
Two-stage Robust Network Design with Exponential Scenarios∗

Rohit Khandekar† Guy Kortsarz‡ Vahab Mirrokni§ Mohammad R. Salavatipour¶

Abstract

We study two-stagerobustvariants of combinatorial optimization problems on undirected graphs, like
Steiner tree, Steiner forest, and uncapacitated facility location. Robust optimization problems, previously
studied by Dhamdhere et al. [3], Golovin et al. [9], and Feigeet al. [7], are two-stage planning problems in
which the requirements are revealed after some decisions are taken in Stage 1. One has to then complete the
solution, at a higher cost, to meet the given requirements. In the robustk−Steiner tree problem, for example,
one buys some edges in Stage 1. Thenk terminals are revealed in Stage 2 and one has to buy more edges, at
a higher cost, to complete the Stage 1 solution to build a Steiner tree on these terminals. The objective is to
minimize the total cost under the worst-case scenario.

In this paper, we focus on the case ofexponentially manyscenarios given implicitly. A scenario consists
of any subset ofk terminals (fork−Steiner tree), or any subset ofk terminal-pairs (fork−Steiner forest),
or any subset ofk clients (for facility location). Feige et al. [7] give an LP-based general framework for
approximation algorithms for a class of two stage robust problems. Their framework cannot be used for
network design problems likek−Steiner tree (see later elaboration). Their framework can be used for the
robust facility location problem, but gives only a logarithmic approximation.

We present the first constant-factor approximation algorithms for the robustk−Steiner tree (with ex-
ponential number of scenarios) and robust uncapacitated facility location problems. Our algorithms are
combinatorial and are based onguessingthe optimum cost and clustering to aggregate nearby vertices. For
the robustk−Steiner forest problem on trees and with uniform multiplicative increase factor for Stage 2 (also
known as inflation), we present a constant approximation. Weshow APX-hardness of the robust min-cut
problem (even with singleton-set scenarios), resolving anopen question of [3] and [9].

1 Introduction

In a classical optimization problem, we are usually given a system with some known parameters and constraints
and the goal is to find a feasible solution of minimum cost (or maximum profit) with respect to the constraints.
Often these parameters and constraints, which heavily influence the optimal solution, are assumed to be pre-
cisely known. However, in reality, often it is very costly (or maybe impossible) to have an accurate picture of
the values of the parameters or even the constraints of the optimization problem at the time of planning. There
are two common approaches studied in the literature to address this uncertainty. One is therobust optimization

∗A preliminary version of this paper appeared in the Proceedings of 16th Annual European Symposium on Algorithms (ESA) 2008.
†IBM T.J.Watson research center. email: rkhandekar@gmail.com.
‡Department of Computer Science, Rutgers University-Camden. Currently visiting IBM Research at Yorktown Heights. Partially

supported by NSF Award Grant number 072887. email: guyk@crab.rutgers.edu.
§Google Research, New York, USA. email: mirrokni@gmail.com
¶Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. email: mreza@cs.ualberta.ca.

Supported by NSERC and an Alberta Ingenuity New Faculty award.

1

and the second isstochastic optimization.

Robust optimization. This has been studied in both decision theory [14] and Mathematical Programming [5].
In a typical data-robust model, we have a finite set of scenarios that can materialize and each scenario contains
one possible set of data values. The goal is to find a solution that is good with respect to all or most scenarios.
One example in this category is absolute robustness or min-max, where the goal is to find a solution such that
the maximum cost over all possible scenarios is minimized. Another example ismin-max regret, in which the
goal is to minimize the maximum regret over all possible scenarios. Here, the regret of a scenario is defined as
the value of the solution for that scenario minus the optimalsolution cost for that scenario.

Stochastic optimization. In this model, we are provided with a probability distribution on the possible sce-
narios and the goal is to find a solution that minimizes the expected cost over this distribution. This approach
is useful if we have a good idea about the probability distribution (which may be a strong requirement), and
we have a repeated decision making framework. One particular version of stochastic optimization, that has
attracted much attention in the last decade, is two-stage (or multi-stage) stochastic optimization, where the
solution is built in two stages: in the first stage we have to build a partial solution based on the probability
distribution of possible scenarios. In Stage 2, once the actual scenario is revealed, we have to complete our
partial solution to a feasible solution for the given scenario. There has been considerable research focused on
two-stage (or multi-stage) stochastic version of classical optimization problems such as set cover, Steiner tree,
vertex cover, facility location, cut problems, and other network design problems [15, 18, 10, 11]. Efficient
approximation algorithms have also been developed for manyof these problem. In some cases, the set of pos-
sible scenarios and the corresponding probabilities are given explicitly [15, 11], and some papers study a more
general model in which the sets of possible scenarios are given implicitly (rather than explicitly) as the product
of a set of independent trials, or by an oracle [3, 10, 13, 18].

Demand-robust optimization. More recently, a new notion of robustness has been introduced by Dhamdhere
et al. [3] which can be viewed as the worst-case analogue of the (two-stage) stochastic optimization problem.
This model, calleddemand-robust optimization(and we simply call robust optimization in the rest of the paper),
deals with uncertainty in both data as well as the constraints of the problem. To see the difference, as an
example, consider two different formulations of the shortest-path problem from a root noder: in the data-
robust model we know the input graph as well as the other end-point s to which we like to find a shortest path
from r. The uncertainty is on the values of the costs of the edges. Ina typical demand-robust version the other
end-point of the path is not known in advance; instead each potential node is given as a possible scenario. In
a two-stage robust optimization problem, similar to a two-stage stochastic optimization, we are given a set of
possible scenarios (which can be explicit or implicit) and the goal is to compute a solution in two stages while
minimizing the maximum cost over all possible scenarios. The major difference of this model w.r.t. data-robust
model is that each possible scenario might have a different set of constraints to be satisfied. For example, in
the two-stage robust Steiner tree problem, we are given a graphG = (V,E) with a cost functionc : E → R

+

on the edges. In the second stage one ofm possible scenarios materializes; scenarioi consists of a setSi ⊆ V

of terminals that need to be connected to each other. We also have an inflation factorλi for edge costs. Each
edgee costsce in the first stage andλi · ce in the second stage if scenarioi materializes. Our goal is to select a
subset of edgesE1 ⊆ E in the first stage, and a setE2(i) ⊆ E in the second stage if scenarioi is revealed, so
thatE1 ∪ E2(i) is a feasible solution for the Steiner tree problem with terminal setSi; the overall cost paid in
scenarioi is c(E1) + λi · c(E2(i)). The objective function is to minimize this cost over all possible scenarios,
i.e., to minimizec(E1) + maxi λi · c(E2(i)). In the robustk−Steiner tree problem, each setSi is a subset of

2

sizek of terminals.

This model of robustness allows one to handle uncertainty inthe input and provides a worst-case guarantee
unlike the expected-cost guarantee as in the two-stage stochastic optimization model. In very recent work [7] au-
thors consider a more general model of (two-stage) robust optimization in which scenarios are given implicitly,
instead of explicitly as in the original model introduced in[3]. The difference is that in the more general ver-
sion, one can have an exponentially large set of possible scenarios. For example, for the robustk−Steiner tree
problem (with exponential scenarios), instead of having a total ofm possible scenariosS1, . . . , Sm (Si ⊆ V)
given explicitly, we can have each setS ⊂ V of sizek as one possible scenario and have the inflation factorλi

to be uniformly equal toλ. In other words, in Stage 2, an arbitrary subset of sizek of vertices is revealed as the
terminals that need to be connected. Clearly the number of scenarios is exponential in the inputk, and for this
reason, (demand) robust optimization problems typically become more difficult in this more general setting.

1.1 Previous work

Robust optimization has been studied in [3, 9, 7, 12]. In [3, 9], the authors consider the robust problems with
polynomially many explicitly given scenarios. They present constant factor approximation algorithms for robust
versions of Steiner tree, vertex cover, and facility location. They also give polylogarithmic approximation
for robust min-cut and multi-cut. In the problem of robust min-cut, we are given an edge-weighted graph
G = (V,E), a sources ∈ V , and inflation factorλi(e); scenarioi consist of a terminalti ∈ V . The goal is
to find a subsetE1 ⊆ E for Stage 1 andE2(i) ⊆ E for Stage 2 (if scenarioi arrives) so thatE1 ∪ E2(i) is
a s, ti-cut. In [3], the authors present anO(logm)-approximation wherem is the number of scenarios. This
was improved to a(1 +

√
2)-approximation in [9]. In the robust multi-cut problem, each scenario consists of a

set of pairs of nodes that form a multi-cut problem. For this problem [3] present anO(log(rm) · log log(rm))

wherem is the number of scenarios andr is the maximum number of pairs in any scenario.

Feige et al. [7] consider covering problems (such as set cover) where the set of possible scenarios is given
implicitly, and therefore can be exponentially large. For example, in the robust set cover problem, we are given a
universe of elementsU = {e1, . . . , em} and a collection of setsS = {S1, . . . , Sm}, whereSi ⊆ U and has cost
c(Si), a multiplicative increase factorλ, and an integerk. Each scenario can be a subsetU ′ ⊂ U of elements
with sizek that need to be covered. We have to purchase a collection of setsS1 ⊆ S in Stage 1. Once a setU ′ of
elements is given in Stage 2, we have to purchase some (possibly none) other setsS2(U

′) ⊂ S where the cost of
each set now is inflated byλ, so thatS1 ∪S2(U

′) is a set cover for the given setU ′. The goal is to minimize the
maximum total cost over all possible scenarios. Using an LP rounding method, they give a general framework
for designing approximation algorithms for a class of robust covering problems using competitive algorithms for
online variants of the problems. This framework gives anO(logm log n)-approximation algorithm for the two-
stage robust set cover problem, and a constant-factor approximation for the robust vertex cover problem. They
also prove a hardness of factorΩ(logm

log logm) for the two-stage robust set cover under some plausible complexity
assumptions. This framework does not apply to robust network design problems like the robustk−Steiner tree
problem. In [7] the authors give logarithmic approximationfor the robust uncapacitated metric facility location
problem.

3

1.2 Our results

We only consider problems on undirected graphs. The model westudy in this paper is the (demand) robust
optimization model with (possibly) implicit sets of scenarios (which can be exponentially large). We study
robustk−Steiner tree (in which a scenario consists of anyk terminals out of given terminals), robustk−Steiner
forest (in which a scenario consists of anyk terminal-pairs out of given terminal-pairs), uncapacitated facility
location (in which a scenario consists of anyk clients—possibly located at the same location—out of given
clients), and min-cut (in which a scenario consists of anysingleterminal from a given set of terminals) problems
under this model and present some approximation algorithmsand hardness results.

Specifically, we provide the first constant factor approximation algorithms for the (exponential scenarios)
robustk−Steiner tree and robust facility location problems. Our algorithms are combinatorial in nature and are
based on nice structural properties of the Stage 1 solution of a near-optimal algorithm.

Theorem 1.1 There exists a polynomial time5.34-approximation algorithm for the two-stage robustk−Steiner
tree problem with a uniform inflation factor. Here a scenarioconsists of anyk terminals out of given terminals.

Theorem 1.2 There exists a polynomial-time10-approximation algorithm for robust uncapacitated facility
location problem in which the inflation factor may depend on the facility. Here a scenario consists of anyk
clients (perhaps co-located) out of given clients.

We then present a constant factor approximation algorithm for the robustk−Steiner forest problem when
the underlying graph is a tree. Our algorithm is based on firstsolving a standard LP relaxation using a dynamic
programming based separation oracle and then rounding it toa near-optimum integral solution.

Theorem 1.3 There exists a polynomial time3-approximation algorithm for the two-stage robustk−Steiner
forest problem on trees with a uniform inflation factor. Herea scenario consists of anyk terminal-pairs out of
given terminal-pairs.

Finally, we resolve an open question posed by [3] and [9]. These papers posed the question if the two-stage
robust min-cut problem is NP-complete, or could be solved inpolynomial time. We prove that the problem is
hard to approximate within some constant factorc > 1 (namely, we show APX-hardness). See Theorem 1.4.
The open question in [3, 9] was regarding a more difficult question in which the input contains many sinks
and there is a different multiplicative inflation factor forevery sink. We show that a much simpler problem is
already APX-hard.

Theorem 1.4 The two-stage robust min-cut problem is APX-hard even with auniform inflation factor and in
which a scenario consists of a single source and only3 sinks.

Organization. The remainder of the paper is organized as follows. In the next section, we present our5.34-
approximation algorithm for robustk−Steiner tree. Then we present our approximation algorithmsfor robust
k−Steiner forest on trees and for the facility location problem in subsequent sections. Finally, we prove Theo-
rem 1.4 in Section 5

2 A constant approximation for the robust k−Steiner tree problem

In this section we prove Theorem 1.1. Recall that the input tothe Steiner tree problem is an undirected graph
G = (V,E), a cost functionc : E → R

+, and a subsetT ⊆ V called “terminals”. The objective is to find a

4

connected subgraphH that includes all the terminalsT and has minimum costc(H) :=
∑

e∈H ce.

In the Robust Steiner treeproblem, after our choice of edges in Stage1 any subset of terminals can be
presented by an adversary in Stage2 and then the algorithm has to complete the choice in the first stage
to a feasible Steiner tree for the set of terminals presented. We study a special case of robust Steiner tree,
calledRobustk−Steiner tree. The input to this problem is an undirected graphG = (V,E), a cost function
c : E → R

+, and subsetT ⊆ V of “terminals”. There is also an integerk and a real numberλ ≥ 1 called
inflation factor. The solution is built in two stages. In the first stage the algorithm has to identify a subset
E1 ⊆ E of edges to buy. In the second stage, the cost of each edge inE \ E1 increases by a factor ofλ and a
subsetT ′ ⊆ T of at mostk terminals is revealed. We refer toT ′ as a “scenario”. The algorithm, in the second
stage, has to augment the solutionE1 by buying edgesE2(T

′) so that the resulting graphE1 ∪E2(T
′) includes

a Steiner tree on terminalsT ′. The choice of edgesE2(T
′) is allowed to depend on the subsetT ′. The overall

cost of this solution is thus
∑

e∈E1
ce + λ · ∑e∈E2(T ′) ce. The objective is to minimize the maximum overall

cost over all scenarios, i.e., to minimize
∑

e∈E1

ce + max
T ′⊆T,|T ′|≤k

λ ·
∑

e∈E2(T ′)

ce.

The edge-costsce induce a shortest-path metric on the verticesV : for any two verticesu, v ∈ V , we use
dG(u, v) to denote the length of the shortest path betweenu andv, under costsce in graphG.

2.1 The algorithm

Let E∗
1 andE∗

2(T
′) be the set of edges an optimal solution buys in the first stage and the second stage for

scenarioT ′, respectively. LetOPT = OPT1 + λ · OPT2 be the overall cost of the optimum, whereOPT1 =
∑

e∈E∗
1

ce is its cost in the first stage andOPT2 = maxT ′⊆T,|T ′|≤k

∑

e∈E∗
2
(T ′) ce is the maximum cost in the

second stage divided byλ.

First Stage. Our algorithm, in the first stage, guesses an upper bound on the value ofOPT2 and then outputs
some Steiner treeT . More specifically, the algorithm tries values of the form(1 + ǫ)i as the guess for a good
upper bound onOPT2, for increasing values ofi. Clearly, there is a value ofi such that(1 + ǫ)i < OPT2, and
(1+ ǫ)i+1 ≥ OPT2. Letµ be the guess value(1+ ǫ)i+1 for OPT2 for which the above condition holds. We later
prove the following lemma:

Lemma 2.1 If µ ≥ OPT2 then algorithm returns a solution whose cost is at most

c(T) + λ · r · µ (1)

with r a universal constant.

We also show thatc(T) = O(OPT). This implies that the overall cost of the solution is small if and only if
µ is close toOPT2, which holds true, by construction. Indeed, the algorithm may fail to output a solution for
µ1 = (1 + ǫ)i < OPT2 but we are guaranteed by Lemma 2.1 to output a solution forµ2 = (1 + ǫ)i+1 ≥ OPT2.
Since(1+ǫ)i < OPT2 ≤ (1+ǫ)i+1 the guessed valueµ2 is a tight estimate ofOPT2 and a constant ratio follows
from Equation (1).

To simplify the presentation, we assume that the guessed valueµ for OPT2 is exact.

Given the assumption that we knowOPT2 exactly, our algorithm computes a subset of terminalsC =

{c1, c2, . . . , cp} ⊆ T called “centers” and an assignmentπ : T → C that satisfy:

5

• The centers are far apart:dG(ci, cj) >
r·OPT2

k for all i 6= j, and

• Each terminal is close to its assigned center:dG(t, π(t)) ≤ r·OPT2
k for all t ∈ T ,

wherer > 1 is the above constant to be determined later. Such a clustering can be computed as follows. Pick
any terminal and name itc1. Assign all terminals within a distance ofr·OPT2

k from c1 to c1 and remove these
terminals. Pick any one of the remaining terminals and name it c2, and so on.

The algorithm then computes an approximate minimum cost Steiner treeT in G on the centersC under the
costsce. Currently, the best known polynomial time algorithm for the Steiner tree problem isγ-approximate,
whereγ < 1.39 [1]. The algorithm buys the edges in the Steiner tree in the first stage.

In the second stage, a subsetT ′ of at mostk terminals is revealed. The algorithm, in the second stage, buys
the shortest path from each terminalt ∈ T ′ to its assigned centerπ(t).

It is easy to see that the algorithm computes a feasible solution to the problem.

2.2 The analysis

We first introduce the notion of a “ball” of certain radius around a vertex in a graph. Consider the graph
G = (V,E) with edge-costsce. We think of each edgee as a continuous interval of lengthce. For a vertexv
and a radiusR > 0, letBG(v,R) denote, intuitively speaking, the “moat” of radiusR aroundv. More precisely,
B(v,R) contains:

• all the verticesu such thatdG(u, v) ≤ R,

• all edgese = uw such thatdG(u, v) ≤ R anddG(w, v) ≤ R, and

• for the edgese = uw such thatdG(u, v) ≤ R anddG(w, v) > R, the sub-interval of edgee of length
R− dG(u, v) adjacent to vertexu.

Note that sincedG(ci, cj) >
r·OPT2

k for any two distinct centers inC, the ballsBG(ci,
r·OPT2

2k) andBG(cj ,
r·OPT2

2k)

are disjoint. It is easy to see that the algorithm pays at most

λ · r · OPT2 (2)

in the second stage. This holds since the distance of any terminal to its assigned center is at mostr·OPT2
k .

Since at mostk terminals need to be connected to their centers, the total cost of these connections is at most
λ · k · r·OPT2

k . We now bound the cost of the algorithm in Stage 1 using the following lemma. Observe that
since we use aγ-approximation to compute a Steiner tree in Stage 1 on centersC, the following lemma together
with (2) implies Lemma 2.1.

Lemma 2.2 Assumingr > 4, there exists a Steiner tree on centersC in G that has cost at mostrr−4 · OPT1 +

OPT2.

Proof: Recall thatE∗
1 is the set of edges that optimum buys in Stage 1 andOPT1 =

∑

e∈E∗
1

ce. Let H be
a graph obtained fromG by contracting the edges inE∗

1 . We now perform another clustering of the centers
C in the shortest-path metric onC induced by the graphH. For centersci, cj ∈ C, let dH(ci, cj) denote the
shortest-path length under lengthsce in H. We identify a subset of centersL = {l1, l2, . . . , lt} called “leaders”
and a mappingφ : C → L such that

6

• The leaders are far apart:dH(li, lj) > 2OPT2/k for all i 6= j, and

• Each center is close to its mapped leader:dH(c, φ(c)) ≤ 2OPT2/k for all centersc ∈ C.

Such a clustering can be computed as follows. Pick any centerand name itl1. For all centersc ∈ C with
dH(c, l1) ≤ 2OPT2/k, defineφ(c) = l1. Remove all such centers fromC and repeat.

Analogous toBG(v,R), we useBH(v,R) to denote the ball of radiusR centered atv in the graphH with
lengthce for e ∈ H. Note that the balls of radiiOPT2

k around the leaders inL are disjoint inH.

Claim 2.3 |L| < k.

Proof: Assume on the contrary that|L| ≥ k and letT ′ ⊆ L be any subset of sizek. Consider scenarioT ′.
After contracting the edges inE∗

1 that optimum bought in the first stage, the balls of radiiOPT2
k centered at the

centers inT ′ in the graphH are disjoint. Therefore the minimum Steiner tree onT ′ in H has cost more than
OPT2. This is a contradiction since the optimum pays at mostλ · OPT2 in the second phase to connect all the
centers inT ′ after contracting the edges inE∗

1 . Thus the claim holds. 2

We now consider scenarioL. There exists a Steiner treeE∗
L on L in H with cost at mostOPT2. Thus

E∗
1 ∪E∗

L has cost at mostOPT1 + OPT2 and contains a Steiner tree onL in G. We now show how to extend this
into a subgraph with low cost which contains a Steiner tree onC in G.

Recall that the balls of radiir·OPT2
2k around the centersC are disjoint inG. Note however thatdH(c, φ(c)) ≤

2OPT2
k for all centersc ∈ C. Thus at leastr·OPT2

2k − 2OPT2
k =

(

r
2 − 2

)

· OPT2
k of the cost of each ball around

a center inC belongs toE∗
1 . We can thus extend the subgraphE∗

1 ∪ E∗
L by adding shortest paths from each

c to φ(c) in H and charge this additional cost to the contribution ofE∗
1 in the respective balls around centers

c ∈ C. More precisely,c(E∗
1) = OPT1 ≥ k ·

(

r
2 − 2

)

· OPT2
k =

(

r
2 − 2

)

OPT2. On the other hand, the
overall cost of extending eachc ∈ C to φ(c) is at mostk · 2OPT2

k = 2OPT2 ≤ 2
r
2
−2 · OPT1. Thus, the

resulting subgraph clearly contains a Steiner tree onC in G. The overall cost of this subgraph is thus at most
OPT1 + OPT2 +

2
r
2
−2 · OPT1 =

r
r−4 · OPT1 + OPT2. Hence the proof. 2

Since we use aγ-approximation algorithm to compute a Steiner tree in Stage1, the overall cost of Stage
1 is at most γ·rr−4 · OPT1 + γ · OPT2, which isO(OPT). Combining this with the second stage cost, which is
bounded byλ · r · OPT2 (see (2)) the overall cost of our solution is:

γ · r
r − 4

· OPT1 + (γ + λr) · OPT2. (3)

This completes the proof of Lemme 2.1. Now we describe what the value ofr should be. A trivial strategy
for solving the robustk−Steiner tree is to select nothing in Stage 1 and make all the selections in Stage 2.
Given that every edge is inflated byλ and we use aγ-approximation for Steiner tree, this strategy will have an
approximation factor ofλ · γ. Using the best known approximation algorithm for Steiner tree [17], which has
approximation 1.39, we get a1.39λ-approximation. For values ofλ ≤ 3.84 we use this trivial strategy which
gives an approximation factor of5.33. For values ofλ > 3.84 we use the above algorithm with parameterr

defined below.

Let r = r∗ be the solution of:γ·rr−4 = γ
λ + r. Then atr = r∗ =

γλ−γ+4λ+
√

γ2λ2−2γ2λ+8γλ2+γ2+8γλ+16λ2

2λ ,
the two factors in front ofOPT1 andOPT2 in the ratio of our algorithm calculated in Equation (3) become equal.
Therefore, forr = r∗ and withγ = 1.39, the ratio of our algorithm becomes:5.39λ−1.39+

√
29.0521λ2+7.2558λ+1.9321

2λ .

7

It can be verified by a standard calculus argument that this expression is upper bounded by5.335. Thus, for
values ofλ > 3.84, by choosingr = r∗, the ratio of our algorithm presented will be at most5.34 and for
smaller values ofλ we use the trivial strategy which has ratio at most5.33 as well. This completes the proof of
Theorem 1.1.

3 A constant approximation for the robust facility location problem

In this section, we prove Theorem 1.2. In the (classical) uncapacitated facility location problem (UFL), the
input is a setF of facilities, a setC of clients sites, and a metricℓ onF ∪ C. We assume that the distancesℓij
for i, j ∈ F ∪C are symmetric and satisfy the triangle inequality. Each facility i ∈ F has anopening costfi and
the cost of connecting clientj ∈ C to facility i ∈ F is ℓij (also denoted byℓ(i, j)). The goal is to find a subset
F ′ ⊆ F of facilities to open such that the sum of total facility costand the total service cost is minimized. For
a clientj ∈ C and a subset of facilitiesF ′ ⊆ F , let ℓ(j, F ′) = mini∈F ′ ℓij denote the cost of servingj by the
nearest facility inF ′. Thus the objective is to find a subsetF ′ of facilities to minimize

∑

i∈F ′

fi +
∑

j∈C
ℓ(j, F ′).

In the robust version, the input contains an integerk and an inflation factorλi ≥ 1 for each facilityi. There
are two stages in solving the problem. In the first stage the algorithm has to open some facilitiesF1 ⊆ F . After
this choice is made, the cost of every un-opened facilityi ∈ F \ F1 is increased by a factor ofλi to λi · fi. The
adversary then chooses a (multi) setC̃ ⊆ C of at mostk clients that actually need to be serviced (other clients
do not need service). We assume that the adversary can pick multiple clients at a client sitej ∈ C so long as
the total number of clients (counted with multiplicities) is at mostk. We callC̃ a scenario. The algorithm has
to choose another (possibly empty) set of facilitiesF2(C̃) ⊆ F \ F1 to be opened (at the higher costs) so that
the total cost for this scenario is

∑

i∈F1
fi +

∑

i∈F2(C̃) λi · fi +
∑

j∈C̃ ℓ(j, F1 ∪ F2(C̃)). The objective is to
minimize the maximum total cost over all scenarios, i.e., tominimize

∑

i∈F1

fi + max
C̃⊆C,|C̃|≤k

∑

i∈F2(C̃)

λi · fi +
∑

j∈C̃

ℓ(j, F1 ∪ F2(C̃))

 .

We re-emphasize that the maximum in the above expression is taken over themulti-setsC̃ of size at mostk.

Note that the service costs do not increase in the second stage. Note also that the number of potential
scenariosC̃ is |C|k+ |C|k−1+ . . .+1, which is exponential ink. We denote this robust version of the problem
(with exponential number of scenarios) by R-FL.

3.1 The algorithm

In what follows, we distinguish between clientsitesC and the actual clients̃C that are realized in a particular
scenario. Note that multiple clients may correspond to the same client site.

Let F ∗
1 be the set of facilities the optimum opens in Stage 1 and letF ∗

2 (C̃) be the set of facilities the
optimum opens in Stage 2 when scenarioC̃ occurs. Thus

OPT =
∑

i∈F ∗
1

fi +max
C̃

∑

i∈F ∗
2
(C̃)

λi · fi +
∑

j∈C̃

ℓ(j, F ∗
1 ∪ F ∗

2 (C̃))

8

is the cost of the optimum.

First stage. Our algorithm, in the first stage, guesses a tight upper boundof OPT (as explained in the Steiner
tree case). To simplify the presentation below, we assume that the guess onOPT is exact. It then computes a
subset of client sitesC = {c1, c2, . . . , cp} ⊆ C called “centers” and an assignmentπ : C → C that satisfy:

• The centers are far apart:ℓ(ci, cj) > 4OPT
k for all i 6= j, ci, cj ∈ C, and

• Each client site is close to its assigned center:ℓ(j, π(j)) ≤ 4OPT
k for all j ∈ C.

Such a clustering can be computed as follows. Pick any clientsite and name itc1. Assign all client sites within
a distance of4OPT

k from c1 to sitec1 and remove these client sites. Pick any one of the remaining client site
and name itc2, and so on.

Now for a client sitej ∈ C and a real numberR > 0, let B(j,R) = {i ∈ F | ℓ(i, j) ≤ R} be the set of
facilities within a distanceR from j. We often callB(j, 2OPT

k) theball aroundj. Note that the balls around
centersc ∈ C are disjoint.

Definition 3.1 We call a centerc ∈ C “cheap” if there is a facility in the ball aroundc with the Stage-2 cost at
most2OPT

k , i.e.,λi · fi ≤ 2OPT
k . We call a center “expensive” otherwise.

The algorithm, in Stage 1, opens the cheapest facilities (w.r.t. Stage-1 costs) in the balls around the all
expensive centersc ∈ C. More precisely, for each expensive centerc ∈ C, the algorithm opens a facility
i = argmin{fi | i ∈ B(c, 2OPT

k)} where ties are broken arbitrarily.

Second stage. Let C̃ be the realized scenario. For every clientj ∈ C̃ such thatπ(j) is a cheap center, the
algorithm opens the cheapest facility (w.r.t. Stage-2 costs) i = argmin{λi · fi | i ∈ B(π(j), 2OPT

k)} where ties
are broken arbitrarily. The algorithm, then, serves each client j ∈ C̃ by an open facility in the ball aroundπ(j).

It is easy to see that the algorithm computes a feasible solution to the problem.

3.2 The analysis

It is easy to see that our solution has low service cost.

Lemma 3.2 The total service cost of our algorithm, for any scenarioC̃, is at most6OPT.

Proof: Fix a scenarioC̃ and consider a clientj ∈ C̃. Whetherπ(j) is cheap or expensive, there is a open
facility i ∈ B(π(j), 2OPT

k). Sinceℓ(j, π(j)) ≤ 4OPT
k andℓ(π(j), i) ≤ 2OPT

k , by the triangle inequality the
service cost of clientj is ℓ(j, i) ≤ 4OPT

k + 2OPT
k = 6OPT

k . Because there are at mostk clients inC̃, the total
service cost is at most6OPT. 2

Now we bound the total facility cost.

Lemma 3.3 The total facility cost of the facilities opened in Stage 2 byour algorithm is at most2OPT.

Proof: Recall that there are at mostk clients in the scenariõC. Thus in Stage 2, the algorithm opens the
cheapest facilities in the balls around at mostk cheap centers. From the definition of cheap centers, the total
Stage-2 cost of these facilities is at mostk · 2OPT

k = 2OPT. 2

Now we bound the cost of the facilities opened in Stage 1 of thealgorithm.

9

Definition 3.4 We call a centerc ∈ C “Stage-1” if the optimum opens a facility in the ball aroundc in Stage 1.
We call a center “Stage-2” otherwise.

Claim 3.5 There are less thank/2 centers which are both expensive and Stage-2.

Proof: Suppose, to the contrary, that there aret ≥ k/2 expensive Stage-2 centers, say,c1, c2, . . . , ct. Now
consider a scenario which consists of two copies each ofc1, c2, . . . , ck/2. Consider how the optimum serves
this scenario. By definition, the optimum does not open any facility in the balls aroundci for i = 1, . . . , k/2

in Stage 1. Now suppose that in Stage 2, the optimum opens facilities in the balls aroundci for i = 1, . . . , t′

and does not open any facilities in the balls aroundci for i = t′ + 1, . . . , k/2. From the definition of expensive
centers, the Stage-2 facility cost of the optimum is more than t′ · 2OPT

k . Also the service cost of clients at
the sitesct′+1, . . . , ck/2 is more than(k/2 − t′) · 2OPT

k . Thus the total cost of the optimum is more than
t′ · 2OPT

k + (k/2 − t′) · 2OPT
k = OPT, which is a contradiction. 2

Lemma 3.6 The total facility cost of the facilities opened in Stage 1 byour algorithm is at most2OPT.

Proof: Recall that the algorithm opens the cheapest facilities in the balls around the expensive centers in Stage
1. Note that the total cost of the cheapest facilities in the balls around Stage-1 centers is at mostOPT. This
holds since the optimum itself opens at least one facility ineach of the balls around Stage-1 centers in Stage 1.

Now we bound the total facility cost inside the balls around the expensive Stage-2 centers, say,c1, . . . , ct.
From Claim 3.5, we know thatt < k/2. Let f(j) = min{λi · fi | i ∈ B(cj ,

2OPT
k)} denote the Stage-2 cost

of the cheapest facility in the ball around centercj , for 1 ≤ j ≤ t. Consider a scenario in which the adversary
requests

N(i) =

⌈

f(i)
∑t

j=1 f(j)
· k
2

⌉

clients at the client siteci for 1 ≤ i ≤ t. Note that
∑t

i=1 N(i) <
∑t

i=1

(

1 + f(i)
∑t

j=1
f(j)

· k
2

)

< k
2 + k

2 = k.

Thus the total number of clients in this scenario is at mostk.

Now consider how the optimum serves this scenario. Recall that the optimum does not open any facilities
(in Stage 1) in the ball around a Stage-2 center. Suppose now that in Stage 2, the optimum opens facilities in the
balls around centersc1, . . . , ct′ and does not open any facilities in the balls around centersct′+1, . . . , ct. Thus
the total facility cost of the optimum is at least

∑t′

i=1 f(i) and the total service cost of the optimum isstrictly
more than

∑t
i=t′+1N(i) · 2OPT

k ≥
∑t

i=t′+1
f(i)

∑t
j=1

f(j)
· k
2 · 2OPT

k = OPT ·
∑t

i=t′+1
f(i)

∑t
j=1

f(j)
. Since the total

optimum cost is at mostOPT, we have

t′
∑

i=1

f(i) + OPT ·
t

∑

i=t′+1

f(i)
∑t

j=1 f(j)
< OPT = OPT ·

t
∑

i=1

f(i)
∑t

j=1 f(j)
.

Simplifying the above expression, we get

t′
∑

i=1

f(i) < OPT ·
t′
∑

i=1

f(i)
∑t

j=1 f(j)
.

This in particular implies that
∑t′

i=1 f(i) > 0 and that
∑t

i=1 f(i) < OPT. Since our algorithm opens the
cheapest facilities (w.r.t. Stage-1 costs) in the balls around expensive centers in Stage 1, it pays at mostf(i) for
each such centerci. Hence the cost of these facilities is less thanOPT. This completes the proof. 2

10

Combining the above lemmas, we get our main theorem.

4 A constant approximation for the robust k−Steiner forest problem on trees

In this section, we prove Theorem 1.3. The input to thek−Steiner forest problem is an undirected graph
G = (V,E) with non-negative edge-costsce. We are also given a set of terminal-pairsT ⊆ V × V . Similar
to the robustk−Steiner tree problem, the input also has an integerk and a real numberλ ≥ 1. There are two
stages. In the first stage the algorithm has to identify a subset E1 ⊆ E of edges to buy. In the second stage,
the cost of each edge inE \ E1 increases by a factor ofλ and a subsetT ′ ⊆ T of at mostk terminal-pairs is
revealed. We refer toT ′ as a “scenario”. The algorithm, in the second stage, has to augment the solutionE1

by buying edgesE2(T
′) so that the resulting graphE1 ∪E2(T

′) includes a Steiner forest on terminal-pairsT ′,
i.e.,E1 ∪E2(T

′) contains a path between each terminal-pair inT ′. The objective is to minimize the maximum
overall cost over all scenarios, i.e., to minimize

∑

e∈E1
ce +maxT ′⊆T,|T ′|≤k λ ·∑e∈E2(T ′) ce.

In this section, we focus our attention on the special case when the graphG is a treeT with edge-costsce.
Let dT (u, v) denotes the length of the unique path betweenu andv in T .

For a scenarioT ′ ⊆ T of at mostk terminal pairs, letE(T ′) denote the union of the unique paths between
the terminal-pairs inT ′. We now consider the following integer linear programming formulation of our prob-
lem. Letxe ∈ {0, 1} denote an integer variable that takes value1 if edgee is picked in Stage 1, and0 otherwise.
Note that any edgee ∈ E(T ′) is picked in Stage 2 for scenarioT ′ if and only if xe = 0. Thus the Stage-2 cost
for scenarioT ′ isλ ·∑e∈E(T ′) ce · (1−xe). It is now easy to see that the following integer program is identical
to our problem.

min
∑

e ce · xe + λ · C2

s.t.
∑

e∈E(T ′) ce · (1− xe) ≤ C2 ∀ scenariosT ′

xe ∈ {0, 1} ∀ edgese
C2 ≥ 0

(4)

A linear relaxation of the above integer program is obtainedby replacing the integrality constraintsxe ∈
{0, 1} by 0 ≤ xe ≤ 1 for each edgee. This linear program has polynomially many variables and exponentially
many constraints. We now give an approximate separation oracle for this program and solve it using the
ellipsoid algorithm.

4.1 The separation oracle

The separation oracle for the above linear program needs to solve the following problem: givenxe ∈ [0, 1] for
each edgee, find a scenarioT ′ such that

∑

e∈E(T ′) ye is maximized, whereye = ce · (1 − xe). Recall that a
scenarioT ′ consists of at mostk terminal pairs fromT andE(T ′) denotes the union of the paths between the
terminal-pairs inT ′. Thus the separation oracle can be viewed as the following problem. Given a set of paths
T on a treeT with edge-profitsye ≥ 0, find a subset of at mostk paths that maximizes the total profit in the
union of the paths.

We now give a dynamic programming based2-approximation algorithm for the above problem. Pick any
vertexr ∈ T in the tree to be the “root” and imagine thatT is hung fromr. Thus we get a natural ancestor-
descendant relation between the vertices ofT : vertexu is called an ancestor of vertexv if u lies on the unique

11

path betweenv and rootr; and vertexv is called a descendant of vertexu if u is an ancestor ofv.

Now any pathp ∈ T can be expressed as a disjoint union of two pathsp1 andp2 such that the end-points
of bothp1 andp2 satisfy the ancestor-descendant relation. We call such paths “up-paths”. We now solve our
profit maximization problem on this collection of up-paths.It is easy to see that the maximum profit of at most
k up-paths obtained in a manner given above is at leasthalf of the maximum profit of at mostk paths in the
original problem.

The maximum profit collection ofk up-paths can be computed by dynamic programming as follows.In
what follows, we say that a pathp “covers” an edgee if e ∈ p. For every vertexv ∈ T , let Tv be the subtree
rooted atv. For eachv ∈ T , for each of its ancestorsu ∈ T , and for each integer0 ≤ l ≤ k, let p(v, u, l)
denote the maximum profit that can be accrued in the subtreeTv by at mostl paths that together cover each
edge on the path betweenv andu in T . It is crucial to note that the profit in this definition does not contain the
profit in the path between the parent ofv andu. We compute the values ofp from leaves up. Below, we only
consider triplets(v, u, l) whereu is an ancestor ofv (possibly,u = v) and l is an integer (possiblyl < 0 to
simplify the description). We first initialize the values ofp(v, u, l) to−∞.

To simplify the exposition, we assume that each vertex has atmost two children. This assumption can be
made without loss of generality as described below. Consider a vertexv with c > 2 childrenv1, . . . , vc. We
expandv into a binary tree withc leaves corresponding to itsc children. The profit of any new edge on this
binary tree is set to zero. The original paths can be extendednaturally. It is easy to see that the maximum
achievable profit in the new instance is same as that in the original instance.

For the base case of the dynamic program, we setp(v, u, l) wherev is a leaf andl ≥ 0 to 0. Now consider
any internal vertexv ∈ T and assume that we have already computed (and stored) the values ofp(v′, u, l) for
all childrenv′ of v.

We first explain how to computep(v, u, l) whenv has only one childv1. Let e = (v, v1). If u = v,
we setp(v, v, l) = max{p(v1, v1, l),p(v1, v, l) + ye,p(v1, v1, l − 1) + ye}. Note that we may addye in the
third term as inp(v, v, ℓ) we are guaranteed that the path will go at least as high asv. For u 6= v, we let
p(v, u, l) = max{p(v1, u, l) + ye,maxu′ p(v1, u′, l − 1) + ye} where the maximum is taken over verticesu′

on the path betweenv1 andu such that there is a path betweenu′ and one of its ancestor that covers the path
betweenu′ andu.

Now we explain how to computep(v, u, l) whenv has exactly two childrenv1 andv2. First consider the
case whenu = v. Let e1 = (v, v1) ande2 = (v, v2). We setp(v, v, l) to be the maximum of the following
different ways of accruing a profit. Below the maximum is taken over l′ where0 ≤ l′ ≤ l. The maximum
profit without covering edgese1 ande2 ismaxl′(p(v1, v1, l

′)+p(v2, v2, l− l′)). The maximum profit covering
e1 but note2 is maxl′(max{p(v1, v, l′),p(v1, v1, l′ − 1)} + ye1 + p(v2, v2, l − l′)). Similarly, the maximum
profit coveringe2 but note1 is maximum ofmaxl′(max{p(v2, v, l′),p(v2, v2, l′−1)}+ye2 +p(v1, v1, l− l′)).
Similarly, the maximum profit covering bothe1 ande2 is maxl′(max{p(v1, v, l′),p(v1, v1, l′ − 1)} + ye1 +

max{p(v2, v, l − l′),p(v2, v2, l − l′ − 1)} + ye2).

Next consider the case whenu 6= v. Again let e1 = (v, v1) ande2 = (v, v2). We setp(v, u, l) to be
the maximum of the following different ways of accruing a profit. Below the maximum is taken overl′ where
0 ≤ l′ ≤ l. The maximum profit without covering edgese1 ande2 ismaxl′(p(v1, v1, l

′)+p(v2, v2, (l−l′′)−l′))
if l′′ is the minimum number of paths needed to cover the edges on path betweenv andu. The maximum profit
coveringe1 but note2 ismaxl′(p(v1, u, l

′)+ ye1 +p(v2, v2, l− l′)). Similarly, the maximum profit coveringe2
but note1 is maximum ofmaxl′(p(v2, u, l

′) + ye2 + p(v1, v1, l − l′)). Similarly, the maximum profit covering

12

both e1 ande2 is the maximum ofmaxl′(p(v1, u, l
′) + ye1 + p(v2, v, l − l′) + ye2) andmaxl′(p(v2, u, l

′) +
ye2 + p(v1, v, l − l′) + ye1).

4.2 The rounding

Since there is a2-approximation to the separation oracle, we can compute, using the ellipsoid algorithm, a
feasible solution({x∗e}, C∗

2) to (4) such that
∑

e ce · x∗e + λ · C∗
2

2 ≤ OPT∗ ≤ ∑

e ce · x∗e + λ · C∗
2 whereOPT∗

denotes the cost of the optimum fractional solution to (4). We round this solution to an integral feasible solution
to the Steiner forest problem on trees as follows: picke ∈ E in Stage 1 if and only ifx∗e ≥ 1

3 . In Stage 2, given
a scenarioT ′, pick the remaining edges inE(T ′) to form a feasible solution.

The cost of the Stage 1 of our solution is
∑

e:x∗
e≥1/3 ce ≤ 3

∑

e ce · x∗e. The Stage 2 cost of scenarioT ′ is

λ · ∑e:x∗
e<1/3 ce ≤ 3

2λ · ∑e:x∗
e<1/3 ce · (1 − x∗e) ≤ 3

2λ · C∗
2 . Thus the overall cost of our solution is at most

3
∑

e ce · x∗e + 3
2λ · C∗

2 ≤ 3 · OPT∗. SinceOPT∗ is at most the optimum integral solution, our algorithm is a
3-approximation.

5 APX-hardness of the robust min-cut problem

In this section, we prove Theorem 1.4. In the robust min-cut problem we are given an undirected graphG =

(V,E) with edge-costsce ≥ 0, a sources ∈ V , a collection of sinksT ⊆ V , and a inflation factorλ ≥ 1. There
are two stages and the algorithm has to first choose edgesE1 ⊆ E in the first stage, after which the cost of each
edgee ∈ E \E1 becomesλ · ce. We are then given asinglesink t ∈ T . We callt a “scenario”. The algorithm,
then, has to pick edgesE2(t) ⊆ E \E1 such thats andt are not connected in the graph(V,E \ {E1 ∪E2(t)}).
The objective is to minimize the maximum cost of the solutionunder any scenario:c(E1) +maxt∈T λ · c(E2),
wherec(X) =

∑

e∈X ce for X ⊆ E.

In [15], the authors give a(1+
√
2)-approximation algorithm for this problem and pose as an open question

to determine if this problem is NP-hard. We answer this question and in fact show that the problem is APX-
hard. We reduce the APX-hard problem of findingmulti-way cutto our problem. The input to the multi-way
cut problem is an undirected graphG = (V,E) with edge-costsce ≥ 0 and a collectionT ⊆ V of terminals.
The problem is to find a subsetE′ ⊆ E of minimum total costc(E′) such that all terminals inT lie in different
connected components in(V,E \ E′). In [8] the following theorem is proved.

Theorem 5.1 [8] There exists a universal (known in advance) constantα > 0, such that given an instance of
the multi-way cut problem on 3 terminals, it is NP-hard to distinguish between the following cases: (i)“yes-
instance”: there exists a multi-way cut of cost at most1, or (ii)“no-instance”: all multi-way cuts have cost at
least1 + α.

Given an instance of the multi-way cut problemI = {G = (V,E), {ce}, T = {t1, t2, t3}}, we construct a
new graphG′ fromG by adding a new vertexs and edgese1 = (s, t1), e2 = (s, t2), e3 = (s, t3). We letλ = 2.
In the instance for the robust min-cut problem,s serves as the source,T serves as the collection of terminals,
and the edge-costs are given byce for e ∈ E andce1 = ce2 = ce3 = β whereβ = 1+α whereα is the constant
from Theorem 5.1.

Lemma 5.2 If I is a yes-instance then the optimum cost of the robust min-cutis at most1 + 2β.

Proof: LetE∗ be the minimum multi-way cut inG. We pickE∗ in Stage 1. Then given any terminalti ∈ T as a

13

scenario, we pick the edgeei in Stage 2. This clearly forms a feasible solution with costc(E∗)+λ ·β ≤ 1+2β.
2

Lemma 5.3 If I is a no-instance then the optimum cost of the robust min-cut is at leastmin{3β, 1 + 2β +α}.

Proof: Fix an optimum algorithm, say OPT. We consider four cases depending upon whether OPT picks
zero, one, two, or three of the edgese1, e2, e3 in Stage 1. If OPT picks exactly one edge, saye1, in Stage
1, we consider scenariot2. Since OPT has to picke2 in Stage 2 for this scenario, the overall cost is at least
ce1 + λ · ce2 = β + 2β = 3β. If OPT picks exactly two edges, say{e1, e2}, in Stage 1, we consider scenario
t3. Since OPT has to picke3 in Stage 2 for this scenario, the overall cost is at least2β + λ · β = 4β. Similarly,
if OPT picks three edges in Stage 1, its cost is at least3β.

Now consider the case where OPT does not pick any edge out ofe1, e2, e3 in Stage 1. LetE1 be the set of
edgesOPT picks in Stage 1. LetH = (V,E \E1). LetE123 ⊆ E \E1 be a minimum multi-way cut separating
t1, t2, t3 in H. Note thatc(E1) + c(E123) ≥ 1 + α and hencec(E123) ≥ 1 + α − c(E1). For i = 1, 2, 3,
let Fi denote the minimum cut separatingti from the other two terminals inH. Note that each ofF1 ∪ F2,
F2∪F3, andF3∪F1 form a multi-way cut separating the terminals inH. Therefore,c(F1)+ c(F2) ≥ c(E123),
c(F2)+ c(F3) ≥ c(E123), andc(F3)+ c(F1) ≥ c(E123). Thusc(F1)+ c(F2)+ c(F3) ≥ 3

2 · c(E123) and hence
maxi c(Fi) ≥ c(E123)/2 ≥ (1 + α− c(E1))/2.

Without loss of generality, letc(F1) = maxi c(Fi). Now consider scenariot1. In Stage 2, OPT must pick
edgee1. Moreover OPT either picks a cut separatingt1 from the other terminals inH or picks at least one edge
out ofe2, e3. If OPT picks a cut, its overall cost is at leastc(E1)+λ · ce1 +λc(F1) ≥ 2β+ c(E1)+2 · (1+α−
c(E1))/2 = 2β+1+α. In the other case, the overall cost of OPT is at leastc(E1)+λ ·ce1 +λmin{ce2 , ce3} ≥
4β. This completes the proof. 2

Sinceβ = 1 + α, we get that the ratio of costs of the robust min-cuts in a yes-instance and a no-instance is
at least3+3α

3+2α . This completes the proof of Theorem 1.4.

Acknowledgments:We would like to thank anonymous referees for their commentsand suggestions.

References

[1] J. Byrka, F. Grandoni, R. Thomas, and S. LauraAn improved LP-based approximation for steiner tree, In
Proceedings of the 42nd ACM Symposium on Theory of computing, 2010, pages 583-592.

[2] Jaroslaw Byrka, Karen Aardal,An Optimal Bifactor Approximation Algorithm for the MetricUncapaci-
tated Facility Location Problem, SIAM J. Comput. 39(6): 2212-2231, 2010.

[3] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh,How to pay, come what may: approximation algo-
rithms for demand-robust covering problems, In Proc. of 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’05), pages 367-378.

[4] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour,, and M. Yannakakis,The complexity of
multiterminal cuts, SIAM J. Comput. 23(4): 864-894, 1994.

[5] G. B. Dantzig,Linear programming under uncertainty, Management Sci., 1:197-206, 1955.

14

[6] J. Fakcharoenphol, S. Rao, and K. Talwar,A tight bound on approximating arbitrary metrics by tree
metrics, J. Comput. Syst. Sci. 69(3): 485-497, 2004.

[7] U. Feige, K. Jain, M. Mahdian, and V. Mirrokni,Robust combinatorial optimization with exponential
scenarios, In Proc. of the 12th International Integer Programming andCombinatorial Optimization con-
ference, Lecture Notes in Computer Science, 2007, Volume 4513, pages 439-453.

[8] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour and M Yannakakis.The complexity of multitermi-
nal Cuts, SIAM J. Comput., 23(4): 864-894, 1994.

[9] D. Golovin, V. Goyal, and R. Ravi,Pay today for a rainy day: improved approximation algorithms for
demand-robust min-cut and shortest path problems,In Proc. of the 23rd Annual Symposium on Theo-
retical Aspects of Computer Science (STACS) 2006, Lecture Notes in Computer Science, Volume 3884,
pages 206-217.

[10] A. Gupta, M. Pál, R. Ravi, and A. Sinha,Boosted sampling: approximation algorithms for stochastic
optimization, In Proceedings of the thirty-sixth annual ACM symposium onTheory of computing (STOC)
2004, pages 86-98.

[11] A. Gupta, R. Ravi, and A. Sinha,An edge in time saves nine: LP rounding approximation algorithms
for stochastic network design, In Proc. of 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS) 2004, pages 218-227.

[12] A. Gupta, V. Nagarajan, and R. Ravi.Thresholded covering algorithms for robust and max-min optimiza-
tion In Proc. of the 37th International Colloquium on Automata, Languages and Programming (ICALP)
2010, Lecture Notes in Computer Science, Volume 6198, pages262-274.

[13] N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni,On the costs and benefits of procrastination:
approximation algorithms for stochastic combinatorial optimization problems, In Proceedings of the fif-
teenth annual ACM-SIAM symposium on Discrete algorithms SODA 2004, pages 691-700.

[14] J. W. Milnor, Games against nature, in R. M. Thrall, C. H. Coomb, and R. L. Davis, editors, Decision
Processes. Wiley.

[15] R. Ravi and A. Sinha,Hedging uncertainty: Approximation algorithms for stochastic optimization prob-
lems, Math. Program. 108(1): 97-114, 2006.

[16] R. Raz,A parallel repetition theorem, SIAM J. of Computing, 27(3): 763-803, 1998.

[17] G. Robins and A. Zelikovsky,Improved Steiner tree approximation in graphs, In Proceedings of the
eleventh annual ACM-SIAM symposium on Discrete algorithms(SODA) 2000, pages 770-779.

[18] D. Shmoys and C. Swamy,Stochastic optimization is (almost) as easy as deterministic optimization, In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS) 2004,
pages 228-237.

[19] V. Vazirani,Approximation algorithms, Springer, 2001.

15

