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Abstract

We study two-stageobustvariants of combinatorial optimization problems on undieel graphs, like
Steiner tree, Steiner forest, and uncapacitated facditation. Robust optimization problems, previously
studied by Dhamdhere et al. [3], Golovin et al. [9], and Fedgal. [7], are two-stage planning problems in
which the requirements are revealed after some decisiertalan in Stage 1. One has to then complete the
solution, at a higher cost, to meet the given requirementthd robust:—Steiner tree problem, for example,
one buys some edges in Stage 1. Théarminals are revealed in Stage 2 and one has to buy more,edges
a higher cost, to complete the Stage 1 solution to build an8téiee on these terminals. The objective is to
minimize the total cost under the worst-case scenario.

In this paper, we focus on the casesaponentially mangcenarios given implicitly. A scenario consists
of any subset of; terminals (fork—Steiner tree), or any subset bfterminal-pairs (fork—Steiner forest),
or any subset of: clients (for facility location). Feige et al. [7] give an Usased general framework for
approximation algorithms for a class of two stage robusblams. Their framework cannot be used for
network design problems like—Steiner tree (see later elaboration). Their framework eanded for the
robust facility location problem, but gives only a logantit approximation.

We present the first constant-factor approximation algoré for the robusk—Steiner tree (with ex-
ponential number of scenarios) and robust uncapacitatlityfdocation problems. Our algorithms are
combinatorial and are based guessinghe optimum cost and clustering to aggregate nearby vsrtieer
the robusk — Steiner forest problem on trees and with uniform multigiieaincrease factor for Stage 2 (also
known as inflation), we present a constant approximation.skiéav APX-hardness of the robust min-cut
problem (even with singleton-set scenarios), resolvingfen question of [3] and [9].

1 Introduction

In a classical optimization problem, we are usually givegpsdesm with some known parameters and constraints
and the goal is to find a feasible solution of minimum cost (aximum profit) with respect to the constraints.
Often these parameters and constraints, which heavilyeinflel the optimal solution, are assumed to be pre-
cisely known. However, in reality, often it is very costlyr (maybe impossible) to have an accurate picture of
the values of the parameters or even the constraints of tifaieation problem at the time of planning. There
are two common approaches studied in the literature to agddiés uncertainty. One is thebust optimization
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and the second stochastic optimizatian

Robust optimization. This has been studied in both decision theory [14] and Madtieal Programming [5].

In a typical data-robust model, we have a finite set of scesdhiat can materialize and each scenario contains
one possible set of data values. The goal is to find a solutianis good with respect to all or most scenarios.
One example in this category is absolute robustness or rai-mhere the goal is to find a solution such that
the maximum cost over all possible scenarios is minimizedother example imin-max regretin which the
goal is to minimize the maximum regret over all possible aces. Here, the regret of a scenario is defined as
the value of the solution for that scenario minus the optisadlition cost for that scenario.

Stochastic optimization. In this model, we are provided with a probability distrilmrtion the possible sce-
narios and the goal is to find a solution that minimizes theseterl cost over this distribution. This approach
is useful if we have a good idea about the probability digtidn (which may be a strong requirement), and
we have a repeated decision making framework. One pantigelsion of stochastic optimization, that has
attracted much attention in the last decade, is two-stagen(iti-stage) stochastic optimization, where the
solution is built in two stages: in the first stage we have tibdba partial solution based on the probability
distribution of possible scenarios. In Stage 2, once theah&cenario is revealed, we have to complete our
partial solution to a feasible solution for the given scemaf here has been considerable research focused on
two-stage (or multi-stage) stochastic version of classipimization problems such as set cover, Steiner tree,
vertex cover, facility location, cut problems, and othetwwk design problems [15, 18, 10, 11]. Efficient
approximation algorithms have also been developed for méttyese problem. In some cases, the set of pos-
sible scenarios and the corresponding probabilities aengexplicitly [15, 11], and some papers study a more
general model in which the sets of possible scenarios aemgmplicitly (rather than explicitly) as the product
of a set of independent trials, or by an oracle [3, 10, 13, 18].

Demand-robust optimization. More recently, a new notion of robustness has been intrabbhgéhamdhere

et al. [3] which can be viewed as the worst-case analogueeoftitn-stage) stochastic optimization problem.
This model, calledlemand-robust optimizatigiand we simply call robust optimization in the rest of thegrap
deals with uncertainty in both data as well as the conssaitthe problem. To see the difference, as an
example, consider two different formulations of the stetrgath problem from a root node in the data-
robust model we know the input graph as well as the other enat-p to which we like to find a shortest path
from r. The uncertainty is on the values of the costs of the edgestypical demand-robust version the other
end-point of the path is not known in advance; instead eaténgial node is given as a possible scenario. In
a two-stage robust optimization problem, similar to a twage stochastic optimization, we are given a set of
possible scenarios (which can be explicit or implicit) ane goal is to compute a solution in two stages while
minimizing the maximum cost over all possible scenariose ajor difference of this model w.r.t. data-robust
model is that each possible scenario might have a differnofsconstraints to be satisfied. For example, in
the two-stage robust Steiner tree problem, we are givenghdgra= (V, £) with a cost function: : £ — R*

on the edges. In the second stage onegfossible scenarios materializes; scenagonsists of a se$; C V

of terminals that need to be connected to each other. We alsodn inflation factop; for edge costs. Each
edgee costsc, in the first stage and; - ¢. in the second stage if scenaiionaterializes. Our goal is to select a
subset of edge®; C F in the first stage, and a sék(i) C E in the second stage if scenaiids revealed, so
that £, U E»(i) is a feasible solution for the Steiner tree problem with ieahsetS;; the overall cost paid in
scenariai is ¢(E1) + A; - ¢(E2(7)). The objective function is to minimize this cost over all pibde scenarios,
i.e., to minimizec(E, ) + max; A; - ¢(E2(2)). In the robustt—Steiner tree problem, each s$tis a subset of



sizek of terminals.

This model of robustness allows one to handle uncertaintiygrinput and provides a worst-case guarantee
unlike the expected-cost guarantee as in the two-stagleasttic optimization model. In very recent work [7] au-
thors consider a more general model of (two-stage) robushiation in which scenarios are given implicitly,
instead of explicitly as in the original model introduced®). The difference is that in the more general ver-
sion, one can have an exponentially large set of possibleasios. For example, for the robust Steiner tree
problem (with exponential scenarios), instead of havingtal of m possible scenarioSy, ..., .S, (S; C V)
given explicitly, we can have each setC V of sizek as one possible scenario and have the inflation fagtor
to be uniformly equal ta\. In other words, in Stage 2, an arbitrary subset of sipé vertices is revealed as the
terminals that need to be connected. Clearly the numbereniesos is exponential in the inpkt and for this
reason, (demand) robust optimization problems typicadigdme more difficult in this more general setting.

1.1 Previous work

Robust optimization has been studied in [3, 9, 7, 12]. In |38 authors consider the robust problems with
polynomially many explicitly given scenarios. They pressinstant factor approximation algorithms for robust
versions of Steiner tree, vertex cover, and facility lomati They also give polylogarithmic approximation
for robust min-cut and multi-cut. In the problem of robustnreut, we are given an edge-weighted graph
G = (V,E), asources € V, and inflation factor\;(e); scenarioi consist of a terminat; € V. The goal is

to find a subsef; C FE for Stage 1 and?»(i) C E for Stage 2 (if scenario arrives) so that; U Es (i) is

a s, t;-cut. In [3], the authors present @hlog m)-approximation wheren is the number of scenarios. This
was improved to &1 + /2)-approximation in [9]. In the robust multi-cut problem, bacenario consists of a
set of pairs of nodes that form a multi-cut problem. For thizbtem [3] present a® (log(rm) - loglog(rm))
wherem is the number of scenarios ands the maximum number of pairs in any scenario.

Feige et al. [7] consider covering problems (such as setrfoxeere the set of possible scenarios is given
implicitly, and therefore can be exponentially large. Eample, in the robust set cover problem, we are given a
universe of elements = {ey, ..., e, } and a collection of setS = {51, ..., S, }, whereS; C U and has cost
¢(S;), a multiplicative increase factoy, and an integek. Each scenario can be a sub&étC U of elements
with sizek that need to be covered. We have to purchase a collections#fs€ S in Stage 1. Once a sét of
elements is given in Stage 2, we have to purchase some (jyossite) other set§,(U’) C S where the cost of
each set now is inflated by, so thatS; U S,(U’) is a set cover for the given sEt. The goal is to minimize the
maximum total cost over all possible scenarios. Using andupding method, they give a general framework
for designing approximation algorithms for a class of rdlmasering problems using competitive algorithms for
online variants of the problems. This framework givesHiog m log n)-approximation algorithm for the two-
stage robust set cover problem, and a constant-factor dppation for the robust vertex cover problem. They
also prove a hardness of fac@(lolgoﬁ) fg”m) for the two-stage robust set cover under some plausible lexityp
assumptions. This framework does not apply to robust nétdesign problems like the robukt-Steiner tree
problem. In [7] the authors give logarithmic approximationthe robust uncapacitated metric facility location
problem.




1.2 Our results

We only consider problems on undirected graphs. The modedtudy in this paper is the (demand) robust
optimization model with (possibly) implicit sets of sceiwar (which can be exponentially large). We study
robustk—Steiner tree (in which a scenario consists of atgrminals out of given terminals), robust Steiner
forest (in which a scenario consists of anyerminal-pairs out of given terminal-pairs), uncapaeitbfacility
location (in which a scenario consists of akyclients—possibly located at the same location—out of given
clients), and min-cut (in which a scenario consists of singleterminal from a given set of terminals) problems
under this model and present some approximation algoritmdshardness results.

Specifically, we provide the first constant factor approxioraalgorithms for the (exponential scenarios)
robustk—Steiner tree and robust facility location problems. Oupatgms are combinatorial in nature and are
based on nice structural properties of the Stage 1 solufiamear-optimal algorithm.

Theorem 1.1 There exists a polynomial tinke34-approximation algorithm for the two-stage robust Steiner
tree problem with a uniform inflation factor. Here a scenazansists of any terminals out of given terminals.

Theorem 1.2 There exists a polynomial-timed-approximation algorithm for robust uncapacitated faisili
location problem in which the inflation factor may depend ba facility. Here a scenario consists of ahy
clients (perhaps co-located) out of given clients.

We then present a constant factor approximation algorithinthfe robust:—Steiner forest problem when
the underlying graph is a tree. Our algorithm is based ondatsing a standard LP relaxation using a dynamic
programming based separation oracle and then roundingih&ar-optimum integral solution.

Theorem 1.3 There exists a polynomial tingzapproximation algorithm for the two-stage robust Steiner
forest problem on trees with a uniform inflation factor. Harecenario consists of arfyterminal-pairs out of
given terminal-pairs.

Finally, we resolve an open question posed by [3] and [9].s€hmpers posed the question if the two-stage
robust min-cut problem is NP-complete, or could be solveddlynomial time. We prove that the problem is
hard to approximate within some constant factar 1 (namely, we show APX-hardness). See Theorem 1.4.
The open question in [3, 9] was regarding a more difficult jaesin which the input contains many sinks
and there is a different multiplicative inflation factor fevery sink. We show that a much simpler problem is
already APX-hard.

Theorem 1.4 The two-stage robust min-cut problem is APX-hard even withiform inflation factor and in
which a scenario consists of a single source and @rginks.

Organization. The remainder of the paper is organized as follows. In thé sestion, we present our34-
approximation algorithm for robudt— Steiner tree. Then we present our approximation algoritfamsobust
k—Steiner forest on trees and for the facility location prabli@ subsequent sections. Finally, we prove Theo-
rem 1.4 in Section 5

2 A constant approximation for the robust k—Steiner tree problem

In this section we prove Theorem 1.1. Recall that the inpuhéoSteiner tree problem is an undirected graph
G = (V,E), acost functiorc : E — R*, and a subset’ C V called “terminals”. The objective is to find a



connected subgrapH that includes all the terminals and has minimum cos{ ) := .  Ce.

In the Robust Steiner treproblem, after our choice of edges in Stagany subset of terminals can be
presented by an adversary in Stayand then the algorithm has to complete the choice in the fiegtes
to a feasible Steiner tree for the set of terminals present¥d study a special case of robust Steiner tree,
called Robustk—Steiner tree The input to this problem is an undirected gragh= (V, E), a cost function
c: E — R, and subsef’ C V of “terminals”. There is also an integérand a real numbek > 1 called
inflation factor. The solution is built in two stages. In thesfistage the algorithm has to identify a subset
E, C FE of edges to buy. In the second stage, the cost of each edge, if; increases by a factor of and a
subsetl” C T of at mostk terminals is revealed. We refer 1§ as a “scenario”. The algorithm, in the second
stage, has to augment the solutiBnby buying edge#>(7") so that the resulting graphi; U E»(7”) includes
a Steiner tree on terminals. The choice of edgeg,(7”) is allowed to depend on the subgé&t The overall
cost of this solution is thu3 ., ce + A+ - ccp, (1) Ce- The objective is to minimize the maximum overall
cost over all scenarios, i.e., to minimize

g Ce+ max A\ g Ce.
T/CT,|T'|<k

ecky ecEy(T)

The edge-costs, induce a shortest-path metric on the vertidés for any two verticesu,v € V, we use
dc(u,v) to denote the length of the shortest path betweandw, under costg. in graphG.

2.1 The algorithm

Let £f and E5(T") be the set of edges an optimal solution buys in the first stagettee second stage for
scenariol”, respectively. LebPT = OPT; + X - OPT, be the overall cost of the optimum, whepeT;, =

D ecp; Ce IS itS ?QSt in the first stage ar@PT, = maxycr,7v|<k Dcepz (1) Ce 1S the maximum cost in the
second stage divided by.

First Stage. Our algorithm, in the first stage, guesses an upper boundeowatne oforPT, and then outputs
some Steiner tre@. More specifically, the algorithm tries values of the fofin+- €) as the guess for a good
upper bound oPT,, for increasing values of Clearly, there is a value afsuch that(1 + ¢)* < oPT,, and
(1+ €)'t > OPT,. Let i be the guess valug + €)' for oPT, for which the above condition holds. We later
prove the following lemma:

Lemma 2.1 If ;4 > OPT, then algorithm returns a solution whose cost is at most
c(T)+X-r-p Q)

with r a universal constant.

We also show that(7) = O(oPT). This implies that the overall cost of the solution is smb#nd only if
1 is close tooPT,, which holds true, by construction. Indeed, the algorithiayrfail to output a solution for
p1 = (1+ €)' < OPT, but we are guaranteed by Lemma 2.1 to output a solutiopfee (1 + €)i*! > oPTs.
Since(1+¢)" < OPT, < (1+¢)™*! the guessed valyg, is a tight estimate obPT, and a constant ratio follows
from Equation (1).

To simplify the presentation, we assume that the guessee pdbr oPT, is exact.

Given the assumption that we knawpPT, exactly, our algorithm computes a subset of termirals=
{c1,¢2,...,¢p} C T called “centers” and an assignment 7" — C that satisfy:
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e The centers are far apari (c;, ¢;) > “OPT2 for all i # j, and

e Each terminal is close to its assigned cenky(t, 7(t)) < “OF% forall t € T,

wherer > 1 is the above constant to be determined later. Such a clugteain be computed as follows. Pick
any terminal and name i . Assign all terminals within a distance &27% from ¢; to ¢; and remove these
terminals. Pick any one of the remaining terminals and namsg and so on.

The algorithm then computes an approximate minimum cos@&téree7 in GG on the center§ under the
costsc.. Currently, the best known polynomial time algorithm foe t&teiner tree problem tg-approximate,
wherey < 1.39 [1]. The algorithm buys the edges in the Steiner tree in tis¢ $iage.

In the second stage, a sub%étof at mostk terminals is revealed. The algorithm, in the second stages b
the shortest path from each terminat 7" to its assigned centex(t).

It is easy to see that the algorithm computes a feasibleigoltd the problem.

2.2 The analysis

We first introduce the notion of a “ball” of certain radius anol a vertex in a graph. Consider the graph
G = (V, E) with edge-costg.. We think of each edge as a continuous interval of length. For a vertexv
and aradiu? > 0, let B;(v, R) denote, intuitively speaking, the “moat” of radisaroundv. More precisely,
B(v, R) contains:

e all the vertices: such thatig(u,v) < R,
e all edges = uw such thatig(u,v) < R anddg(w,v) < R, and

o for the edges = uw such thatdg(u,v) < R anddg(w,v) > R, the sub-interval of edge of length
R — dg(u,v) adjacent to vertex.

Note that sincelc(ci, ¢;) > “OP12 for any two distinct centers i@, the ballsBg (¢;, “9P12) and Bo(cj, “9P12)
are disjoint. It is easy to see that the algorithm pays at most

A-7-0PTy (2)

in the second stage. This holds since the distance of anynarno its assigned center is at mds%.
Since at mosk terminals need to be connected to their centers, the tostlafdhese connections is at most
Ak %. We now bound the cost of the algorithm in Stage 1 using theviihg lemma. Observe that
since we use a-approximation to compute a Steiner tree in Stage 1 on ce@idne following lemma together
with (2) implies Lemma 2.1.

Lemma 2.2 Assuming- > 4, there exists a Steiner tree on centérs G that has cost at most™; - OPT; +
OPTs.

Proof: Recall thatE7 is the set of edges that optimum buys in Stage 1 @ant, = ZeeEf ce.. Let H be

a graph obtained fronds by contracting the edges 7. We now perform another clustering of the centers
C in the shortest-path metric ahinduced by the grapl#/. For centers:;,c; € C, letdy(c;, ¢j) denote the
shortest-path length under lengthsn H. We identify a subset of centets= {i, [, ...,[;} called “leaders”
and a mappin@ : C — L such that



e The leaders are far apattj; (1;,1;) > 20PT/k for all i # j, and

e Each center is close to its mapped leadkf(c, ¢(c)) < 20PT,/k for all centersc € C.

Such a clustering can be computed as follows. Pick any cam@gmame it;. For all centers: € C with
di(c,l1) < 20PTy/k, defineg(c) = I;. Remove all such centers frofhand repeat.

Analogous toBg (v, R), we useBy (v, R) to denote the ball of radiuB centered at in the graphH with
lengthc, for e € H. Note that the balls of radi??2 around the leaders ifi are disjoint inf.

Claim 2.3 |£| < k.

Proof: Assume on the contrary thaf| > & and let7” C £ be any subset of size. Consider scenari@”.
After contracting the edges ifij that optimum bought in the first stage, the balls of r 2 centered at the
centers inl” in the graphH are disjoint. Therefore the minimum Steiner treedrnin H has cost more than
OPTy. This is a contradiction since the optimum pays at mosbPT, in the second phase to connect all the
centers irll” after contracting the edges . Thus the claim holds. O

We now consider scenarif. There exists a Steiner trd€. on L in H with cost at mosoPT,. Thus
ET U E7 has cost at mosiPT, + OPT, and contains a Steiner tree grin G. We now show how to extend this
into a subgraph with low cost which contains a Steiner tre€ onG.

Recall that the balls of radﬁ% around the centelg are disjoint inG. Note however thady (¢, ¢(c)) <
20PT2 for all centerse € C. Thus at least QP2 — 20PT2 — (£ 2) . OPT: of the cost of each ball around
a center inC belongs toE}. We can thus extend the subgrapli U £ by adding shortest paths from each
c to ¢(c) in H and charge this additional cost to the contributionFgfin the respective balls around centers
¢ € C. More precisely,c(Ef) = opTy > k- (5 —2) - 9P = (£ —2)opT,. On the other hand, the
overall cost of extending each € C to ¢(c) is at mostk - @ = 20PTy, < ﬁ - OPT;. Thus, the
resulting subgraph clearly contains a Steiner tre€ @m G. The overall cost of this subgraph is thus at most

OPT, + OPT, + +25 - OPTy = - - OPT; 4+ OPT,. Hence the proof. 0
2

Since we use g-approximation algorithm to compute a Steiner tree in Staghe overall cost of Stage
1is at most%; - OPT; + 7 - OPTa, which isO(0PT). Combining this with the second stage cost, which is
bounded by\ - r - OPT, (see (2)) the overall cost of our solution is:

:'2 L OPT| + (7 + Ar) - OPT,. (3)

This completes the proof of Lemme 2.1. Now we describe whaavétue ofr should be. A trivial strategy
for solving the robusk—Steiner tree is to select nothing in Stage 1 and make all tleetgns in Stage 2.
Given that every edge is inflated Byand we use g-approximation for Steiner tree, this strategy will have an
approximation factor of - v. Using the best known approximation algorithm for Steimee {17], which has
approximation 1.39, we getia39i-approximation. For values of < 3.84 we use this trivial strategy which
gives an approximation factor 6f33. For values of\ > 3.84 we use the above algorithm with parameter
defined below.

. . Ay ok A ARV 1PA2= 29204 89A2 442+ 8y A+ 1602
Letr = r* be the solution of:=; = 1 +r. Then atr = r* = X ;

the two factors in front 0bPT; andoPTs, in the ratio of our algorithm calculated in Equation (3) beeoequal.
Therefore, for- = r* and withy = 1.39, the ratio of our algorithm become&32A=1.39-+v29.0521A% 1 7.2558)+1.9521




It can be verified by a standard calculus argument that thpsession is upper bounded by335. Thus, for
values of A > 3.84, by choosingr = r*, the ratio of our algorithm presented will be at mési4 and for
smaller values oA we use the trivial strategy which has ratio at magB as well. This completes the proof of
Theorem 1.1.

3 A constant approximation for the robust facility location problem

In this section, we prove Theorem 1.2. In the (classicallapacitated facility location problem (UFL), the
input is a setl” of facilities, a setC' of clients sites, and a metricon F' U C. We assume that the distandgs
fori, j € FUC are symmetric and satisfy the triangle inequality. Eacllifac € F' has aropening cosyf; and
the cost of connecting cliegte C to facility i € F'is /;; (also denoted by(i, j)). The goal is to find a subset
F' C F of facilities to open such that the sum of total facility casd the total service cost is minimized. For
aclientj € C and a subset of facilitie” C F, let{(j, F') = min;cp ¢;; denote the cost of servingby the
nearest facility inf”. Thus the objective is to find a subgét of facilities to minimize

Z Ji+ ZE(JQFI)-

i€F! jec

In the robust version, the input contains an integand an inflation factok; > 1 for each facility:. There

are two stages in solving the problem. In the first stage therithm has to open some facilitidg C F'. After
this choice is made, the cost of every un-opened fadilityF' \ F; is increased by a factor of; to \; - f;. The
adversary then chooses a (multi) 62 C' of at mostk clients that actually need to be serviced (other clients
do not need service). We assume that the adversary can pitblmalients at a client sitg € C so long as
the total number of clients (counted with multiplicities)at most:. We callC' ascenario The algorithm has
to choose another (possibly empty) set of facilit@eéé) C F'\ F; to be opened (at the higher costs) so that
the total cost for this scenario J8 ;. fi + Zing(é) Ai fit D jeatl Fr U F,(C)). The objective is to
minimize the maximum total cost over all scenarios, i.eminimize

E Ji+ _ max E Ai- fi+ E 0(j, FL U F(0))
_ cco,|C|<k \ . - =
(S 1€FL(C) jec
We re-emphasize that the maximum in the above expressiakés bver thenulti-setsC' of size at most:.

Note that the service costs do not increase in the second.sfdgte also that the number of potential
scenariog is |C|* + |C|F~1 + ...+ 1, which is exponential itk. We denote this robust version of the problem
(with exponential number of scenarios) by R-FL.

3.1 The algorithm

In what follows, we distinguish between cliesitesC' and the actual client§’ that are realized in a particular
scenario. Note that multiple clients may correspond to #mesclient site.

Let F}' be the set of facilities the optimum opens in Stage 1 and@t{ﬁ’) be the set of facilities the
optimum opens in Stage 2 when scenatioccurs. Thus

OPT = Z fi—i-mgx Z Ai'fi"‘zg(ijl*UFQ*(é))

ek i€k (C) jeC



is the cost of the optimum.

First stage. Our algorithm, in the first stage, guesses a tight upper bofiabT (as explained in the Steiner
tree case). To simplify the presentation below, we assumtethie guess oppPTis exact. It then computes a
subset of client site§ = {ci, ¢z, ..., ¢,} C C called “centers” and an assignment C' — C that satisfy:

e The centers are far apatic;, c;) > 2P forall i # j, ¢;,¢; € C, and
e Each client site is close to its assigned centéf; 7 (j)) < 2P for all j € C.

Such a clustering can be computed as follows. Pick any digmand name it;. Assign all client sites within
a distance oi‘%F’T from ¢; to sitec; and remove these client sites. Pick any one of the remaidiagt site
and name itsy, and so on.

Now for a client sitej € C and a real numbeR > 0, let B(j,R) = {i € F' | £(i,j) < R} be the set of
facilities within a distancer from j. We often callB(j, %PT) the ball around;. Note that the balls around

centers: € C are disjoint.

Definition 3.1 We call a center: € C “cheap” if there is a facility in the ball around: with the Stage-2 cost at

most29PT ie., ) - f; < 29PT We call a center “expensive” otherwise.

The algorithm, in Stage 1, opens the cheapest facilitiest(wStage-1 costs) in the balls around the all
expensive centers € C. More precisely, for each expensive centee C, the algorithm opens a facility

i = argmin{f; | i € B(c, 23PT)} where ties are broken arbitrarily.

Second stage. Let C be the realized scenario. For every clignt C such thatr(j) is a cheap center, the

algorithm opens the cheapest facility (w.r.t. Stage-29)ast argmin{)\; - f; | i € B(n(j), 287T)} where ties

are broken arbitrarily. The algorithm, then, serves eaiemtj € C by an open facility in the ball around(;).

It is easy to see that the algorithm computes a feasibleisoltd the problem.

3.2 The analysis

It is easy to see that our solution has low service cost.

Lemma 3.2 The total service cost of our algorithm, for any scenaftlpis at mos6OPT.

Proof: Fix a scenarioC' and consider a client € C. Whetherr () is cheap or expensive, there is a open
facility i € B(r(5), 2927). Sincet(j,7(j)) < 4SPT and(n(j),i) < 25PT, by the triangle inequality the
service cost of clienj is £(j,i) < 4GPT 4+ 2GPT — 6OPT Because there are at mdstlients inC, the total
service cost is at mo$oPT. O

Now we bound the total facility cost.
Lemma 3.3 The total facility cost of the facilities opened in Stage 2hyalgorithm is at mosRoPT.
Proof: Recall that there are at mostclients in the scenari@. Thus in Stage 2, the algorithm opens the

cheapest facilities in the balls around at mbstheap centers. From the definition of cheap centers, the tota
Stage-2 cost of these facilities is at mést28PT = 20pT. O

Now we bound the cost of the facilities opened in Stage 1 oatherithm.
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Definition 3.4 We call a center: € C “Stage-1" if the optimum opens a facility in the ball aroundn Stage 1.
We call a center “Stage-2” otherwise.

Claim 3.5 There are less thak/2 centers which are both expensive and Stage-2.

Proof: Suppose, to the contrary, that there are k/2 expensive Stage-2 centers, say,ca,...,c;. Now
consider a scenario which consists of two copies eaah @b, . .., c/,. Consider how the optimum serves
this scenario. By definition, the optimum does not open aniifiain the balls around:; for: = 1,...,k/2

in Stage 1. Now suppose that in Stage 2, the optimum opengiéscin the balls around; fori = 1,...,#
and does not open any facilities in the balls arounfibr i = ¢’ + 1,. .., k/2. From the definition of expensive
centers, the Stage-2 facility cost of the optimum is more tta %PT. Also the service cost of clients at
the sitescyy1,..., cg o is more than(k/2 — ') - 2981, Thus the total cost of the optimum is more than
¢ 29PT 4 (k/2 — ') - 29PT — opT, which is a contradiction. O

Lemma 3.6 The total facility cost of the facilities opened in Stage Ihyalgorithm is at mosRoPT.

Proof: Recall that the algorithm opens the cheapest facilitiekérblls around the expensive centers in Stage
1. Note that the total cost of the cheapest facilities in thskaround Stage-1 centers is at mostr. This
holds since the optimum itself opens at least one facilitganh of the balls around Stage-1 centers in Stage 1.

Now we bound the total facility cost inside the balls aroulne éxpensive Stage-2 centers, sgy, .., ¢
From Claim 3.5, we know that < k/2. Let f(j) = min{)\; - fi | i € B(c;j, 28FT)} denote the Stage-2 cost
of the cheapest facility in the ball around centgrfor 1 < j < t. Consider a scenario in which the adversary
requests

. fG)  k
NG) = |- 9
Zj:l f@)
clients at the client site; for 1 < i < ¢. Note thaty"!_| N(i) < Y'_, (1 + % - %) <kbibop
=1
Thus the total number of clients in this scenario is at nkost
Now consider how the optimum serves this scenario. Recatlthie optimum does not open any facilities
(in Stage 1) in the ball around a Stage-2 center. SupposehahintStage 2, the optimum opens facilities in the
balls around centers, . . ., ¢y and does not open any facilities in the balls around cemiers, . .., c¢;. Thus
the total facility cost of the optimum is at IeaEZ 1 f(7) and the total service cost of the optimurrstsictly

more than>_!_,, | N(i) - 2821 > S0, th( }(J) k. 20PT — opr. 30,4 = (1}() Since the total

optlmum cost is at mOS])PT, we have

~ i opr. S 40 _ /()
2SO 2 S T sz 10)

Simplifying the above expression, we get
t t’ .
: f (@)
f(i) < opPT- —_— .
; ; Z;’:l f()
This in particular implies thaEﬁ;l f() > 0and tha‘tzﬁz1 f(i) < opT. Since our algorithm opens the
cheapest facilities (w.r.t. Stage-1 costs) in the ballsiadoexpensive centers in Stage 1, it pays at nfigstfor

each such centet. Hence the cost of these facilities is less tloamT. This completes the proof. O
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Combining the above lemmas, we get our main theorem.

4 A constant approximation for the robust k—Steiner forest problem on trees

In this section, we prove Theorem 1.3. The input to theSteiner forest problem is an undirected graph
G = (V, E) with non-negative edge-costs. We are also given a set of terminal-paiffsC V' x V. Similar

to the robust:—Steiner tree problem, the input also has an intégand a real numbekx > 1. There are two
stages. In the first stage the algorithm has to identify aetulis C E of edges to buy. In the second stage,
the cost of each edge i \ E; increases by a factor of and a subsef” C T of at mostk terminal-pairs is
revealed. We refer t@” as a “scenario”. The algorithm, in the second stage, hasgment the solutiorf;

by buying edged’;(7”) so that the resulting graphl; U E»(7") includes a Steiner forest on terminal-pdilrs
i.e., By U Ey(T") contains a path between each terminal-paifinThe objective is to minimize the maximum
overall cost over all scenarios, i.e., to minimize.. . cc + maxpcr <k A+ X cep,(17) Ce-

In this section, we focus our attention on the special casnwihe grapl is a tree7 with edge-costsg,.
Let dr(u,v) denotes the length of the unique path betweamdv in 7.

For a scenarid” C T of at mostk terminal pairs, letZ'(7”) denote the union of the unique paths between
the terminal-pairs irf”. We now consider the following integer linear programmingniulation of our prob-
lem. Letz, € {0, 1} denote an integer variable that takes valufedgee is picked in Stage 1, arttlotherwise.
Note that any edge € F(T") is picked in Stage 2 for scenarid if and only if . = 0. Thus the Stage-2 cost
for scenaridl” is \ - ZeeE(T,) ce - (1 —z). Itis now easy to see that the following integer program étatal
to our problem.

min YoeCe Tet+ A-Ch
S.t. ZEEE(T/) C@ N (1 - 1'5)
Te

Cs

Co Y scenarios”

{0,1} vV edgese @
0

(AVANO VAN

A linear relaxation of the above integer program is obtaibhgdeplacing the integrality constrainis €
{0,1} by 0 < z. < 1 for each edge. This linear program has polynomially many variables angbeventially
many constraints. We now give an approximate separatiocleofar this program and solve it using the
ellipsoid algorithm.

4.1 The separation oracle

The separation oracle for the above linear program needsve the following problem: given,. € [0, 1] for
each edge, find a scenarid” such thatZeeE(T,) ye IS maximized, wherg, = c. - (1 — z.). Recall that a
scenaridl” consists of at most terminal pairs froni” and E(7") denotes the union of the paths between the
terminal-pairs in7”. Thus the separation oracle can be viewed as the followiagl@m. Given a set of paths
T on a tree7] with edge-profitg). > 0, find a subset of at mogt paths that maximizes the total profit in the
union of the paths.

We now give a dynamic programming baskdpproximation algorithm for the above problem. Pick any
vertexr € 7 in the tree to be the “root” and imagine thatis hung fromr. Thus we get a natural ancestor-
descendant relation between the verticeg of/ertexw is called an ancestor of vertexf « lies on the unique
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path betweem and rootr; and vertexv is called a descendant of vertexf « is an ancestor of.

Now any pathp € T can be expressed as a disjoint union of two pathandp, such that the end-points
of bothp; andp, satisfy the ancestor-descendant relation. We call sudisgap-paths”. We now solve our
profit maximization problem on this collection of up-pathds easy to see that the maximum profit of at most
k up-paths obtained in a manner given above is at lealtof the maximum profit of at most paths in the
original problem.

The maximum profit collection of up-paths can be computed by dynamic programming as folldws.
what follows, we say that a pagh“covers” an edge: if ¢ € p. For every vertex € T, let 7, be the subtree
rooted atv. For eachw € T, for each of its ancestors € 7, and for each integed < | < k, letp(v,u,l)
denote the maximum profit that can be accrued in the subifrdsy at most/ paths that together cover each
edge on the path betweerandw in 7. Itis crucial to note that the profit in this definition doeg nontain the
profit in the path between the parentwofindu. We compute the values offrom leaves up. Below, we only
consider tripletv, u,l) wherew is an ancestor of (possibly,u = v) and! is an integer (possibly < 0 to
simplify the description). We first initialize the valuespfv, u, 1) to —oco.

To simplify the exposition, we assume that each vertex hasoat two children. This assumption can be
made without loss of generality as described below. Considertexv with ¢ > 2 childrenvy,...,v.. We
expandv into a binary tree withc leaves corresponding to itschildren. The profit of any new edge on this
binary tree is set to zero. The original paths can be extendaadtally. It is easy to see that the maximum
achievable profit in the new instance is same as that in tiggnafiinstance.

For the base case of the dynamic program, wesetu, [) wherev is a leaf and > 0 to 0. Now consider
any internal vertex € 7 and assume that we have already computed (and stored) thes\afp (v', u, ) for
all childrenv’ of v.

We first explain how to computp(v,u,l) whenwv has only one child;. Lete = (v,v1). If u = v,
we setp(v,v,l) = max{p(vy,v1,1),p(v1,v,l) + ye,P(v1,v1,l — 1) + y.}. Note that we may adg, in the
third term as inp(v,v,¢) we are guaranteed that the path will go at least as high &Soru # v, we let
p(v,u,l) = max{p(vy,u,l) + ye, max, p(vi,u',l — 1) + y.} where the maximum is taken over verticg€s
on the path between, andu such that there is a path betwe&nand one of its ancestor that covers the path
betweenu’ andu.

Now we explain how to compute(v, u,!) whenwv has exactly two childrem; andwvs. First consider the
case when: = v. Lete; = (v,v1) andey = (v,v2). We setp(v,v,1) to be the maximum of the following
different ways of accruing a profit. Below the maximum is takever!’ where0 < I’ < [. The maximum
profit without covering edges, andes is max; (p(v1, v1,1") + p(ve, v2,1 —1')). The maximum profit covering
e1 but notes is max; (max{p(vy,v,"),p(v1,v1,I" = 1)} + ye, + P(v2,v2,l —1')). Similarly, the maximum
profit coveringes but note; is maximum ofmax; (max{p(va, v,’), p (v, vo,l' = 1)} + Ye, + P(v1,v1,1—1")).
Similarly, the maximum profit covering both andes is max; (max{p(v1,v,!),p(v1,v1,l' — 1)} + ye, +
max{p (v, v,l —1"),p(va,vo,l =" — 1)} + e, ).

Next consider the case when# v. Again lete; = (v,v1) andey = (v,v2). We setp(v,u,l) to be
the maximum of the following different ways of accruing afitroBelow the maximum is taken ovérwhere
0 <!’ < I. The maximum profit without covering edgesandes is max (p(v1, v1, ") +p(va, ve, (I—1")=1"))
if I is the minimum number of paths needed to cover the edges brbpaweerny andu. The maximum profit
coveringe; but notes is maxy (p(v1, u, ') + ye, + P (v2, v2, 1 —1")). Similarly, the maximum profit covering,
but note; is maximum ofmax; (p(ve, u, ') + ye, + P(v1,v1,0 —1')). Similarly, the maximum profit covering
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bothe; ande; is the maximum ofnax; (p(vi, u, ") + ye;, + P(ve, v,1 = 1') 4 ye,) andmaxy (p(ve, u, ") +
Yes P10, 1 = 1) + Yey ).

4.2 The rounding

Since there is &-approximation to the separation oracle, we can compuiegubke ellipsoid algorithm, a
feasible solution{z}}, C5) to (4) such thad__c. -z} + X\ - % < OPT* < ). ce-x)+ A- C5 whereopPT*
denotes the cost of the optimum fractional solution to (4&.rdlnd this solution to an integral feasible solution
to the Steiner forest problem on trees as follows: piek £ in Stage 1 if and only ifc} > % In Stage 2, given

a scenarid”, pick the remaining edges ifi(7”) to form a feasible solution.

The cost of the Stage 1 of our solution}s, ...~ 3 ce < 33, c. - z¢. The Stage 2 cost of scenafld is
XY a1z Ce < 3N ez e - (1 —af) < 3X- C5. Thus the overall cost of our solution is at most
3D o Ce Tk + %)\ - C5 < 3-0PT". SinceoPT* is at most the optimum integral solution, our algorithm is a
3-approximation.

5 APX-hardness of the robust min-cut problem

In this section, we prove Theorem 1.4. In the robust min-cablem we are given an undirected gra@h=

(V, E) with edge-costs. > 0, a sources € V, a collection of sink§” C V, and a inflation factoA > 1. There
are two stages and the algorithm has to first choose edges E in the first stage, after which the cost of each
edgee € E'\ E; becomes\ - c.. We are then given singlesink¢ € T'. We callt a “scenario”. The algorithm,
then, has to pick edgds,(t) C E'\ E; such thats andt are not connected in the graphi, £\ { £, U Ex(t)}).
The objective is to minimize the maximum cost of the solutiiler any scenari@i( E) + maxier A - ¢(Fs),
wherec(X) =) cyc.for X C E.

In [15], the authors give &l + v/2)-approximation algorithm for this problem and pose as amapestion
to determine if this problem is NP-hard. We answer this daesind in fact show that the problem is APX-
hard. We reduce the APX-hard problem of findimgllti-way cutto our problem. The input to the multi-way
cut problem is an undirected gragh= (V, E) with edge-costg. > 0 and a collectioril” C V' of terminals.
The problem is to find a subsé&t C E of minimum total cost(E’) such that all terminals i’ lie in different
connected components (i, £ \ E’). In [8] the following theorem is proved.

Theorem 5.1 [8] There exists a universal (known in advance) constant 0, such that given an instance of
the multi-way cut problem on 3 terminals, it is NP-hard totitiguish between the following cases: (i)‘yes-
instance”: there exists a multi-way cut of cost at mosbr (ii)“no-instance”: all multi-way cuts have cost at
least1 + «.

Given an instance of the multi-way cut probléin= {G = (V, E),{c.},T = {t1,t2,t3}}, we construct a
new graphG’ from G by adding a new vertexand edges; = (s,t1),e2 = (s,t2),e3 = (s,t3). We letA = 2.
In the instance for the robust min-cut problesrserves as the sourcg,serves as the collection of terminals,
and the edge-costs are givendyfor e € F andc,, = c., = c., = J where = 1+ « wherex is the constant
from Theorem 5.1.

Lemma 5.2 If Z is a yes-instance then the optimum cost of the robust mirs@itmostl + 2.

Proof: Let E* be the minimum multi-way cut itr. We pick £* in Stage 1. Then given any termirtale 7" as a
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scenario, we pick the edggin Stage 2. This clearly forms a feasible solution with eg#t* )+ \- 5 < 1+ 20.
O

Lemma 5.3 If Z is a no-instance then the optimum cost of the robust minscatt leastmin{35,1 + 28 + a}.

Proof: Fix an optimum algorithm, say OPT. We consider four case®uni@pg upon whether OPT picks
zero, one, two, or three of the edges es, e in Stage 1. If OPT picks exactly one edge, gayin Stage

1, we consider scenari@. Since OPT has to pick, in Stage 2 for this scenario, the overall cost is at least
Cey + A cey = B+ 28 = 3p. If OPT picks exactly two edges, sdy;, es}, in Stage 1, we consider scenario
t3. Since OPT has to pick; in Stage 2 for this scenario, the overall cost is at 18g@st \ - 3 = 45. Similarly,

if OPT picks three edges in Stage 1, its cost is at IBést

Now consider the case where OPT does not pick any edge eyt @f, e5 in Stage 1. Letr; be the set of
edgesopPTpicks in Stage 1. Lell = (V, E'\ E1). Let E193 C E'\ E; be a minimum multi-way cut separating
t1,to,13 in H. Note thatC(El) + C(Elgg) > 1+ «and henCQZ(Elgg) >14+a-— C(El). For: = 1,2, 3,
let F; denote the minimum cut separatihgfrom the other two terminals iif. Note that each of; U F5,
F, U F3, andF3 U Fy form a multi-way cut separating the terminalsiin Thereforeg(Fy) + ¢(F3) > ¢(E193),
C(FQ) —I—C(Fg) > C(Elgg), andC(Fg) + C(Fl) > C(Elgg). ThUSC(Fl) +C(F2) —I-C(Fg) > % . C(Elgg) and hence
max; ¢(F;) > ¢(E123)/2 > (1 + a— c(Ey))/2.

Without loss of generality, let(F}) = max; ¢(F;). Now consider scenariy. In Stage 2, OPT must pick
edgee;. Moreover OPT either picks a cut separatindrom the other terminals ifif or picks at least one edge
out of e, es. If OPT picks a cut, its overall cost is at lea$f; ) + A - ce, + Ae(F1) > 28+ c(Ep)+2-(1+a—
¢(E1))/2 = 28+ 1+ «. Inthe other case, the overall cost of OPT is at le@Bt ) + A - ce, + Amin{ce,, Cey } >
4. This completes the proof. O

Sinces = 1 + «, we get that the ratio of costs of the robust min-cuts in aigence and a no-instance is

at least3+32. This completes the proof of Theorem 1.4.

Acknowledgments: We would like to thank anonymous referees for their commantssuggestions.
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