
Journal of Scheduling manuscript No.
(will be inserted by the editor)

Scheduling Problems over Network of Machines?

Zachary Friggstad · Arnoosh Golestanian ·
Kamyar Khodamoradi · Christopher Martin ·
Mirmahdi Rahgoshay · Mohsen Rezapour ·
Mohammad R. Salavatipour · Yifeng Zhang

Received: date / Accepted: date

Abstract We consider scheduling problems in which jobs need to be processed through a
(shared) network of machines. The network is given in the form of a graph the edges of which
represent the machines. We are also given a set of jobs, each specified by its processing time and
a path in the graph. Every job needs to be processed in the order of edges specified by its path.
We assume that jobs can wait between machines and preemption is not allowed; that is, once a
job is started being processed on a machine, it must be completed without interruption. Every
machine can only process one job at a time.

The makespan of a schedule is the earliest time by which all the jobs have finished processing.
The completion time of a job in a schedule is defined as the time it finishes processing on its last
machine. The total completion time refers to the sum of completion times of all the jobs. Our
focus is on finding schedules with the minimum sum of completion times or minimum makespan.

In this paper, we develop several algorithms (both approximate and exact) for the problem
both on general graphs and when the underlying graph of machines is a tree. Even in the very
special case when the underlying network is a simple star, the problem is very interesting as it
models a biprocessor scheduling with applications to data migration.

1 Introduction

Scheduling problems have been studied extensively over the past several decades. In this paper,
we consider a class of scheduling problems in which there is an underlying network of machines.
Before stating our problem, let us start with the classical job shop scheduling problem. In job
shop, we are given a collection J of n jobs and a set M of m machines. Each job j consists
of a sequence of µj operations O1j , O2j , . . . , Oµjj . Operation Oij takes pij ∈ Z>0 time units
on machine mij ∈ M . A feasible schedule specifies for each job the times its operations must
be performed such that each machine processes at most one operation at any time, and an

? A preliminary version of this paper appears in the Proceedings of the 20th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX’2017)

This research was undertaken, in part, thanks to funding from the Canada Research Chairs program and an
NSERC Discovery Grant.

Supported by NSERC.

Department of Computing Science, University of Alberta, Canada

2 Zachary Friggstad et al.

operation is performed only if all preceding operations are already performed. We assume all
jobs are available at time zero. Let Cj be the completion time of job j in a schedule. Then
the makespan of the schedule is Cmax = maxj Cj and the weighted sum of completion time is∑
j wjCj where wj ≥ 0, j ∈ J are given weights for the jobs. Two common performance measures

are to find schedules with minimum makespan or minimum (weighted) sum of completion times.
We refer to the latter as min-sum or weighted min-sum objective. When pij ’s are all equal to
pj (i.e. independent of the machine) then we have the identical machine setting. Otherwise, we
have the unrelated machine setting.

There are many special cases of job shop scheduling studied in the literature. One view of the
problem that generalizes several other problems and has drawn attention more recently is when
there is a specific underlying network of machines given as a graph G = (V, E) [12,4]. In this
setting, we assume each edge e corresponds to a machine. Each job j ∈ J has a specific path Qj
starting at sj ∈ V and ending at tj ∈ V . The path specifies the set of machines the job has to go
through in a specific order (i.e. the sequence of its operations). If the graph G is a simple path
P = v1, v2, . . . , vm+1 (where vivi+1 corresponds to machine mi), each sj = v1 and tj = vm+1 for
all jobs j ∈ J , then we get the classical flow shop problem. Also note that the standard job shop
problem corresponds to the setting where G is a complete graph and the paths are Hamiltonian
paths visiting every vertex is some order. Another interesting special case is when we have a
general graph G, but all pij ’s are 1; this problem becomes the classical packet routing problem
in a network (see [15,16]). There are also works when the underlying graph G is a tree or other
special graphs (see [2,14,20,21]).

1.1 Previous work

The amount of previous work on these problems is simply too large to be reviewed comprehen-
sively here. We mention only some of the work and refer the reader to the references in them.
Trivial lower bounds used in many of the previous work for makespan are the congestion and
dilation lower bounds. If C is the largest congestion of any machine (the maximum over all
machines i of the total running time of jobs that have an operation on i) and D is the largest
dilation (longest time it would take a job to perform regardless of the presence of other jobs)
then L := max{C,D} is clearly a lower bound on the makespan. For general job shop Shmoys
et al. [26] presented an algorithm with the approximation ratio of O((logL)2/ log logL). When
jobs can be preempted (i.e. their processing can be paused in the middle of any operations to be
resumed later) one can get better results (see [3]).

Acyclic job shop is a special case of job shop where no job has two operations on the same ma-
chine. For this setting, Scheideler and Feige [7] present an algorithm to schedule with makespan
O(L logL log logL). To complement this, for acyclic job shop with identical machines, they pro-
vide a family of instances with optimum makespan Ω(L logL/ log logL).

The approximation in [7] is also the best known result for the case of flow shop (which is
a special case of acyclic job shop). For the slightly more general setting of flow shop where
each job still has to go through the machines in the order they appear but may not need to
be run on all of them (i.e. only needs to be run on a subsequence of machines), Mastrolilli and
Svensson [19] prove a Ω(log1−ε L) hardness of approximation. For the flow shop problem with
identical machines (also referred to as proportionate flow shop), Shakhlevich et al. [24] present
a polynomial time algorithm for the weighted min-sum objective.

As mentioned earlier, for the special case of pij = 1 for all i, j, the problem reduces to the
packet routing problem, where each job is simply a packet that takes one unit of time to travel
each edge (being a machine or a router). For this, the celebrated result of Leighton et al. [15,16]

Scheduling Problems over Network of Machines 3

and subsequent works show that there is a schedule of length O(L). The most recent result by
Harris and Srinivasan [11] show that there exists a schedule of makespan at most 7.26 · (C +D)
(non-constructive) and an algorithm that finds a schedule of makespan 8.84 · (C + D) 1. More
recently, Peis et al. [20] have shown that for the case of packet routing on a directed tree, one
can get a schedule of makespan at most C + D − 1; so this implies a simple 2-approximation.
They also show that the same method can be used as a subroutine in an algorithm to get a
2-approximation for undirected trees as well. For the special case of packet routing when G is
simply a path and all packets go from left-to-right, [2,13] show that the schedule in which at
each time step each machine (edge) processes the job that has the shortest distance to go finds
the optimum solution for the min-sum objective. Similar algorithms (namely furthest-to-go first)
find the optimum solution for makespan objective [13].

For packet routing for in-trees or out-trees (directed trees in which the in-degree of each
node is at most one, or out-degree is at most one, respectively) results of [17] show that the
furthest-to-go strategy gives optimum solution for makespan. Based on this, [20] observe that it
is easy to get a 2-approximation for makespan on undirected trees (by converting the tree into
a rooted tree and splitting each schedule into two stages where in the first stage all the packets
must first go up and then all the packets must go down to their destination in the 2nd stage).
Similar results are claimed by Kowalski et al. [14] for makespan and min-sum objective on trees.2

In [18,23], the authors give a general framework for a broad class of scheduling problems (using
LP rounding) that shows that any approximation algorithm with ratio ρ w.r.t. the trivial lower
bound L for makespan can be used to obtain a 2eρ approximation for the min-sum objective.
As a special case, this applies to the scheduling problems on networks of identical machines. We
will use this result in some of our results. It is worth pointing out that some of the ideas in [18,
23] which are also used in subsequent works have similarities to the ideas of approximation of
minimum latency in vehicle routing problems (like the classical minimum latency) which use an
approximation for minimum k-stroll or minimum k-spanning tree (k-MST) as a subroutine (see
[5] and earlier works).

More recent works have looked at some other variants of scheduling on a network. Im and
Moseley [12] look at the online scheduling problem where the network is a tree. In their model,
the edges are considered routers and each leaf node corresponds to a machine. Each job must
start from the root and then pass through the routers to arrive at a machine to be scheduled on.
Each router and machine can process one job at a time. Machines may be unrelated, but routers
are identical. They present constant factor competitive approximations using constant speed-up
for makespan. Bhattacharya et al. [4] look at coordination mechanism for routing problems on a
tree.

1.2 Our results

All of our results are for the identical machines setting (so each job j ∈ J has a processing time
pj , independent of the machine), where the jobs must run on the machines non-preemptively,
but they may wait in the processing queue of a machine in case it is busy at the moment.

Our first result is really just some smaller observations on our part, our more interesting
results are mentioned later. However, it points out an improvement for the acyclic job shop
problem with identical machines, so we think it bears mentioning.

Theorem 1 We present the results in two parts:

1 These two results can be interpreted as 14.52 and 17.68-approximations, respectively.
2 They claim a 3-approximation for makespan, and a 7-approximation for the min-sum objective, but the sketch

of the proof they provide for the latter seems incorrect and there is no full proof for it.

4 Zachary Friggstad et al.

Problem Makespan Objective Min-sum Objective

Trees O(min{logn, logm, log pmax}) O(min{logn, logm, log pmax})
(cf. Theorem 1) (cf. Theorem 1)

Trees (UPT) 2 [20] 4e (cf. Theorem 1)
O(min{logn`, log pmax}) O(min{logn`, log pmax})

Acyclic Job Shop (IM) (cf. Theorem 1) (cf. Theorem 1)
Ω(L logL/ log logL) [7]

Junction Trees 4 (cf. Theorem 2) 8e (cf. Theorem 2)
Junction Trees (UPT) 2 [20] 3
Star Network - 7.279 (cf. Theorem 3)
Star Network (UPT) - 1.796 (cf. Theorem 3)
Rooted Tree O(1) for online setting [12] Exact Algorithm (cf. Theorem 4)

Table 1 The summary of results. The entries in bold font indicate the results mentioned in our theorems. In
the table, IM stands for Identical Machines, and UPT stands for Unit Processing Time. As for the makespan
objective for star network, the results of the junction tree are still valid in this setting as well. However, no specific
approximation algorithms tailored for the makespan on stars have been reported in the literature.

1. For both makespan and min-sum objective on trees, there are polynomial time O(min{log n,
logm, log pmax})-approximation algorithms, where pmax is the maximum processing time among
all jobs. If all jobs have unit processing time, then there is a polynomial time 4e-approximation
for the min-sum objective.

2. For acyclic job shop with identical machines, under both the makespan and the min-sum ob-
jective, there are O(min{log n`, log pmax})-approximation algorithms where ` is the maximum
number of machines in a job’s sequence.

Note pmax ≤ L so this improves over the approximation for acyclic job shop in [7] by an
O(log logL)-factor, but only for the identical machines case. Recall that [7] show existence
of family of instances of acyclic job shop with identical machines having optimum makespan
Ω(L logL/ log logL), so the upper bound is tight within an O(log logL) factor.

We should point out that earlier works [2,13] imply a 2-approximation for minimizing the
makespan for identical jobs on trees. We also consider a special case of trees, called junction-trees:
in this setting, the network is a rooted tree T and for each job j ∈ J , the Qj path for j contains
the root. A special junction-tree is when T is simply a star with all the jobs starting and ending
at the leaves of T .

Theorem 2 There is a 4-approximation for makespan objective and an 8e-approximation for
the min-sum objective on junction-trees. Furthermore, if all processing times are 1, there is a
different 3-approximation algorithm for the min-sum objective.

Perhaps the strongest and most technical result of our paper is for the simplest setting of
star networks. We prove the following.

Theorem 3 For the min-sum objective on stars where all the jobs start and end on leaves, there
is a randomized 7.279-approximation algorithm. For the special case of unit processing time, there
is a randomized 1.796-approximation algorithm3.

This setting is more interesting than one might initially think; it is closely related to biprocessor
scheduling problems studied in, say, [10]. This connection is examined more closely at the start
of Section 2.

3 The mentioned approximation ratios for randomized algorithms are in expectation.

Scheduling Problems over Network of Machines 5

Another related variant of the problem on trees is when each job starts at the root and may
take (any) root-to-leaf node in order to be completed. So there is not a specified path of machines
that job j must run on. Instead, we have to decide the path as well as how to schedule the jobs.
This is the same setting as in [12] for which the authors present online algorithms. It turns
out for this setting computing a schedule with the min-sum objective can, in fact, be solved in
polynomial time. We call this problem rooted-tree routing scheduling.

Theorem 4 For the rooted-tree routing scheduling, there is a polynomial time algorithm to com-
pute the optimal schedule with the min-sum objective.

Outline of the paper: We start by studying the simplest setting (star networks) and prove
Theorem 3 in Section 2. The approximation algorithms for trees and junction trees as well as the
observation for acyclic job shop with identical machines (Theorems 1, 2, and 4) are presented in
Section 3.

2 Approximation Algorithms for Stars

In this section, we look at the min-sum objective for scheduling on a star where jobs start/end at
leaves. One problem related to the scheduling problem defined on a star network is biprocessor
scheduling or data migration which can be modelled as edge sum-colouring or edge sum multi-
colouring [8–10]. In the data migration problem, one has to move data stored among devices in
a network from one configuration to another. The network is modelled as a graph G = (V,E)
where each vertex v ∈ V represents a data storage and an edge e = vivj represents the need
to transfer data between vi and vj . This transfer may take pe time units and will keep both vi
and vj busy for that many steps. A transfer cannot be preemptive (hence, once started must
run until completed) and no node vi can be transferring data to/from more than one other data
storage at the same time. So, only data transfer over edges that form a matching can happen
concurrently. The goal is to find a schedule for these transfers and minimize the makespan (the
time the last transfer completes) or the min-sum objective (the average time the transfers are
completed).

This is essentially biprocessor scheduling where the nodes are the processors, the tasks are
represented by edges, and each task requires two specific resources (its two end-points) in order
to run. When all pe’s are one, minimizing the min-sum objective is equivalent to the min-sum
edge colouring of G [10], and it has been studied extensively. In the min-sum edge colouring, one
has to find a proper edge colouring φ : E → Z+ that minimizes

∑
e φ(e). One can think of φ(e)

as the time step in which edge e is scheduled to run on the two processors of its end-points. In
the min-sum edge multi-colouring, each edge e has a requirement pe and one has to assign pe
distinct integers (as colours) to e such that for any two adjacent edges the set of colours assigned
to them are disjoint. The objective is to minimize the sum of the largest colours assigned to
edges. If one further requires each set of colours to form a consecutive sequence of integers, then
those pe integers can be considered to be the time steps in which task e = vivj is supposed to run
on the two processors vi, vj . The best approximation algorithm for the min-sum edge colouring
is due to Halldorsson et al. [10] who present a configuration LP rounding with ratio 1.8298 and a
combinatorial 1.8886-approximation. For biprocessor scheduling with arbitrary processing times
pe, Gandhi et al. [8] give a 7.682-approximation.

The problem we are considering, when restricted to networks of stars is another form of
biprocessor scheduling in which each task requires being performed on two specific processors
and in a specific order. More formally, suppose that the star T = (V,E) with root/centre node r
is the network and each job j ∈ J starts and ends at leaf nodes sj , tj , respectively. For a job j,

6 Zachary Friggstad et al.

we call the transition from sj to the root r the first leg of j’s migration, and the transition from
r to tj the second leg. We first create a directed demand graph H = (VH , EH) whose vertices
correspond to machines (i.e. edges of T) and whose arcs correspond to jobs in J , where each arc
(sj , tj) ∈ EH reflects the fact that job j needs to be processed on machines {sj , r} and then on
{r, tj}. So, |VH | = m and |EH | = n. We will use ej ∈ EH to refer to a job j ∈ J .

In this Section, we prove Theorem 3. We start first by presenting the algorithm for the general
case which achieves an approximation ratio of 7.279. We then present a modified algorithm that
has ratio 1.796 for when all pj ’s are 1.

2.1 Approximating stars with general processing times

Our algorithm for both the general and unit processing times has the following general framework
which is somewhat similar to the general framework of minimizing latency (see [5] and earlier
works) to convert a makespan objective to a min-sum objective. Our algorithm works in stages
where in each stage we try to find the maximum number of jobs that can be scheduled subject to
a makespan bound B, which is increasing geometrically in each iteration. Lemma 1 shows how to
find such a subset of jobs. We then show how even a bicriteria approximation for this makespan
version of the problem can give a good approximation for the min-sum objective. This is done
in Proposition 1. Most of the work is in finding a good schedule subject to the makespan bound.

Given a schedule, for a subset of jobs Ĵ ⊆ J , we define the makespan of Ĵ as the difference in
time between when the last job of Ĵ finishes processing on its last machine and when the first job
of Ĵ begins processing on its first machine. We also define the load of a machine i with respect
to the set Ĵ to be the total processing time of jobs in Ĵ incident to i in H, i.e., the congestion
machine i incurs from the jobs in Ĵ . Note that the notions of makespan (in our original graph
T) and load (in our demand graph H) are closely related. We define (ρ, t)-proper sets of jobs,
which will be used in our algorithm.

Definition 1 ((ρ◦, t)-proper set) For ρ◦ ≥ 1 and t > 0, we call a subset of jobs Ĵ ⊆ J a
(ρ◦, t)-proper set if the two following conditions hold:

– |Ĵ | is at least the size of the maximum subset of J that can be scheduled with a makespan
of at most t.

– For each machine i, the total load (congestion) of jobs in Ĵ that have i as their first machine
(called the in-load of i) is at most ρ◦ · t and also the load of jobs that have i as their second
machine (called the out-load of i) is at most ρ◦ · t.

We, later on, show how we can build a schedule of jobs in a (ρ◦, t)-proper subset |Ĵ | with
small makespan and small average completion time of those jobs in Proposition 1. Assuming
we have an algorithm that can find (ρ◦, t)-proper sets of jobs for any given t, combined with
Proposition 1 we show how we can build an algorithm for the star scheduling problem with the
min-sum objective. At each iteration i, we fix a value ti and do the following: we first find a
proper set of remaining jobs with respect to ti and then, we find a “good” scheduling of these
jobs. 4 Before formally presenting the algorithm, we prove the following lemma and proposition:

Lemma 1 There is a polynomial time algorithm that finds a (1.5, t)-proper set for any t.

Proof Let OPTt be the maximum number of jobs from J that can be scheduled with makespan

at most t. First, observe that jobs/edges e in H with pe >
t

2
do not appear in any feasible

4 We ideally want to find the largest set of jobs that can be scheduled at any given time ti. However, to ensure
the tractability of our algorithm, we settle for a proper set as defined instead.

Scheduling Problems over Network of Machines 7

scheduling with a makespan of t as each such job needs to run sequentially on two machines.
We remove such jobs from consideration. Let pmax = maxj pj ; thus pmax ≤ t/2. We will find a

set of jobs Ĵ such that the in-load of each machine and the out-load of each machine is at most
t+ pmax ≤ 1.5 · t and |Ĵ | ≥ OPTt.

To find this set, we consider the problem of picking the maximum number of jobs such that
for each machine i the in-load and out-load are at most t. Note the size of this set is at least
OPTt. To find such a set, we round an LP relaxation.

Construct an undirected bipartite graph H̃ = (Ṽ1 ∪ Ṽ2, Ẽ) from H: corresponding to every
vertex v ∈ VH (i.e. for each machine), we create two copies ṽ1 and ṽ2 in Ṽ1 and Ṽ2, respectively;
for every (directed) edge e = (u, v) ∈ Ri (which corresponds to a job) with pe ≤ t/2, we put an
undirected edge ẽ = (ũ1, ṽ2) in Ẽ, where ũ1 ∈ Ṽ1 and ṽ2 ∈ Ṽ2. Let pẽ denote the corresponding
value pe. We work with the following LP relaxation for selecting a maximum subset of edges that
imposes an in-load or out-load of at most t on the vertices:

max

∑
e∈Ẽ

xe :
∑

e∈δẼ(v)

pexe ≤ t ∀v ∈ Ṽ1 ∪ Ṽ2, x ∈ [0, 1]Ẽ

 (1)

This LP is exactly the LP relaxation for the so-called demand matching problem whose study
was initiated in [25], where the following lemma is proved:

Lemma 2 ([25]) Let x be an extreme point of the demand matching polytope, and let G̃(x) be
the graph induced by the those xe’s that have a fractional value, i.e., 0 < xe < 1. Then each
component of G̃(x) consists of a tree plus (possibly) one edge. In addition, any cycle in G̃(x) has
odd length.

Now, we use a standard iterative relaxation. Similar procedures have been used in the liter-
ature on similar polytopes in the literature (e.g., see [1]). However, for the sake of completeness,
we sketch the relaxation here. From Lemma 2 and the fact that the graph H̃ is bipartite, we
have that the components of G̃(x) are all trees. Now, we can round x to an integral solution x,
satisfying the conditions of a (1.5, t)-proper set. We think of every vertex ṽ ∈ Ṽ1∪ Ṽ2 as having an
initial capacity of t for out-load (if ṽ ∈ Ṽ1) or in-load (if ṽ ∈ Ṽ2), but in the process of rounding,
we allow a slight violation of that capacity. We then run an iterative process. In each iteration,
for every edge e, if xe = 1 or xe = 0, then let xe = xe (fix xe), remove e from the graph, and
update the capacity of the endpoints of e. As a result, every remaining edge e has a fractional xe,
and belongs to a tree. Select any edge e connecting a leaf node v to its parent in one of the trees
of G̃, and drop the constraint for v from the LP. If the graph still has edges, solve the new LP
to obtain a new optimal solution and repeat the process.It is clear that the value of the solution
to the new LP is at least as good as the original LP solution since we remove a constraint. Also,
since in each iteration we either fix an edge variable or remove a constraint, the number of itera-
tions is linear. Also, as for each leaf node v (connected to the tree via edge e) whose constraint is
removed, in worst case we pick e in our integer solution, the load of v in the integral solution is
increased by at most pe ≤ pmax. Therefore, this rounding algorithm terminates in linear number
of iterations with a solution (set of jobs) whose size is at least as good as the solution to LP (1)
and where the load of each node v is at most t+ pmax. It is straightforward to see that the edges
in E corresponding to e ∈ Ẽ with xe = 1 form a (1.5, t)- proper set. ut

We should point out that the (1.5, t)-proper set obtained in the proof of Lemma 1 has the
property that the in-load and out-load of each node is at most t + pmax. Now we describe a
method that, given such a (ρ◦, t)-proper set Ĵ , returns a schedule of them with a makespan of
at most 2ρ◦ · t and furthermore, the average completion time of each job is small. While the

8 Zachary Friggstad et al.

arguments can be stated for any ρ◦ ≥ 1, with some hindsight, we describe the proposition for
ρ◦ = 1.5, and the average completion time of γ · t = 2.5 t. The use of constants ρ◦ and γ helps
significantly with the readability of the calculations that will follow.

Proposition 1 Suppose that Ĵ is a (1.5, t)-proper set as obtained by Lemma 1. There is a
scheduling of the jobs in Ĵ with a makespan of at most 2t + 2pmax ≤ 3t. Furthermore, the
average completion time of a job in that schedule is at most 2t+ pmax ≤ 2.5 t.

Proof The algorithm for this proposition is a simple 2-stage one: in the first stage, each machine
i processes (in some arbitrary order) those jobs in Ĵ that have i as their first leg, i.e. are going
towards the centre of the star where this machine is the first edge they traverse. Once all the jobs
in Ĵ have arrived at the centre of the star (i.e. have completed their first leg), each machine i
starts processing the jobs that have i as their second machine, from smallest to largest processing
time. It is straightforward to observe that each stage takes at most t+ pmax ≤ 1.5t units of time
to complete; so the total makespan of all jobs is at most 2t+ 2pmax ≤ 3t.

We already showed that the schedule has makespan at most 2t+ 2pmax ≤ 3t. We prove that
the average completion time is at most 2t+pmax, when pmax ≤ t/2. To prove this, since the jobs
have completed their first leg (arrived at the centre of the star) by time t + pmax, it is enough
to show that the average completion time of each job on their second machine is at most t if we
assume they were to start their second leg at time zero. So for simplicity, let us assume that all
the jobs are already at the centre of the star at time zero.

Consider an arbitrary machine i and suppose that j1, . . . , jσ are the jobs in Ĵ that have i as
their second machine where pj1 ≤ pj2 ≤ . . . ≤ pjσ . Based on the iterative relaxation algorithm

explained earlier, we know that
∑σ−1
`=1 pj` ≤ t, since the only time the rounding algorithm violates

the capacity of a vertex is when it becomes a leaf of the tree and the capacity constraints for that
vertex are dropped. So, w.l.o.g, we can assume that pjσ = pmax. If σ ≤ 3, then clearly the average
completion time of each job is at most t (using the fact that each pj ≤ t/2). If σ = 4, then the
scenario with maximum completion time is when the the jobs finish processing at times t

3 , 2t
3 , t,

and t + pmax, respectively; which implies the average completion time is at most 7t
8 (note that

since the second machine schedules the jobs from the smallest to the largest processing times, the
worst case occurs when all the processing times are equally as large). So let us assume that σ ≥ 5.
It is easy to see that the completion time of job jk (for 1 ≤ k < σ) is at most (k − 1) t

σ−1 + pjk .
Thus, the average completion time of all the jobs on this machine will be:

1

σ

(
t+ pmax +

σ−1∑
k=1

(k − 1)
t

σ − 1
+ pjk

)
=

1

σ

(
(
σ

2
+ 2)t+ pmax

)
.

Since σ ≥ 5, using the fact that pmax ≤ t/2:

pmax ≤ (
σ

2
− 2)t =⇒ (

σ

2
+ 2)t+ pmax ≤ σt =⇒ 1

σ

(
(
σ

2
+ 2)t+ pmax

)
≤ t,

as wanted. ut

Now, we can formally present Algorithm 1. We have already shown how to perform Step 6,
i.e. find a proper set of jobs among remaining jobs, in 1. Also, Proposition 1 gives an algorithm
in Step 7 to turn the (1.5, ti)-proper set found in Step 6 into a schedule for that set with a
makespan of at most 3ci+α such that the average completion time of each job in that set will be
2.5ci+α. The following theorem proves the approximation ratio for Algorithm 1.

Scheduling Problems over Network of Machines 9

Data: Auxiliary graph H, a constant c ∈ R>0 to be fixed later
Result: A scheduling of the jobs

1 α ∼ U [0, 1)
2 i← 1
3 R1 ← EH ;
4 while Ri 6= ∅ do
5 ti ← ci+α

6 Find a (1.5, ti)-proper subset Ji ⊆ Ri (c.f. Lemma 1).
7 Schedule Ji using Proposition 1, starting at the previous iteration’s completion time.
8 Ri+1 ← Ri \ Ji
9 i← i+ 1

10 end

Algorithm 1: Approximation for the min-sum scheduling on stars with identical machines.

Theorem 5 Algorithm 1 is a 7.279-approximation algorithm for the min-sum objective on stars
when jobs have general processing times.

Proof In the following, whenever we refer to j’th job of a schedule, we mean that j’th job that
finishes processing in that schedule. Following the notation of [5], let uj be completion time of
j’th job in our schedule and let coptj be the completion time of j’th job in a schedule with the
optimum min-sum objective (note that these jobs might not be the same). We would like to
bound uj w.r.t. coptj . Assume that coptj = dck for some d < c and some k ≥ 1. Based on the value
of d with respect to the random variable α in Algorithm 1, two cases arise: i) d < cα, or ii) d ≥ cα.
For the first case, note that since in the optimum there is a schedule of j jobs with makespan at
most coptj = dck < ck+α, the iteration in which the j’th job is scheduled in our algorithm is at
most k. Also, note that for an iteration i, i = 1, 2, . . . , k−1, the relative completion time of any
job in iteration i with respect to i is at most ρci+α where ρ = 2ρ◦ = 3. By relative completion
time we mean we are ignoring the offset cause by the previous iterations. The average relative
completion time of each job in iteration k (using Proposition 1) is at most γck+α, where γ = 2.5.
With slight abuse of notation, we bound the completion time of an arbitrary job in iteration k
with its average value of γck+α for now. This is without loss of generality, and is merely to help
with the notation as we will use the expected value of the completion time soon after, which is,
in fact, γck+α. Thus:

uj ≤ ρ
k−1∑
`=1

c`+α + γck+α ≤ c1+α

c− 1
(γck − ρ+ (ρ− γ)ck−1).

Similarly, for when d ≥ cα, coptj = dck < ck+1+α. Thus, the j’th job is scheduled no later than
iteration k + 1. Therefore:

uj ≤ ρ
k∑
`=1

c`+α + γck+1+α ≤ c1+α

c− 1
(γck+1 − ρ+ (ρ− γ)ck).

10 Zachary Friggstad et al.

Data: Auxiliary graph H, a constant c ∈ R>0 to be fixed later
Result: A scheduling of the jobs

1 α ∼ U [0, 1)
2 i← 1
3 R1 ← EH
4 while Ri 6= ∅ do

5 ti ← 2

⌊
ci+α

2

⌋
6 Ji ← b-Matching(ti)

7 Decompose Ji into
ti

2
disjoint 2-matchings J1

i , J
2
i , . . . , J

ti
2
i (see Lemma 3)

8 Schedule jobs in Ji according to Lemma 4
9 Ri+1 ← Ri \ Ji

10 i← i+ 1

11 end

Algorithm 2: Approximation for the min-sum objective on stars with identical jobs.

In the first case, α ∈ [logc d, 1) and in the second case, α ∈ [0, logc d). By taking the expectation
over α over the two cases, one gets

E [uj] ≤
∫ 1

logc d

c1+α

c− 1
(γck − ρ+ (ρ− γ)ck−1)dα+

∫ logc d

0

c1+α

c− 1
(γck+1 − ρ+ (ρ− γ)ck)dα

=
c

c− 1

(
(γck − ρ+ (ρ− γ)ck−1)

∫ 1

logc d

cαdα (2)

+ (γck+1 − ρ+ (ρ− γ)ck)

∫ logc d

0

cαdα

)

=
c

ln c

(
γdck − ρ+ (ρ− γ)dck−1

)
≤ c

ln c

(
γ +

ρ− γ
c

)
coptj .

Setting ρ = 3 and γ = 2.5, and c = 2.912 leads to the approximation ratio of 7.279. ut

2.2 Refinements for the case of unit processing times

In this section, we modify our general framework to obtain better approximation factors for the
case of unit processing times. The main new ingredient of the proof is to use a different algorithm
to find (ρ, t)-proper sets instead of Lemma 1. Recall that our general framework works in two
steps: first, partition the jobs into disjoint blocks, and second, schedule each block separately. For
unit processing time, we follow the same general framework but we use a standard b-matching
algorithm for partitioning, and a more careful scheduling algorithm to deal with the jobs of each
block. Algorithm 2 describes each stage more formally.

In our algorithm, the procedure b-Matching(b) finds a maximum size b-matching (a subgraph
with maximum degree b) in the undirected subgraph obtained from the set of edges in Ri in
polynomial time (e.g. [6]).

Lemma 3 For even b ≥ 0, any b-matching can be partitioned into
b

2
2-matchings.

This is known for b-regular graphs [22]. It is straightforward to prove the same for graphs with
maximum degree b as well.

Scheduling Problems over Network of Machines 11

Proof We will show that the b-matching is a subgraph of some b-regular graph. It has been shown
that any b-regular graph (for even b) is 2 factorable [22]. This implies the claim of the lemma.

Let F = (VF , EF) denote the graph for a b-matching and assume we have removed all the
isolated vertices of F if any exists. Consider an ordering of v1, v2, . . . , vn for vertices of VF
such that 1 ≤ deg(v1) ≤ deg(v2) . . . ≤ deg(vn). We create a new graph F̂ by making b copies
F 1, F 2, . . . , F b of F and divide its vertices into n groups of size b (each group i containing the
b copies of a vertex vi for 1 ≤ i ≤ n). Note that there are no edges between the vertices of each
group. Let εi = b− deg(vi) for 1 ≤ i ≤ n. We call εi the deficit of group i. Since there are even
number of vertices in each group, we can form εi perfect matchings on the vertices of a group i
and add them to EF̂ . At the end of this process, every vertex in F̂ has a degree of b. Using the

results of [22], we find the partition for F̂ . Since the original graph F is a subgraph of F̂ , the
induced 2-matching on F will give us the partition claimed in the lemma. ut

Next, we schedule the jobs in each block. We note that using Vizing’s algorithm for edge
colouring, we can schedule the jobs in Ji using ti + 1 new time steps (details omitted here), how-
ever, in order to obtain a better approximation ratio we do the following. Let J = {J1, J2, . . . , J`}
be the partitioning constructed by the algorithm, where Ji is a maximum ti-matching. Recall

that each Ji is further partitioned into 2-matchings J1
i , J

2
i , . . . , J

ti
2
i . We call these 2-matching

slots. Our goal is to find a scheduling of jobs in Ji (for each i ≥ 1) with small makespan for
them and at the same time small average completion time. We show how to find a schedule with
makespan ti for each Ji, i ≥ 2 (relative to the end of the last group Ji−1), and with makespan
t1 + 1 for J1; furthermore, for each Ji the average completion time of the jobs in Ji will be ti+1

2 .
In the following lemma, we slightly abuse the definition of the makespan within each slot to refer
to the number of new time units (in comparison to the previous slot) that is used to schedule its
edges.

Lemma 4 Given the partitioning J , there exists a scheduling in which every slot J ti has makespan
of 2, except for the very first slot J1

1 which has a makespan of 3. The makespan of each job in

Jk will be at most 1 +
∑k
`=1 tk. Furthermore, the average completion time of jobs in Jk will be

at most 1 +
∑k−1
`=1 t` + tk+1

2 .

Proof Consider an arbitrary iteration 1 ≤ k ≤ ` and focus on Jk, which is partitioned further

into slots J1
k , . . . , J

ti/2
k . Let ∆k = 1 +

∑k−1
`=1 t`. We want to give a schedule for jobs of Jk so

that they finish in time slots ∆k + 1, . . . ,∆k + tk; this will show that the makespan of jobs in
J1, . . . , Jk will be 1 +

∑k
`=1 t` for any k ≥ 1.

Recall that each slot J tk accommodates a 2-matching, meaning that each connected component
of J tk is either a path or a cycle. We consider a (directed) connected component of J ti which is a
cycle and denote it by C. The case of a path is proved similarly. We first introduce some notation.
When we associate a tuple (`u, `v) ∈ Z+ × Z+ to an edge e = (u, v) of a 2-matching it means
that e is to be run on its first machine at time step `u and on its second machine at time step
`v. Note that `u < `v. In this lemma, we develop a schedule such that `u, `v ∈ {1, 2, 3} for the
first slot of J1 (i.e. J1

1), and that `u, `v ∈ {∆k + 2t− 1, ∆k + 2t, S} for jobs in J tk for any other
values of t and k. This implies that the jobs in J1 are finished in times 2, . . . , t1 + 1, and for each
k > 1, jobs in Jk are finished at times ∆k + 1, . . . ,∆k + tk, where ∆k represents the finish time
of the previous block.

We simplify the problem by modifying C. Consider any maximal consecutive sequence of
clockwise (counterclockwise) edges of C and contract the edges into a single “super-edge”. Note
that if the super-edge e∗ = (u, v) is associated with the tuple (`u, `v), then one can extend it to
a scheduling for the entire sequence by assigning `u to the tail and `v to the head of the edges

12 Zachary Friggstad et al.

in the sequence. Every vertex of the resulting cycle has either 2 incoming or 2 outgoing edges.
We call a vertex with out-degree (in-degree) 2 a source (sink) vertex. Note that the sinks are
those machines that are the last machines of the 2 jobs in this slot, and the sources are the
first machines of the 2 jobs. The simplified cycle has an equal number of sinks and sources, and
furthermore, they must alternate (see Figure 1).

Next, we show that if C is a cycle of J1
1 , we can assign tuples (`u, `v) to the edges of C

where `u, `v ∈ {1, 2, 3}. For an edge e of C, we simply assign (1, 2) if e is a clockwise edge and
(2, 3) otherwise. Therefore, sinks will be incident to those ends of edges with numbers 2 and
3. Similarly, the sources will touch those ends of edges associated with numbers 1 and 2. Thus,
there exists no contention on the machines (no 2 jobs are scheduled at the same time on one
machine), and the jobs of slot J1

1 can all run to completion in 3 time units.
Now, assume C belongs to a slot J tk other than the first. We complete the proof by showing the

jobs in C can be scheduled in 2 new time units with finish times in {∆k+2t−1, ∆k+2t}. Notice
that in the first slot J1

1 , 3 time units were spent for scheduling at most 2 jobs on every machine.
Therefore, every machine is idle for at least 1 time unit in that slot. We make use of this slack in
the first slot to complete the schedule of subsequent slots in 2 additional time units instead of 3.
More specifically, if we look at the union of all 2-matchings in {J1, . . . , Jk−1}∪{J1

k , . . . , J
t−1
k }, the

degree of each node is at most
∑k−1
`=1 t`+2(t−1) = ∆k+2t−3 whereas we have used ∆k+2t−2

time steps. So when consider J tk, at each node there must be an available time step from previous
rounds (a slack) that we could schedule a job in J tk. For every edge in J tk we schedule it to run
at one of `u, `v ∈ {S, ∆k + 2t − 1, ∆k + 2t} time steps, where S represents the slack available
at that node. That is, if the first endpoint of an edge is associated with S, we schedule that job
on its first machine at an idle time unit in previous slots. Now, in a similar fashion to the case
of J1

1 , we associate (S, ∆k + 2t − 1) to all clockwise edges of C and (∆k + 2t − 1, ∆k + 2t) to
counterclockwise edges. Once again, we can argue that there is no contention on the machines
and that every job runs to completion in at most 2 time units. This shows that the makespan of
jobs in Jk will be at most 1 +

∑k
`=1 t`.

In order to get small average completion time we have to slightly tweak our algorithm. For
every 2-matching J tk where we schedule some of the tasks to be completed at time ∆k + 2t − 1
and others in time ∆k + 2t we have the option of switching these two; i.e. when go around
a cycle C (for example) and assign (S,∆k + 2t − 1) and (∆k + 2t − 1, ∆k + 2t) to edges in
clockwise order and counterclockwise order, respectively, we can do the reverse of this choice
(assign (S,∆k + 2t− 1) to counterclockwise and (∆k + 2t− 1, ∆k + 2t) to clockwise order). Also,

when we are scheduling the slots J1
k , . . . , J

tk/2
k , we can consider scheduling them in this order or

the reverse order. Therefore, in each iteration i of the algorithm, to find the schedule of jobs in Ji
we consider these two reverse choices (for both the ordering of two matchings as well as within
each two matching) and take the better of the two. So the average completion time of the jobs

in Jk is ≤ ∆k +
1 + tk

2
, i.e., 1 +

∑k−1
`=1 t` +

1 + tk
2

. ut

The proof of the following theorem is analogous to that of Theorem 5.

Theorem 6 Algorithm 2 is a 1.796-approximation algorithm for the star scheduling problem
when jobs have unit processing times.

Proof Similar to our analysis for the case of general processing times, let uj be completion time
of j’th job in our schedule and let coptj be the completion time of j’th job in a schedule with the

optimum min-sum objective. Assume coptj = dck for d < c. Similarly to the proof of Theorem
5, we consider the two cases where d < cα and d ≥ cα. In the first case, uj is bounded from

above by the amortized bound 1 +
∑k−1
`=1 t` +

tk + 1

2
, and in the second case, by the amortized

Scheduling Problems over Network of Machines 13

1

12

2

2

32

3

1

2

1 2

1

2

2

3

2

3

12

2

3

3

2

Fig. 1 Scheduling of a cycle C. The curved arrows represent the super-edges, and the solid (hollow) circles
represent the source (sink) nodes. Assuming that C belongs to J1

1 , its jobs can be scheduled in 3 time units. Note
that a scheduling for the super-edges can readily be extended to a scheduling for the original cycle.

bound 1 +
∑k
`=1 t` +

tk+1 + 1

2
, where t` = 2

⌊
c`+α

2

⌋
. Note that, in the first case, 1 +

∑k−1
`=1 t`

correspond to the sum of completion times of all the jobs in previous blocks (∆k), and the last
term, (tk + 1)/2, corresponds to the amortized completion time of job j in the last block (note
that the jobs in the last block have completion times of 1, 2, . . . , tk). A similar arguments hold
for the second case. Simplifying the bound in the first case, we get

uj ≤ cα + c1+α +

k−1∑
`=2

c`+α +
ck+α + 1

2
+ 1− cα − c1+α + 2

⌊
c1+α

2

⌋

=

k−1∑
`=0

c`+α +
ck+α

2
+

3

2
+ β(α) = ck+α

(
1

c− 1
+

1

2

)
− cα

c− 1
+

3

2
+ β(α),

where β(α) = 2
⌊
c1+α

2

⌋
− cα − c1+α. For the second case, we obtain the following:

uj ≤ ck+1+α

(
1

c− 1
+

1

2

)
− cα

c− 1
+

3

2
+ β(α).

Taking the expectation of uj over α, we get

E [uj] ≤
∫ 1

logc d

(
ck+α

c+ 1

2(c− 1)
− cα

c− 1
+

3

2
+ β(α)

)
dα+ (3)∫ logc d

0

(
ck+1+α c+ 1

2(c− 1)
− cα

c− 1
+

3

2
+ β(α)

)
dα

=
c+ 1

2(c− 1)
ck
∫ 1

logc d

cαdα+
c+ 1

2(c− 1)
ck+1

∫ logc d

0

cαdα+ (4)∫ 1

0

(
− cα

c− 1
+

3

2
+ β(α)

)
dα

=
c− 1

ln c
· c+ 1

2(c− 1)
dck − 1

ln c
+

3

2
+

∫ 1

0

β(α)dα. (5)

It remains to bound
∫ 1

0
β(α)dα =

∫ 1

0

(
2
⌊
c1+α

2

⌋
− cα − c1+α

)
dα. Observe that

⌊
c1+α/2

⌋
= κ

where κ ∈ {1, . . . , 6} is such that 1 + α ∈ [logc 2κ,min{2, logc 2(κ + 1)}) for 3 ≤ c <
√

14. The

14 Zachary Friggstad et al.

range for parameter c is chosen with some foresight. Therefore,∫ 1

0

2

⌊
c1+α

2

⌋
dα = 2

(∫ logc 4−1

0

1dα +

∫ logc 6−1

logc 4−1
2dα + . . .+

∫ 1

logc 12−1
6dα

)
= 22− 2 logc 23040.

Finally,∫ 1

0

β(α)dα =

∫ 1

0

(
2

⌊
c1+α

2

⌋
− cα − c1+α

)
dα = 22− 2 logc 23040− c− 1

ln c
− c(c− 1)

ln c
.

Substituting this value in Equation (5) and simplifying, we get

uj ≤
coptj (c+ 1)

2 ln c
+

47

2
− 2 logc 23040− c2

ln c
≤
coptj (c+ 1)

2 ln c
,

where the second inequality holds because 47
2 − 2 logc 23040 − c2

ln c is a negative term for c > 0.
For c = 3.59, we obtain the claimed approximation ratio of 1.796. ut

3 Scheduling on Trees and General Networks

In this section, we first focus on situations where the topology of the machines is a tree and then
on the general acyclic job shop setting. We prove Theorems 1, 2, and 4.

We first recall a result from [18,23] that shows how to convert an approximation for the
makespan objective that is relative to the lower bound max{C,D} into an approximation for the
weighted min-sum objective losing only an additional constant factor. Here, C is the congestion
and D is the dilation of the input. The statement below paraphrases their result.

Theorem 7 ([18,23]) Consider an instance of job shop scheduling with jobs J having weights
wj ≥ 0, j ∈ J . Suppose for any J ′ ⊆ J we can find a schedule of J ′ in polynomial time having
makespan γ ·max{C(J ′), D(J ′)} where C(J ′) is the maximum congestion of an edge under jobs
J ′ and D(J ′) is the dilation of J ′. Then in polynomial time, we can find a schedule for all
of J where the weighted completion time is at most 2eγ times the minimum possible weighted
completion time.

When we invoke this, we will simply have proved that for the given instance we can schedule
all jobs with makespan bounded by a factor of max{C,D}. But it should be obvious that we
would get the analogous bound if we restricted to any subset of jobs because that restricted
instance falls in the same family of instances we are considering (e.g. on a tree or acyclic job
shop with identical machines).

3.1 Proof of Theorem 1

For showing the results of the theorem regarding trees, we invoke Theorem 2, which is proven
independently of our other results (we defer the proof to Section 3.2). First, note that if all pj ’s
are 1, then we simply have the packet routing problem in a tree. Peis et al. [20] presented a
simple algorithm in the case of directed trees that has makespan at most C + D − 1 (where C
and D are congestion and dilation). They use their algorithm to obtain an approximation ratio
of 2 for the undirected case. This, together with the result of [18,23], yields a 4e-approximation
for the min-sum objective in unit processing time.

Scheduling Problems over Network of Machines 15

Now, suppose that we have general processing times. We first present an algorithm with
the ratio O(min{logm, log n}) with respect to the two lower bounds of C,D for the makespan.
Combined with Theorem 7, this yields the same approximation ratio for the min-sum objective.
Finally, we focus on the acyclic job shop and present an O(min{log n`, log pmax})-approximation.
This will also provide the O(log pmax) part of the guarantee stated in Theorem 1 for trees.

So, we now focus on trees. Let T be the underlying network. Our plan is to present an
O(logm)-approximation, and also an O(log n)-approximation for makespan. We simply return
the better of the two. For each, we decompose the problem into a logarithmic number of inde-
pendent instances, each of which is the union of vertex-disjoint junction-tree instances.

To do this, we carefully select a node v1 ∈ T as the root (we specify how to find this vertex
below) and then partition the jobs into two groups: G1: those jobs j for which their path Qj
contains node v; and the rest are placed in J − G1. Note that no job in J − G1 ever needs
processing on any edge incident with v1, therefore, each such job is over a subtree of T − v1. We
claim that we can always pick v1 such that the number of jobs in each of the subtrees in T − v1
is at most n/2.

Claim Given a tree T with some subpaths Q1, . . . , Qn where each Qi is a (si, ti)-path for some
si, ti ∈ V (T), one can always pick a vertex v ∈ T such that the number of paths that are entirely
within any subtree of T − v is at most n/2.

Proof We argue that the claim holds by orienting the edges of the tree. For every edge e = uv,
if more than n/2 of the paths Qi are contained entirely in one subtree of T − e, direct e toward
this subtree. Otherwise, direct e arbitrarily. After directing all edges, there is a node v that has
no out-going edge. Otherwise, one could start from a leaf and follow the outgoing edges to a new
vertex, each time strictly increasing the size of the subtree under the new vertex. Since there are
no cycles and the outgoing edge imply that the subtree contains less that or equal to n/2 nodes,
we should arrive at a contradiction at some point. Now it should be easy to see such e a node v
exists, and has the required properties. ut

Trees
Note that we can find a schedule for each of the subtrees of T − v1 independently and run them
in parallel. Therefore, we can now solve the problem on each of those subtrees independently.
For each such subtree, we pick a node as the root again; all the jobs that contain one of these
roots form group G2 and the rest of jobs belong to J −G1 −G2, and we do this recursively for
each subtree. Since each time, the number of jobs left in a subtree halves, we will have at most
log n iterations and hence we obtain σ ≤ log n groups G1, G2, . . . , Gσ and each group is the union
of independent (i.e. vertex-disjoint) junction-tree instances. Using Theorem 2, we can obtain a
4-approximation for makespan of each group. Running these log n schedules in any arbitrary
order gives an O(log n)-approximation for makespan.

The algorithm for finding an O(logm)-approximation is similar. We only need to pick the
root v1 (and subsequent roots) in such a way that the number of edges (i.e. machines) in each
subtree left is at most half the number of edges in the original one. Such a node is commonly
called a centroid of the tree. Therefore, we obtain logm groups this way, each of which is a col-
lection of independent junction tree instances. Combining these we get an O(min{log n, logm})-
approximation for the makespan on trees and subsequently the same approximation ratio for
min-sum objective function.

Acyclic Job Shop
The approximation we devise for acyclic job shop is really just a sequence of simple observations.
Recall we are assuming the processing times are integers, so pj ≥ 1 for all jobs j. As in [7], by

16 Zachary Friggstad et al.

losing a factor of 2 in pmax, C, and D, we assume pj = 2k for some k ∈ Z≥0. This is achieved by
scaling up all pj to a power of 2. Observe the optimum solution value at most doubles; we could
just double the start times of all operations in an optimum solution. Also, any schedule under
these scaled processing times yields a schedule under the original times by using the same start
times for each operation.

For each integer 0 ≤ k ≤ log2 pmax, form the group Bk = {j : pj = 2k}. We can view each
group Bk as an instance of acyclic job shop with identical jobs, so by [16] there is a solution with
makespan O(C+D). More specifically, we can scale the running times of each job in Bk to be 1,
which also scales the congestion and dilation by 2−k. In polynomial time, we can find a schedule
for these unit-length jobs with makespan O(2−k · (C + D)) [16], so under the original running
times 2k we get a solution with makespan O(C +D).

Finally, we simply concatenate the resulting solutions for these 1 + log2 pmax groups to get a
solution for all jobs with makespan O(log pmax · (C+D)). As this is an approximation relative to
the lower bound max{C,D}, we also get an O(log pmax)-approximation for the min-sum objective
using Theorem 7.

For the O(log n`)-approximation, we perform the same bucketing but also form a “small job”
group Bsmall = B0 ∪ B1 ∪ . . . ∪ Ba where a = (log2 pmax) − dlog2 n`e. We round up all jobs
in Bsmall to have processing time 2a. We can solve Bsmall trivially by a greedy algorithm that
simply ensures no machine is idle if it has an available job to process.

The makespan of this schedule will be at most 2a ·`·n because there are `·n operations in total
to be performed between all jobs and at any point of time before all jobs are completed at least
one machine will be busy. Note 2a · ` ·n ≤ pmax ≤ C +D. We then solve the remaining O(log n`)
buckets Ba+1, . . . , Blog2 pmax

as before and concatenate their schedules for a total makespan of
O(log n`) · (C + D)). Again, using Theorem 7 this yields an O(log n`)-approximation for the
min-sum objective.

3.2 Proof of Theorem 2

Recall that in this setting the network of our machines forms a tree T rooted at r and the path
Qj for each job j contains r on its path.

3.2.1 General processing times

In this section, we present a 4-approximation for the makespan on junction trees which is based
on the trivial lower bounds of C,D. Again, combined with the result of [18,23], this implies an
8e-approximation for the min-sum objective function.

Let L be the value of makespan in an optimum solution. Our algorithm for makespan has two
stages: in the first stage each job j moves from sj to r; in the second stage each job j moves from
r to tj . We show how each step can be completed with makespan at most 2L, and this yields a
solution with makespan at most 4L.

It is easier to describe the algorithm for the 2nd stage first: in this setting, all the jobs are
already at the root, and the goal is to send them to their destinations (tj ’s). If u1, . . . , uσ are
children of r, it is enough to focus on the jobs that travel down one arbitrary edge rui and
describe the algorithm for the subtree rooted at ui. Suppose we sort the jobs based on their
processing times from smallest to largest and start sending them (from the smallest) as soon as
rui is free. Since each job j starts on its first edge rui after jobs that have smaller processing time
than j, job j does not encounter delay/waiting other than at the root. Let p1 ≤ p2 ≤ . . . ≤ pn
be the jobs going down rui. Then the maximum delay any job encounters (which happens for

Scheduling Problems over Network of Machines 17

1 while there is a job unfinished do
2 foreach machine e = uv (with v being parent of u) do
3 if be(u) 6= ∅ then
4 process the first job in be(u) and pass it to the next buffer;
5 else if be(v) 6= ∅ then
6 process the first job in be(v) and pass it to the next buffer;

7 end

8 end

Algorithm 3: Approximation for the min-sum objective on junction trees with unit pro-
cessing times.

the last job) is
∑n−1
i=1 pi which is at most congestion C. Also, note that once j starts on the first

edge, the total time it takes to complete j is exactly |rtj | · pj . Noting that the largest |rtj | · pj is
dilation D, all jobs are done after at most D steps, once they have started processing. Therefore,
the whole makespan is at most C +D which is at most 2L.

The algorithm for sending the jobs to the root is almost the same. The best way to describe
it is to consider running the same algorithm as if the jobs were supposed to start at the root
and each job j is to be sent to its start point sj . Using the same algorithm as above, all jobs can
reach their designated vertex sj in time at most 2L. Run this schedule backwards to move all
jobs j from sj to r in time at most 2L.

3.2.2 Special case of unit processing times

Here, we consider the case of junction trees with unit processing time and present a 3-approximation
algorithm for the min-sum objective. Since we have jobs of unit processing time, we can think
of the schedule a in synchronized setting were in each time step each machine starts processing
one job that is available for that machine. We assume each e = uv has two buffers (queues) be(u)
and be(v) at the two ends u, v; be(u) will buffer the jobs that arrive at u and want to cross e and
be(v) will buffer the jobs that arrive at v and want to cross u.

Our algorithm, called Algorithm 3, is very simple; it tries to keep the machines busy, giving
priority to the jobs that are moving towards the root (so they are still in their first leg of their
path). We show that this is a 3-approximation for the min-sum objective, which implies the 2nd
part of Theorem 2.

Theorem 8 Algorithm 3 is a 3-approximation for min-sum objective.

We use δ(r) to denote the set of machines incident to r. For each edge e let L(e) be the set
of jobs whose path contains e and l(e) = |L(e)|. Recall that for each job j, Qj is the unique
(sj , tj)-path and |Qj | be the number of machines j needs to be processed on. Let OPT denote
an optimum schedule and Copt the total completion time of OPT. We use C to denote the cost
of our solution. In the following two lemmas, we get lower bounds for the optimum. The proof
of the first lemma is immediate.

Lemma 5 Copt ≥
∑
j |Qj |.

Lemma 6 Copt ≥
∑
e∈δ(r)

`(e)(`(e)+1)
4 + n

2

Proof Consider an edge e ∈ δ(r). Clearly all jobs in L(e) need to be processed on this machine.
For each such job j, let fe(j) be the time e finishes processing job j in OPT (or completion time
of j on e). So

`(e)(`(e) + 1)/2 ≤
∑
j∈L(e)

fe(j). (6)

18 Zachary Friggstad et al.

For any job j, let ej1 and ej2 be the first and second (if it exist) machine along Qj that are incident
to the root. Obviously, the completion time of j is at least max{fej1(j), fej2

(j)}. If Qj has two edges

in δ(r), then since the finish times are all integer, we have fej2
(j)− fej1(j) ≥ 1. We say fej2

(j) = 0

if Qj has only one edge in δ(r). In either case, max{fej1(j), fej2
(j)} ≥

(
fej1

(j) + fej2
(j) + 1

)
/2.

Summing this inequality over all e ∈ δ(r) and substituting for fe(j) from Equation (6), we

conclude that Copt ≥ 1
2 (
∑
e∈δ(r)

`(e)(`(e)+1)
2 + n), where the 1/2 in front of the summation is

due to the fact that each job appears in at most two L(e)’s. ut

Combining the above two, we obtain the following lower bound for optimum.

Corollary 1 Copt ≥ 1
3

(∑
e∈δ(r)

`(e)(`(e)+1)
2 + n+

∑
j |Qj |

)
This corollary along with the following lemma implies Theorem 8.

Lemma 7 C ≤
∑
e∈δ(r)

`(e)(`(e)−1)
2 +

∑
j |Qj |.

Proof Clearly each job travels Qj in |Qj | steps if there was no delay. It is enough to bound the
total delay all the jobs incur over all edges by

∑
e∈δ(r) `(e)(`(e) − 1)/2. The main claim in the

proof is to show that for any two jobs that conflict (i.e. their paths have a common edge) one
unit of delay is added to the total delay of the two jobs (one of them has to wait for the other).
Since any two conflicting jobs conflict on one of the edges of δ(r), the number of pairs of jobs
that conflict is upper bounded by the sum above and hence that upper bounds the total delay
over all jobs.

To prove the claim it is easier to think of jobs as beads; these beads move up towards the
root from starting points on the first leg of their path and then continue down from the root
until their destination on the second leg of their path. The beads while moving up might combine
with each other to form strings: when two beads j1 and j2 arrive at their least common ancestor,
LCA(j1, j2) at the same time they form a string of length 2 with one going ahead of the other;
say j1 first and then j2. This adds one unit of delay to the processing time of j2 but whenever
j1 enters a buffer j2 goes right behind it (i.e. it will be scheduled next after j1). In general, for
a node v with k children u1, . . . , uk, assume that k strings of beads S1, . . . , Sk arrive at v at
(possibly) different times. Whenever the head of a string Si arrives at v it will enter the end of
the buffer at v and will save space for all the beads in its string behind itself in the buffer; any
two strings that arrive at the buffer one after the other get merged into one bigger string based
on the order of arrival of their heads. This will add a total of |S1| × |S2| . . . × |Sk| to the total
delay of all the beads in these strings. An easy induction (which we skip here) proves this. For a
job going down from the root, in worst case every job that has a conflict with it and will receive
an extra delay of one for each such encounter until these two jobs pass each other over some
edge. ut

We conclude this section by noting that Algorithm 3 is a 2-approximation for the special case
when the machines form a star. This is because by

∑
e∈δ(r) `(e) = 2n and |Qj | = 2 the bounds

proved in Lemmas 6 and 7 simplify to:

COPT ≥
∑
e

`(e)2

4
+ n and C ≤

∑
e

`(e)2

2
. (7)

Recall that for this setting our (more complicated) algorithm of Theorem 3 yields a 1.796-
approximation.

Scheduling Problems over Network of Machines 19

3.3 Proof of Theorem 4

In this setting, each job j starts at the root and, unlike the previous settings in which a job must
be processed on all machines along a given (sj , tj) path, it can take any path to reach any leaf
node of the tree, while it has a processing time of pj on every machine. For this case, we show
that a simple greedy algorithm finds a schedule with the min-sum objective in polynomial time,
hence proving Theorem 4.

Suppose u1, . . . , ud are the children of r. Consider an optimum solution OPT and let Jk be
the set of jobs that go down a path starting at edge (machine) ruk. The following observation is
immediate:

Observation 9 In any optimum solution, the following two hold:

1. The optimum solution processes the jobs in Jk in the order of their processing time from small
to large.

2. All the jobs in Jk follow the shortest root-to-leaf path.

Processing jobs from the smallest to the largest is known as SPT (Shortest Processing Time)
rule, and it is known that on a single machine, SPT minimizes total completion time (which
means it minimizes the total delay/waiting on one machine). Since using SPT there is no delay
on subsequent machines for any job, it immediately implies that the optimum sends jobs down
each path using SPT rule.

Let nk = |Jk| and mk be the length of the path (number of machines from root-to-leaf) jobs
in Jk travel. Suppose that the jobs in Jk from small to large are: j1k, j

2
k, . . . , j

nk
k . Since each job

jak ∈ Jk will incur a delay only at the root and the delay is pj1k +pj2k + . . .+pja−1
k

, and has a path

of length mk of machines to go through, the total completion time of jak is mkpjak +
∑

1≤i≤a−1 pjik .

Thus, the total completion time of all the jobs in Jk is:
∑

1≤i≤nk(mk + nk − i)pjik , and the total

completion time of all the jobs in OPT is
∑

1≤k≤d
∑

1≤i≤nk(mk+nk−i)pjik . We use hk = mk+nk
and call it the “load” of the branch ruk. The following lemma follows easily.

Lemma 8 In any optimum solution, for any two children uk, uk′ of r with nk, n
′
k > 0 we must

have: |mk + nk −mk′ − nk′ | ≤ 1. In other words, the difference of loads of any two branches is
at most 1.

Proof By way of contradiction suppose that OPT is an optimum solution and for two children of r
we have nk, n

′
k > 0 and hk ≥ hk′+2. Suppose that Jk = j1k, j

2
k, . . . , j

nk
k and Jk′ = j1k′ , j

2
k′ , . . . , j

nk′
k′

are the sequences of the jobs scheduled on branches ruk and ruk′ , respectively. Suppose we remove
job j1k from branch ruk and add it in front of the queue Jk′ . The total completion time of the
jobs on branch ruk goes down by hkpj1k and the total completion time of the jobs on branch ruk′

goes up by (hk′ + 1)pj1k . So the total net change in completion time is (−hk + hk′ + 1)pj1k < 0,
which contradicts optimality of OPT. ut

We call a schedule in which the load of any two branches differs by at most 1 an almost
balanced schedule. So the above lemma shows every optimum solution is almost balanced. We
can also show the following lemma.

Lemma 9 In any optimum solution for jobs n, . . . , 1, if job 1 (the smallest job) is removed from
the schedule, the remaining schedule is still an almost balanced one.

Proof Assume Jk is the set of jobs including job 1, which are scheduled on branch ruk. The
load hk is as big as any other branch load. To see this, suppose that job 1 is scheduled on
branch ruk with hk < hk′ for some other branch ruk′ with nk′ > 0. Let i be the smallest job
in Jk′ and swap 1 and i in the schedule. The net change in the total completion time will be
pi(hk − hk′) + p1(hk′ − hk) < 0 since p1 ≤ pi, which is a contradiction. ut

20 Zachary Friggstad et al.

1 Sort the jobs in non-increasing order of their processing time, say pn, pn−1, . . . , p1;
2 Let u1, . . . , ud be the children of r; and Ji ← ∅ be the queue of jobs going down branch rui;
3 Let mi be the length of shortest root to leaf path from rui and ni ← |Ji|;
4 j ← n;
5 while j ≥ 1 do
6 k ← argmin1≤i≤d{mi + ni};
7 Schedule job j in front of the queue Jk;
8 nk ← nk + 1;
9 j ← j − 1;

10 end

Algorithm 4: Solving the rooted-tree problem

Lemmas 8 and 9 suggest the following simple greedy algorithm which we show below finds
the optimum solution. Algorithm 4 describes the greedy algorithm.

Theorem 10 The greedy algorithm (Algorithm 4) finds an optimum solution.

Proof We prove by backward induction on i that the greedy finds the optimum solution for the set
of jobs n, . . . , i for all n ≥ i ≥ 1. The case of i = n is trivial. Let k ≤ n be an arbitrary integer and
suppose that the greedy partial schedule for jobs n, . . . , k+ 1 is optimum for this set of jobs; call
this schedule Sk+1 and let Sk be the greedy schedule after adding job k and Ok be an optimum
schedule for jobs n, . . . , k. Let O′ be the schedule for n, . . . , k+ 1 obtained from Ok by removing
job k. Since Sk+1 is optimum (by hypothesis), cost(Sk+1) ≤ cost(O′). Also, note that both
Sk+1 and O′ are almost balance and have the same number of jobs. Therefore, if hmin(O′) and
hmin(Sk+1) are the minimum loads in O′ and Sk+1, respectively, then hmin(O′) = hmin(Sk+1).
This implies

cost(Sk) = cost(Sk+1) + pk(hmin(Sk+1) + 1) ≤ cost(O′) + pk(hmin(O′) + 1) = cost(Ok).

ut

4 Conclusion

We have presented a number of approximations for special cases of acyclic job shop with identical
machines. There are still many interesting questions one could ask.

For example, we tightened the bound between L and the minimum makespan for acyclic
job shop with identical machines by an O(log logL) factor, and now the gap is off by only an
O(log logL) factor. Can this be further tightened? Perhaps more interestingly, is the acyclic job
shop problem with identical machines hard to approximate within any constant? It may be hard
to approximate within Ω(log1−ε L), just like flow shop with unrelated machines [19].

Are we resigned to losing logarithmic factors in trees or can we do better? Note that getting
an O(1)-approximation for instances of acyclic flow shop with identical machines where the
underlying network is a path and each job must follow a subpath is still open.

Finally, the fact that the makespan objective for acyclic job shop is super-constant hard does
not necessarily mean its min-sum counterpart is also hard. By way of analogy, min-sum set cover
admits a constant-factor approximation while its classic variant minimum set cover (which can
be viewed as a makespan version) has a logarithmic hardness of approximation. The problem of

Scheduling Problems over Network of Machines 21

getting either further improvements under the min-sum objective or establishing a super-constant
hardness are both open.

Acknowledgement
We thank Rohit Sivakumar for preliminary discussions on this topic.

References

1. Sara Ahmadian and Zachary Friggstad. Further approximations for demand matching: Matroid constraints
and minor-closed graphs. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 55:1–55:13, 2017.

2. Antonios Antoniadis, Neal Barcelo, Daniel Cole, Kyle Fox, Benjamin Moseley, Michael Nugent, and Kirk
Pruhs. Packet forwarding algorithms in a line network. In LATIN 2014: Theoretical Informatics - 11th Latin
American Symposium, Montevideo, Uruguay, March 31 - April 4, 2014. Proceedings, pages 610–621, 2014.

3. Nikhil Bansal, Tracy Kimbrel, and Maxim Sviridenko. Job shop scheduling with unit processing times. Math.
Oper. Res., 31(2):381–389, 2006.

4. Sayan Bhattacharya, Janardhan Kulkarni, and Vahab S. Mirrokni. Coordination mechanisms for selfish
routing over time on a tree. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 186–197, 2014.

5. Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees, and minimum la-
tency tours. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings, pages 36–45, 2003.

6. William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander Schrijver. Combinatorial
Optimization. John Wiley & Sons, Inc., New York, NY, USA, 1998.

7. Uriel Feige and Christian Scheideler. Improved bounds for acyclic job shop scheduling. Combinatorica,
22(3):361–399, 2002.

8. Rajiv Gandhi, Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. Improved bounds for scheduling
conflicting jobs with minsum criteria. ACM Trans. Algorithms, 4(1):11:1–11:20, 2008.

9. Rajiv Gandhi and Julián Mestre. Combinatorial algorithms for data migration to minimize average completion
time. Algorithmica, 54(1):54–71, 2009.

10. Magnús M. Halldórsson, Guy Kortsarz, and Maxim Sviridenko. Sum edge coloring of multigraphs via con-
figuration LP. ACM Trans. Algorithms, 7(2):22:1–22:21, 2011.

11. David G. Harris and Aravind Srinivasan. Constraint satisfaction, packet routing, and the lovasz local lemma.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
685–694, 2013.

12. Sungjin Im and Benjamin Moseley. Scheduling in bandwidth constrained tree networks. In Proceedings of
the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR,
USA, June 13-15, 2015, pages 171–180, 2015.

13. Dariusz R. Kowalski, Eyal Nussbaum, Michael Segal, and Vitaly Milyeykovski. Scheduling problems in
transportation networks of line topology. Optimization Letters, 8(2):777–799, 2014.

14. Dariusz R. Kowalski, Zeev Nutov, and Michael Segal. Scheduling of vehicles in transportation networks.
In Communication Technologies for Vehicles - 4th International Workshop, Nets4Cars/Nets4Trains 2012,
Vilnius, Lithuania, April 25-27, 2012. Proceedings, pages 124–136, 2012.

15. Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Packet routing and job-shop scheduling in
O(congestion + dilation) steps. Combinatorica, 14(2):167–186, 1994.

16. Frank Thomson Leighton, Bruce M. Maggs, and Andréa W. Richa. Fast algorithms for finding o(congestion
+ dilation) packet routing schedules. Combinatorica, 19(3):375–401, 1999.

17. Joseph Y.-T. Leung, Tommy W. Tam, and Gilbert H. Young. On-line routing of real-time messages. J.
Parallel Distrib. Comput., 34(2):211–217, 1996.

18. Wenhua Li, Maurice Queyranne, Maxim Sviridenko, and Jinjiang Yuan. Approximation algorithms for shop
scheduling problems with minsum objective: A correction. J. Scheduling, 9(6):569–570, 2006.

19. Monaldo Mastrolilli and Ola Svensson. Hardness of approximating flow and job shop scheduling problems.
J. ACM, 58(5):20:1–20:32, 2011.

20. Britta Peis, Martin Skutella, and Andreas Wiese. Packet routing: Complexity and algorithms. In Approxima-
tion and Online Algorithms, 7th International Workshop, WAOA 2009, Copenhagen, Denmark, September
10-11, 2009. Revised Papers, pages 217–228, 2009.

21. Britta Peis, Martin Skutella, and Andreas Wiese. Packet routing on the grid. In LATIN 2010: Theoretical
Informatics, 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010. Proceedings, pages 120–
130, 2010.

22 Zachary Friggstad et al.

22. Julius Petersen. Die theorie der regul aren graphs. Acta Math., 15:193–220, 1891.
23. Maurice Queyranne and Maxim Sviridenko. Approximation algorithms for shop scheduling problems with

minsum objective. Journal of Scheduling, 5(4):287–305, 2002.
24. Natalia Shakhlevich, Han Hoogeveen, and Michael Pinedo. Minimizing total weighted completion time in a

proportionate flow shop. Journal of Scheduling, 1(3):157–168, 1998.
25. F. Bruce Shepherd and Adrian Vetta. The demand matching problem. In Integer Programming and Combi-

natorial Optimization, 9th International IPCO Conference, Cambridge, MA, USA, May 27-29, 2002, Pro-
ceedings, pages 457–474, 2002.

26. David B. Shmoys, Clifford Stein, and Joel Wein. Improved approximation algorithms for shop scheduling
problems. SIAM J. Comput., 23(3):617–632, 1994.

