such that the following two
properties hold: (i) for 1 ≤ i ≤ k, the diameter of
Gi = G[Vi] (also known as the strong diameter) is
at most ∆(G)/2 and (ii) there is a universal constant
c′ > 0 such that for every pair of nodes a, b, the
probability that a, b are in different parts is at most
c log n·dG(a, b)/∆. The laminar family for G is obtained
by applying the partitioning procedure recursively to
the graphs G1, G2, . . . , Gp. Let T be the random
laminar family produced by the process.

Consider a pair of nodes a, b ∈ V (G). We observe
that ∆T (a, b) is the diameter of the smallest graph in



the family with both a, b in the graph. We estimate
the probability, p, that this diameter is larger than
c log n · dG(a, b). For simplicity, we assume that the
diameter of the graphs decreases exactly by a factor of
2 as the recursion proceeds - this assumption can be
easily dispensed with. Let pi be the probability that
a, b are separated at level i of the recursion conditioned
on the fact that they are not separated in levels 1
to i − 1. From the random partitioning procedure,
pi ≤ c′ log n · 2i−1dG(a, b)/∆. We can therefore upper
bound p by p1 + p2 + . . . + ph where h is the largest
integer such that ∆/2h ≤ c log n · dG(a, b). It can be
seen that p ≤ 1/2 for c ≥ 4c′. 2

Corollary 4.1. Given G and set of pairs of nodes A,
there exists a laminar family T such that the number of
pairs in A that are 2c log n-good in T is at least |A|/4.

Now we prove the junction tree lemma.
Proof of Lemma 4.1. We assume without loss of
generality that G∗ is connected, otherwise we can
work with each connected component separately. We
convert the `-node-weights into `-edge-weights in G∗ as
described earlier. We apply Corollary 4.1 to the edge-
weighted graph G∗ and the set of input pairs T to obtain
a tree T . Let T ′ be the pairs that are O(log h)-good in
T . We do a path-decomposition of T as follows. We
obtain the first path P1 by walking from the root down
to a leaf where, at each step, the walk chooses a child of
the current node that has the largest number of leaves
in its subtree. We then remove P1 from T and apply the
same procedure recursively to each of the trees in T \P1.
Let P1, P2, . . . , Pk be the non-singleton paths obtained
from the procedure. Let ri and ui be the internal node
and the leaf end points of Pi. Let Hi = G∗

ri
. We call

each Hi a cluster and we call ui its center. We observe
that the paths are node disjoint. We make another
useful claim: any node u ∈ V (G∗) is in O(log h) clusters.
This claim follows from the choice of the heaviest child
in the walk to create each path.

We create a junction tree Ti in each cluster Hi as
follows. For a pair (a, b) ∈ T ′ we place it in the tree
Ti iff the least common ancestor of a and b belongs to
V (Pi). We set the root of Ti to be ui. We claim that
one of these junction trees has density O(log h)opt

h .
For this purpose we compute the total fixed cost and the
total incremental cost of all the junction trees. Consider
the tree Ti and a pair (a, b) from T ′ in Ti. Since the
pair (a, b) is O(log h)-good, it follows that dHi

(a, ui) =
O(log h)dG∗(a, b) and dHi(b, ui) = O(log h)dG∗(a, b).
Recall that distances in the edge-weighted graph G∗

approximate the `-node-weighted distances within a
factor of 2. Therefore the total incremental cost over
all junction trees is O(log h)opt`. Recall that every

node u ∈ V (G∗) is in O(log h) clusters. Therefore the
total fixed cost of all the junction trees is O(log h)optc.
Thus the total cost of all junction trees is O(log h)opt.
We also have that |T ′| ≥ |T |/4. This finishes the proof
of the claim, and hence the lemma. 2

4.2 Finding an approximate min-density junc-
tion tree In this subsection we give an O(log2 h)-
approximation algorithm for den-NSS-BB and min-
density junction tree. The algorithm and analysis are
built upon the LP relaxation and the proof of the inte-
grality gap for NSS-BB shown in Section 3. We restrict
our attention to the rooted version where the goal is to
find a minimum density junction tree rooted at a given
root node r. The unrooted problem can be reduced to
the rooted problem by trying each node as the root and
picking the best of the solutions. Consider the following
LP relaxation of den-NSS-BB which modifies LP-NSS.
For each terminal ti, we have an additional variable yi

that indicates whether ti is chosen in the solution or
note. We normalize

∑
t yt to 1.

LP-NSSD:

min
∑
v∈V

c(v) · x(v) +
∑
t∈T

δ(t)
∑
p∈Pt

`(p) · f(p)

∑
t∈T yt = 1∑

p∈Pt|v∈p f(p) ≤ x(v) v ∈ V, t ∈ T∑
p∈Pt

f(p) ≥ yt t ∈ T

x(v), f(p), yt ≥ 0 v ∈ V, p ∈ ∪tPt

Theorem 4.2. There is an O(log2 h)-approximation
for den-NSS-BB.

Proof. The proof is similar to that of Theorem 4.2 in
[6]. The main difference is that here we use Theorem
3.1. Consider an optimum solution to LP-NSSD. We
obtain disjoint subsets of the terminals T1, T2, . . . , Tp as
follows. Let ymax = maxt yt. For 0 ≤ a ≤ 2dlog he,
let Ta = {tj | ymax/2a+1 < ytj

≤ ymax/2a}. Thus
p = 1 + 2dlog he = O(log h). It is easy to see that there
is an index b such that

∑
tj∈Tb

ytj = Ω(1/ log h). From
this we also have that 2b/|Tb| = O(log h). We now solve
an NSS-BB instance on Tb. We claim that the resulting
solution is an O(log2 h)-approximation to den-NSS-BB.
To prove this, let α be the value of the optimum solution
to LP-NSSD on the given instance. Note that if we scale
up, by a factor of 2b+1/ymax, the given optimum solution
to LP-NSSD we obtain a feasible solution to LP-NSS
on the terminal set Tb. The cost of this scaled solution
to LP-NSS is 2b+1α. Since the integrality gap of LP-
NSS is O(log h) (by Theorem 3.1), we obtain an integral



solution that connects each terminal in Tb to the root
such that cost of the solution is O(log h) · 2b+1α. The
density of this solution is therefore O(log h) · 2b+1α/|Tb|
which is O(log2 h)α. Thus the integrality gap of LP-
NSSD is O(log2 h) yielding the desired approximation.

2

Corollary 4.2. There is an O(log2 h)-approximation
for computing min-density junction tree.

Proof. Given an instance of NMC-BB, we consider each
source or sink as a terminal. Also, for every pair si, ti
we add the following set of constraints to the LP-NSSD:
ysi = yti . This ensures that either we include both of si

and ti in the tree or none of them. The rounding scheme
in the proof of Theorem 4.2 extends to this LP and so
we get an O(log2 h)-approximation for the min-density
junction tree problem. 2

5 A Greedy Approximation Algorithm

Here we describe the overview of a greedy algorithm
for NMC-BB with ratio O(log3 h · log D). When D is
polynomial in h the performance of this algorithm is
asymptotically the same as the algorithm described in
Section 4. The greedy algorithm is essentially the same
as the greedy algorithm for MC-BB in [6]. It finds a
partial solution with good density at every iteration.
We describe briefly the general idea of the algorithm
for MC-BB (from [6]) and the differences with the one
for NMC-BB. One of the ingredients for the algorithm
is the existence of a junction tree with some additional
properties; the proof of existence of such trees for the
edge-weighted case, as shown in [6] (see Lemma 3.4 and
Claim 3.5), can be extended to the node-weighted case
in a straight forward fashion. The proof applies to the
unit-demand case (δi = 1 for each i) and this results
in the approximation ratio depending on log D. The
main ingredient in the greedy algorithm for MC-BB is
an approximation algorithm for the shallow-light trees
described below
Shallow-light k-Steiner Tree (KSLT): The instance
to shallow-light k-Steiner problem is a graph G(V,E),
with edge-weight function c : E → R+ and edge-length
function ` : E → R+, a collection T of terminals
containing a root s, a number k, and a diameter
bound L. The goal is to find a minimum c-cost s-
rooted k-Steiner tree (at tree that contains k terminals)
that has `-diameter at most L. A (ρ1, ρ2) bi-criteria
approximation algorithm for the shallow-light k-Steiner
problem finds an s-rooted k-Steiner tree with diameter
at most ρ1 ·L and cost at most ρ2 ·B with B being the
optimum cost for a k-Steiner tree of diameter L. The
algorithm in [6], uses the following result from [20] for
the edge-weighted version of shallow-light trees:

Theorem 5.1. [20] There is an (O(log h), O(log3 h))-
approximation algorithm for the edge-weighted shallow-
light k-Steiner tree problem which finds a k/8-Steiner
tree.

The algorithm for MC-BB has a main procedure
which tries to find a good density partial solution. It
has a sources-phase and a sinks-phase in each phase
it uses as a sub-routine the algorithm guaranteed by
Theorem 5.1 to find a minimum density tree rooted at
a node s. We omit the details of the analysis from [6].

Our greedy algorithm for the NMC-BB follows the
same paradigm. For that we need a node-weighted
version of Theorem 5.1. We define the node-weighted
shallow-light Steiner trees similarly:
Node-weighted shallow-light k-Steiner tree
(NKSLT): we have a graph G(V,E), with node cost
function c : V → R+ and length function ` : V → R+,
a collection T of terminals containing a root s, a
number k, and a diameter bound L. The goal is to find
a minimum c-node-cost s-rooted k-Steiner tree that has
`-node-diameter at most L.

Lemma 5.1. There is polynomial-time algorithm A
such that, given an instance of NKSLT, finds a k/8-
Steiner tree with `-diameter at most O(log h · L) and
c-cost at most O(log3 h · opt) where opt is the mini-
mum c-cost k-Steiner tree with `-diameter bound L.

Using the above lemma, an algorithm similar to the
one for MC-BB gives an O(log3 h log D)-approximation
for NMC-BB. We briefly sketch the the ideas for the
proof of Lemma 5.1. The algorithm borrows ideas
from the algorithm of [20] for (edge-weighted) shallow-
light k-Steiner trees (Theorem 5.1) and [24] for node-
weighted Steiner tree. Here we describe the similarities
and differences. The algorithm for Theorem 5.1 is a
greedy algorithm that starts from every terminal as a
single-component. At every iteration it tries to connect
two components by a “cheap” path. Once a path is
found the two components are merged into one. We
continue until we have a component with at least k/8
terminals. The informal definition of a cheap path is
that we can charge the cost of the path to the nodes
in the two merged components such that the cost is at
most a poly-logarithmic factor of the optimum density
(there are some technical details that we omit here).
The algorithm for Lemma 5.1 has a similar structure.
The main difference is that at each iteration, instead
of finding a cheap path that connects two terminals (at
good density) we find a cheap spider that potentially
connects multiple components at once. The algorithm
for finding a low density spider is similar to the one
used in Lemma 3.1. After finding a low density spider



(compared to the density of the optimum) we merge the
components it spans. We continue this until there are at
least k/8 terminals in one component. Further details
and the formal proof will appear in later versions of this
paper.
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