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2003

In this thesis we study two colouring problems on planar graphs. The main technique
we use is the Discharging Method, which was used to prove the Four Colour Theorem.

The first problem we study is a conjecture of Steinberg which states that every planar
graph without 4 and 5-cycles is 3-colourable. Erdos relaxed this conjecture by asking if
there exists a k such that every planar graph without cycles of size in {4,...,k} is 3-
colourable. Abbott and Zhou [1] answered the question of Erdés by showing that such
a k exists and can be as small as 11, i.e. any planar graph without cycles of size in
{4,...,11} is 3-colourable. This result was improve by Borodin [15] to k£ = 10, and by
Borodin [14] and by Sanders and Zhao [49] to £ = 9. We improve these results by two
steps.

First we reduce k down to 8. That is, we show every planar graph without cycles of
size in {4, ..., 8} is 3-colourable. This theorem is constructive and yields an O(n?) time
algorithm for 3-colouring such graphs.

Then we improve this result one step further, by showing that every planar graph
without cycles of size in {4,...,7} is 3-colourable. This theorem too is constructive and
yields an O(n?) time 3-colouring algorithm for such graphs.

The second problem is the problem of colouring the squares of planar graphs. Equiv-
alently, it is the problem of colouring the vertices of a planar graph in such a way that

vertices at distance at most 2 from each other get different colours. This is also known
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as distance-2-colouring. Wegner in 1977 conjectured that, for every planar graph G with
maximum degree A > 8, the minimum number of colours required in any distance-2-
colouring of G is at most [3A] 4 1. This conjecture, if true, would be the best possible
upper bound for the number of colours needed, in terms of A. The previously best known
bound for this quantity is [%A} + 1, for graphs with A > 47, by Borodin et al. [16, 17].
We improve this result by showing that [2A]+O(1) colours are enough for a distance-2-
colouring of a planar graph with maximum degree A. We also provide a better bound for
large values of A. Then we generalize this result to L(p, ¢)-labelings of planar graphs. An
L(p, q)-labeling of a graph G is an assignment of integers from {0, ..., k} to the vertices
of G such that every two adjacent vertices in G receive integers that are at least p apart
and every two vertices at distance two from each other receive integers that are at least
q apart. The minimum k for which there is an L(p, ¢)-labeling of G is denoted by A\2(G).
We prove that for any planar graph G: A(G) < q[3A] + O(p + ¢). This improves the
previously known bound of (4¢—2)A+O(p+¢q), by Van den Huevel and McGuinness [57].
All these results are constructive; we provide efficient algorithms for distance-2-colouring
5

of planar graphs with at most [ZA] + O(1) colours and for L(p, ¢)-labeling of planar

graphs using only ¢[2A] + O(p + ¢) colours.
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Chapter 1

Preliminaries

The Four Colour Problem (4CP) is perhaps one of the easiest combinatorial problems
to state. This seemingly simple, yet extremely difficult, problem was the most challeng-
ing problem in graph theory for well over a century. Many parts of graph theory, in
particular the branch of graph colouring, grew up around this problem as byproducts of
the efforts researchers put into solving this problem. One of the techniques which was
specifically developed to solve the 4CP (and which we use extensively in this thesis), is
the Discharging Method. Over the past few decades, this technique has been used to nail
down dozens of other problems. However, there are many problems left open, for which

this technique seems to be the most promising tool to apply.

In this thesis, we address two of these problems, which are in the same family as
the 4CP; both of them are problems on colourings of vertices of planar graphs and
were introduced almost around the same time as the 4CP was solved. Since then, some
partial results have been provided on each of them, using the Discharging Method. The
improvements we obtain also use the Discharging Method. So we begin with a short
history of the 4CP and the development of the Discharging Method. This is done in the
next chapter. Before that, we have to define some common notation used throughout

the thesis. This is done in this chapter (in the next section), followed by an overview of
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the thesis. Some more specific terms are defined throughout the thesis, when they are

needed.

1.1 Notation and Definitions

For a graph G, we denote the vertex set and edge set by V(G) and E(G) (or simply
V and E), respectively. All graphs are assumed to be finite, undirected, and simple
(without loops or multiple edges) unless otherwise stated. A cut-vertez in a graph G is a
vertex v whose removal increases the number of connected components of G. A maximal
connected subgraph of G that has no cut-vertex is a 2-connected component or a block of
G. A graph G is 2-connected if it has no cut-vertices. A cut-edge (or bridge) is an edge
whose removal increases the number of connected components of G.

The degree of a vertex v € V(G), denoted by dg(v), is the number of edges incident
with it. The maximum and minimum degree of a graph G are denoted by A(G) and
d(G) (or simply A and §), respectively. If the degree of v is i, at least 4, or at most ¢
we call it an i-vertex, a >i-vertex, or a <i-vertex, respectively. By Ng(v), we mean the
open neighbourhood of v in G, which contains all those vertices that are adjacent to v
in G. The closed neighbourhood of v, which is denoted by Ng[v], is Ng(v) U {v}. We
usually use N(v) and N[v] instead of Ng(v) and Ng[v], respectively. The square of a
graph G, denoted by G2, is the graph on the same vertex set as GG, in which two vertices
are adjacent iff their distance in G is at most two. In other words, G? is obtained from
G by adding the edges between the vertices at distance two of each other.

A graph G is embedded on a surface S if its vertices are mapped to distinct points of S,
and edges are mapped to simple curves in S connecting its vertex-points. Moreover, no
two edge-curves share a point in S except possibly a common vertex-point in G. A face of
an embedding of G is a connected component of the surface S after deleting the graph G.

A graph G is planar if it has an embedding on the sphere. Since a plane is topologically
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equivalent to a sphere with a hole in it, every planar graph is also embeddable on a plane,
and the face containing the hole is called the external or outside face. For an embedding
of a planar graph G, the set of faces of G is denoted by F(G), or simply F. Through
a slight abuse of notation, when no confusion is possible, we say vertices of a face f to
refer to the vertices that are on the boundary of face f, i.e. the vertices that are incident
with f. For every face f the size or length of f, denoted by |f|, is the number of edges
in f, with bridges (cut-edges) counted twice. A face is called an i-face, <i-face, or a
> i-face if the size of f is ¢, at most 7, or at least ¢, respectively. A planar graph G is
called a triangulation if every face of G has size 3. Euler’s formula (given below) plays
a key role in our proofs, and in general, in the proofs of problems on planar graphs that

use the Discharging Method.

Euler’s Formula: For any planar graph G with vertex set V', edge set E,
and face set F: |V| — |E|+ |F| = 2.

A (proper) vertex colouring of a graph G is a function ¢ : V(G) — C, where C'is a
set, of colours, such that no two adjacent vertices receive the same colour. The chromatic
number of G, denoted by x(G), is the minimum |C/| for which G has a vertex-colouring.
A graph G is called k-chromatic if x(G) = k. A k-chromatic graph G is called k-critical
if for any proper subgraph G’ of G: x(G') < k. Note that any k-chromatic graph can be

transformed into a k-critical graph by removing some vertices and/or edges from it.

1.2 Overview

The main contributions of this thesis are improvements on two different conjectures
regarding colouring problems for planar graphs.

The first problem, which is the primary subject of Chapters 3 and 4, is on the colouring
of planar graphs without cycles of size in {4,...,k}. It is a long-standing conjecture by

Steinberg that any planar graph without cycles of size in {4, 5} is 3-colourable. We will
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show in Chapter 3 that planar graphs without cycles of size in {4, ..., 8} are 3-colourable.
This proof uses the Discharging Method.

In Chapter 4, we improve the result of Chapter 3 one step further, by showing that
even in the presence of cycles of size 8, the planar graph is still 3-colourable. The proof
technique used here is different than that of Chapter 3, although it also involves the
Discharging Method.

In Chapter 5 we study the problem of colouring the square of a planar graph. We
obtain an upper bound for the chromatic number of the square of a planar graph in terms
of its maximum degree, A. This result tightens the asymptotic gap between the best
possible upper bound and the best known upper bound. We also show how this proof
can be applied to a more general setting of colouring, known as A-colouring, and obtain
a similar bound in terms of A, which improves all previously known bounds. Finally, we
discuss some possible steps that would have to be taken to further improve these results,
asymptotically.

Chapter 6 contains the concluding remarks and discussions about possible future

directions.



Chapter 2

What is the Discharging Method?

In this chapter we explain, by the means of some examples, how the Discharging Method
works. As we mentioned in the previous chapter, this method was developed to solve the
4CP. For this reason, before talking about this method and giving the examples, we begin
with a short story of the journey of the 4CP and the efforts that lead to the development

of the Discharging Method.

2.1 The Four Colour Problem

This problem seems to have been first posed by Guthrie in 1852, when he was a law
student at University College of London. He formulated this problem as a conjecture

[35]:

“... the greatest necessary number of colours to be used in colouring a map

s0 as to avoid identity of colours in lineally contiguous districts is four.”

In other words, we can colour any map of countries with four colours in such a way
that any two countries sharing a common boundary segment (and not just a point) get
different colours. When he could not solve the problem himself, Guthrie talked about

this problem to his brother, who then passed it on to De Morgan. De Morgan couldn’t
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come up with an answer either and gave the problem to Hamilton, but the problem did
not draw his attention. In a note to De Morgan, Hamilton wrote: “I am not going to
attempt your quaternion of colour very soon”. The first printed reference of the problem
is due to Cayley in 1879 [22], in an article titled “On the colouring of maps”. In this
paper, Cayley explains to some extend, why this is a difficult problem. Before that, in

1860, Peirce too had attempted to solve this problem and didn’t succeed.

This mysterious problem seemed to be solved in 1879 , when Kempe published the
first “proof” of the 4CP in the American Journal of Mathematics [40]. Unfortunately, his
proof was flawed, and surprisingly, it took mathematicians eleven years to notice the error,
which was finally spotted by Heawood [36]. Another proof was proposed by Tait [53] in
1880. His proof was based on the assumption that every 3-connected 3-regular planar
graph is Hamiltonian, which is not true. This gap was pointed out by Peterson in 1891,
and the first explicit counter-example was found by Tutte [55] in 1946. However, both
of these failed proofs were very useful; Heawood used a technique from Kempe’s proof,
which today is known as “Kempe chains”, to prove that every map is five-colourable,

and Tait found an equivalent formulation of the 4CP in terms of 3-edge-colouring.

The next major contribution came from Birkhoff [8] in 1913 who introduced the notion
of reducibility. In a paper titled “The reducibility of Maps” he talked about configurations
(sets of vertices and edges) that cannot exist in a minimum planar graph which cannot
be 4-coloured. That is, a configuration that cannot be contained in a minimum counter-
example to the 4CP. Franklin used this notion and went on to prove in 1922 that every
planar map with at most 25 regions is four-colourable. This method was used by Reynolds
in 1926 to prove the same statement for maps with up to 27 regions, then by Winn in
1940 for maps with 35 regions, by Ore and Stemple in 1970 for maps with 39 regions,
and Mayer in 1976 for maps with 95 regions. However, this technique alone didn’t seem

to be sufficient to solve the 4CP for general planar graphs.
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Heesch, in 1969, came up with a new idea, the method of Discharging, which later,
together with the notion of reducibility, became the main ingredients used to solve the
4CP. Although he couldn’t solve the 4CP himself, he conjectured that using the Dis-
charging Method and considering 8900 reducible configurations, one can finish the job.
The crucial rule of the Discharging Method was to prove the “unavoidability” of the set
of reducible configurations. In other words, to prove that in any planar graph, one of
these reducible configurations must exist, and therefore from the definition of a reducible

configuration, there is no minimum counter-example to the 4CP.

In 1976, Appel and Haken [5] announced their proof of the Four Colour Theorem
(4CT), in which they used the notion of reducibility and the Discharging Method. This
proof used an extensive amount of computer time for verifying that more than 1400
configurations were reducible. They also had more than 300 discharging rules in the
second step of their proof, which again used a computer to check all the possible cases.
Overall, their proof needed more than 1200 hours of CPU time and it was inconceivable
to manually check all the details of the proof.

This was the beginning of a controversy among mathematicians; should we consider

“mathematical” proof? This is not an easy question, and mathemati-

such a proof as a
cians are still quite divided on its answer. The other, perhaps more serious, problem with
the proof of the 4CT in particular, was that even those parts of the proof that were not

automated and were supposed to be hand-checkable, were extremely complicated and

nobody could verify them.

In 1996, Robertson, Sanders, Seymour, and Thomas [47] came up with yet another
computer-aided proof of the 4CT. This proof is easier in that it has only 633 reducible
configurations (compared to more than 1400 in the original proof by Appel and Haken
[5, 7, 6]) and only 32 discharging rules. In explaining why they regenerated another proof
of this theorem, Robertson et al. [47] list the following as the main two reasons the proof

of Appel and Haken was not fully accepted:



CHAPTER 2. WHAT IS THE DISCHARGING METHOD? 8

(1) part of their proof uses a computer and cannot be verified by hand, and

(ii) even the part that is supposed to be checked by hand is extraordinarily
complicated and tedious, and as far as we know, no one has made a

complete and independent check of it.

However, reason (i) is an evil that still remains in the new proof, as pointed out by
the authors. To verify this new proof and in particular part (i), an independent set of
programs has been written by Fijavz under the guidance of Mohar (see the 4CT webpage

at http://www.math.gatech.edu/ thomas/FC/fourcolour.html).

But some mathematicians still look at these proofs with skepticism. Thomas says: “It
15 amazing that such a simply stated result resisted a proof for one and a quarter centuries,
and even today it is not yet fully understood”. Even today, some mathematicians are not
satisfied with the proofs of the 4CT because they think such a nice and easy to explain
problem must have a better and more understandable proof. Certainly, this proof is not

from the “book”!. For more information on the 4CP see the nice survey by Claude [24].

While the most noteworthy application of the Discharging Method has been in the
proof of the 4CT, there are dozens of other problems that have been solved using this
technique. Some of the proofs are computer-aided, but the vast majority of them are
hand-checkable. See, for example, [12, 13, 19, 20, 21, 51, 50]. Therefore, this method
can be a handy tool for everybody who works on problems on planar graphs, and in
many cases, on graphs embeddable on other surfaces, such as the projective plane and

the torus.

'Very nice and elegant proofs are sometimes called “from the book” to refer to the total book, that
Erdds believed might exist, and contains the best answers to every question.
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2.2 How Does the Discharging Method Work?

Let II be a class of planar graphs and suppose we want to prove that every graph in II
has a specific property P. We take an arbitrary graph G € Il and assign some charges
to the elements of G (e.g. to the vertices, edges, or faces). Using Euler’s formula,
|V|+|F|—|E| = 2, we show that the total charge is some constant. Then we redistribute
the charges according to some set of discharging rules that we define, while preserving
the total charge. After this discharging phase, we show that either the total charge
is now different (which of course is impossible) or G has some specific structures that
imply property P. This technique is called the Discharging Method. Sometimes this
method can be applied to problems for graphs embeddable on other surfaces, such as
the projective plane or the torus, as Euler’s formula holds for them with non-negative
constants (1 and 0, respectively).

Often, we prove that the specific structures imply property P before applying the
Discharging Method. The most common way to do this is to start the proof by way
of contradiction and assume that there are graphs in Il that do not satisfy property P.
Among all such graphs we consider one, called Gy, which has the smallest size. Then
based on the assumption that G is a minimum counter-example we prove that certain
structures of vertices, edges, or faces cannot exist in Gy. These structures are called
reducible configurations. Once a set of reducible configurations has been defined, we
show that they are unavoidable. In other words, we prove that any graph in IT must
have at least one of them. This proves that there is no minimum counter-example to the
statement, or equivalently, every graph in II has property P.

To do this second step, i.e. to prove unavoidability of the reducible configurations, we
use the Discharging Method. That is, we take an arbitrary graph G € II and apply the
initial charges to G. Using Euler’s formula we show that the total charge is, for instance,
some negative constant. Then we apply the discharging rules and prove that either every

element of G has non-negative charge (and so the total charge is non-negative), or G
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must have one of these reducible configurations. Of course, the total charge must remain
negative, since the discharging rules preserve the total charge. Therefore, there are some
elements with negative charge in G. We prove that such elements must be in or near a
reducible configuration.

Sometimes (as you will see soon) we don’t use any set of reducible configurations.
Instead, by applying a set of initial charges and the discharging rules, we can derive the
required conclusion. However, in most applications of the Discharging Method, before
applying the initial charges and the discharging rules, we come up with a suitable set of
reducible configurations. For this reason, it is common to refer to both of the general
steps explained above, i.e. the processes of finding a set of reducible configurations and
proving the unavoidability of them, as the Discharging Method.

Here we demonstrate the use of this technique in a few examples. The first example
is a well-know fact whose standard proof does not require the Discharging Method. We

frame it in terms of the Discharging Method here for illustration of the technique, only.
Example 2.2.1 Every simple planar graph G(V, E) has a vertez of degree at most 5.

Proof: Let F be the set of faces of G. To every vertex v € V with degree d(v), we
assign d(v) — 6 units of charge, and to each face f € F' with size |f| we assign 2|f| — 6
units of charge. By noting that 2|E| = X ,cy d(v) = Xsep|f], the total charge is:
Yvev (d(v) =6) + X rep (2| f] = 6) = 2|E| = 6|V|+4[E| - 6|F| = 6(|E| = [V| - [F]) = —12.
Since the graph is simple, every face has size at least 3. So there must be a vertex with
negative charge. Therefore, for some vertex v: d(v) — 6 < 0, that is d(v) < 5, as wanted.
n

The above example was easy and we did not have to move any of the charges. The

next one is less trivial and contains some charge movement; i.e., a discharging phase.

Example 2.2.2 In every simple planar graph G(V, E) with minimum degree at least

three, there is a vertex of degree d incident with a face of length | such that d + 1 < 8.
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Proof: We call a vertex-face incidence a corner. To every vertex v € V with degree d(v)
we assign a charge of d(v)—4, and to each face f € F with length | f| we assign a charge of
| f|—4. Again, using Euler’s formula, the total charge is: 3°,cy (d(v) —4)+ > pep(|f|—4) =

2|E] — 4|V |+ 2|E| — 4|F| = 4(|E| — |[V| — |F|) = —8. In the discharging phase every
d(v)—4
d(v)

each face f sends |“—_|4 charge to each corner that it belongs to. Therefore, after the

vertex v sends out units of charge to each corner that it participates in. Similarly,
discharging phase, all the vertices and faces have charge 0. Since the total charge was
negative, there must be a corner with negative charge. Assume that this corner is made
from the incidence of a vertex v with d(v) = d and a face f with |f| = [. The charge
of this corner is ‘%4 + % < 0. Therefore 2ld — 41 — 4d < 0, which together with the

assumptions that the minimum degree is at least three and each face has size at least

three, imply:

2l 2d
— < — < 0.
d<l—2_6 and l<d_2_6

Adding [ to both sides of the first inequality yields d +1 < %, which is at most 8 for
3<I<6. [
The next example is more involved. It is actually a simplified version of the problem

that is considered in Chapters 3 and 4. We will talk about the history of this problem

and the previous results on this in more detail in Chapter 3.

Example 2.2.3 (Abbott and Zhou [1]) Every planar graph without any cycle of size in
{4,...,11} is 3-colourable.

Proof: The proof contains two main parts:

Part 1 (Reducible Configurations): By contradiction, assume that the statement
is false and let G(V, E) be a counter-example with the minimum number of vertices. So
G is a 4-critical graph. Trivially, G must be connected. We claim that (i) a vertex with

degree at most 2, and (ii) a cut-vertex are reducible configurations.
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(i) Suppose that v € V is a vertex with degree at most 2. Because G is 4-critical
there exists a 3-colouring of G — {v}. As v is adjacent to at most 2 vertices, we can
extend this colouring to v by assigning a colour different from its neighbours and obtain
a 3-colouring of GG, a contradiction.

(ii) Suppose that v € V' is a cut-vertex and C1, ..., Cy are the connected components
of G — {v}, with £ > 2. By definition of G, each C] = C; U {v}, 1 < i < k, has a
3-colouring ¢; : V(C!) — {1,2,3}. Now, without loss of generality, and by possibly
permuting the colours in some of ¢;’s, we can assume that ¢;(v) =1, for 1 <i < k. The
union of these colourings gives a 3-colouring of GG, a contradiction.

Part 2 (Discharging): Now we prove that this set of reducible configurations is
unavoidable, i.e. any planar graph without cycles of size in {4,...,11} has at least
one of them. This shows that there is no minimum counter-example (and therefore
no counter-example at all) to the statement. Let G be any planar graph without any
cycle of size in {4,...,11}. To each vertex v € V with degree d(v) we assign a charge
of d(v) — 6, and to each face f with size |f| we assign 2|f| — 6. The total charge is:
Yoev(d(v) —6) + Xiep(21f] — 6) = 2|E| — 6|V] 4 4|E| — 6|F| = —12. Since each face
has size at least 3, all faces have non-negative charge. If G has a vertex of degree at
most 2, since it is one of the reducible configurations described in Part 1, we are done.
Otherwise, the minimum degree of G is at least three, and therefore, the only vertices
with negative charge are vertices with degree 3, 4, or 5.

In the discharging phase, every face f with |f| > 12 sends % units of charge to each
of its vertices. An important observation to make here is that since G does not have

any cycle of size 4, it cannot have two faces fi, fo, each of size 3, that have an edge in

common. If G has a cut-vertex then we are done, since that is a reducible configuration.

d(v)
2

Otherwise, every vertex v € V' is incident with at least [=2 ]| distinct faces that have size

at least 12, each. Consider an arbitrary vertex v:

e If 3 < d(v) <5 then it gets a total of at least 3 x [2] = 3. Tts initial charge was at
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least d(v) — 6 > —3, and therefore, it has non-negative charge.

e if d(v) > 6, it had originally non-negative charge and it does not lose any charge in

the discharging phase.

So all the vertices have non-negative charge. Faces of size 3 had originally a charge of
0 and they don’t lose any charge in the discharging phase. There are no cycles of size
in {4,...,11}, and therefore no faces of size in {4,...,11}. Every other face f has size
at least 12 and it sends out 3|f| units of charge which is not more than 2|f| — 6, for
|f| > 12. Thus, all faces have non-negative charge after the discharging phase. However,
the total initial charge was —12. This contradiction completes the proof. [ ]

Now, one might ask if we can improve this statement by allowing cycles of size 11.
In other words, can we still prove 3-colourability if the given planar graph does not have
cycles of size in {4,...,10}7 You will see in a moment that by being a little bit more
careful in the design of the discharging rules we can prove this, using the same set of

reducible configurations.

Example 2.2.4 (Borodin [15]) Every planar graph without any cycle of size in {4,...,10}

18 3-colourable.

Proof: Part 1 (Reducible Configurations): It is easy to see that the two reducible
configurations in the previous proof, i.e. a vertex with degree at most 2 (a < 2-vertex)
and a cut-vertex, still form a set of reducible configurations.

Part 2 (Discharging): Let G be any planar graph without cycles of size in {4, ..., 10}
and apply the same set of initial charges to G. That is, to each vertex v we assign d(v) —6
and to each face f we assign 2|f| — 6 units of charge. Recall that by Euler’s formula
the total charge is —12. Now we have to define the set of discharging rules and show
that after the discharging phase either we have one of the reducible configurations, or
the total charge is non-negative, which of course is impossible. If we use the same set

of discharging rules as in the previous proof everything works out up to faces of size 11,
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(@) (b)

Figure 2.1: (a) A simple vertex and (b) a bad vertex

i.e., we can show that either we have a reducible configuration (a < 2-vertex or a cut-
vertex) or all the vertices and all the faces of size at least 12 have non-negative charge.
To complete the proof we need to show that none of the faces of size 11 will end up with
negative charge, either. But this is not true, because each such face sends out % x 11,
which is larger than its initial charge 16. But, do we really need to send % from each face

to all the vertices incident with it7

[t is not hard to see that 3-vertices (with initial charge of —3) are the most desperate
vertices for charge. If a 3-vertex v is incident with exactly one triangular face we call it
a bad verter and a 3-vertex which is incident to no triangular face is called simple (see

Figure 2.1). Note that by absence of 4-cycles, every 3-vertex is either simple or bad.

Since triangular faces have charge 0, they cannot afford to send any charges out in
the discharging phase. Therefore, if v is a bad vertex then each of the two non-triangular
faces that v is incident with, must send % to v. So every face f must send % to each of
its bad vertices. But if v is a simple vertex, then it is incident with three non-triangular
faces, and therefore, can receive charges from each of them. So it will be sufficient to
send only 1 unit of charge from each of those faces to v. Also, if v is a > 4-vertex, its
initial charge (which is d(v) — 6) is at least —2 and, as in the proof of Example 2.2.3, it
is incident with at least two non-triangular faces. If each of those faces sends 1 unit of
charge to v then v will have non-negative charge. This way, we may save enough charge

on faces, so much so that faces of size 11 have non-negative charge, too. So let’s modify
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the discharging rule to:

Every non-triangle face f sends % units of charge to each of its bad vertices

and 1 unit of charge to each of its other vertices.

As before, if we have a < 2-vertex or a cut-vertex we are done. Otherwise, by this
discharging rule every 3-vertex v receives at least 3 units of charge: if v is a bad vertex
it receives % units from each of the non-triangular faces it is incident with, and if it is a
simple vertex it receives 1 unit of charge from each of the three faces it is incident with.
Also, as we proved above, every > 4-vertex receives at least 2 units of charge and will
have non-negative charge. Regarding the faces, they are not sending more charges than
in the previous example, and therefore, faces of size at least 12 have non-negative charge
by the proof of Example 2.2.3. For a face f of size 11, an important observation to make
is that it can be incident with at most 10 bad vertices, because of parity (bad vertices
on a face come in pairs). Therefore, f sends out at most 10 x 3 +1 =16 = 2|f| — 6, and
hence has non-negative charge, which completes the proof.

]

If we want to relax the condition further and allow cycles of size 10 then this set of
discharging rules does not seem to work, since a face of size 10 may be incident with 10 bad
vertices, and therefore, must send 10 x % > 2|f| —6. So, one might think that to improve
the result of Example 2.2.4 one step further, we should try to come up with a better set
of discharging rules, and possibly a more careful assignment of the initial charges. Figure
2.2 shows a planar graph which does not have any cycle of size in {4, ...,9} and, neither
has a <2-vertex nor a cut-vertex. Therefore, changing only the discharging part of the
proof does not help and we must look for a new reducible configuration.

In general, to improve a result that uses the Discharging Method, sometimes it is

enough find a better set of initial charges and discharging rules (as we did in Example

2.2.4). But there are some situations (as described in the previous paragraph) that there
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Figure 2.2: A 2-connected planar graph with ¢ > 3 and without cycles of size in {4, ..., 9}

is no way of improving a result just by changing the discharging part since there are
graphs that do not have any of the current reducible configurations. In those situations
we must find a new set of reducible configurations and possibly a new set of discharging
rules that work with them. Almost always these two processes (finding a set of reducible
configurations and designing a set of discharging rules that work with them) have to be
co-ordinated. That is, looking at a current set of discharging rules gives us some hints

as to what kind of new reducible configurations we should be looking for.

One way of doing this is by looking at the elements that have negative charge after
applying the current set of discharging rules, but do not lie in or near a member of our
current set of reducible configurations. (Of course, we must have such an element, or else
we would already have a complete proof.) Often these elements are in or near something
that we can prove to be a new reducible configuration. For instance, when we tried to
apply our previous set of rules to graphs with 10-cycles, we saw that a 10-face with 10
bad vertices got negative charge. This inspires us to show, in the next chapter, that such

a face is reducible. (Note that the graph in Figure 2.2 has many such faces.) On the other
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hand, sometimes we cannot find new reducible configurations. Then we should refine our
discharging rules to send more charge to those problematic negatively charged elements.
Very roughly speaking, one can say that the relation of processes of finding these two
sets (the reducible configurations and the discharging rules) is similar to the relation
between the primal and dual of a linear program in the design of algorithms based on
a primal-dual scheme. Hopefully these rough statements will be clearer in Chapter 3,

when we explain how to improve the last example.

One final point worth mentioning is that in proofs using the Discharging Method,
there are usually equivalent forms of assigning initial charges to the elements of the
graph, in the sense that the proof based on one set of charges can be translated into a
proof based on another one, using a linear transformation of the initial charges and the
discharging rules. Furthermore, to be able to use Euler’s formula to calculate the sum of
the initial charges there are a limited number of forms of initial charges we can use. So,
the role in the proof that the set of initial charges play is not as crucial as that played

by the discharging rules.

2.3 Designing Algorithms Using the Discharging Method

We close this chapter by noting that almost all proofs using the Discharging Method are
constructive and yield efficient polynomial time algorithms. Usually, the reducible con-
figurations have size bounded by a constant k£ and so, naively, we can just do exhaustive
search and find one in time O(n¥). Often, the Discharging Method helps to do this step
faster. For instance, the proof of Example 2.2.4 yields an O(n?) time recursive algorithm
such that for a given embedded planar graph G without cycles of size in {4,...,10}
produces a 3-colouring of GG. For a disconnected graph, trivially it is enough to colour
each connected component separately. Therefore we give a procedure for 3-colouring

connected planar graphs without cycles of size in {4,...,10}.
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Each iteration of the procedure consists of either finding a <2-vertex and removing
it to obtain a smaller graph, or finding a cut-vertex and breaking the graph into smaller
subgraphs. Then we colour the new smaller graph(s) recursively, and extend the colour-
ing(s) to the whole graph. We keep doing this as long as there is at least one vertex in

the given graph. Here are the steps of the procedure:
e Apply the initial charges and the discharging rule.

e Since the total charge is negative, there is some vertex with negative charge (note

that by the proof of Example 2.2.4 all faces will have non-negative charge).

e If v € V has negative charge, then either d(v) < 2 or v is a cut-vertex. We can check
whether d(v) < 2 or not in constant time. If d(v) < 2 then we find a 3-colouring
for each connected component of G — v, recursively. These colourings can be easily

extended to G, since v has at most two coloured neighbours.

If v is a cut-vertex and the connected components of G — v are C', ..., Cy, then we
find a 3-colouring for each G; = C;U{v}, recursively. The union of these colourings,

possibly permuting the colours in each, yields a 3-colouring of G.

Now we analyze the running time of this procedure. Since in a planar graph the
number of edges and faces is linear in the number of vertices, we consider the size of a
planar graph to be the number of vertices in it. Let T'(n) be the worst case running time
of the procedure on an input graph of size n. In each iteration we apply the initial charges
and the discharging rule. For each face f it takes O(|f|) time to apply the discharging
rule to it. Since only faces send charges in the discharging phase, this step takes at most
O(Xer | f|) time which is in O(n). Then we find a vertex with negative charge which
can be done in O(n) time. Extending the colourings of the smaller subgraphs (that are
obtained recursively) to G takes constant time for the case that the vertex with negative
charge was a <2-vertex, and takes at most O(n) time for the case that it was a cut-vertex

(since we may have to permute the colours in some of the subgraphs).
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We prove by induction that for some constant C' > 0 and all values of n > 1:
T(n) < Cn®. The inequality is trivial for small values of n. So let’s assume that for all
values of 1 < i < n: T(1) < Ci?. Consider the procedure call in which the input graph has
size n. If a <2-vertex is found we make recursive calls on at most two smaller graphs of
sizes ny and ns, respectively, with n;+ny = n—1. Therefore: T'(n) < an+T(ny)+T (ns),

for some constant « > 0. Thus:

T(n)

IN

an +T(ny) +T(ny) < an + Cni + Cn}

< an+C(ny +ng)? < Cn?,

where the last inequality holds if C' is large enough with respect to a.

If a cut-vertex is found we make recursive calls on k smaller graphs G, ..., Gy, with
2<k<n-—1. Letn;=|V(G;)|,1 <i<k. Notethat 2<mn; <n-—1 (forl <i<k)
and Y% | (n; — 1) = n — 1. Therefore, for some constant a > 0:

k k
T(n) <an+> T(n) <an+C> n.
i=1 i=1
The last summation is is maximized when k& = 2 and one of n; or ny is n — 1 and the

other is 2. At this maximum, the sum is easily seen to be less than Cn?, as wanted.

2.3.1 An Extended Algorithm for Example 2.2.4

In Chapter 4 we will need to use a stronger version of the algorithm given above. Here we
describe this new algorithm. The input to this algorithm is an embedded planar graph
G without cycles of size in {4,...,7}. The algorithm either comes up with a 3-colouring
of G or finds a cycle of size in {4,...,10}. Again, we assume that the input graph is
connected, as for disconnected graphs it is enough to run the algorithm on each connected
component, independently.

At each iteration of the algorithm, we apply the initial charges and then the discharg-

ing rule as described in the proof of Example 2.2.4. Since the total charge is negative
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there must be some element with negative charge after the discharging phase. If there
is no face of size in {8,9,10}, then the only elements with negative charge will be 2-
vertices and cut-vertices. If we find such a vertex with negative charge we proceed as in
the previous algorithm. The other possibility is to have a face f with negative charge.
Such a face must be a face with size in {8,9,10}. Since the input at each iteration of
the algorithm is a subgraph of the original graph, this face f that has negative charge
corresponds to a cycle of G. Therefore, at each iteration of the new algorithm, either we
find a cycle of size in {8,9,10} and the algorithm terminates and returns it, or we find
a < 2-vertex or a cut-vertex and we proceed as in the previous algorithm. It is easy to
see that this slight modification does not change the running time of the algorithm, and

therefore, this new algorithm runs in O(n?) time, too.



Chapter 3

The Three Colour Problem

Remark 3.0.1 The results in this chapter are based on paper [48].

3.1 Steinberg’s Conjecture

In 1959, almost two decades before the Four Colour Theorem was proved, Grotsch [33]
showed that every planar graph without 3-cycles is 3-colourable. In 1976, Steinberg
[4, 52] conjectured that every planar graph without 4- and 5-cycles is 3-colourable. Both
4- and 5-cycles must be excluded. In fact there is an infinite family of 4-critical planar
graphs that have only four 4-cycles and no 5-cycles, and there is an infinite family of 4-
critical planar graphs that have no 4-cycles and have only six 5-cycles [1]. An equivalent
formulation of this conjecture is that every 4-chromatic planar graph has a 4- or 5-cycle.
This problem is also discussed in the monograph by Jensen and Toft [38] (Problem 2.9).

In 1990, Erdos relaxed the conjecture of Steinberg by asking if there exists an integer
k > 5, such that every planar graph without cycles of size in {4, ..., k} is 3-colourable.
An affirmative answer to the question of Erdés (and therefore a partial answer to the
conjecture of Steinberg) was obtained by Abbott and Zhou [1], who showed that £ = 11
is suitable, i.e. any planar graph without cycles of size in {4,...,11} is 3-colourable.

This is in fact our Example 2.2.3 in Chapter 2. Borodin [15] improved this result to

21
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k =10 (Example 2.2.4). To the date we started working on the problem, the best known
answer, which states that £ = 9 is suitable, was due to Borodin [14] and independently
to Sanders and Zhao [49] (An erroneous proof for the case k = 8 was claimed by B. Xu
[61], but it was later withdrawn).

Let Gs be the class of planar graphs without cycles of size in {4,...,8}. The main

result of this chapter is:
Theorem 3.1.1 FEvery graph in Gg is 3-colourable.

The proof of this theorem is constructive and yields an O(n?) time algorithm for
finding a 3-colouring of such graphs.

One key idea in the proof of this theorem, that distinguishes it from the previously
known results, is the following. To prove the reducibility of (some of) the configurations,
we modify the configuration by removing some vertices and edges and by adding a smaller
number of vertices and edges, which will be called the “gadget”. This modification
is designed carefully so that it enforces some properties that we require to prove the
reducibility, while preserving planarity and the key property of not having any cycles of
size in {4, ...,8}. Therefore, the new graph is in Gg, and since the graph we started with
was a minimum counter-example, there must be a 3-colouring of this new graph. Then
using the properties of the gadget we have added, we show how this 3-colouring can be
extended to a 3-colouring of the original graph.

The total number of reducible configurations used in the proof of this theorem is much
larger than in the previous results; it is about! 77, compared to 3 configurations needed
to prove the previous best known bound. To simplify the presentation of the proof, we
have divided these configurations into several groups based on their structures. We have
checked the reducibility of these 77 configurations by hand, but writing a hand-checkable

proof for each configuration and also going through these proofs and checking every single

!The actual number of reducible configurations is 69, since reducibility of some of them follows from
the others. However, the presentation of the proof will be significantly easier if based on 77 configurations.
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configuration by hand is a lengthy and tedious task. Instead, we give the hand-checkable
proofs of some of the configurations in each group. These proofs have a very similar struc-
ture and, after seeing a few of them, checking the reducibility of the other ones becomes
straightforward (although tedious and time consuming). But that’s not all! We have veri-
fied the reducibility of all of these configurations using a short and simple C program. So,
we also have a computer-aided proof. The program and the list of all the reducible con-
figurations appear in Appendices B and C, where we also explain how the configurations
have been generated. In Section 3.5 we explain how this program works. The program
and the file containing the reducible configurations and the description of the program
is also available at ftp://ftp.cs.toronto.edu/csrg-technical-reports/458/.

The organization of this chapter is as follows. Instead of proving Theorem 3.1.1
right away, in the next section we first try to improve on Example 2.2.4. We do this by
looking back at the proof of that example. This will lead us to prove a weaker version of
Theorem 3.1.1, which is basically the result of Borodin [14] and Sanders and Zhao [49].
The proof of Theorem 3.1.1 is provided in Section 3.3. We present some more notation
and definitions in Subsection 3.3.1. Subsection 3.3.2 contains the description of all the
reducible configurations and the hand-checkable proofs of some of them. We explain the
discharging rules in Subsection 3.3.3, which also completes the proof of Theorem 3.1.1.
Appendix A contains more hand-checkable proofs of reducible configurations. In Section
3.4 we show how the proof of Theorem 3.1.1 yields a quadratic time algorithm for 3-
colouring of graphs in Gg. Finally, in Section 3.5 we talk about the automated proof of

reducibility and the program written for this purpose.

3.2 A Weaker Version of the Main Theorem

Let Gy be the class of planar graphs without any cycle of size in {4,...,9}. Our goal is

to prove:
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Theorem 3.2.1 FEwvery graph in Gy is 3-colourable.

This is the previously best known result on this problem, proved by Borodin [14]
and by Sanders and Zhao [49]. To prove Theorem 3.2.1, we look back at the proofs of
Examples 2.2.3 and 2.2.4, and try to find a weakness in the arguments and improve it.

Recall the proof of Example 2.2.4. We showed that a minimum counter-example
cannot have a cut-vertex or a < 2-vertex, i.e. these two are reducible configurations.
Then to show that any arbitrary planar graph G without cycles of size in {4,...,10}
has one of these two reducible configurations we assigned d(v) — 6 units of charge to
every vertex v and 2|f| — 6 units to every face f of G. In the discharging phase, every
non-triangle face f sent 2 to each of its bad vertices and 1 to each of its other vertices.

This argument fails to work for graphs in Gy since for faces of size 10, the total charge
sent out might be more than their initial charges, and therefore, a 10-face may have
negative charge after the discharging phase. That happens, for example, to every non-
triangle face of the graph in Figure 2.2. The main problem here is that this graph does
not have any of the two reducible configurations (a <2-vertex and a cut-vertex). Note
that every 10-face in this graph has 10 bad vertices. This inspires us to try to prove that
if f is a 10-face in a minimum counter-example to Theorem 3.2.1, then there are some
non-bad vertices in the boundary of f. At least two non-bad vertices will be enough
since then in the discharging part of our proof, a non-reducible face f of size 10 would
send out at most 8 x 3 = 12 (to the bad vertices) and 2 x 1 = 2 (to the non-bad vertices)
for a total of 14 = 2| f| — 6, and so would have non-negative charge after the discharging
phase.

Note that every minimum counter-example to Theorem 3.2.1 is 4-critical as if G € Gy

then G — e € Gy for every e € E(G).

Claim 3.2.2 No j-critical planar graph (and therefore no minimum counter-exzample to

Theorem 3.2.1) has a 2k-face f (k > 2) with at least 2k — 1 bad vertices.
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Figure 3.1: A 2k-face incident with at least 2k — 1 bad vertices

Proof: Let G be a 4-critical planar graph and let f be a 2k-face of G whose vertices
in clockwise order are vy, ..., vy,. By way of contradiction assume that vy,...,v9,_; are
all bad vertices. This implies that each has degree 3 and is incident with exactly one
triangle. Without loss of generality, we can assume that vy; | and vy; are incident with
the same triangle, 1 < i < k. Thus, vy, either is also bad or has degree at least four. (see
Figure 3.1). Since G is 4-critical, there is a 3-colouring of G — vyvy, called ¢. Because
G is not 3-colourable, ¢(v;) = ¢(vqr); without loss of generality, we can assume both
are 1. We claim ¢(v3) = 1, otherwise we could exchange ¢(v;) with ¢(v,) and obtain a
3-colouring of G. Using a similar argument, we can show that ¢(v;) = 1, and in general
by induction, one can easily prove that ¢(vy41) = 1, for 0 < i < k — 1. But ¢(var_1)
cannot be equal to 1, as it is adjacent to v and ¢(vgy) = 1. This contradiction completes

the proof. [ ]

Remark 3.2.3 Note that the proof of this claim actually shows that any 3-colouring of
G — vyvy can be extended to a 3-colouring of G in constant time (for constant k), by

only exchanging the colours of some of the vertices of f.

Now we have a new set of reducible configurations (the first two were proved to be

reducible in Example 2.2.3 and those proofs clearly extend to this setting):

e a vertex of degree at most 2,
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e a cut-vertex, and
e a 2k-face with at least 2k — 1 bad vertices.

We will use the Discharging Method to prove that every planar graph G' € Gy must
contain at least one of these configurations.

Proof of Theorem 3.2.1: The set of initial charges and the discharging rules are
the same as in Example 2.2.4. Recall that by Euler’s formula the total initial charge is
—12. By the arguments of the proof of Example 2.2.4, either we have a < 2-vertex or
a cut-vertex, or every vertex and every face of size at least 11 has non-negative charge.
If G has a <2-vertex or a cut-vertex we are done. Otherwise, because the total charge
must remain negative after the discharging phase, there must be a face of size 10 with
negative charge. Suppose f is such a face. As we discussed before Claim 3.2.2, f must
be incident with at least 9 bad vertices to have negative charge. But such a structure is
reducible by Claim 3.2.2. Therefore, G’ contains one of the reducible configurations and
this completes the proof of Theorem 3.2.1. [ ]

Note that, as does the proof of Example 2.2.4, this proof yields a simple quadratic
time 3-colouring algorithm. Here we give a procedure that given a connected embedded
graph G' € Gy as input, produces a 3-colouring of GG. Obviously if we have a disconnected
graph G € Gy, it is enough to apply this procedure to each of its connected components.
At each iteration of the procedure, we apply the initial charges and then the discharging
rule. Since the total charge is negative, there is either a vertex or a face with negative

charge:

1. If there is a vertex v with negative charge, then either v is a <2-vertex or a cut-
vertex. As in the algorithm of Example 2.2.4, for the case that v is a < 2-vertex
we can colour each connected component of G — {v}, recursively, and extend these
colourings to v. For the case that v is a cut-vertex and Cy,...,Cy (t > 2) are the

connected components of G — {v}, we can colour each G; = C; U {v}, 1 < i < t,
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recursively, and then combine these colourings (possibly permuting some colours in

some of the colourings) to obtain a 3-colouring of G.

2. If there is a face f with negative charge, then this face must be a 10-face with at
least 9 bad vertices. We remove one of the edges as in the proof of Claim 3.2.2 and
colour the new graph recursively. By Remark 3.2.3, this colouring can be extended

to GG in constant time.

This procedure iterates as long as there is at least one vertex in the graph. Let the
size of the input graph G' be n = |V|+ |E| and denote the worst case running time of the
algorithm on an input of size n by T'(n). As in the algorithm of Section 2.3, since faces
are the only elements that send charges in the discharging phase, applying the initial
charges and the discharging rule takes O(X;cp |f|) time, which is in O(n). After that,
finding an element (vertex or face) with negative charge takes O(n) time. If the element
with negative charge is a vertex then (as we had in the algorithm of Example 2.2.4) it
takes at most linear time to extend the colouring of the smaller graphs to G. If the
element with negative charge is a face, by Remark 3.2.3, it takes constant time to extend
the colouring to G. So we can assume that all these steps take at most an time, for some
constant v > 0.

By induction on n, we prove that for all values of n > 1 and for a suitable constant
C > 0: T(n) < Cn?% For small values of n the inequality trivially holds, if C' is large
enough. Suppose that T'(i) < C4?* for all values of 1 < i < n, and consider the iteration

in which the input graph has size n. After the discharging phase:

e For the case that the element with negative charge is a 2-vertex or a cut-vertex then

an analysis very similar to that of algorithm of Section 2.3 shows that T'(n) < C'n?.

e For the case that the element with negative charge is a face then we make a recursive
call on a graph obtained by removing a single edge of GG, i.e. a graph with size n—1.

Therefore: T(n) < an+T(n—1) <an+ C(n —1)* < Cn?, for large enough C'.
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(a) (b) (©)
Figure 3.2: (a) A type 0 vertex, (b) a type 1 vertex, and (c) a type 2 vertex

So the running time of the algorithm is O(n?).

3.3 Proof of the Main Theorem

In this section, we strengthen our arguments from the previous section to prove Theorem
3.1.1. First we need to state a few more definitions used in the description of reducible
configurations. We will also use the definitions from Chapter 2 for bad and simple

vertices.

3.3.1 Preliminaries

Recall that a 3-vertex is bad if it is incident with exactly one triangle, and simple oth-
erwise. Let v be a vertex with degree 4. Then v is called a type 0 vertex if it is not
incident with any triangles. If it is incident with exactly one or exactly two triangles,
then it is called a type 1 or type 2 vertex, respectively. Note that by absence of 4-cycles,
every 4-vertex is one of these three types (See Figure 3.2).

In the proof of Theorem 3.2.1 we saw how to deal with faces of size at least 10.
Dealing with 9-faces will require some care. We begin by defining some structures that
involve 9-faces. Let f be a 9-face incident with 8 bad vertices. Then f is called a simple,
a type 0, a type 1, a type 2, or a type 5 face, if the ninth vertex of f is a simple, a type
0, a type 1, a type 2, or a 5-vertex, respectively (See Figure 3.3).

Now suppose that f is a 9-face which has exactly 7 bad vertices (and therefore is
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(d) (e)

Figure 3.3: (a) A simple face, (b) a type 0 face, (c¢) a type 1 face, (d) a type 2 face, and

(e) a type 5 face.

adjacent to exactly four triangles), and has a type 1 vertex which is incident with one
of these four triangles. This accounts for 8 of the vertices. If the ninth vertex of f is a
simple vertex then f is called a semi-simple face. Similarly, if the ninth vertex of f is
a type 0 vertex, or a type 1 vertex, or a type 2 vertex, then it is called a semi-type 0,
semi-type 1, or semi-type 2 face, respectively (see Figure 3.4). We have not given a name
to every 9-face. We named only 9-faces with 8 bad vertices and a <5-vertex, or with 7

bad vertices and two 4-vertices.

As you will see later, some reducible configurations are made from an interaction of
three faces of size 9. For this reason we have to define a few more structures. Let f; be a
semi-type 0 face whose vertices (in counter-clockwise order) are vy, vo, ..., v, where vy is
the type 0 vertex, and let f, be a type 0 face whose type 0 vertex is v;. If v; is the type
1 vertex of fi, for some 3 <7 < 8, and f3 is a semi-simple face whose type 1 vertex is v;,

then we call this configuration a “simple triple structure” (See Figure 3.5(a)). Similarly,
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(d)

Figure 3.4: (a) A semi-simple face, (b) a semi-type 0 face, (¢) a semi-type 1 face, (d) a

semi-type 2 face

Figure 3.5: (a) A simple triple structure with v; = vy, (b) a triple structure of kind 1

with v; = v, (¢) a triple structure of kind 2 with v; = vs

if f3 is a type 1 face whose type 1 vertex is v;, then we call this configuration a “triple
structure of kind 1”. Finally, if f3 is a semi-type 2 face whose type 1 vertex is v;, then

we call this configuration a “triple structure of kind 2. (See Figure 3.5)

3.3.2 Reducible Configurations

Suppose we were to follow the same steps as in the proof of Theorem 3.2.1. That is, in
the discharging part assign an initial charge of d(v) — 6 to every vertex v and 2|f| — 6

to every face f. For the moment, let’s assume that we used the same discharging rule,

3

5 to every bad vertex and 1 to every other vertex

i.e. every non-triangle face f sends
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in its boundary. Then, as in the proof of Theorem 3.2.1, we could show that either we
have one of the reducible configurations of the proof of Theorem 3.2.1, or every vertex
and every face of size at least 10 has non-negative charge. But how about faces of size
97 Suppose that f is a 9-face and has 8 bad vertices vy, ...,vs. Therefore, f is sending
out all its 2|f| — 6 = 12 units of charge to these bad vertices and has nothing left to
send to its ninth vertex. In particular, if vg, the ninth vertex of f, is a simple vertex, i.e.
[ is a simple face as in Figure 3.3(a), then f must send 1 unit of charge to vy and will
have —1 charge. This inspires us to try to show that a simple face is in fact a reducible
configuration.

In the next five lemmas, by a minimum-counter example we mean a graph G € Gg
which is is a counter-example to Theorem 3.1.1 with the minimum number of vertices,
and that among those counter-examples which have the same number of vertices as G,

G has the minimum number of edges.

Lemma 3.3.1 A minimum counter-example cannot have a simple face.

Proof: Let G be a minimum counter-example and suppose that f is a simple face in
G. Let’s denote the vertices of f by vy, v9,...,v9, in clockwise order, where vy, ..., vg
are bad and vy is simple. We denote the vertex adjacent to both vy; 1 and vy by w;,
1 < i < 4. The neighbour of vg not in the boundary of f is called ws. (see Figure 3.6(a)).
We modify G in the following way: remove vy, vs,...,v9 and their incident edges from
G and add 6 new vertices uy, us, . . ., ug. Make uy, us, us and uy, us, ug two triangles and
add the following edges: ujwy, usws, usws, uswy, usug. (see Figure 3.6(b)).

Call this new graph G’ and the new vertices and edges the gadget. Clearly G’ is planar
and it is straightforward to verify that the pairwise distances of wy,...,ws in G' using
only the vertices and the edges of the gadget is not less than their corresponding distances
in G using only the vertices and the edges that are removed. Thus G' € Gg. The number

of vertices of G’ is smaller than in G. So by minimality of G, there is a 3-colouring of
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(b)

Figure 3.6: A simple face and the gadget added

G', called C. A very useful property of the gadget is that wy, ..., w4 cannot have all the
same colour in C'. We can easily prove this by contradiction. Assume that they all have
got the same colour, say 1. Therefore, the colours of uy, us, us, and us are all different
from 1. Since uy, uy, ug and w4, us, ug are triangles and we are using only three colours in

C, both ug and ug (which are adjacent) should have been coloured 1, which is impossible.

Consider colouring C' induced on G — {vy,...,v9}. The only coloured neighbour of
vg is ws. So we can extend C' to vg by assigning a colour to it different from C(ws). Now
the only two coloured neighbours of vg are w, and vy, so there is a colour available for
vg. Using the same argument we can extend C' by colouring vz, vg, . . ., v, greedily. By
the time we get to vy this greedy algorithm will assign a colour to v; different from C(vy)
and C(w;). But since G is not 3-colourable, C'(v;) must be equal to C'(vy). Without
loss of generality assume that C'(v;) = C'(vy) = 1. We could exchange C(v;) and C(vq)
to resolve the conflict between C'(vy) and C(vy), unless C(v3) = 1. So assume that
C(vs) = 1. Similarly, we could exchange C(v3) and C(v4) to make C(vs) # 1, unless
C(vs) = 1. So we must have C(vs) = 1. By the same argument we can show that
C(vr) = 1.

Note: This technique is used by Sanders and Zhao [49]. We have already seen it in

the proof of Claim 3.2.2 and will use it frequently in the proofs of other lemmas. We call
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this argument the “chaining argument”.

On the other hand, without loss of generality, we can assume that C'(ws) = 2. Now if
C(vs) = 2 then we could simply assign C'(v9) = 3 and resolve the conflict between C'(vg)
and C(vy). We apply the chaining argument again. Therefore C'(vg) = 3 and C(wy) = 2.
If C(vg) # 3 then we could simply exchange C(v7) with C(vg) and set C(vg) = 3.
Therefore C'(vs) = 3 and C(w3) = 2. Using the same argument C'(vs) = C(v2) = 3 and
C(wq) = C(wy) = 2. But this means that all wy,...,w, have the same colour in C, a

contradiction. 2 m

Remark 3.3.2 By this lemma, any 3-colouring of G — {wv1,...,v9} in which not all
wy, ..., ws have the same colour can be extended to a 3-colouring of G in constant time.
One way of doing this is using exhaustive search, considering all possible 3-colourings of

U1,...,09.

Continuing the discussions we had before Lemma 3.3.1, one other possibility for a 9-
face f to have negative charge is that it has 8 bad vertices vy, ..., vs and the ninth vertex
of it, vy, is a 4-vertex. In this case too, f sends 1 unit of charge to vy, and therefore,
has —1 charge. One might argue that if vy is a type 0 vertex it is incident with four
non-triangular faces, and therefore, we might be able to change the discharging rules so
that vg receives charge from the other faces and f does not have to send any charge to
vg. This saves 1 unit of charge for f and it will not have negative charge. This is a valid
argument and in fact we do exactly that (see rule R5 in Section 3.3.3). But if vy is a
type 2 vertex, i.e. if f is a type 2 face (as in Figure 3.7(a)), then there are only two
non-triangular faces incident with vy, one of them is f and let’s call the other one f’.
These are the only two non-triangle faces incident with vy and they should send charge to

vg. If f' too is a type 2 face, then each of f and f’ must send 1 unit of charge to vg, but

2The reader might have observed that this argument can be simplified by using the well-known fact
that an odd cycle can be 2-list coloured as long as the lists are not all the same. But we prefer to use the
above argument as we will generalize it to prove reducibility of some more complicated configurations.
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Figure 3.7: A type 2 face and the gadget added

they cannot afford to do so, as each of them is sending all of its charge to its bad vertices.
So this is a situation in which we should be looking for a reducible configuration. In the

following lemma we show that in fact a type 2 face (like f) is reducible.
Lemma 3.3.3 A minimum counter-ezample cannot have a type 2 face.

Proof: Let G be a minimum counter-example and suppose that f is a type 2 face of G
whose bad vertices are vy, vg, . .., vs and whose type 2 vertex is vy (see Figure 3.7(a)). We
modify G in a way similar to that of Lemma 3.3.1: remove vy,...,v9 and add a gadget
as in Figure 3.7(b).

It is straightforward to verify that the new graph G’ is in Gg, and by definition of
G, there exists a 3-colouring of G', say C. Note that by the same argument as we had
in Lemma 3.3.1, we cannot have all ws, wy, ws, w3 coloured with the same colour in C'.
Consider €' induced on G. Since the only coloured neighbours of vy are w, and ws;, we
can extend C' to vg. Assign a colour different from C'(vg) and C(ws) to vy. Also, starting
from vg and moving around f toward v, in counter-clockwise order, we can extend C
by colouring vs, ..., vs greedily. We assign a colour different from C(vs) and C(w;) to
vy. Since G is 4-chromatic, v, will get the same colour as vy, say 1. By the chaining

argument C'(vy) = C(vg) = C(vg) = 1. Without loss of generality we assume C(vg) = 2



CHAPTER 3. THE THREE COLOUR PROBLEM 35

which yields C(w,) = C(w;) = 3. If C(v7) # 2 then we could set C'(vg) = 2, C(vg) = 1,
and C(v;) = 2 and get a 3-colouring of G.. So C'(v7) = 2 and C(w3) = 3. By the chaining
argument C'(v;) = C(vs) = 2. This means that C'(w,) = C(wy) = C(w3) = C(ws) = 3,

which is a contradiction. ]

Remark 3.3.4 As in Remark 5.5.2, the proof of this lemma tmplies that any 3-colouring
of G—{v1,...,v9}, in which not all wy, wy, w3, ws have the same colour, can be extended

to a 3-colouring of G in constant time using exhaustive search.

The previous two configurations are our only reducible configurations that involve
only one 9-face. By extending the arguments preceding these two lemmas, we see that
there are more complicated structures that we must prove are reducible. The general
idea of the proof of all of the other configurations is basically the same as above. In
most of them, we need to forbid some of the vertices from all having the same colour. To
do this, we remove some vertices and edges of the minimum counter-example and add
a gadget whose structure is similar to the one in the previous lemmas. In all the cases,
the new graph is smaller and is in Gg, hence is 3-colourable. Then we show that this
3-colouring induced on the original graph (which will be a partial 3-colouring), can be
extended to a 3-colouring of the whole graph, contradicting an assumption that it is a
minimum counter-example. This establishes the reducibility of the configuration.

The following lemma proves the reducibility of a configuration that involves two 9-

faces, each of which is a type 0 face.

Lemma 3.3.5 A minimum counter-ezample cannot have two type 0 faces sharing their

type 0 vertex.

Proof: Let G be a minimum counter-example and suppose that f; and fy are two type
0 faces in G sharing their type 0 vertex. There are two possible configurations of this

kind (shown in Figures 3.8(a) and 3.9(a)). We consider each case separately:
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Figure 3.8: Two type 0 faces sharing a type 0 vertex

Configuration of Figure 3.8(a): First we remove vy, ...,v9 and ug,...,us and all the
incident edges. Then add four new triangles and connect them together and to the rest
of the vertices of G as in Figure 3.8(b). Call this new graph G'. It is straightforward to
verify that: (i) G’ € Gg (ii) because of minimality of G there is a 3-colouring of G’, say
C, and (7i1) wy, ..., ws cannot all have the same colour in C.

Now consider this 3-colouring induced on G. We can easily extend C' to vy, since only
one neighbour of vy, which is u;, is coloured. Similarly, we can extend C' by colouring
vg, ..., v3 greedily. Also, starting from wus and moving around f5 in clockwise order, we
can colour us, . .., us, greedily. Now assign a colour different from C'(v3) and C/(ug) to vs,
which will be equal to C'(vy). Without loss of generality, assume that C'(v;) = C(vg) = 1.
By the chaining argument starting from v, and going around fi: C(vs) = C(vg) =
C(vg) = 1. Similarly, by the same argument for the vertices around fy: C(u7) = C(us) =
C(uz) = 1.

Without loss of generality assume C(u;) = 3. Suppose that C'(uy) = 3. First exchange
C(vs) with C(ug) (if needed) so that C'(v3) # C(vs). Now exchange C(vg) with C(vsg),
C(v7) with C(vg), and C(vs) with C(vy), and set C(v;) = 2. This gives a 3-colouring

of G which is a contradiction. Thus C'(us) = 2 and by the chaining argument C'(uy) =
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(@) (b)

Figure 3.9: Two type 0 faces sharing a type 0 vertex

C(ug) = C(ug) = 2. Using exactly the same argument we can show that C'(vg) = 2 and
by the chaining argument C'(v;) = C(vs) = 2. But this means that wy,...,ws all have

colour 3 in C, contradicting property (i7i) mentioned for C'.

Configuration of Figure 3.9(a): First remove vy,...,vy9 and uq,...,us and all the
incident edges. Then add four new triangles and connect them together and to the rest of
the vertices of G as in Figure 3.9(b). Call this new graph G’. Again, it is straightforward
to verify that: (i) G’ € Gs, (ii) because of minimality of G there is a 3-colouring of G,
say C, (tii) wy, ..., wy cannot all have the same colour in C'. Similarly, ¢, ...,¢, cannot

all have the same colour in C.

Now consider this 3-colouring induced on G. We extend C' by colouring the uncoloured
vertices of G greedily in the following order: wug, uz, ..., u;, vy, vy, vg, . . ., V3, since at each
step there are at most two colours in the neighbourhood of the vertex we want to colour.
We can also assign a colour different from C'(w;) and C(vs) to vy. By definition of

G, C(v1) = C(vg), which we can assume is equal to 1. By the chaining argument
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C(vy) = C(vg) = C(ug) = 1.

Without loss of generality, assume that C'(vg) = 3. We exchange C'(vg) with C(uvg). If
C(v7) = 3 exchange C(v7) with C(vg) and then if C'(vs) = 3 exchange C(vs) with C(vy).
In this case C'(v3) cannot be 3, otherwise all wy, ..., w, have colour 2, contradicting (ii7).
Note that now C(vg) = C(v;) = C(vy) = 1. We claim that {C(u),C(us)} # {2,3}.
By way of contradiction, assume that C'(u;) = 2 and C(ug) = 3. If we could exchange
C(uy) with C(ug), or C(ug) with C(uz), then there would be at most two colours in the
neighbourhood of vg, and therefore, we could assign a new colour to vy different from its
neighbours, and get a 3-colouring of G. So, C'(u3) = 2 and by the chaining argument,
C(u3) = C(us) = C(ur) = 2. Similarly, C'(ug) = C(ug) = C(us4) = C(uz) = 3. But this
implies that all ¢1,...,¢; have colour 1 in C, contradicting property (iiz) of C. [ |

So in Lemma 3.3.5 we actually proved the reducibility of two subconfigurations. The
same will be true for the next lemma. Our most complicated reducible configurations

involve an interaction of three 9-faces. Next we prove the reducibility of one of them.

Lemma 3.3.6 A minimum counter-example cannot have three type 5 faces sharing their

5-vertez.

Proof: Let G be a minimum counter-example with three type 5 faces sharing their
5-vertex. There are two possible non-symmetric configurations of this kind, which are
shown in Figures 3.10(a) and 3.11(a). We consider each case separately:

Configuration of Figure 3.10(a): First we remove wuy, ..., uz, vg,..., Vo, t1,...,t7, and
all the incident edges. Then add 6 new triangles and connect them together and to
the rest of the vertices of G as in Figure 3.10(b). Call this new graph G'. Again, it is
straightforward to verify that: (i) G' € Gg, (ii) because of minimality of G there is a
3-colouring of G', say C, and (#ii) wy, ..., ws cannot all have the same colour in C.

Consider this 3-colouring induced on G. We extend C' by colouring the uncoloured

vertices of G greedily in the following order: ty,%s, ..., t7,v9, Vs, ..., Vs, U7, Ug, - - - , Usg, SINCE
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L

Figure 3.10: Three type 5 faces sharing a 5-vertex

at each step there are at most two colours in the neighbourhood of the vertex we want
to colour. We also assign a colour different from C(ug) and C(w;) to u;. Since G is
not 3-colourable, C'(u;) = C(vy), which we can assume is equal to 1. By the chaining
argument, C'(u3) = 1, and also all us, ur, vy, vs, vs, te, t4, and t2 must have been coloured
1. First we show that C(t;) # C(us). Assume that they are both equal, say 2. We
can exchange C(t7) with C'(vg) (if needed) so that C'(vg) = 2, too. Similarly, we can
exchange C(vg) with C'(vs) if needed to set C'(vy) = 2. Then we can set C'(v;) = 3 and
get a 3-colouring of G.

So we can assume that C'(t;) = 3 and C(ug) = 2. If we could exchange C(t;) with
C(t2), by an argument similar to the previous case, we can set C'(vg) = C'(v2) = 2 and set
C(v1) = 3. This shows that we cannot exchange C(t1) with C(t2), because C(t3) = 3. By
the chaining argument C(t5) = 3, too. Now, if C'(v7) = 2 then we could set C'(vg) = 3,
C(vg) = 1, C(t7) = 2, and exchange C(tg) with C(t5), C(t4) with C(t3), and C(ts)
with C(t;), and set C(v;) = 3. This shows that C'(v7) = 3. By the chaining argument
C(vs) = 3, and by a similar argument we can show that C'(ug) = C'(us) = C(ug) = 3.
All these show that wy,...,ws are all coloured with 2 which contradicts property (7ii)
mentioned above for C.

Configuration of Figure 3.11(a): First remove vy, ..., v, t1,...,tg,uy,...,ur and all
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(b)

Figure 3.11: Three type 5 faces sharing a 5-vertex

the incident edges. Then add 6 new triangles and connect them together and to the rest
of the vertices of G as in Figure 3.11(b). Call this new graph G'. It is straightforward to
verify that: (i) G" € Gg, (i7) because of minimality of G there is a 3-colouring of G', say
C, and (éii) wy,...,ws cannot all have the same colour in C. Also, wr,...,wyy cannot
all have the same colour in C.

Consider this 3-colouring induced on G. We extend C' by colouring the uncoloured
vertices of G greedily in the following order: tg,t7,...,t1, v, 09, Vs, ..., VU, Uz, Ug, ..., Us,
since at each step there are at most two colours in the neighbourhood of the vertex we
want to colour. We also assign a colour different from C(uy) and C(w,) to u;. Since G
is not 3-colourable, C'(u;) = C(v;), which we can assume is equal to 1. By the chaining
argument, C'(uz) =1 = C(us) = C(uy) = C(v4) = C(vg) = C(vg).

First we show that C'(¢;) # C(ts). By contradiction assume that they are equal to 2.
So C(vg) = 3, otherwise we could simply set C'(v;) = 3 and exchange C(vy) with C(v3)
if needed. By the chaining argument C'(v;) = C(vs) = 3. By the chaining argument,
C(ug) = 3 = C(us) = C(uz). But this requires that all wy, ..., ws be coloured 2, which
contradicts property (iii) mentioned above.

So we can assume that C(t;) = 2 and C(ts) = 3. If we could exchange C(tg) with
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C(t7) then we could use the same argument as in the previous paragraph to modify C
so that there are only colours 1 and 2 in the neighbourhood of v; and set C'(v;) = 3 to
get a 3-colouring of G. This contradiction shows that C'(tg) = 3, and by the chaining
argument C(t4) = C(t) = 3. We can do a very similar argument to show that C'(t3) = 2
and by the chaining argument C(¢5) = C(t7) = 2. But then we have to have C(w7) =
C(ws) = C(wg) = C(wyp) = 1 which contradicts property (iii) we mentioned. n

In addition to the reducible configurations we used in the proof of Theorem 3.2.1,
we have seen four new configurations described in Lemmas 3.3.1 to 3.3.6, some of which
have two subconfigurations. There are 8 other configurations. Below we list all these
fifteen configurations, including the four we proved above and the three used in the proof
of Theorem 3.2.1 (see Figure 3.12):

Reducible Configurations:

1. A <2-vertex.

2. A cut-vertex.

3. A 2k-face with at least 2k — 1 bad vertices.

4. A simple face.

5. A type 2 face.

6. Two type 0 faces sharing their type 0 vertex.

7. Three type 5 faces sharing their type 5 vertex.

8. Two semi-simple faces sharing a type 1 vertex.

9. Two semi-type 2 faces sharing a type 1 vertex.
10. A semi-type 2 face sharing its type 1 vertex with a type 1 face.

11. A semi-type 2 face sharing its type 1 vertex with a semi-simple face.
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OgRe}

4: A simple face 5: A type 2 face

13: A simple triple structure 14: A triple structure of kind 1 15: A triple structure of kind 2

Figure 3.12: Reducible configurations 4-15
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12. A semi-simple face sharing its type 1 vertex with a type 1 face.
13. A simple triple structure.
14. A triple structure of kind 1.
15. A triple structure of kind 2.

While this list has only 15 configurations, some of them (like configurations 6 and 7)
have two subconfigurations, and some of them (like configurations 14 and 15) have many
more subconfigurations, so many so that the total number of configurations (considering

all subconfigurations) is 77.

Lemma 3.3.7 A minimum counter-example to Theorem 3.1.1 cannot have any of the

configurations given above.

We have seen the hand-checkable proofs for configurations 1-7 (in the proofs of Ex-
ample 2.2.3, Theorem 3.2.1, and Lemmas 3.3.1 to 3.3.6). We defer the proof of other
configurations until Section 3.5 and Appendices A, B, and C, where we describe the
hand-checkable proofs of configurations 8-12 and we discuss the computer-aided proof of

all configurations.

Remark 3.3.8 As in Remarks 3.2.3, 3.3.2, and 3.5.4, for each of the configurations
given above, the proof of reducibility yields a constant time algorithm for extending a
3-colouring of the graph obtained by removing the vertices of the configuration (and pos-
sibly adding a gadget to it) to a 3-colouring of the original graph. One way of doing
this 1s erhaustive search, i.e. considering all possible 3-colourings of the vertices of the

configuration. Since each configuration has constant size this takes O(1) time.

We complete the proof of Theorem 3.1.1 by proving the unavoidability of these con-

figurations (using the Discharging Method) in the next section.



CHAPTER 3. THE THREE COLOUR PROBLEM 44

3.3.3 Discharging Rules

Let GG be an arbitrary graph in Gg. As in the proofs of Theorem 3.2.1 and Example 2.2.4,
we give an initial charge of d(v) — 6 units to each vertex v and 2|f| — 6 units to each face
f. By Euler’s formula, the total charge is —12. In the discharging rules, we move some
charges from faces to vertices. So the vertices do not lose any charge in the discharging
phase.

Let’s try the discharging rule we had in the proof of Theorem 3.2.1. That is, assume

3

5 to each of its bad vertices and 1 unit to every other

every non-triangle face f sends
vertex. By this rule, as we proved in Example 2.2.4, every > 11-face will have non-
negative charge or else we have reducible configuration 1 or 2. Also, the only 10-faces

with negative charge are those that have at least 9 bad vertices. But these faces are

reducible (configuration 3). Therefore, we can keep this rule for > 10-faces:

R1: Every > 10-face sends % to each of its bad vertices and 1 to each of its

non-bad vertices.

If we use the same rule for 9-faces, there are several possible 9-faces that will have
negative charge. For example, if a 9-face f is incident with 8 bad vertices and a type 0
vertex (i.e. fis a type 0 face), then f sends 2 x 8 = 2|f| — 6 units of charge to the bad
vertices and it cannot afford to send another 1 unit of charge to its non-bad vertex. Some
but not all such situations are dealt with using new reducible configurations introduced
in the previous subsection. For others, we need to modify the discharging rule.

If a 9-face is incident with at most 6 bad vertices, then it has to send at most % X6 =29
units to them, and can afford to send 1 unit of charge to every other vertex in its boundary.
So we can keep our standard rule for such a 9-face. Also, recall from the proof of Example
2.2.3 that, since there are no 4-cycles, every > 5-vertex is incident with at least two non-
triangle faces. If v is a 5-vertex (the largest degree with negative initial charge), it has

initially —1 charge and it only needs to get at most % unit from each of the at least two
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non-triangle faces that are incident with it. Therefore, if a 9-face is incident with 7 bad
vertices and at least one > 5-vertex, then it can send % x 7 = 10.5 to the bad vertices,
: to the 5-vertex (if there is one), and 1 to the other vertex. We combine these into the

following rule:

R2: If f is a 9-face with at most 6 bad vertices, or with exactly 7 bad vertices
and at least one > 5-vertex, then f sends % to each of its bad vertices, 1 to

each of its 4-vertices, and % to each of its H-vertices.

Now we prove that by these two rules, every > 5-vertex either has non-negative charge

after the discharging phase or lies in a reducible configuration.

Lemma 3.3.9 Every >5-vertex will either have non-negative charge, after the discharg-

ing phase, or lie in a reducible configuration

Proof: If d(v) > 6 then its initial charge is non-negative and it doesn’t lose any charges
in the discharging phase. Assume that d(v) = 5 and the faces incident with v in clockwise
order are fi, fa, f3, f1, f5. Note that either all these faces are distinct or v is a cut-vertex
(reducible configuration 2). Recall that a type 5 face is a 9-face incident with 8 bad
vertices and a 5-vertex. If none of fi,..., f5 is a triangle then at least three of them are
type 5 faces or at least three of them are not type 5 faces. In the former case, G has
reducible configuration 7. In the latter case by rules R1 or R2 each of the three sends at
least % to v and so v will have non-negative charge.

Assume that exactly one of fi,..., f5, say fi, is a triangle. Then f, and f5 are not
type 5 and so each one is either a > 10-face or a 9-face with at most 7 bad vertices. Thus,
each sends % to v, by rules R1 or R2.

Finally, assume that exactly two of fi,..., f5 are triangles (if more than two of them
are triangles then G will have a 4-cycle). Note that these triangles cannot be adjacent

because G' cannot have a 4-cycle. Without loss of generality, assume that f; and f3 are
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e
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Figure 3.13: (a) A simple vertex v incident with a simple face f (b) a simple vertex v

incident with a semi-simple face f

triangles. Thus, f, and f5 cannot be of type 5, and as in the previous case, each of them

sends at least % to v by rules R1 or R2. [ ]

So the only vertices that remain to be dealt with are 3- and 4-vertices. Remember
that 3-vertices (with initial charge of —3) are the most desperate vertices for charge. As
we have argued before, every bad vertex should get % from the non-triangular faces that
are incident with it. Thus, in all our rules we insist that every 9-face sends % to each of
its bad vertices. Also, if v is a simple vertex, it needs to get 3 units of charge from the
three faces it is incident with. Each of these faces sends 1 unit of charge to v by the rules
given so far, if it is a > 10-face or a 9-face with at most 6 bad vertices, or a 9-face incident
with 7 bad vertices and a > 5-vertex. What if some of these three faces are 9-faces to
which rule R2 does not apply? For example, if f is a 9-face incident with simple vertex
v and 8 bad vertices (see Figure 3.13(a)), then f must send 2 x 8 = 2|f| — 6 to its bad
vertices and it has nothing left to send to v. This is why we proved in Lemma 3.3.1 that

a face like f (a simple face) is reducible. Thus, if G has such a configuration we are done.

To complete our analysis of the 3-vertices, the only other possibility we have to
consider is when f is a 9-face with 7 bad vertices, one simple vertex (which is v) and
the other vertex u is a <4-vertex (since otherwise rule R2 applies to f). This is possible

only if u is a type 1 vertex, i.e. f is a semi-simple face (see Figure 3.13(b)). In this case,
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f must send % x 7 =10.5 to its bad vertices and, as we discussed above, it has to send 1
unit to its simple vertex, v. Therefore, it has only % unit of charge left to be sent to its
type 1 vertex, u. We hope that since w is incident with two other non-triangle faces, it
can receive enough charge from them to have non-negative charge. So, for the moment,
let’s assume that u will be fine. We will deal with it later. Thus, every 9-face that has a
simple vertex (other than a simple face which is reducible configuration 4) can afford to
send 1 unit of charge to it. This way, we are sure that every 3-vertex, whether it is bad or
simple, gets 3 units of charge from the faces incident with it and will have non-negative

charge. So we introduce the following rule:

R3: Every 9-face sends % to each of its bad vertices and 1 unit of charge to

each of its simple vertices.

Note that if f is semi-simple (as in Figure 3.13(b)), by the above rule it sends out
% X 7+ 1 =11.5 units, and still has % units of charge. Later, we will give a rule to make
use of this charge by moving it from f to its type 1 vertex, u.

Since in R3 we say every 9-face sends % units to each of its bad vertices, it is redundant
to say in R2 that every 9-face with at most 6 bad vertices, or with 7 bad vertices and at

least one > 5-vertex sends % to its bad vertices. So we can modify R2 as follows:

New R2: If f is a 9-face incident with at most 6 bad vertices, or with
exactly 7 bad vertices and at least one >5-vertex, then f sends 1 to each of

its 4-vertices, and % to each of its 5-vertices.

Therefore, these three rules ensure that every 3-vertex has non-negative charge, or it
is a cut-vertex (reducible configuration 1) or in a simple face (reducible configuration 4).

Thus, we have proved:

Lemma 3.3.10 FEach 3-vertex will either have non-negative charge after the discharging

phase or lie in a reducible configuration.
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Figure 3.14: A type 2 vertex v

By these three rules, we also know that, so far, all >9-faces that do not lie in reducible
configurations have non-negative charge and in many cases they have positive charge. So
the only elements with negative charge that we have to deal with are 4-vertices. By the
first rule we know that 4-vertices are getting 1 unit of charge from every > 10-face that
they are incident with. So the remaining cases we have to consider are incidences of
4-vertices with 9-faces. The rest of the rules we introduce here are for dealing with these

cases, by moving the remaining positive charge on 9-faces to degree 4 vertices.

If every non-triangle face (including every 9-face) could send 1 unit of charge to its
>4-vertices, then by the arguments of the proof of Theorem 3.2.1, all >4-vertices would
have non-negative charge, too. But the problem is that 9-faces cannot necessarily afford
to do this. For example, if a 9-face has 7 bad vertices and two 4-vertices, it sends
% x 7 =10.5 units to its bad vertices by the third rule above, and it has only % units of
charge left for its two 4-vertices. Therefore, some 9-faces can only afford to send 1 unit

of charge to one of their 4-vertices and at most % unit of charge to the other one.

Recall that there are only three kinds of 4-vertices: type 0, type 1, and type 2. Assume
that v is a type 2 vertex, incident with two triangles and two non-triangle faces f; and
f2 (See Figure 3.14). Note that f; # fo, or else v is a cut-vertex (reducible configuration
2) and we are done. Since f; and fy are the only non-triangle faces incident with v, they
should provide the 2 units of charge that v needs. If each of f; and f, is a >10-face, or a
9-face that has at most 6 bad vertices, or a 9-face with 7 bad vertices and a > 5-vertex,

then each sends 1 unit of charge to v by R1 or R2 and v will have non-negative charge.
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(@) (b)

Figure 3.15: (a) f; is incident with 8 bad vertices and a type 2 vertex, (b) f; is a semi-type

2 face incident with v

Problems may arise when none of R1 or R2 applies to fi, or none of R1 or R2 applies
to fo. Without loss of generality, let’s assume that none of R1 or R2 applies to f;. This
implies that f; is a 9-face with at least 7 bad vertices.

If fi is a 9-face with 8 bad vertices and a type 2 vertex, v (see Figure 3.15(a)), then f;
sends 3 x 8 = 2| f| — 6 units to its bad vertices by R3 and cannot afford to send anything
to v. This is why we proved in Lemma 3.3.3 that this configuration, i.e. a type 2 face, is
reducible (configuration 5).

If f1 contains 7 bad vertices and R2 does not apply to it, then f; contains two 4-
vertices, one of which is v (a type 2 vertex), and the other is a type 1 vertex, say u.
In other words, fi is a semi-type 2 face (See Figure 3.15(b)). In this case, f; sends
% x 7 = 10.5 to its bad vertices by R3 and must send 1 unit to v. So it will be left
with only % unit to be sent to u (its type 1 vertex). As before, we hope that since u is
incident with three non-triangle faces, it will receive enough charge from the other faces

it is incident with, so much so that it too will have non-negative charge. So we introduce

the following rule:

R4: If f is a semi-type 2 face then it sends 1 unit of charge to its type 2
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Figure 3.16: (a) A type 0 vertex v and the four faces around it

vertex and % unit of charge to its type 1 vertex.

By this rule, we ensure that all type 2 vertices have non-negative charge, and that no
9-face has negative charge, unless it contains or lies in one of reducible configurations 1,
2,4, 5,or 7. So, the only 4-vertices which still concern us are type 0 and type 1 vertices.

Consider a type 0 vertex v, i.e. one that is incident with four faces fi, fo, f3, and f4
(see Figure 3.16), where none of these faces is a triangle. These faces are all distinct,
otherwise v is a cut-vertex (reducible configuration 2) and we are done. If we can prove
that v receives at least % unit of charge from each of fi,..., fs then it will have non-
negative charge. This definitely happens if each of f,..., fs is a > 10-face, or a 9-face
with at most 6 bad vertices, or a 9-face with 7 bad vertices and at least one > 5-vertex,
as each of fi, fa, f3, f4 sends 1 unit of charge to v by R1 or R2. Even if some (or all) of
f1, f2, f3 and f, are 9-faces with 7 bad vertices and two <4-vertices (one of which is v),
then they send % x 7 =10.5 to their bad vertices and can afford to send % to v and 1 to
their other 4-vertex. In this case too v gets at least 4 x % units and will have non-negative
charge.

The only possible problem is when at least one of fi, fs, f3, fa, say fi, cannot afford
to send even % to v. This happens only if f; is a 9-face with 8 bad vertices, i.e. it is

a type 0 face. In this case f; sends % X 8 = 2|f1| — 6 units to its bad vertices and has



CHAPTER 3. THE THREE COLOUR PROBLEM 51

nothing to contribute to v. But if f; is type 0 then none of f,, f3, f4 can be a type 0 face,
or else G has reducible configuration 6 and we are done. So each of fs, f3, f4 can afford
to send at least % unit of charge to v. If at least one of them sends at least 1 unit of
charge to v (by R1 or R2) then v has non-negative charge. This does not happen only
if each of fo, f3, and f; is a 9-face with 7 bad vertices and a 4-vertex (other than v),
which is a type 1 vertex, i.e. it is a semi-type 0 face. In this case, each of them can only
afford to send % units of charge to each of its 4-vertices. Again, we hope that for each
face fo, f3, f4 the other 4-vertex, which is a type 1 vertex, receives enough charge from
the other faces to have non-negative charge. Therefore, we add the following to our bag

of discharging rules:

R5: If f is a semi-type 0 face with a type 0 vertex v which is not incident
with a type 0 face, then f sends % to v and 1 unit to its type 1 vertex. If v is
incident with a type 0 face (like f; above), then f sends % to v and % to its

type 1 vertex.

This ensures that every type 0 vertex not lying in a reducible configuration will have
non-negative charge. Also, no face will end up with negative charge unless it is in a

reducible configuration. Thus, with the discharging rules we have given so far:

Lemma 3.3.11 Every type 0 or type 2 vertex will either have non-negative charge after

the discharging phase, or lie in a reducible configuration.

So the only 4-vertices with possible negative charge are type 1 vertices. By following
similar arguments we develop two other discharging rules (rules R6 and R7 below), which
ensure that if a type 1 vertex has negative charge then it is in a reducible configuration.
We design these two new rules to make sure that 9-faces that are not in a reducible

configuration have non-negative charge too. We can summarize the discharging rules as:

R1: Every > 10-face sends % to each of its bad vertices and 1 to each of its non-bad

vertices.
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R2: If f is a 9-face incident with at most 6 bad vertices, or with exactly 7 bad vertices
and at least one > 5-vertex, then f sends 1 to each of its 4-vertices, and % to each

of its 5-vertices.

R3: Every 9-face sends % to each of its bad vertices and 1 unit of charge to each of its

simple vertices.

R4: If f is a semi-type 2 face then it sends 1 unit of charge to its type 2 vertex and %

unit of charge to its type 1 vertex.

R5: If f is a semi-type 0 face with a type 0 vertex v which is not incident with a type
0 face, then f sends % to v and 1 unit to its type 1 vertex. If v is incident with a

type 0 face (like f; above), then f sends % to v and % to its type 1 vertex.
R6: If f is semi-simple then it sends % units to its type 1 vertex.

R7: If f is semi-type 1 then it sends 1 unit to its type 1 vertex which is incident to a

triangle that shares an edge with f, and sends % to its other type 1 vertex.

An important observation, that will be helpful in the rest of the proof, is:
Observation 3.3.12 Fvery non-triangle face sends at most 1 to each of its > 4-vertices.

We have already established that any 9-face to which only R2-R5 apply has non-
negative charge, unless it is in or contains a reducible configuration. The only remaining
9-faces to consider are those to which R6 or R7 apply.

If R6 applies to a face f then f is semi-simple. So, it has 7 bad vertices and sends
77X % = 10.5 to them by R3 and 1 —i—% to its 4-vertices by R6, for a total of 12, and no other
rule applies to f. If R7 applies to face f then f is semi-type 1 and sends 7 x % =10.5 to
its 7 bad vertices by R3 and sends 1 + % to its 4-vertices by R7, for a total of 12, and no

other rule applies to f. Thus, we have:
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Figure 3.17: A type 1 vertex v

Lemma 3.3.13 FEach 9-face f will either have non-negative charge after the discharging

phase, or lie in or contain a reducible configuration.

The only remaining elements to consider are type 1 vertices. We prove that each type
1 vertex either lies in a reducible configurations listed in the previous subsection, or has

non-negative charge after the discharging phase.

Lemma 3.3.14 FEvery type 1 vertex v will either have non-negative charge after the

discharging phase, or lie in a reducible configuration.

Proof: Since the initial charge of v is —2 it is enough to show that during the discharging
phase v gets at least 2 units of charge. Label the non-triangle faces incident with v: fi, fo,
and f;. (see Figure 3.17).

Note that fi; and f3 cannot be 9-faces with 8 bad vertices, because v is a type 1 vertex
for each of them that is incident with a triangle that shares an edge with each of them.
Therefore, f; and f3 cannot be simple, type 0, type 1, or type 2. So each of f; and f3
can only be a >10-face or a 9-face with at most 7 bad vertices.

If at least two of fi, f2, f3 send 1 unit to v, then v has non-negative charge. So
let’s assume that at least two of them each send less than 1 unit of charge to v. This
implies that at least one of f; or f; is sending less than 1 unit of charge. Without loss of
generality, assume it is f; (by symmetry, the same arguments work for f3). Thus rules
R1 and R2 do not apply to fi. Thus, since we said f; cannot have 8 bad vertices, f;
has exactly 7 bad vertices and has no >5-vertex. Also, f; cannot be semi-type 1, by the

assumption that it is sending less than 1 unit of charge to v and by rule R7.
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Therefore, f; is either (1) semi-simple, (2) semi-type 0, or (3) semi-type 2. f3 can
be either of the following: (1) a > 10-face, (2) a 9-face with at most 6 bad vertices, (3)
semi-simple, (4) semi-type 0, (5) semi-type 1, or (6) semi-type 2. We consider different

cases based on the types of f; and fs:

e f1 is semi-simple: So fi sends % to v by R6. Since f; is semi-simple, if f5 is of type
1, then G has reducible configuration 12. Otherwise fy sends at least % to v, by
rules R1, R2, or R7. It is enough to show that either f; sends at least 1 unit to v

or GG has a reducible configuration. We consider different possible cases for f3:

>10-face: Sends 1 unit to v by R1.

9-face with at most 6 bad vertices: Sends 1 unit to v by R2.

semi-simple: Since f; is semi-simple then G' has reducible configuration 8.

semi-type 0: It sends 1 unit of charge by rule R5, unless its type 0 vertex is
incident with a type 0 face, say f4, in which case it only sends % to v by R5.
But, in that case f3, fi, and f; form a simple triple structure (see Figure

3.18(a)), which is reducible configuration 13.

semi-type 1: It sends 1 unit to v by R7.

semi-type 2: Since f; is semi-simple then G has reducible configuration 11.

e f1 is semi-type 0: So fi sends % to v by R5 (since we assumed it sends less than 1
unit to v). This implies that it is adjacent to a type 0 face, say fy. If fo is a type
1 face then fi, fo, and fy form a triple structure of kind 1 (see Figure 3.18(b)),
which is reducible configuration 14. Otherwise, f5 sends at least % to v by R1, R2,
or R7. So v receives a total of at least % + % from f; and f,. It is enough to show
that it receives at least % from f3 or G has a reducible configuration. We consider

different possible cases for fs.
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(a) (b)

Figure 3.18: (a) fi is semi-simple, f3 semi-type 0, and f4 type 0 (b) f; is semi-type 0, fo

type 1, and f; type 0
- >10-face: Sends at least 1 unit to v by R1.

- 9-face with at most 6 bad vertices: Sends at least 1 unit to v by R2.

- semi-simple: Then fi, f4 and f3; form a simple triple structure (reducible config-

uration 13).
- semi-type 0: Then f; sends at least % to v by Rb.
- semi-type 1: It sends 1 unit of charge to v by rule R7.

- semi-type 2: Then f;, f4, and f3 form a triple structure of kind 2 (reducible

configuration 15).

1

5 to v by R4. Since f) is semi-type 2, if f, is of

e f1 is semi-type 2: Thus f; sends
type 1, then G has reducible configuration 10. Therefore, f; sends at least % to v
by R1, R2, or R7. So v gets a total of at least 1 unit from f; and f,. It is enough

to show that f3 sends at least 1 unit to v or G has a reducible configuration. We

consider different cases based on the type of fs:

- >10-face: Sends 1 unit to v by R1.

- 9-face with at most 6 bad vertices: Sends 1 unit to v by R2.
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semi-simple: Because f; is semi-type 2, if f; is semi-simple then they form

reducible configuration 11.

semi-type 0: If it is of a kind that sends % to v by rule R5, then f3 with its

adjacent type 0 face (that is sharing the type 0 vertex of f3), together with
fi1 form a triple structure of kind 2 (reducible configuration 15). Otherwise it

sends 1 unit to v.

semi-type 1: Then it sends 1 unit to v by rule R7.

semi-type 2: If f5 is semi-type 2 then GG has reducible configuration 9.

]

Proof of Theorem 3.1.1: By Lemmas 3.3.9, 3.3.10, 3.3.11, 3.3.13, and 3.3.14 either

G has a reducible configuration listed in the previous subsection, or all the elements of G
have non-negative charge, after applying the discharging rules. The latter is impossible,
since the total initial charge is —12. So every graph G € Gg has one of the reducible con-
figurations, which proves the non-existence of a minimal counter-example to the theorem.

3.4 A 3-Colouring Algorithm for Planar Graphs With-
out 4- to 8-Cycles

As for the proofs of Example 2.2.4 and Theorem 3.2.1, the proof of Theorem 3.1.1 yields
a quadratic time algorithm that given an embedded graphs in Gg produces a 3-colouring
of G. At each iteration of the algorithm, we find a reducible configuration, break the
graph into smaller subgraphs or reduce the number of vertices or edges of the graph by
at least one, find a colouring of the smaller graphs, and extend these colourings to the
original graph. We keep doing this as long as the graph is non-empty. We assume that

the input graph to our colouring procedure is connected, as for a disconnected graph it
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is enough to find a 3-colouring for each of its connected components.

More specifically, at each iteration we apply the initial charges and the discharging
rules, as described in Section 3.3.3. Since the total charge is negative, there must be
some element (face or vertex) with negative charge. If it is a face it must be a 10-face
with at least 9 bad vertices, or a simple, or a type 2 face. If the element is a vertex, call
it v, then by Lemmas 3.3.9, 3.3.10, 3.3.11, and 3.3.14, v must be a <2-vertex, or a cut-
vertex, or a vertex of one of configurations 6-15. Therefore, in any of these two cases (a
face with negative charge or a vertex with negative charge), we find one of the reducible
configurations from our list. If the configuration is one of the first three configurations,
we do as in the algorithm of Theorem 3.2.1. Otherwise, we construct a smaller graph
G' € Gg, which is obtained by removing some vertices and edges, and possibly adding a
gadget, according to the proof of that reducible configuration. Then we find a 3-colouring
of G', recursively. By Remark 3.3.8 we can extend this 3-colouring to a 3-colouring of G,

in constant time.

Applying the initial charges takes at most O(|V| + |F|) time. For each face f, it
takes constant time to find the rules that apply to face f and it takes O(]|f]) to apply
them to f. So applying the discharging rules takes at most O(X ;cr | f|) time, which is
in O(|E|), and once we have done that, we can find an element with negative charge in
O(|V| + |F|) time. Finding a reducible configuration around an element with negative
charge and constructing the graph G’ from G (i.e. removing the vertices and edges and
adding the gadget) takes at most constant time. Thus if we define the size of the graph,
n, to be |V| + |E|, we can say all these steps take at most an time, for some constant

a > 0.

Let’s denote the worst case running time of the procedure for an input of size n by
T'(n). Asin the analysis of the algorithms of Example 2.2.4 and Theorem 3.2.1, we can use
induction to prove that for all values of n > 1 and for some constant C' > 0: T'(n) < Cn?.

The inequality is trivial for small values of n. So let’s assume that 7'(i) < C4? for all
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(b)

Figure 3.19: (a) A simple face and (b) the gadget

values of 1 <7 < n and consider the procedure call when the input has size n.

If a 2-vertex or a cut-vertex or a face with negative charge is found, by an argument
identical to that of the analysis of algorithm of Theorem 3.2.1 we can show that 7'(n) <
Cn?. If a vertex with negative charge is found and this vertex belongs to one of the
configurations 6-15 then the algorithm makes a recursive call on the modified graph
G', obtained according to the proof of that reducible configuration. Since G’ has fewer
vertices and/or edges with respect to G, the size of G', n’, is smaller than n. Therefore

T(n) <an+T(n') <an+Cn* < an+ C(n—1)? < Cn?, for large enough C.

3.5 Automated Proof of the Reducible Configura-
tions

Appendix A gives hand-checkable proofs for configurations 8-12, but it does not contain
proofs for the last three configurations. Instead, we have an automated proof for all the
configurations (See Appendix B). Here we describe how that proof works.

Consider the simple face of Figure 3.19(a). To prove that this is a reducible config-
uration, it is enough to check that every 3-colouring of the vertices wy, ..., ws, in which

not all wy,...,ws have the same colour, can be extended to a 3-colouring of vy,..., vg.
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(@) (b)

Figure 3.20: Configuration 6 which has two constrained groups

This easy task can be done by a simple program. The program generates all 3-colourings
of wy,...,ws in which not all wy, ..., w4 have the same colour. For each such colouring
C, since every vertex in {vy,...,v9} is adjacent to exactly one coloured vertex, there is
a list of two colours available for every vertex in {vy,...,v9}. Then the program uses
exhaustive search to see if C' can be extended to vy, ..., v9 using these lists. We have to

do a similar job for each of the other configurations.

For any reducible configuration R, a vertex v which is not in R but has a neighbour in
R is called a boundary neighbour. For example wy, ..., ws in Figure 3.19(a) are boundary
neighbours. For some configurations, such as a simple face, we have to forbid some
of the boundary neighbours from all having the same colour. We do this by adding a
gadget. We call this set of boundary neighbours a constrained group. For some reducible
configurations (such as the configuration of Figure 3.20) we have two constrained groups.
A 3-colouring of the boundary neighbours of a reducible configuration is called valid if it

satisfies the requirements of its constrained groups. That is, not all the vertices in the
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same constrained group have the same colour.

To prove the reducibility of the configurations, we need to check (1) that every valid
3-colouring of the boundary neighbours can be extended to a 3-colouring of the vertices of
the configuration, and (2) that the modified graph (obtained by adding the corresponding
gadget) does not have any i-cycles, 4 < i < 8. Condition (2) can be hand-checked easily
by looking at each configuration and the corresponding modified version, and making
sure that for every pair of vertices in the original graph that participate in a gadget,
the shortest path between them using only the edges of the gadget is not shorter than
the shortest such path in the original graph using only the edges that were deleted to

construct G'. Condition (1) is checked with a C program.

As we said, the total number of reducible configurations (considering all possible
subcases for configurations 4-15 listed in Section 3.3.2) is 77. The first three of these
configurations are the ones used in Theorem 3.2.1. Each of the new 74 configurations is
listed in Appendix C. Each figure in this list is drawn by hand using a program called
graphwin, which is one of the standard demo programs included in the package LEDA
(Library for Efficient Data types and Algorithms) version 4.1, distributed by Algorithmic
Solutions Software GmbH (available at http://www.algorithmic-solutions.com). Us-
ing this program we can store the adjacency list of the drawn graph in a file and also save
the graph as a Postscript figure. Therefore, for each configuration shown in Appendix
C, the adjacency list, which is used as input to the program, is generated automatically
with the figure. The adjacency lists of all 74 configurations and the information about
the constrained group(s) of vertices are put into a single file, with each configuration
separated by a blank line. For more detailed information about the format of input see

ftp://ftp.cs.toronto.edu/csrg-technical-reports/458/.

The program reads the configurations one by one and the corresponding constrained
group(s) of vertices. For each configuration the program generates all the possible valid

3-colourings of its boundary neighbours and then checks whether or not each 3-colouring
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is extendible to a 3-colouring of the uncoloured vertices of the configuration. This check
is done using exhaustive search plus a bit of intelligence; the program colours the vertices
one at a time and for each uncoloured vertex, the program only considers all possible
colours that have not appeared in its neighbourhood. For example, if a vertex already
has colours 1 and 2 in its neighbourhood, there is only one colour (i.e. colour 3) that
can be assigned to this vertex, and the program does not try colours 1 or 2. If all the
valid 3-colourings of the boundary neighbours are extendible, then the configuration is
reducible. We didn’t attempt to make any other optimizations in the program, since
this simple straightforward implementation checks all the reducible configurations very
quickly, on a desktop computer, and further optimizations would be at the cost of losing

its readability.



Chapter 4

One Further Step on Steinberg’s

Conjecture

Remark 4.0.1 The results of this chapter are based on paper [18].

In this chapter, we tighten the gap between Steinberg’s conjecture and the best known
result on this problem by improving Theorem 3.1.1. Let G7 be the class of planar graphs

without cycles of size in {4,...,7}.
Theorem 4.0.2 FEwvery graph in G; is 3-colourable.

So, we are only two steps away from the conjecture of Steinberg. The proof of Theorem
4.0.2 is more elegant and shorter than that of Theorem 3.1.1. There are just a handful
of reducible configurations and the proof is completely hand-checkable.

One important feature of this proof is that it does not rely on Theorem 3.1.1. It
only uses Example 2.2.4, as the basis of an induction, and the overall proof is much
shorter than the proof of Theorem 3.1.1. Consequently, the 3-colouring algorithm that
we provide uses only the 3-colouring algorithm of Subsection 2.3 for the base case of a
recursion, and therefore, it does not need to check all the configurations described in the

previous chapter.

62



CHAPTER 4. ONE FURTHER STEP ON STEINBERG’S CONJECTURE 63

The organization of this chapter is as follows. In the next section, we point out a
very simple structure that appears in most of the reducible configurations of the pre-
vious chapter. We investigate the required conditions under which we can prove the
reducibility of this simple structure. Proving the reducibility of this structure helps us
to bring down the total number of reducible configurations, significantly. In Section 4.2
we present the proof of Theorem 4.0.2. This is done by proving a stronger statement,
namely Theorem 4.2.1, which in turn implies Theorem 4.0.2. Again, the proof uses the
Discharging Method. The reducible configurations are presented and their reducibility
is proved in Subsection 4.2.1. Then, in Subsection 4.2.2, we show the unavoidability of
these configurations by applying a suitable set of initial charges and discharging rules.
Finally, in Section 4.3 we present a 3-colouring algorithm for graphs in G;, based on the

proof of Theorem 4.0.2.

4.1 Some New lIdeas

A careful look at the reducible configurations used in the proof of Theorem 3.1.1 suggests
that there are very similar patterns that repeat in most of them. So, before trying to
prove Theorem 4.0.2, let’s see if we can refine our proof ideas, to show the reducibility
of most of the configurations considered in the previous chapter, all at once.

A path vyvyvsvy is called a tetrad if d(v;) =3, 1 <@ <4, ...zvivv3v42 ... is on the
boundary of some face f, and there are triangles tv;v, and t'vzvy, such that ¢ and ¢’ do
not belong to the boundary of f (See Figure 4.1). By this definition, it is easy to see that
at least one tetrad appears in most of the configurations used in the previous chapter. So,
if we can prove that a tetrad is reducible, that will reduce the number of configurations
significantly, and might even help in finding some new reducible configurations.

To do this, let’s assume that G' € G7 is a counter-example with the minimum number

of vertices and consider a tetrad in G. Delete vy, vy, v3, and v4, along with all incident
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Figure 4.1: A tetrad

edges. Consider a 3-colouring C' of this new smaller graph G'. If we could assume that
C(z) = C(t') then we could easily extend C to a 3-colouring of G: we first colour v4 and
vy (in this order); then since x and vz have different colours, it is easy to colour v; and
ve. This will show the reducibility of a tetrad. But the assumption that C(z) = C(t') is

a crucial point. Can we make this assumption?

One way to make sure that C'(xz) = C(t') is to identify = with ¢’ in G’ before colouring
C'. But this causes some new problems: this identification may create small cycles (cycles
of size in {4,...,7}), and therefore we cannot claim that G’ is 3-colourable anymore.
Can we show that such a cycle cannot exist? If such a small cycle exists in G’, then the
sequence of vertices of this cycle starting from z, plus vyvyv3 forms a cycle in G which
separates t from z', i.e. one of t and 2’ is inside the cycle and the other one outside of it.
Now, we have to argue that G' cannot have such a cycle, which will be called a separating

cycle.

Fortunately there is a way to prove something along these lines. Under some assump-
tions (to be cleared soon), if there exists a separating cycle in G then we can colour the
subgraphs of G inside and outside the separating cycle independently, and ensure that
their colourings match on this cycle. This shows that such a cycle will be reducible in
G. These arguments suggest that if we strengthen our statement (i.e. have a stronger
induction hypothesis) we may be able to prove that separating cycles are reducible and
from that show that tetrads are reducible, too. This will help us to bring down the

number of reducible configurations dramatically.
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4.2 Proof of the Main Theorem

Following the arguments of the previous section, in order to prove Theorem 4.0.2, we

prove the following stronger theorem:

Theorem 4.2.1 Consider any connected graph G € G; and let f be any face of G with
size in {8, ...,11}. Every proper 3-colouring of the subgraph induced by the vertices of f

can be extended to a proper 3-colouring of G.

Assuming Theorem 4.2.1, we can easily prove Theorem 4.0.2. Before doing so, we
state a couple of definitions. Let C be a cycle of length k£ whose sequence of vertices is
VU1 . .. Vg_1. An edge between two non-consecutive vertices of this cycle is called a chord
for C'. If a chord is between v; and v;1 4, for some 0 <7 < k — 1, where the addition is in
mod k, then we say this chord cuts triangle v;v; 1v;19 from C| or it is a triangular chord.

Proof of Theorem 4.0.2: Suppose that G is a counter-example to Theorem 4.0.2
with the smallest number of vertices. Clearly, G is connected and by Example 2.2.4 it
has a cycle C of length in {8,9,10}. By the absence of cycles of length in {4,...,7} in
G, C can only have triangular chords, if it has chords at all. Let e = uv be a triangular
chord of C, which cuts triangle vwv from C. We call w a triangular vertex of C. w
cannot be the end-point of any chord of C, otherwise if wz is a chord (which must be a
triangular chord) then {u,v,w,z} forms a 4-cycle in G (See Figure 4.2). If we remove
all the triangular vertices of C', the remaining vertices of C' induce a cycle C', which is
formed by the chords of C' and some of the edges of C. We can find a 3-colouring ¢’
of C'. Since each triangular vertex of C' is adjacent to exactly two coloured vertices of
C', we can extend ¢' to a 3-colouring ¢ of all the vertices of C. Now delete the possible
chords of C'. If we remove the vertices inside C this cycle becomes a face with size in
{8,9,10}, and by Theorem 4.2.1, ¢ can be extended to the vertices of G outside C'. Also,
if we remove the vertices outside of C' from G, by Theorem 4.2.1, ¢ can be extended to

the vertices of GG inside C. The union of these two colourings is a 3-colouring of G. =
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Figure 4.2: A cycle C' with triangular chords

In the rest of this section we will give the proof of Theorem 4.2.1. Before starting the
proof, we state more notation used in the proof.

Throughout this section, we denote the outside face of an embedded planar graph
G € G; by fo. Any face other than fy is internal. Also, the vertices of G that do not
belong to fy are internal. We redefine a bad vertex to be an internal 3-vertex which is
incident with a 3-face. Note that this definition is slightly different from that of Chapter
3, as we impose the condition of being an internal vertex. Any vertex that is not bad
is called a good vertex. The set of vertices of GG lying inside and outside of a cycle S
are denoted by In(S) and Out(S), respectively. If In(S) # 0 and Out(S) # 0, then S is

called a separating cycle.

4.2.1 Reducible Configurations

In this subsection only, by a minimum counter-example we mean a graph G € G; and a
3-colouring ¢ of the vertices of a face f of G that form a counter-example to Theorem
4.2.1 with the minimum number of vertices. Without loss of generality, we assume that
f is the outside face, fj.

The first two reducible configurations we had in the proofs of Examples 2.2.3 and
2.2.4, and Theorems 3.2.1 and 3.1.1 were < 2-vertices and cut-vertices. First we prove

that cut-vertices are reducible for G:
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Lemma 4.2.2 FEvery minimum counter-example is 2-connected; in particular, it cannot

have 1-vertices.

Proof: Assume that G is a minimum counter-example. If there is a cut-vertex v € fy,
then because 8 < |fy| < 11 and G € Gy, there is a block B of G containing v which is a
single edge or a triangle. In each case it is easy to see that G — (B — {v}) is a smaller
counter-example, contradicting the definition of G.

Now assume that B is a pendant block with cut-vertex v & f,. We first extend ¢ to
G — (B —{v}), then 3-colour B (using the minimality of ), and finally get an extension
of ¢ to G. [ |

For 2-vertices, we cannot prove that they don’t exist in a minimum counter-example,
but we can show if they exist then they must belong to face fy,. Before proving this, we
prove the following lemma which, as we discussed in the previous section, will also be

used in the proof of reducibility of tetrads.

Lemma 4.2.3 A minimum counter-example has no separating cycle of length at most

11.

Proof: By way of contradiction, assume that G is a minimum counter-example and S
is a separating cycle of length at most 11 in GG. Because of the minimality of G, we
can extend ¢ to G — In(S). Let g be the colouring of S in this extension. Then we
delete the (possible) chords of S. Thus S becomes a face in G — Out(S). If |S| # 3 then
8 < |S| £ 11, and therefore by the minimality of G, we can extend ¢g to G — Out(S5),
thus obtaining a 3-colouring of G.

If |S| = 3, either there exists a 3-colouring ¢' of G — Out(S) by Example 2.2.3, or
G — Out(S) has a cycle C of length between 8 and 11. In the latter case, by an argument
similar to that of proof of Theorem 4.0.2, we can find a 3-colouring of C' and then extend

this colouring to a 3-colouring ¢' of G — Out(S), using the minimality of G. Since S is
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a clique, we can permute the colours in ¢ such that ¢’ on S becomes equal to ¢g. Thus

we have 3-colouring of G. ]

Lemma 4.2.4 In every minimum counter-example, each 2-verter belongs to fy and no

2-vertex 1s incident with a 3-face.

Proof: Let G be a minimum counter-example. If v is an internal 2-vertex of G' then we
can extend ¢ to G — v by minimality of G and then colour v.

If vis a 2-vertex in f; that belongs to a triangle 7" then, by Lemma 4.2.3, T is not
a separating cycle; so 1" is a face. Therefore if we remove v from fy, the size of the
boundary of the outer face decreases by exactly one, and all its vertices have a colour
in ¢. Since G € Gy, this new face has size in {8,9,10}. Consider this new graph G’
obtained by removing v from G. By minimality of G, ¢ induced on G’ can be extended
to a 3-colouring of G'. This colouring is also an extension of ¢ to G, a contradiction. m

Using the previous two lemmas we can show that every relatively small cycle in a

minimum counter-example has no non-triangular chords.

Lemma 4.2.5 In a minimum counter-example, no cycle of length at most 13 has a non-

triangular chord, and fy has no chords at all.

Proof: Let G be a minimum counter-example. If a cycle C' in G has a non-triangular
chord it must be divided by this chord into two cycles of length at least 8 each. This
implies that |C] > 14.

For the second part, assume that a chord uwv cuts a triangle 7' = {u, v, w} from fy in
G. Then by Lemma 4.2.3, T is a 3-face, i.e. there are no vertices inside 7". This implies
that d(w) = 2, which contradicts Lemma 4.2.4. u

We said in the previous section that one key structure in our proof, that helps to
bring down the number of reducible configurations significantly, is a tetrad. Now we are
ready to prove that a minimum counter-example cannot have this structure. We call a

tetrad T = v vyv3v4 (as in Figure 4.3(a)) internal if vy, ve, v3, and vy are internal vertices.
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Lemma 4.2.6 A minimum counter-example cannot have an internal tetrad.

Proof: By way of contradiction, let G be a minimum counter-example and take an
internal tetrad in G (as in Figure 4.3(a)). Note that since G has no cut-vertices, all faces
fi, fo, f3, and f; are distinct. First delete edges tv; and tvy from G. Then delete vertex
vy and contract the following edges: xvy, v1v9, vov3, and vst’. Let’s call this new graph
G*. Clearly G* is an embedded planar graph since we removed some vertices and edges
from G and then contracted an induced path. In fact, this is a planar embedding of the
graph obtained by deleting vy, vy, v3,v4 and identifying = with ¢’ in G. We will explain
later how this might affect the colouring ¢ if one or both of  or ¢ are in fy.

We claim that G* has no faces of size in {4,...,7}: one of the new faces is created
from the vertices in f; — {v1,v9,vs3,v4} and fy — {v4}, and therefore has size at least
|fil =54 |fs) —2 > 9. The other new face in G* is created from the vertices in fo — {v;}
and f3 — {ve,v3} (note that x and ¢’ are the same in G*), and therefore has size at least
|fol =2+ |fs| —3 > 11. Hence, if G* has any cycle of size in {4,...,7}, that cycle
must be a separating cycle (because it cannot be a face). We now prove that G* cannot
have a separating cycle of size in {4, ..., 7}, either. The only way for G* to have such a
cycle, is to have a path of length in {4,...,7} from 2 to t in G which does not use any
of vy, vy, v3, and vy. That will create a cycle S* = xz;...2xt, where 3 < k < 6. Then
S = xz; ... zxtvgveuy separates ¢ from vy in G (see Figure 4.3(b)). Indeed, ¢ cannot lie
on S by Lemma 4.2.5. But this means that S is a separating cycle in G' with size in
{8,...,11}, which contradicts Lemma 4.2.3.

A loop in G* corresponds to an edge between x and t' in G. But such an edge,
together with xvvsvst would create a cycle of size 5 in G. So G* has no loops. If there
are multiple edges in G* they must be between the unified vertex in G* (corresponding to
x and t) and some other vertex. This means that  and ¢ have some common neighbours
in GG. But this neighbour, together with xv,vyv3t would form a cycle of size 6 in G. So

G* has no multiple edges, either. Thus G* € G;.
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(@) (b)

Figure 4.3: (a) A tetrad and (b) the separating cycle

Next recall that any 3-colouring i) of G* can be extended to a 3-colouring of G: «x
and t' each get the colour of the unified vertex. We first colour vy and vz (in this order);
then, since x and v3 have different colours, it is easy to colour v; and v,. If the colouring
¢ of fy is not damaged by identifying x with #', then by minimality of G, G* has a 3-
colouring that extends . This 3-colouring can be extended to a 3-colouring of G' which
is a contradiction. It follows that while identifying = with ¢ we damaged ¢, i.e. we either
(a) identified two vertices of fy coloured differently, or (b) inserted an edge between two
vertices of fy coloured the same. For at least one of these two situations to happen, the

total of the distances from z to fy and from t' to f; must be at most 1.

Let dy ...d|s be the sequence of vertices of fo, with the subscripts increasing in the
clockwise order. Suppose d; is a vertex of fy nearest to z (and possibly equal to x), while
d; is closest to t' (possibly equal to ¢'). Since |fy| < 11, it follows that the boundary
of fo is split by d; and d; into paths P, P one of which, say P, = d;...d;, consists
of at most 5 edges. This path, combined with the path d;t'vsvovi1dy (for the case that
xr = dy and t' # d;), or with djvsveviad; (for the case that x # d; and t' = d;), or with
djvzvaurdy (for the case that x = d; and ' = d;) yields a cycle C' of length at most 10
in G. By Lemma 4.2.5, since tvy is an edge and vy € C, it follows that ¢ cannot belong

to C'. Recall that by definition of an internal tetrad, xv,vovsvsx’ is on the boundary of
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some internal face. Therefore, C separates t from v4. But this contradicts Lemma 4.2.3.

Remark 4.2.7 By the proof of this lemma, if T is a tetrad as in Figure 4.3(a) in a graph
G € G; (which is not necessarily a counter-example) and 1 is a 3-colouring of the vertices
of G* (constructed as in the proof of the lemma), then ¢ induced on G (in which x and
t' have the same colour as the unified vertex of G*) can be extended to a 3-colouring of

G in constant time.

Now that we have proved tetrads are reducible, it is not hard to see that most of
the reducible configurations we had in the previous chapter are reducible as they have
a tetrad. If we were to try to do a proof similar to that of Chapter 3 then many of the
reducible configurations that involve 8-faces would have tetrads. So Lemma 4.2.6 can be
used to eliminate most of them. As a result we only have to introduce two new reducible
configurations. We define them below and show that they are reducible.

Let f be an 8-face with boundary wvy,...,vs (in counter-clockwise order), where
vy, Vo, U3, Us, Ug, U7 are bad, while vy and wvg are internal good vertices. Assume that
VoUsta3, UsUstss, V1Ustis, and vrugtzg are 3-faces adjacent to f (see Figure 4.4(a)). So

d(vs) =4 and d(vs) > 3. Then f is called an M -face.

Lemma 4.2.8 A minimum counter-example cannot have an M -face.

Proof: Assume that G is a minimum counter-example with an M-face f as in Figure
4.4(a). We obtain G* from G by deleting all the bad vertices of f and identifying v, with
vg. As in the proof of Lemma 4.2.6, it is easy to check that G* does not have a face of
size in {4,...,7}, and it cannot have a separating cycle of size in {4,...,7}, or else G
has a separating cycle of size in {8,...,11} containing t5v;v9v3v,4 (separating to3 from
vg), or a cycle of size in {8,...,11} containing t75v7v6v5vy (separating tss from vg), thus

contradicting Lemma 4.2.3 (see Figure 4.4(b)). Also, G* has neither loops nor multiple
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Figure 4.4: (a)An M-face f, (b) a possible separating cycle

edges, or else G would have a cycle of size in {4, 5,6} containing vs, vg, v7. Therefore, G*
has no cycles of size in {4,...,7}, i.e. G* € G.

The same arguments as in the last two paragraphs of the proof of Lemma 4.2.6 show
that the colouring ¢ of fj is not damaged by identifying v, with vg, as otherwise G would
have a cycle of size at most 11 through vyvsvgvrtzs (or vyvsv9v1t1g) which separates tsq
from vg (or to3 from wvg), thus contradicting Lemma 4.2.3.

Since G* is smaller than G, ¢ can be extended to a 3-colouring ¢ of G*. We will
show that 1) can be extended to a 3-colouring of G. Consider 1) induced on G and give
vy and vg the same colour as the unified vertex in G*. First colour v; and v;. Since
(vyg) # Y(v1) and (vy) # 1(v7), we can easily extend this colouring to vg, v3, vs, and

Vg . |

Remark 4.2.9 By the proof of this lemma, if f is an M-face as in Figure 4.4(a) in
a graph G € G; (which is not necessarily a counter-example) and 1 is a 3-colouring of
the vertices of G* (constructed as in the proof), then this colouring induced on G can be

extended to a 3-colouring of G in constant time.

The other structure we define is very similar to the previous one. Let f be an 8-face

with boundary vertices vy, ..., vs (in counter-clockwise order), where vy, ..., v4 and vg, vy
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Figure 4.5: (a) An M M-face, (b)a possible separating cycle

are bad vertices, while vs and vg are internal 4-vertices. Assume that vovstaz, v4Usts5,
vsVstss, VrUstrs, and vgvtg are 3-faces adjacent to f (see Figure 4.5(a)). Then f is called

an M M -face.
Lemma 4.2.10 A minimum counter-example cannot have an M M -face.

Proof: By way of contradiction, let G be a minimum counter-example and f an M M-
face of G as in Figure 4.5(a). We obtain G* from G by deleting vy, ..., vs and identifying
t1g with t56. As in the previous two lemmas, it is easy to check that G* € G;. Otherwise
there is a cycle of size at most 11 in G through tsgvgvrvstis (see Figure 4.5(b)), which
separates trg from vs, contradicting Lemma 4.2.3. Also, as in the previous two lemmas,
the colouring ¢ of fy is not damaged by this identification, or else there is a cycle of size
at most 11 through tssvgvrvst s separating vs and t7g, which contradicts Lemma 4.2.3.
Now we show that every 3-colouring 1) of G* can be extended to a 3-colouring of
G. Let ¢ be an arbitrary 3-colouring of G* and consider ¢ induced on G, with tg
and ts¢ having the same colour as the unified vertex of G*. Without loss of generality,
assume that (t13) = ¥(tss) = 1. If (ty5) # 1, we first colour vs, vy, and vg, (in

this order); then, using an argument as in the proof of Lemma 4.2.6, we can colour vg
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and v7, then vy, and finally vy and w3, as ¥(vy) = 1 # P(vy). If P(tss) = 1, we set
1 # ¢(vg) = (vs) = ¥(vg) # Y(t7s), then colour vy, vs, v; (in this order), and finally vy

and vs. [

Remark 4.2.11 By the proof of this lemma, if f is an MM-face as in Figure 4.5(a) in
a graph G € G; (which is not necessarily a counter-example) and 1 is a 3-colouring of
the vertices of G* (constructed as in the proof), then this colouring induced on G can be

extended to a 3-colouring of G in constant time.

In summary, here is the list of configurations that are proved to be reducible in

Lemmas 4.2.2-4.2.10:
1. A cut-vertex
2. A separating cycle of length at most 11
3. An internal 2-vertex
4. A 2-vertex in fj incident with a 3-face
5. A chord in f
6. An internal tetrad
7. An M-face
8. An M M-face

In the next subsection we prove that this set of reducible configurations is unavoidable,

using the Discharging Method.

4.2.2 Discharging Rules

Let G be an arbitrary connected graph in G; given with a proper 3-colouring of the

vertices of one of its faces fy, with 8 < |fy| < 11. Consider an embedding of G in which
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fo is the outside face. We use the Discharging Method to show that G' must have one of
the reducible configurations listed in the previous subsection.

The initial charges we apply are very similar to the ones we have seen in Chapters 2
and 3. To each vertex v we assign d(v) — 6 units of charge and to each face f # f, we
assign 2|f| — 6 units. The only difference is that we assign 2|fy| + 5.5 units of charge to
fo- We need to do this because of the possible presence of 2-vertices on fy. Using Euler’s

formula, the total charge is

> ()~ 6) + 3 (21f] ~ 6) +2fo] 455 = .

veV F#fo

In the discharging phase we move charges from faces to vertices and show that after
this phase every vertex and face has non-negative charge (and therefore the total charge
is non-negative), unless G has one of the reducible configurations listed in the previous
subsection. Of course, if G has a reducible configuration then G' cannot be a minimum
counter-example. This shows that there is no minimum counter-example to Theorem
4.2.1.

It is easy to see that by this set of initial charges, the only elements with negative
initial charge are 2- to 5-vertices. First assume that v is a 2-vertex incident with two faces
f and f’. These two faces must be distinct or else v is a cut-vertex, which is reducible
configuration 1. Since the initial charge of v is —4, f and f’ must send 4 units of charge
in total to v. One of these two faces, say f, is the outside face, i.e. f = fy, or else we
have reducible configuration 3. Because fy has larger charge/size ratio with respect to
the other faces, it seems better to send more charge from fy to v than from the internal
face f'. So, instead of sending 2 units of charge from each of f, and f’ to v, we send g
units of charge from f, and % from f’ to v. In fact it is not hard to see that fy can afford
to send % units of charge to every vertex v € fy: the initial charge of fy is 2|fo| + 5.5
and if it sends g|f0| it is left with 5.5 — @ units of charge. Since 8 < |fy| < 11, the final

charge of fy will be non-negative. So we introduce the following rules:
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Figure 4.6: Discharging rule R3
R1: f, sends g to each of its vertices.
R2: Every internal non-triangular face sends % units to its 2-vertices.

If a 2-vertex v does not belong to fy, then G' has reducible configuration 3 and we

are done. Otherwise, every 2-vertex v belongs to fy and receives 2 from fy by R1. Also,

N pojot

the other face incident with v is a non-triangular face and sends £ to v by R2, or else GG
has a 2-vertex in fy incident with a triangular face, which is reducible configuration 4.
Therefore, these two rules ensure that either every 2-vertex v has non-negative charge,
or G has reducible configuration 3 or 4.

The first discharging rule in the proofs of Theorems 3.2.1 and 3.1.1 was to send %
from “large” non-triangular faces to each of their bad vertices. Here we keep this rule,
5

with slight modifications. If v € fo is a 3-vertex incident with a triangle, it receives 3

1

from fy by R1, and it only requires 3

from the internal non-triangular face. Note that
by the definition of bad in this chapter, v is not bad (because it is not internal). Here is

the new rule:

R3: Every internal non-triangular face f sends % units to each of its bad
vertices and % to every 3-vertex in its boundary that also belongs to f, and

is incident with one 3-face (see Figure 4.6).

Recall the definition of a simple vertex from the previous chapter: a 3-vertex not

incident with any triangles. These vertices have initial charge —3 and so require 3 units
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Figure 4.7: Discharging rule R4

5

of charge. If such a vertex is in fy it gets 5

of charge from f; and it only needs i units
from each of the other (internal) faces it is incident with. Otherwise, each of the faces

must send 1 unit to it. So:

R4: Every internal non-triangular face f sends 1 unit to each of its internal
simple vertices and i to each of its simple vertices that also belongs to fp.

(see Figure 4.7)

Rules R1-R4 ensure that every 3-vertex which is not a cut-vertex (reducible configu-
ration 1) has non-negative final charge: if v is a 3-vertex and is in fy it receives 2 from
fo by R1 and % by rules R3 or R4 from the other non-triangular face incident with it,
depending on whether it is incident with a triangle or is simple. If v & fy then if it is
bad it receives 2 X % by R3 and if it is simple it receives 3 x 1 by R4.

The only remaining vertices are 4- and 5-vertices. If a > 4-vertex v belongs to fj it

5

receives 5

from fy and so has positive charge. Thus we only need to deal with internal
4- and 5-vertices.

Recall from Chapter 3 that a type 0, type 1, or a type 2 vertex is a 4-vertex incident
with 0, 1, or 2 triangles, respectively. Every 4-vertex is one of these types. Every 4-
vertex v is incident with 4 distinct faces, otherwise v is a cut-vertex which is reducible
configuration 1. If v is an internal type 0 vertex it is enough to send % units to it from each

of its faces. If v is a type 2 vertex, it needs to get 1 unit from each of its non-triangular

faces to have non-negative charge. Finally, if v is a type 1 vertex, we can send % from
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Figure 4.8: Discharging rule R5

each of the non-triangular faces incident with v that share an edge with the triangular
face, and 1 unit from the other face to v. We combine these in the following rule (see

Figure 4.8):
R5: Every internal non-triangular face f sends:

(a) 3 to each of its internal type 0 vertices,
(b) 1 to each of its internal type 2 vertices,

(¢) 3 to every internal type 1 vertex v in its boundary if the triangle incident

with v shares an edge with f,

(d) 1 to every internal type 1 vertex v in its boundary if the triangle incident

with v does not share an edge with f.

Let’s assume v is an internal 4-vertex. If it is type 0, type 2, or type 1 it receives
4x 1 or2x1, or2x:+41by R5 parts (a), or (b), or (¢) and (d), respectively. So
by rules R1 and R5 every 4-vertex either has non-negative charge after the discharging
phase, or is a cut-vertex (reducible configuration 1).

The only remaining vertices are internal 5-vertices. Let v be an internal 5-vertex
incident with 5 faces. All these faces are distinct, otherwise v is a cut-vertex which is
reducible configuration 1. By absence of 4-cycles, v is incident with at least three non-

triangular faces and it is enough to send % from two of them to v. So we add the following

discharging rule to our set:
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Figure 4.9: Discharging rule R6

R6: Every internal non-triangular face f sends % to each internal 5-vertex v
in its boundary if v is not incident with two edges of f that each belong to a

triangular face adjacent to f (see Figure 4.9).

If v is an internal 5-vertex then it is incident with at least three non-triangular faces.
If it is incident with at least 4 non-triangular faces then each of them sends % to v by R6,
for a total of at least 2. If v is incident with two triangles then two of the non-triangular
faces send % each by R6, for a total of 1.

Therefore, by these discharging rules:

Lemma 4.2.12 Every vertex v has non-negative charge, unless it is reducible configura-

tion 1, 3 or 4.

Now we prove that every face has non-negative charge, or else G' has a reducible
configuration. Since R1 is the only rule by which f, sends charge, by the arguments

given before R1:
Lemma 4.2.13 f, has non-negative charge after the discharging phase.

Finally, we show that every internal face f either has non-negative charge, or has a

reducible configuration.

Lemma 4.2.14 FEvery face f # fy has non-negative final charge, unless it has reducible

configuration 3, 6, 7 or 8.
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Proof: If |f| = 3 then its initial charge is 0 and it does not lose any charge in the

discharging phase.

Suppose |f| > 12. As f sends to each incident vertex at most 3 by R2-R6, its final
charge is 2|f| — 6 — 3[f] > 0.

The only remaining cases are when 8 < |f| < 11. Assume that f is an internal
face with |f| > 8, which is incident with a 2-vertex v. If v € f, then G has reducible
configuration 3. Otherwise f is incident with two >3-vertices of f;, namely the ends of a
maximal path of 2-vertices on the boundary of f. These vertices get at most % from f by
R3 and R4, and therefore, the final charge of f is at least 2|f| —6—(|f| —2) x 3 —2x + >

% —4 > 0. Thus, from now on, we may assume that f is not incident with any 2-vertices.

Also, observe that f sends % to each of its bad vertices by R3 and at most 1 to
its good vertices by rules R4 to R6 (note that since we have assumed that f has no
2-vertices, R3-R6 are the only rules that apply to f). We will use this fact frequently in

our arguments without referring to it explicitly.

Suppose |f| = 11. By parity, f can have at most 10 bad vertices and sends at most
10 x % to them by R3, plus at most 1 to its good vertex by R4, R5, or R6. So, its final
charge is at least 22 -6 —10x 3 —1 =10

Now suppose |f| = 10. If f sends to at least two incident vertices at most 1 each, it
sends at most 8 x % to its other vertices and we are done, as its final charge is at least
20— 6 — 8 x % — 2 = 0. The only danger comes from f being incident with at least 9

bad vertices. But clearly every 5 consecutive bad vertices on the boundary of f include

a tetrad, which is reducible configuration 6.

Next suppose |f| = 9. If f sends to at least three incident vertices at most 1 each, or
sends at most % to one vertex and 1 to another vertex, we are done, as its final charge is
at least 18—6—6><%—3:0or 18—6—7><%—1—%:0, respectively. If f has 8

bad vertices it will certainly form a tetrad, which is reducible configuration 6. So, there

are at most 7 bad vertices and the other two must be internal vertices and take 1 from
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Figure 4.10: A 9-face as in the proof of Lemma 4.2.14

f, each. So, the good vertices are < 4-vertices. Clearly those 7 bad vertices must be
split by the two good vertices as 443, otherwise they form a tetrad, which is reducible
configuration 6. Furthermore, the quadruple should fail to be a tetrad, or else we are
done. It is not difficult to check that the only structure that f may have is as in Figure
4.10. But in this case, one of the good vertices (v; in the figure) takes 3 from f by R5(c)
and the other good vertex, vs, gets only 1 by R5(b). Therefore the final charge of f is at
least 18 =6 —7x 3 —1— 3 =0.

Finally, assume |f| = 8. This case is more complicated and requires some care to
analyze. If there are at most 4 bad vertices in f, or if f sends at most % to at least
two vertices, then we are done, as its final charge is at least 16 — 6 — 4 X % —4=0or
16 —6 -6 x % -2 % = 0, respectively. So we may assume that f has at least 5 bad
vertices (which by definition are all internal). We prove that the other three vertices of
f are also internal.

First suppose that exactly one vertex v of f belongs to fy. Then f cannot share an
edge with fy (or else it will share at least two vertices with fy). Thus d(v) > 4 and so f
sends nothing to v by any rules (rules R2 and R3 only apply to 3-vertices and rules R4,
R5 and R6 only apply to the internal > 4-vertices). If the other 7 vertices of f are all bad,

G has a tetrad which is reducible configuration 6. Otherwise, f has at most 6 bad vertices
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and sends at most 1 to its other good vertex. So f has at least 16 — 6 — 6 x % —1=0
final charge. Now suppose that at least two vertices of f belong to fy,. Then, since f
sends at most % to each of them by R3 or R4, f has non-negative charge as discussed in

the previous paragraph. So all the vertices of f must be internal.

If f is incident with at least 7 bad vertices (and so with at most one good vertex),
G has a tetrad and we are done. The only other case we have to consider is when f is
incident with exactly 6 or exactly 5 bad vertices. Let vy ...vg be the sequence of vertices
of f in clockwise order.

Case 1. f has precisely 5 bad vertices.

If at least one good vertex of f gets at most % from f, since the other two good
vertices get at most 1 from f each, we are done, as the final charge of f is at least
16 —6—-5x % —2x1-— % = 0. So suppose that each of these three good vertices takes 1
unit of charge from f. It follows by R4 and R5 that all of them are internal <4-vertices,
and each is either (7) simple, (i7) type 2, or (iii) a type 1 vertex which is is incident with
a triangle that does not share any edges with f. However, this is impossible by parity:
the number of bad vertices should be even or else f should contain a type 1 vertex which
is incident with a 3-face that shares an edge with f (i.e. is adjacent to f).

Case 2. f has precisely 6 bad vertices.

These 6 bad vertices must be split by the two good vertices as 442 or 343, since each
path of 5 bad vertices contains a tetrad, and tetrads are reducible. We consider each of

these two subcases separately:
Subcase 2.1: 442

Assume that the group of 4 bad vertices is vy, ...,vs and the other two bad vertices
are vg, U7, with vy and vg being good. In order to not form a tetrad, v; and vy should
form triangles with the good vertices vg and vs, respectively. Let’s call an edge incident
with a 3-face a triangular edge. If the edge wgv; is triangular, then both vs and wg

get at most % from f by R5(c) or R6, and we are done, as the charge of f is at least
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16-6-6x3—2x3=0.

The only alternative is that both vsvg and v7vg are triangular. Observe that d(vs) > 4
and d(vg) > 4. If d(vs) > 5 then since it is incident with two triangular edges (vsvg and
v4vs) rule R6 does not apply and f sends nothing to vs. By a similar argument, if
d(vs) > 5 then f sends nothing to vg. Therefore, if d(vs) > 5 or d(vg) > 5 then we are
done as the final charge of f is at least 16 — 6 — 6 x % — 1 =20. Thus, the only remaining
case to consider is when both vs and wvg are internal 4-vertices and furthermore, we have
3-faces vyugtys, VaUstas, V4Ustys, Ustslss, and vrvstrs as in Figure 4.5(a). But this is an

M M-face, i.e. reducible configuration 8.

Subcase 2.2: 3+3

Let vy, ..., vg be the sequence of vertices of f in clockwise order, with v, and vg being
the good vertices. Without loss of generality assume that vyvy is a triangular edge. So

v3vy4 is also triangular.

If vsvg is triangular then v;vg must be triangular and therefore, vy and vg take at

most 1 from f by R5(c) or R6 and the charge of f is at least 16 —6 —6 x 2 —2 x £ = 0.

If vsvg is not triangular then vsv, and vgv; are triangular. If d(vy) > 5 then f sends
nothing to v, and therefore its final charge is at least 16 —6 —6 x 3 —1 = 0. If d(vy) = 4
then then f is an M-face (as in Figure 4.4(a)), i.e. reducible configuration 7. So we are

done. ]

So by Lemmas 4.2.12 and 4.2.14 all the vertices and faces have non-negative final
charge, or else G' has a reducible configuration. Thus there is no minimum counter-

example and so no counter-example at all to Theorem 4.2.1.
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4.3 A 3-Colouring Algorithm for Planar Graphs With-

out 4- to 7-Cycles

In this section we provide an algorithm for Theorem 4.0.2 that given an embedded graph
G € Gy as input, produces a 3-colouring of G. We assume that the input to the algorithm
is connected. For disconnected graphs it is enough to colour each connected component

independently. The algorithm consist of two main procedures.

Procedure 1: This procedure takes as input an embedded connected graph G € G;
and produces a 3-colouring of GG. In the first part of this procedure we apply the algorithm
described in Subsection 2.3.1 to G. This will either produce a 3-colouring of G or give a
cycle C of size in {8,9,10} in G. If we find a 3-colouring of G then the procedure returns
this 3-colouring and terminates.

Otherwise, let C' be the cycle of G that the procedure has found. The same arguments
as in the proof of Theorem 4.0.2 show that C' can only have triangular chords (because
G € G;) and that we can find a 3-colouring ¢ of C. Remove the (possible) chords from C
and consider ¢ on C and the graphs G; = G — In(C) and Gy = G — Out(C). Therefore,
each of G; and Gy is a connected graph in G; along with a 3-colouring of one of its faces
(the one whose boundary is C'), which has size in {8,9,10}. Then we call Procedure 2
on each of these graphs along with colouring ¢, independently. This will produce a 3-
colouring for each of G; and G5, that are extensions of ¢. The union of these 3-colourings
is a 3-colouring of G.

Procedure 2: This procedure takes as input an embedded connected graph G € G;
together with a 3-colouring ¢ of a face fy of size in {8,...,11} of G and produces a
3-colouring of GG. In fact, this procedure corresponds to Theorem 4.2.1.

We assume that f; is the outside face of G. At each iteration of this procedure, we
apply the initial charges and the discharging rules, as described in Subsection 4.2.2. Since

the total charge is negative, after the discharging phase there must be either a vertex v
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or a face f # fy with negative charge (note that by Lemma 4.2.13 f; has non-negative

charge):

1. A vertex v with negative charge: By Lemma 4.2.12, v must be one of configurations

L, 3,

(a)

or 4. We consider each case separately.

First assume that v is a cut-vertex. If v € fy then, because G € G7, there is a
block B of G containing v which is a single edge or a triangle. In each case we
get an extension of ¢ to G—(B—{v}), by calling Procedure 2 recursively. If v is
an internal cut-vertex with a pendant block B then we get an extension of ¢ to
G —(B—{v}), by calling Procedure 2 recursively. Then we run Procedure 1 on
B to obtain a 3-colouring of B. This 3-colouring, after possibly permuting the
colours, together with the extension of ¢ to G — (B — {v}) yield a 3-colouring
of G.

Next assume that v is an internal 2-vertex. We call Procedure 2 or Procedure
1 on each of the at most two connected components of G — v, depending on
whether the component contains fy (and the colouring ¢) or not. If Procedure
2 is called on a connected component, say G, it returns a 3-colouring of Gy,
which is an extension of . If Procedure 1 is called on a connected component,
say (G, then it returns a 3-colouring of GG;. The union of these two 3-colourings
yields a 3-colouring of G —v. We can extend this 3-colouring to v in constant

time.

Finally, assume that v is a 2-vertex of f, incident with a triangle 7. If T
is a face then we call Procedure 2 on G — v and the colouring ¢ induced on
fo — v, to obtain a 3-colouring of G. This colouring, together with the colour
of v induced by ¢, yields a 3-colouring of G. If T" is a separating cycle, then
we call Procedure 2 with G — In(T) and colouring ¢, to obtain a 3-colouring

of G — In(T). Then we call Procedure 1 on graph G — Out(7’). This will
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produce a 3-colouring of G — Out(T"). The union of 3-colourings of G — In(T)
and G — Out(7T), after possibly permuting the colours in the colouring of
G — Out(T), yields a 3-colouring of G.

2. A face f # fo with negative charge: By Lemma 4.2.14 f must have one of configu-

rations 3, 6, 7, or 8. We consider each case separately.

(a) If f has an internal 2-vertex we do as explained in case 1(b).

(b) Suppose f has a tetrad as in Figure 4.3. By a Breadth First Search (BFS)
starting at vertex x, we can easily check whether there exists a path x, 2y, .. ., 2, t,

3 < k <6, with all z;’s different from vy, vo, v3, v4.

i. If such a path exists, we have a separating cycle C' of size in {8,...,11} in
G. In this case we call Procedure 2 on G — In(C') to obtain a 3-colouring
of it. Let ¢ be the colouring of C' in this 3-colouring. Then we delete
the possible chords from C and call Procedure 2 with G — Out(C) and
wc. We obtain a 3-colouring of G — Out(C). The union of these two
3-colourings yields a 3-colouring of GG

ii. If such a path does not exist then we remove vy, v9, v3,v4 and identify x
with ¢’ as in the proof of Lemma 4.2.6. Let this new graph be G*. We
call Procedure 2 on G* together with ¢. This gives a 3-colouring of G*.
By Remark 4.2.7 we can extend this colouring to a 3-colouring of G in

constant time.

(c) Next, suppose that f is an M-face as in Figure 4.4. By a BFS starting from v,
we check whether there exists a path of length in {4,...,7} in G connecting

vy t0 t7g (or vy to t1g) which does not use any edge of f.
i. If the path exists then this path, together with vyusvsv7tzs (or with vivsvev1t1g)
forms a separating cycle C of length in {8,...,11} in G. We continue as

in case 2(b)i explained above.
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If the path does not exist then we remove all the bad vertices of f and
identify v, with vg to obtain graph G*. We call Procedure 2 on G* together
with ¢ to get a 3-colouring of G*. By Remark 4.2.9 this 3-colouring can

be extended to GG in constant time.

(d) Finally, assume that f is an M M-face as in Figure 4.5. By a BFS starting

from ;3 we check whether there exists a path of length in {4,...,7} between

t1s and ts6 that does not use any edge of f.

1.

il.

If such a path exists then this path, together with t,3vgv;v6ts6 forms a
separating cycle C' of length in {8,...,11}. We continue as in case 2(b)i
explained above.

If the path does not exist then we remove all vy, ..., vg from f and identify
t1s with t5¢ to obtain graph G*. We call Procedure 2 on G* together with
¢ to get a 3-colouring of G*. By Remark 4.2.11 this 3-colouring can be

extended to G in constant time.

The main procedure of the algorithm starts by calling Procedure 1. In each procedure

if the graph has only one vertex then the procedure immediately returns the trivial

colouring of the input graph.

4.3.1 Analysis of the Algorithm

For a graph G, let n = |V| + |E| denote the size of G. Let 7i(n) and T3(n) be the

worst case running time of Procedure 1 and Procedure 2 on an input graph of size n,

respectively. Our goal is to show that 71(n), Ty(n) € O(n*). We do this by proving that

there are constants «, 3y, 82 > 0, such that for all values of n > 1: Ty(n) < an® + in?

and Ty(n) < an®+ Byn?. Both of the inequalities are trivial for small values of n. Assume

that T1(i) < ai® + B14% and Ty (i) < ai® + B9i® for 1 < i < n and suppose that the input

graph has size n.
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First consider Procedure 1. The part where we run the algorithm of Subsection
2.3.1 takes O(n?) time. If a 3-colouring is found the procedure terminates. Otherwise,
the procedure has found a cycle C. Removing the triangular vertices of C' (as in the
proof of Theorem 4.0.2) and finding a 3-colouring of cycle C' can be done in linear time.
Then we should remove the possible chords of €', which again can be done in linear
time. If we remove this cycle from the graph we can easily find G; = G — In(C) and
Gy = G — Out(C) in linear time. Then we make recursive calls to Procedure 2 on G,
and Gy, which take T,(ny) and Ty(ng) time, if ny and ny are the sizes of G; and G,
respectively. Note that ni,n, > 8 and n; + ny < n + 11, since the size of C is in
{8,...,11}. Thus Ti(n) < yn* + To(ny) + Ta(ny) < yn? + a(nd + nd) + Bo(n? + nl),
for some constant v > 0. This is maximized when n; = n and ny = 11. So Ti(n) <
yn? + a(n?® + 113) + Bo(n? + 112) < an?® + Bin?, if B > By + 7.

Now consider Procedure 2. Applying the initial charges takes O(n). Since only faces
send charge during the discharging phase and for each face f it takes at most O(]f]) time
to do the discharging, it takes at most O(X ¢y | f]) time, which is in O(n), to apply the
discharging rules. Finding an element with negative charge also takes linear time. Now

we analyze each step of this procedure:
1. A wvertex v with negative charge:

(a) Checking if a vertex is a cut-vertex can be done in linear time. If v is a cut-
vertex and in fy then we only make a recursive call to Procedure 2 on a graph
with size n’ < n — 1. So for some constant v > 0: Ty(n) < yn + Tp(n') <
yn + an' + Byn'? < an?® + [an?.

If v is an internal cut-vertex we make a call to Procedure 2 on a graph of size
ny, and a call to Procedure 1 on a graph of size ny, with n; +ny =n + 1 and
ny,ny > 2. This takes at most Ty (ny) +T1(n1) < a(n3+n3)+ Fini+ Byn3 time,

which is maximized when n; = n—1 and ny = 2, since 5, > (5. After this step
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we may have to permute the colours in one of the colourings obtained, which
takes linear time. Therefore, T5(n) < yn+a((n—1)*+2%)+ 1 (n—1)*+ 5,2,
for some constant v > 0. This implies that T5(n) < an® + fon?, if « is large

enough with respect to 8; and [s.

Checking if v is a 2-vertex takes constant time. If v is an internal 2-vertex
then we call Procedure 1 or Procedure 2 on each of the at most two connected
components of G — v. Suppose that Procedure 2 is called on a connected
component of size ny and Procedure 1 is called on a connected component
of size ny, with ny +ny = n — 1 and ny,ny > 0. Then we take the union
of these two colourings and extend it to v in constant time. So Ty(n) <
Ti(ny) + Ta(ng) +yn < a(n? + nd) + Bin? + Bon3 + yn, for some constant
v. This is maximized when n; = n — 1 and ny = 0. This implies that

Ty(n) < an® + Byn?. For the case that v € fy almost the same analysis works.

2. A face f # fy with negative charge: Once we find a face f with negative charge we

can find out whether it has a 2-vertex, a tetrad, or it is an M-face, or an M M-face

in O(|f|) time.

(a)
(b)

If f has a 2-vertex the same analysis as in case 1(b) works.

If f has a tetrad we do a BFS which takes O(n) time.

If we find a separating cycle C' with size in {8,...,11}, we can construct
graphs G; = G —In(C) and Gy = G — Out(C) in linear time. Assume that n;
and ny are the sizes of G; and G, respectively. Note that n; +mny < n + 11
(because of the size of C') and 9 < ny,ny < n — 1 (because C' is a separating
cycle). Making recursive calls to Procedure 2 on graphs G; and G, takes
Ty(ny) + To(ny) < a(nd + nd) + B2(n? + n3) time. This is maximized when
one of ny or ny is equal to n — 1 and the other one is 12. Therefore T5(n) <

af(n — 1)% + 123 + By[(n — 1)? + 122] + yn for some constant y > 0. This



CHAPTER 4. ONE FURTHER STEP ON STEINBERG’S CONJECTURE 90

implies that Ty(n) < an® + Byn?, for large enough a.

If we don’t find a separating cycle, then we construct graph G* which takes
at most linear time. Calling Procedure 2 on this graph with size n — 4 takes
Ty(n —4). Then the 3-colouring of G* can be extended to a 3-colouring of
G in constant time by Remark 4.2.7. Therefore, for some constant v > 0:

Ty(n) < yn+ Ty(n —4) < an® + Byn?. .

If f is an M-face then we do a BFS which takes linear time. If we find
a separating cycle, an analysis almost identical to that of the previous case
implies that T5(n) < an® + Byn?. Otherwise we construct the graph G* with
size n — 6, which takes linear time. Finding a 3-colouring of G* takes T5(n — 6)
time and extending this colouring to G takes constant time by Remark 4.2.9.

Therefore, for some constant y > 0: Ty(n) < yn + To(n — 6) < an® + Byn?.

If fis an M M-face, again we spend linear time to do the BF'S. If a separating
cycle is found as in the analysis of the previous two cases: Ty(n) < an®+ fBon?.
Otherwise, we construct the graph G* with size n — 8 in linear time. Finding
a 3-colouring of G* takes T»(n — 8) time and extending this colouring to G
takes constant time by Remark 4.2.11. So for some constant v > 0: Ty(n) <

yn + To(n — 8) < an® + fon?, as wanted.



Chapter 5

Colouring the Square of a Planar

Graph

Remark 5.0.1 The results of this chapter are based on papers [41, 42].

5.1 The Problem and Previous Works

A natural generalization of the 4CP is the following: for a given planar graph G, find
the minimum number of colours required in a colouring of the vertices of G such that
every two vertices at distance at most two of each other get different colours. This kind
of colouring is also referred to in the literature as distance-2-colouring. Note that this
problem is equivalent to the standard vertex colouring of G2, the square of graph G.
The question of finding the best possible upper bound for the chromatic number of
the square of a planar graph seems to have first been asked by Wegner [58] in 1977. He

posed the following conjecture:

Conjecture 5.1.1 [58] For a planar graph G:

) < A+5 fA<A<T,
X =
BA]+1 if A>8.

2

91
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\

--, k vertices

k+ 1 vertices

Figure 5.1: A planar graph with x(G?) = 3A +1

He gave examples illustrating that these bounds are best possible. Figure 5.1 shows such
an example for large values of A. In this graph, there are k£ paths of length 2 between
u,v and v, w, and k + 1 paths of length 2 between u,w. So A = 2k + 2 and all vertices
should get different colours. Therefore, x(G?) =3k +4 = [2A] 4 1. He also showed that
if A = 3 then G2 can be 8-coloured and conjectured that 7 colours would be enough.
Very recently, Thomassen [54] has solved this conjecture for A = 3, by showing that the
square of every cubic planar graph is 7-colourable, but the conjecture for general planar
graphs remains open. This conjecture is mentioned in Jensen and Toft [38], Section 2.18,

followed by a brief history of it.

One might think that the straightforward greedy algorithm will give a linear upper
bound of approximately 5A on x(G?), because every planar graph has a vertex of degree
at most 5. But with being more careful in the analysis, one can find out why this
argument does not work that easily. For instance, we can argue that since every planar
graph G has a vertex with degree at most 5, there is an ordering vy, v, ..., v, of the
vertices of G, such that each v; has at most 5 neighbours in {vy,...,v; 1}. This implies a

greedy colouring algorithm which uses at most 6 colours to colour G (but not G?). One
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may try to extend this argument by saying that, since vertex v; has at most 5 neighbours
in {v1,...,v;_1}, it has at most 5(A — 1) vertices at distance two in {vy,...,v;_1}, and
therefore the same algorithm will colour G? with at most 5A + 1 colours. However, the
vertices at distance two from v; in {vy,...,v;_1} are not necessarily adjacent to a vertex
in {v1,...,v;_1}. So, the number of vertices in {v,...,v;_1} at distance two from v;
might be much larger than 5(A — 1).

Another naive (and failed) argument for showing that x(G?) < 5A+1 is the following:
in any planar graph G there is a vertex v of degree at most 5; by induction there is a
colouring C' of the square of G — v, with at most 5A + 1 colours. Since there are at most
5A vertices at distance at most 2 of v we can assign a colour to v. What’s the flaw?
Some neighbours of v might have the same colour in C, but they are at distance 2 of
each other in G' (because of v). So we cannot leave them with their old colours.

The first non-trivial upper bound on x(G?) for each planar graph G was given by
Jonas [39] in his Ph.D. thesis, who proved something close to the 5A that these failed

arguments tried to obtain:

Theorem 5.1.2 [39] For every planar graph G: x(G?) < 8A — 22,
This bound was later improved by Wong in his M.Sc. thesis [60]:
Theorem 5.1.3 [60] For every planar graph G: x(G?*) < 3A +5.

Wong also considered the problem of colouring larger powers of planar graphs and, using
the above theorem as the base case of an induction, proved that for every planar graph
G and integer k > 1: x(G*) € O(Al2)). Note that a rooted tree of height |£] in which
every internal node has degree A requires Q(AL%J) colours in any colouring of its kth

power. Therefore the above bound is asymptotically best possible.

Van den Heuvel and McGuinness [57] gave the following result:

Theorem 5.1.4 [57] For every planar G: x(G?) < 2A + 25,
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They also applied the same proof technique to a more generalized setting of colouring,
which we will discuss soon. For large values of A, Agnarsson and Halldérsson [2] found

a better asymptotic bound:

Theorem 5.1.5 [2] If G is a planar graph with A > 749, then x(G?) < [2A] 4 2.
Recently, Borodin et al. [16, 17] have been able to extend these results further:

Theorem 5.1.6 [16, 17] For a planar graph G with A > 47: x(G?) < [2A] + 1.

In this chapter we give some upper bounds for the chromatic number of the square of
a planar graph in terms of the maximum degree, which are asymptotically better than
all the previously known bounds. More specifically, we reduce the coefficient of A from

2 to 2 and obtain x(G?)[2A] 4 O(1). The main theorem of this chapter is:

Theorem 5.1.7 For a planar graph G: x(G?) < [2A] +78.
For larger values of A, we can reduce the additive constant somewhat:
Theorem 5.1.8 For a planar graph G, if A > 241, then: x(G?) < [gA} + 25.

Remark 5.1.9 The proof of Theorem 5.1.7 is more complicated than the main results
of the previous two chapters. That is why we kept this theorem for the last chapter, even

though this result was obtained earlier than the previous ones.

Since the standard vertex colouring for planar graphs [28] and distance-2-colouring for
general graphs [32] are both NP-complete, one might expect computing x(G?) for planar
G to be NP-complete. Indeed this is true, as proved by Ramanathan and Loyd [46] that
the distance-2-colouring problem (and therefore computing x(G?)) is NP-complete for
planar graphs.

A generalization of standard vertex colouring is L(p, ¢)-labeling. For vertices u,v € V'
let dist(u,v) denote the distance between u and v. For integers p,q¢ > 0, an L(p, q)-

labeling of a graph G is a mapping L : V(G) — {0,...,k} such that
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e |L(u) — L(v)| > p if dist(u,v) =1, and

e |L(u) — L(v)| > q if dist(u,v) = 2.

The p, g-span of G, denoted by AP(G), is the minimum £ for which an L(p, ¢)-labeling
exists. It is easy to see that for any graph G: x(G?) = A (G) + 1. The problem of
determining A\P(G) has been studied for some specific classes of graphs, such as paths,
cycles, wheels, and complete k-partite graphs [32], trees [23, 32|, cographs [23], k-almost
trees [26], and unicycles and bicycles [39] (See also [9, 27, 29, 30, 31, 46, 45, 56, 59]).
The motivation for this problem comes from the channel assignment problem in radio
and cellular phone systems, where each vertex of the graph corresponds to a transmitter
location, with the label assigned to it determining the frequency channel on which it
transmits. In applications, because of possible interference between neighbouring trans-
mitters, the channels assigned to them must have a certain distance from each other. A
similar requirement arises from transmitters that are not neighbours but are close, i.e at
distance 2. This problem is also known as the Frequency Assignment Problem.

Not surprisingly, computing AP(G) is an NP-hard problem, as the simplest non-trivial
case, i.e. L(1,0)-labeling, is the standard vertex colouring of G. The L(p, q)-labeling
problem, and specially the case p = 2 and ¢ = 1, has been studied extensively on several
classes of graphs (see for example [9, 23, 26, 27, 29, 30, 31, 32]). The L(2,1)-labeling
problem is NP-complete for planar, split, chordal, and bipartite graphs [9], and for graphs
of diameter 2 [32], and it is polynomially solvable for paths and cycles [32], and trees
[23]. However, the complexity of L(p, ¢)-labeling in general is still open for trees.

Because of the motivating application for this problem, it is quite natural to consider
it on planar graphs. Since the case ¢ = 0 corresponds to labeling the vertices of a graph
with integers such that adjacent vertices receive labels at least p apart, the upper bound
3p for A of planar graphs is easily seen to follow from the Four Colour Theorem. So,
let’s assume that ¢ > 1. For any planar graph G, a straightforward argument shows that

A(G) > qA +p—q+ 1. There are planar graphs G (such as the one in Figure 5.1) for
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which A(G) > %qA + O(p + ¢q). The best known upper bound for A\/(G), for a planar
graph G, is (4¢ — 2)A + O(p + ¢) proved in [57]:

Theorem 5.1.10 [57] For any planar graph G and positive integers p and q, such that

p=>q:
N(G) < (4g — 2)A + 10p + 38¢ — 24.

We sharpen the gap between this result and the best possible bound asymptotically, by

obtaining the upper bound ¢[3A]+ O(p + q).
Theorem 5.1.11 For any planar graph G and positive integers p and q:
5
MN(G) < q[gA] + 18p + 77¢q — 18.

In [9] Bodlaender et al. give approximation algorithms to compute A? for some classes
of graphs and noted that the result of Jonas [39] yields an 8-approximation algorithm
for planar graphs. Fotakis et al. [27] point out that the result of [57] yields a (2 + o(1))-
approximation algorithm for computing A} on planar graphs. Agnarsson and Halldérsson
[2] also give a 2-approximation algorithm. Fotakis et al. [27] asks if one can obtain a
polynomial time approximation algorithm of approximation ratio < 2. Theorem 5.1.11
answers this question as explained below.

Consider Theorem 5.1.7. It is easy to see that this Theorem yields a (2 + €)-
approximation algorithm for computing x(G?) for any planar graph G, where € is a
constant that goes to zero when A goes to infinity. Note that this is a trivial approxima-
tion algorithm as all we need to do is to compute gA + 78 and return it. But we actually
obtain something more interesting. The proofs of Theorems 5.1.7, 5.1.8, and 5.1.11 are
constructive and yield efficient algorithms for finding the corresponding colourings. For
example, for Theorem 5.1.7, we obtain an algorithm that produces a distance-2-colouring
of any given planar graph G with at most gA + 78 colours.

The organization of this chapter is as follows. The next section contains the proof of

the main Theorem, i.e. Theorem 5.1.7. We start by explaining some of the ideas behind
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the proof. We formalize these ideas in Subsection 5.2.2 by stating some notation and
definitions that will be used throughout the proof, and then describing the reducible con-
figurations. Subsection 5.2.3 explains the set of discharging rules. Finally in Subsection
5.2.4 we complete the proof of the theorem by proving unavoidability of the reducible
configurations, using the Discharging Method. In Section 5.3 we show how some simple
modifications in the arguments of Section 5.2 yield the proof of Theorem 5.1.8. Then we
show in Section 5.4 how to adapt the arguments to prove Theorem 5.1.11. The approxi-
mation algorithms obtained based on the proofs of Theorems 5.1.7, 5.1.8, and 5.1.11 are
explained in Section 5.5. Finally we talk about the asymptotic tightness of the results of

this chapter, if the same set of reducible configurations is used.

5.2 Proof of the Main Theorem

In this section, we give the proof of Theorem 5.1.7 which uses the Discharging Method.
Before going into the details of the proof, we explain, very roughly, some of the basic and

simple ideas behind this proof and the previously known results.

5.2.1 Going from gA to gA

Let G be an arbitrary planar graph, and assume that G has a very large maximum degree,
A. Also, assume that we have [2A]+ C colours to use, for some large constant C' (as we
said, this is the previously best known upper bound for x(G?) and Borodin et al. [16, 17]
proved it for C' = 1).

The main reducible configuration to prove the bound x(G?) < [2A] + C is a vertex
v with dg2(v) < [2A] 4 C — 1, which is adjacent to a vertex u with small degree (say
at most 4). Suppose that G has such a vertex v. Then we can contract v on edge uv,

i.e. remove uv and identify v with u and remove the multiple edges. Call this new graph

G'. Since d(u) < 4, it is easy to see that A(G") < A(G), and therefore, we can colour G’
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9

a,

Figure 5.2: Two vertices with many common neighbours

with [%A} + C colours. This colouring induced on G can be easily extended to v, since
there are at most [2A] + C — 1 coloured vertices in Ngz(v). We call a vertex like v, a
lvght vertex.

So it is enough to show that G has a light vertex. In order to do this, we define
two other configurations, each of which contains a light vertex and then prove (using the
Discharging Method) that G has at least one of these two configurations.

The first of these two configurations is a < 5-vertex ¢, all but at most one of whose
neighbours have very small degree (say at most 4). In this case, the number of vertices
at distance at most two of ¢ is at most 4 x 4 + A, which is smaller than [3A] + C, if A
is large enough. Therefore ¢ is a light vertex.

For the second configuration, suppose that G is a triangulation. Consider two vertices
v and v with large degrees, say A, that have x common neighbours. For example,
assume that ay, ..., a, are consecutive (in clockwise order) neighbours of u which are also
neighbours of v. Since G is a triangulation, each a;, 2 <1 < x — 1, has degree exactly 4
and is adjacent to u,v,a; 1, and a;41 (See Figure 5.2). Fix one of these vertices, say as,
and let’s count the number of vertices at distance at most two from it. It is easy to see
that dg2(as) < dg(u) + dg(v) + dg(ar) + dg(as) — z, since aq, . .., a, are counted twice,
once in dg(u), and once in dg(v). Therefore, if z > 2, then dgz(az) < [2A]. So as is a

light vertex.

If we assume that G is a triangulation then using the Discharging Method one can
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show that G indeed has a < 5-vertex like ¢ or a 4-vertex like ap, whose number of
neighbours at distance at most two is at most [2A] + C — 1. Of course, dealing with
non-triangulations adds some complications.
As we will see in Section 5.6, there are planar graphs GG in which for every vertex
9

v: deg2(v) > [$A]. Thus, using the idea explained above, we cannot hope for a bound

better than (gA} +1 and we need to come up with another reducible configuration. This

reducible configuration is explained in the next section (Lemma 5.2.14).

5.2.2 Preliminaries and Reducible Configurations

A vertex v is called big if dg(v) > 47, otherwise we call it a small vertex. For this
subsection only, we assume that G is a counter-example to Theorem 5.1.7 with the
minimum number of vertices. By a colouring we implicitly mean a colouring in which
vertices at distance at most two from each other get different colours. Trivially G is
connected. The next lemma formalizes the first structure we talked about in the previous

subsection.

Lemma 5.2.1 For every vertex v of G, if there exists a verter uw € N(v), such that

de(v) + da(u) < A+ 2 then dg=(v) > [2A] +78.

Proof: Assume that v is such a vertex. Contract v on edge uv. The resulting graph has
maximum degree at most A and because G was a minimum counter-example, the new
graph can be coloured with [gA] + 78 colours. Now consider this colouring induced on
G, in which every vertex other than v is coloured. If dg2(v) < [3A] + 78 then we can
assign a colour to v to extend the colouring to v, which contradicts the definition of G. =

Recall that by [57]: x(G?) < 2A + 25. Therefore:

Observation 5.2.2 We can assume that A > 160, otherwise 2A + 25 < [3A] 4 78.

Lemma 5.2.3 Fvery <5-vertex in G must be adjacent to at least two big vertices.
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Proof: By way of contradiction assume that this is not true. Then there is a <5-vertex v
which is adjacent to at most one big vertex and all its other neighbours are <46-vertices.
Then, using Observation 5.2.2, v along with one of these small vertices will contradict

Lemma 5.2.1. ]
Corollary 5.2.4 Every vertex of G is a >2-vertex.
Lemma 5.2.5 G is 2-connected.

Proof: By contradiction, let v be a cut-vertex of G and let Cy,...,C; (t > 2) be the
connected components of G — {v}. By the definition of G, for each 1 < i < ¢, there is
a colouring ¢; of G; = C; U {v} with [2A] + 78 colours. We can permute the colours
in each @; (if needed) such that v has the same colour in all ¢;’s and the sets of colours
appearing in Ng,(v), 1 < i < t, are all disjoint. Now the union of these colourings will
be a colouring of GG, a contradiction. |

As mentioned in Subsection 5.2.1, our proof becomes significantly simpler if we can
assume that the underlying graph is a triangulation, i.e. all faces are triangles. It will
also simplify things to assume that it has minimum degree at least 4. To be able to make
these assumptions, we begin by modifying graph G in two phases.

Phase 1: In this phase we transform G into a (simple) triangulated graph G’, by
adding edges to every non-triangle face of G. Let G’ be initially equal to G. Consider
any non-triangle face f = vy, vy, ..., v, of G'. Because G is 2-connected, we cannot have
both viv3 € E(G") and vevy € E(G") at the same time since they both have to be outside
of f. So we can add at least one of these edges to F(G’) inside f, without creating any
multiple edges. We follow this procedure to reduce the faces’ sizes as long as we have
any non-triangle face in G'. At the end we have a triangulated graph G' which contains

G as a subgraph.

Observation 5.2.6 For every vertex v, Ng(v) C Ngr(v).
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y z

Figure 5.3: The switching operation
Lemma 5.2.7 All vertices of G' are >3-vertices.

Proof: By Corollary 5.2.4 and Observation 5.2.6 all the vertices of G' are >2-vertices.
Suppose that we have a 2-vertex v in G’ having neighbours x and y. Since G’ is trian-
gulated, the faces on each side of edge vr must be triangles, call them f; and f;. So we

must have xy € f; and also xy € fo. Since G’ has at least 4 vertices, f; # f2 and so we

have a multiple edge. But G’ is simple. ]
Lemma 5.2.8 Fach >4-vertex v in G' can have at most %ﬂ) neighbours which are 3-
vertices.

Proof: Let x¢,71,...,%q, -1 be the sequence of neighbours of v in G, in clockwise

order. We show that we cannot have two consecutive 3-vertices in this sequence. If there
are two consecutive 3-vertices, say d(x;) = d(x;+1) = 3, where addition is in mod d¢ (v),
then there is a face containing z; 1, x;, T;1, T;12. But G’ is a triangulated graph. [ |

Phase 2: In this phase we transform graph G’ into another triangulated graph G”,
whose minimum degree is at least 4. Initially G” is equal to G’. As long as there is any
3-vertex v we do the following switching operation: let z,y, z be the three neighbours of
v. At least two of them, say = and y, are big in G' by Lemma 5.2.3 and Observation 5.2.6.
Remove edge xy. Since G' (and also G") is triangulated this leaves a face of size 4, say

x,v,y,t. Add edge vt to G” (see Figure 5.3). This way, the graph is still triangulated.

Observation 5.2.9 If v is not a big vertex in G then Ng(v) C Negr(v).
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Lemma 5.2.10 If v is a big vertex in G then dg»(v) > 24.

Proof: Follows easily from Lemma 5.2.8 and the definition of the switching operation.
]

So a big vertex v in G will not be a <23-vertex in G”. Let v be a big vertex in G' and
To, T2, - - Tdgn(v)—1 be the neighbours of v in G" in clockwise order. We call z,, ..., Zqtp

(where addition is in mod dgr(v)) a sparse segment in G" iff:
e h>2
e Each x; is a 4-vertex.

In the next two lemmas, let’s assume that x,,..., 2z, is @ maximal sparse segment of
v in G”, which is not equal to the whole neighbourhood of v. Also assume that z,_;
and z,4p41 are the neighbours of v immediately before x, and immediately after x,,

respectively.

Lemma 5.2.11 There is a big vertex in G other than v, that is connected to all the

vertices of Toi1,. .., Tarp1, in G" (and in G).

Proof: Follows easily from Observation 5.2.9, Lemma 5.2.3, and the definition of a sparse

segment. [ |
We use u to denote the big vertex, other than v, that is connected to all z,11, ..., ZTa1p_1-
Lemma 5.2.12 All the vertices xqi1, ..., Tarp_1 are connected to both u and v in G. If

ZTq_1 18 not big in G then x, is connected to both u and v in G. Otherwise it is connected
to at least one of them. Similarly if xq1p1 s not big in G, xy, is connected to both u and

v in G, and otherwise it is connected to at least one of them.

Proof: Since the only big neighbours of x,,1,..., 2414 1 in G” are v and u, by Lemma
5.2.3 they must be connected to both of them in G as well. For the same reason z, and

Zqrp Will be connected to v and v in G, if x, ; and z,y, 1 are not big. [
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U

Figure 5.4: The configuration of Lemma 5.2.13

We call ©44y1,...,241p—1 the inner vertices of the sparse segment, and x, and .
the end vertices of the sparse segment. Consider a vertex v and let us denote the
maximal sparse segments of N(v) by @Q1,Qs,...,Q, in clockwise order, where Q; =
¢i1,%2, 93, --- The next two lemmas describe the key two reducible configurations for a
graph that is a minimum counter-example to the theorem. We have already talked about

the first one in Subsection 5.2.1. Here we formalize it.
Lemma 5.2.13 |Q;| < dg(v) — [2A] =73, for 1 <i < m.

Proof: We prove this by contradiction. Assume that for some i, |Q;] > dg(v)—[2A]—73.
Let u; be the big vertex that is adjacent to all the inner vertices of @); (in both G' and

G"). See Figure 5.4. For an inner vertex of ();, say ¢; 2, we have:

de2(gi2) < da(uwi) +da(v) +2 — (|Qi| —3)
< A+dg(v) = |Qi +5

< (gm 478

If ¢; » is adjacent to ¢;; or ¢;3 in G then it contradicts Lemma 5.2.1. Otherwise it is only
adjacent to v and u; in GG, therefore has degree 2, and so along with v or u; contradicts

Lemma 5.2.1. [ ]

Lemma 5.2.14 Consider G and suppose that u; and u;y, are the big vertices adjacent

to all the inner vertices of QQ; and @y, respectively. Furthermore assume that t is a
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w

Figure 5.5: Configuration of Lemma 5.2.14

vertex adjacent to both u; and u;.; but not adjacent to v (see Figure 5.5) and there is a
verter w € Ng(t) such that dg(t) + dg(w) < A+ 2. Let X(t) be the set of vertices at

distance at most 2 of t that are not in Nglu;| U Ngluiy]|. If | X ()| < 6 then:
1
Qi +1Qit1| < LEAJ — 67.

Proof: Again we use contradiction. Assume that |Q;| + [Qi11] > [3A] — 66. Using
the argument of the proof of Lemma 5.2.1 we can colour every vertex of G other than ¢.
Note that dg2(t) < dg(u;) + dg(uie1) + | X ()] < 2A + 6. If all the colours of the inner
vertices of (); have appeared on the vertices of N¢[u;11]UX () —Q;41 and all the colours
of inner vertices of ();1, have appeared on the vertices of Ng[u;) U X (t) — @; then there
are at least |Q;| — 2+ |Q;11] — 2 repeated colours at Ngz(t). So the number of colours at
Ngz(t) is at most 2A 46 — |Q;| — |Qi1] +4 < [2A] 4 76 and so there is still one colour
available for ¢, which is a contradiction.

Therefore, without loss of generality, there exists an inner vertex of Q;11, say g1 2,
whose colour is not in Ng[u;) U X (t) — Q;. If there are less than [2A] 4 77 colours at

N¢2(giv12) then we could assign a new colour to ¢; 412 and assign the old colour of it to

t and get a colouring for G. So there must be [2A] + 77 or more different colours at

N¢» ((Ii+1,2)-
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From the definition of a sparse segment N¢(gi+1,2) € {v, %i+1, ¢i+1.1,i+1,3}- There are
at most dg(u;y1) + 7 colours, called the smaller colours, at Ng[u;+1]UX (t) U Ng[giv1.1]U
Nelaiv1,3]—{v}—{d¢it1,2} (note that ¢ is not coloured). So there must be at least [2A]+70
different colours, called the larger colours, at Ng[v]—Q;11. Since |Ng[v]|—|Q;i]| —|Qit1] <
A+1—[3A]+66 < [2A] + 67, one of the larger colours must be on an inner vertex of
(2;, which without loss of generality, we can assume is ¢; ». Because ¢ is not coloured, we
must have all the [2AT 4 78 colours at N¢:(t). Otherwise we could assign a colour to ¢.
As there are at most A+6 colours, all from the smaller colours, at N¢[u;1]UX (t), all the
larger colours must be in N¢|[u;], too. Let L be the number of larger colours. Therefore,
the number of forbidden colours for ¢; » that are not from the larger colours, is at most
d(u;) — L+ d(u;+1) — L < 2A — 2L. By considering the vertices at distance exactly two
of g;» that have a larger colour and noting that ¢;» has a larger colour too, the total
number of forbidden colours for g; » is at most 2A — L < L%AJ — 70, and so we can assign
a new colour to ¢;» and assign the old colour of ¢; 2, which is one of the larger colours
and is not in Ng2(t) — {¢i+12}, to t and extend the colouring to G, a contradiction. m

In summary here is the list of reducible configurations we proved in this subsection:

Reducible Configurations:
1. A cut-vertex.
2. A vertex violating Lemma 5.2.1. Such a vertex exists if (but not only if) there exists:

2(a). a <b5-vertex violating Lemma 5.2.3, or

2(b). a maximal sparse segment Q; of a big vertex violating Lemma 5.2.13.
3. Two maximal sparse segments (); and ;11 which contradict Lemma 5.2.14.

In the next two subsections, we prove the unavoidability of this set of configurations.
As before, this is done using the Discharging Method. The discharging rules used in this

proof are more complicated than the ones we have seen in the previous chapters.
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5.2.3 Discharging Rules

Assume that G is an arbitrary planar graph with A > 160 as the theorem holds for
smaller values of A by the result of [57]. Our goal is to show that G has at least one of
the reducible configurations listed above. If G has reducible configurations 1 or 2(a), we
are done. Otherwise, we construct graphs G' and G” from G as described in the previous
subsection. We give an initial charge of dg(v) — 6 units to each vertex v. Using Euler’s
formula, |V| — |E| + |F| = 2, and noting that 3|F(G")| = 2|E(G")|, it is straightforward
to check that:

> (dar(v) = 6) = 2|E(G")| - 6|V |+ 4| E(G")| — 6| F(G")| = —12. (5.1)

vev
By these initial charges, the only vertices that have negative charges are 4- and 5-vertices,
which have charges —2 and —1, respectively. The goal is to show that, either G has a
reducible configuration listed in the previous subsection or we can send charges from
other vertices to <5-vertices such that all the vertices have non-negative charge, which
is of course a contradiction since the total charge must be negative by Equation (5.1).

We call a vertex v pseudo-big (in G") if v is big (in G) and dg»(v) > de(v) —11. Note
that a pseudo-big vertex is also a big vertex, but a big vertex might or might not be a
pseudo-big vertex. Before explaining the discharging rules, we more notation.

Suppose that v, 1, zo, ..., xk, u is a sequence of vertices such that v is adjacent to xq,
x; is adjacent to x;41, 1 <1 < k, and xy is adjacent to u.

Definition: By “v sends ¢ units of charge through x,...,x; to u” we mean v sends
¢ units of charge to xy, it passes the charge to xs... etc, and finally x; passes the charge
to u. In this case, we also say “v sends c units of charge through x;” and “u gets ¢ units
of charge through xy”.

In order to simplify the calculations of the total charges on vertex x;, 1 <1 < k, we
do not take into account the charges that only pass through z;. We say v saves k units of

charge on a set of size h of its neighbours if the net charge loss of v on these neighbours
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is smaller than h by at least k. More formally, v saves k units of charge on this set if

the total charge sent from v to (or through) them minus the total charge sent from (or

through) them to v is at most h — & units. For example, if v is sending nothing to « and

is getting 3 through u then 7 = [{u}| =1 and the net loss is 0 — 5 = —3. Setting h — k
3

to be equal to the net loss, we get k = % and so v saves 5 on u.

In the discharging phase, a big vertex v of G:

1) Sends 1 unit of charge to each 4-vertex u in Ngn(v).

2) Sends 3 unit of charge to each 5-vertex u in Ngr (v).

In addition, if v is a big vertex and wug, uy, us, us3, uy are consecutive neighbours of v in

clockwise or counter-clockwise order, where dgr(ug) = 4 (see Figure 5.6), then:

3) If dgv(u1) = 5, ug is big, dgn(us) = 4, dgr(us) > 5, and the neighbours of wu;

in clockwise or counter-clockwise order are v, ug, x1, T2, us then v sends % to w1

through us, u;.

4) I dgn(uy) = 5,5 < dgr(uz) < 6, dgr(us) > 7, and the neighbours of u; in clockwise or

counter-clockwise order are v, ug, x1, s, us then v sends % to w1 through us, ug, u;.

5) If dgv(uy) = 5, uy is big, dgr(usz) > 5, and the neighbours of u; in clockwise or

counter-clockwise order are v, ug, x1, s, us then v sends i to w1 through us, u;.

6) If dgv(uy) = 6, dgr(ug) < 5, dgr(uz) > 7, and the neighbours of u; in clockwise or

counter-clockwise order are v, ug, 1, 9, T3, us then v sends % to x; through u;.

7) If dgi(uy) = 6, dgr(ug) > 6, and the neighbours of u; in clockwise or counter-

clockwise order are v, ugy, T1, T2, T3, us then v sends i to x; through u;.
It7 S dGu(U) < 12 then:

8) If u is a big vertex and uy, uy, us, v, us, g, us are consecutive neighbours of u where

all ug, uy, us, us, ug, us are 4-vertices then v sends % to u.
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Figure 5.6: Discharging rules
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9) If wg, u1, ug, uz are consecutive neighbours of v, such that dgr(uy) = der(uz) =5, wg
and uz are big, and ¢ is the other common neighbour of w; and us (other than v),

then v sends % to t.
Every >12-vertex v of G” that was not big in G:
10) Sends 3 to each of its neighbours.
A <5-vertex v sends charges as follows:

11) If dgv(v) = 4 and its neighbours in clockwise order are wg,uy, ug, uz, such that
U, Uy, Us are big in G and w3 is small, then v sends % to each of uy and uy through

Uy.

12) If dgr(v) = 5 and its neighbours in clockwise order are wug, uy, us, us, uy, such that
de(Uo) S 1]_, dGN(U,l) Z ]_2, dGH(Ug) Z 12, dGH(u3) S ]_1, and Ua is blg7 then v

sends % to uy.

From now on, by “the total charge sent from v to one of its neighbours u”, we mean
the total charge sent from v to u or through u. Similarly, by “the total charge v received

from u”, we mean the total charge sent from or through u to v.

5.2.4 Details of the Proof

Here we show the unavoidability of the reducible configurations described before. As
usual, this is done by establishing a contradiction by calculating the total charge after

the discharging phase.
Lemma 5.2.15 Fvery big verter v sends at most % to every 5— or 6-vertex in Ngn(v).
Proof: For any 5— or 6-vertex u, v sends charges to u by at most one rule. [ ]

Lemma 5.2.16 Ifv is big and ug, u1, us, us, us are consecutive neighbours of v in counter-
clockwise order, such that dgy(ug) > 7 then v sends at most % through usy, or sends 1

through uy and der(uy) = dgr(ug) =5 and uy and uz are 5— or 6-vertices.
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Proof: If uy is big and one of rules 3 or 5 applies then it is easy to verify that it is the
only rule by which uy gets charge from v. If w; and us are both 5-vertices then rule 5
may apply twice, one for sending charge to a neighbour of u; and one for sending charge
to a neighbour of us, so overall us gets at most % from v. It is straightforward to check
that there is no configuration in which we can apply rule 3 twice.

The only other way for v to send charge to us is by rule 4. Note that if this rule applies
then none of the other rules apply. Also, v can send charge to uy twice by rule 4 since it
might apply under clockwise and counter-clockwise orientations of neighbours of v. This
happens if dgr(ug) = 5, 5 < dgr(uy) < 6,5 < dgr(uz) <6, dgr(ug) = 5, v, uy, e, T1, T

are neighbours of g in clockwise order where dg»(z9) = 4, and o, y1, Yo, us, v are neigh-

L

bours of u4 in clockwise order where dg»(yo) = 4. In this case v sends 5

to x; through
U, U1, Uy and sends % to y; through us, us, uy4, and this is the only configuration in which

v sends charge to uy twice. This proves the lemma. ]

Lemma 5.2.17 If a vertex v saves a total of at least 6 units of charge on its neighbour-

hood it will have non-negative charge.

Proof: If it saves at least 6 units of charge on its neighbourhood, the total net charge
sent out from v is at most dg»(v) — 6 units of charge, and since the initial charge of v is

dgr(v) — 6, it will have non-negative charge. n

Lemma 5.2.18 FEvery vertex v that is not big in G will either have non-negative charge

after the discharging phase or is reducible configuration 2(a).

Proof: If v is a 4-vertex it gets a total of at least 2 units of charge by rule 1 and if it
is a H-vertex it gets a total of at least 1 unit of charge by rule 2, unless v is reducible
configuration 2(a). Also, the < b5-vertices that send charges by rules 11 and 12 will
have non-negative charges, since they are adjacent to at least three >12-vertices. If
de(v) > 12 then it sends $dgn(v) < dgr(v) — 6 by rule 10 and so will have non-negative

charge. It is straightforward to verify that there is no configuration in which a 7-vertex
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Yit1

Figure 5.7: Configuration of Lemma 5.2.19

v sends more than 1 unit of charge in rules 8 or 9. Finally, it is not difficult to see that
by rules 8 and 9, a vertex sends at most % for every two neighbours that it has. So if
8 < dgn(v) < 12 it sends at most dG+(”) < dgr(v) — 6, and therefore it will have non-

negative charge in any of these cases. Finally, rules 3 to 7 do not apply to the vertices

that are not big in G. ]
Lemma 5.2.19 Every big vertex v that is not pseudo-big will have non-negative charge.

Proof: Suppose that v is such a vertex. So dgv(v) < dg(v) — 12 and therefore v was
involved in at least 12 switching operations, in each of which the edge between v and
another big vertex of G' was removed. Since G’ is simple, these big vertices are distinct.
Call them yy,ys,...,yx, where £k > 12, in clockwise order. Let x;z; be the edge that
was added during the switching operation that removed wvy;, and the order of z;’s and
z;'s 18 such that x; comes before z; in clockwise order. Note that all z;’s and all z;’s are
neighbours of v in G” (see Figure 5.7).

Let us call the vertices between z; and @1, w1, u;p, ..., u;y,, starting from z;. For
consistency, let us relabel temporarily z; and x;;1 to u; o and u; 41, respectively. To show
that v saves at least 6 in total, it is enough to show that either v saves at least % on a
vertex from z; to x;,1, or v saves at least 1 on the vertices from z;,1 to x;,9, for 1 < i < k.
First we show that there is at least one >5-vertex in w;y, ..., ui 41, for each 1 < ¢ < k.
If u; o is a 4-vertex we must have y;u;; € G", because G" is a triangulation. Assuming

that u; 1 is a 4-vertex we must have y;u; 2 € G"” and so on, until we have vy, u;; .1 € G”
; ’ ) + it
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and so w11 will be a >5-vertex. So for every 1 <7 < k, there is a >5-vertex between z;
and x;;1. Take any such vertex and call it u; ;. By Lemmas 5.2.15 and 5.2.16 and rule
10, it can be seen that v saves at least £ on u;,, unless 7 < dgn(u;;,) < 11.

So assume that 7 < dgr(u;j,) < 11 and v sends 1 through w; ;. By Lemma 5.2.16
both of the neighbours of v before and after u; ;, are 5— or 6-vertices and so v saves £ on
them. If z; # z;.1 then at least one of these lies between z; and z;,, and therefore v saves
% on the vertices from z; to z;41. If 2, = ;41 then u; j, = 2, = w41, 50 5 < dgr(zi41) < 6
and, dgr(uip1,1) =5 if zi41 # @49, Or dgr(2i42) = b otherwise.

First assume that z;;1 = x;12. Now if dgv(z;41) = 5 then v gets back % from z;,1 by
rule 12 and so saves 1 on that. If dgr(z;41) = 6 then it is easy to verify that v sends
nothing to z;4; by any rule and so saves 1 on that.

Otherwise if z;;; # x;,o then there are at least two vertices between z;,1,..., T,
that are 5— or 6-vertices and so v saves at least % on each of them, and therefore saves
a total of 1 on the vertices z;,1,...,Ti19. |

So the only vertices that may have negative charges are pseudo-big vertices in G".
Assume that v is a pseudo-big vertex of G"” whose neighbourhood sequence in clockwise
order is xy,...,xx. Let m be the number of maximal sparse segments of the neighbour-
hood of v and call these segments @1, Qs, ..., Q, in clockwise order. Also, let R; be the
sequence of neighbours of v between the last vertex of (); and the first vertex of Q;11,

where Q11 = Q1. If m = 0 then we define R; to be equal to Ngn(v).

Lemma 5.2.20 Let R = x,,...,x,, where R is one of Ry, ..., R,,. Then v saves at least

L%J on the vertices of R.

Proof: Since R does not overlap with any maximal sparse segment, from every three
consecutive vertices x;, Z; 11, T2 in R (where we consider the neighbours cyclicly if R =
Ngr(v)), at least one of them is a >5-vertex. Either v sends at most 3 to this vertex, or

sends 1 and by Lemma 5.2.16 the two vertices before that and the two vertices after that
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Figure 5.8: The first structure in Lemma 5.2.21

are b— or 6-vertices and v saves at least % on each of them. Thus in either case v saves at
least 3 on every three consecutive vertices of R and so saves at least |3(b—a+1)] = L%J.

Lemma 5.2.21 Suppose that m > 4. Then for every 1 < i < m either v saves at least

% on R;, or v saves at least 1 on R; and
1
Qi + Qita] < LgAJ — 67, (5.2)
or G has reducible configuration 2(a) or 3.
Proof: We consider different cases based on |R;|:

‘RZ’| = 1: Assume that R; = u. Since u is the only vertex between two maximal sparse
segments, dgr(u) > 5. First let dgv(u) = 5. Since @); and ;41 are sparse segments,
there must be two big vertices u; and u;,; that are connected to all the vertices of
Q; and Q;,1, respectively. Also, u must be connected to these two vertices, because

G" is a triangulation (see Figure 5.8).

Note that by rule 12, v gets back the % charge it had sent to u. So v is saving at

least 1, so far. Let ¢ be the other vertex that makes a triangle with edge w;u;;1.
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Assume that dgr(t) = 4, and wy, we are the two neighbours of ¢ other than u; and
tir1. If dgr(wy) < 4 and dgr(wy) < 4 then since @); and ;41 are sparse segments
and u; and u; 4 are big vertices in G, either Equation (5.2) holds, or G has reducible

configuration 3. Next assume that dgr(w;) > 5. Then by rule 3 u; will be sending

L
2

to v through u. So overall, v saves 2 on u. If dgv(t) > 5 then each of u;

extra 5

and u;; will send an extra i to v through u by rule 5 and therefore v saves % on

u.

Now let dgn(u) = 6, whose neighbours will be v, u;, u;41,t, and the end vertices
of Q; and @);11. Note that in this case v will send nothing to u and so is saving
at least 1. Assume that dg(t) = 4 and its other neighbour is w. If dgv(w) < 6
then either Equation (5.2) holds, or G has reducible configuration 3. Otherwise,
dgr(w) > 7 and so each of u; and u;;; sends an extra % to v through u by rule 6
and so v saves 2 on u. Next assume dgr(t) = 5 and its other neighbours are w,
and wy. If dgrv(w;) < 6 and dgr(wy) < 6 then either Equation (5.2) holds, or G
has reducible configuration 3. Otherwise at least one of w;, and wy has degree > 7
and so one of u; or u;; will send an extra % unit of charge to v through u by rule

6 and so v saves % If dgn(t) > 6 then both w; and u;;; send an extra i charge to

v through u by rule 7. So v saves % on .

If 7<dgr(u) <11, 0or 12 < dgr(u) and u was not big in G, then u sends % to v by

rules 8 or 10 and so v saves % on u.

If w was big in G then by rule 11 v gets back % through wu for each of the end vertices

of (); and @Q);1; that are adjacent to u, and so v saves at least 2 on wu.

‘Ri| = 2: Assume that R; = vy, vs. If dgnu(vy) > 6 or dgu(ve) > 6 then it is easy
to check that v sends nothing to one of v, vy and sends at most % to the other
one, or sends i to each, and so saves at least % on R;. So let us assume that

dgr(v1) = dgr(ve) = 5 and let ¢t be the other vertex which makes a triangle with
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Figure 5.9: Two other structures for Lemma 5.2.21

vy, U2. Note that v sends only % to each of v; and v, and so is saving 1 on R;, so

far.

If dgr (t) = 4 then either Equation (5.2) holds, or G has reducible configuration 3.
Let dg#(t) = 5 and call the other neighbour of ¢ (other than w;, vy, vo, uj1), w (see
Figure 5.9(a)). If dgv(w) < 6 then either Equation (5.2) holds, or G has reducible
configuration 3. Otherwise dgr(w) > 7 and by rule 4 u; and wu;;; each send an
extra 3 to v (through v; and v, respectively) and therefore v saves 2 on R;. Now
let dgr(t) = 6 whose neighbours are wy, we, u;, u;1,v1, vy (see Figure 5.9(b)). If
der(wy) <6 and dgr(wy) < 6 then either Equation (5.2) holds, or G has reducible
configuration 3. Otherwise, at least one of w; or wy is a >7-vertex and so one of u;

or u;4; sends an extra % to v (through v, or vy) by rule 4 and therefore v saves 2

2
on R;. If 7 < dgn(t) < 12 then t sends % to v by rule 9 and so v saves % on R;. If
12 < dgn(t) then v gets back the % it had sent to each of v; and vy by rule 12 and

so saves at least 2 on R;.

‘Ri| > 3: If there is no 4-vertex in R; then they are all >5-vertices and by Lemmas

5.2.15 and 5.2.16 v saves at least % on R;. If |R;| > 5, since R; cannot have three
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consecutive 4-vertices, we must have at least three >5-vertices and again by Lemmas
5.2.15 and 5.2.16 v saves at least % So consider the case that R; = vy, vq, v3, vy,
dgr(v1) > 5, dgr(vs) > 5, and dgr(ve) = dgn(vs) = 4 (exactly the same argument
works for the case that |R;| = 3 and vy = v3). There must be a big vertex w, other
than v, connected to all the vertices of R;, or else G has reducible configuration
2(a). If dgr(v1) = 5 then v gets back 3 from v; by rule 12 and so saves 1 on v;. If
dgr(v1) > 6 it can be verified that v sends nothing to v; by any rule and so saves

1 on v;. Since v saves at least % on vy, it saves at least % on R;.

Lemma 5.2.22 Fvery pseudo-big vertex v either has non-negative charge or lies in re-

ducible configuration 2(b) or 3.

Proof: Note that the initial charge of v was dg»(v) — 6. So it is enough to show that v
saves at least 6 units of charge somewhere in its neighbourhood. We consider different
cases based on the value of m, the number of maximal sparse segments of v. Recall that

we assume A > 160.

m = 0: Since v is pseudo-big dgr(v) > dg(v) — 11 > 36. Using Lemma 5.2.20 v will

save at least |#dgn(v)| > 6 and therefore will have non-negative charge.

1 < m < 3: Either G has reducible configuration 2(b), or Lemma 5.2.13 holds for G.

Then by definition of a pseudo-big vertex, if:

e m = 1: Then:

|R1| = dG”(U)_Q1

2
2 dGN (’U) — dG(’U) —+ ’7§A—| + 73
2
> (5 x 160] + 62
> 36.
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So by Lemma 5.2.20 v saves at least 6 units of charge on R;.

e m = 2: Then:

Z |Ri| =dgn (v) — Z |Qil

1<i<2 1<i<2
2
Z dG”(U) — 2dc;(1)) + 2 X [gA—I + 146
1
> [EA] + 135

> 36.

So by Lemma 5.2.20 v saves at least 6 units of charge on R; U Rs.

e m = 3: Then:

Z |Ri| =dgn(v) — Z |Qil

1<i<3 1<i<3

2
> dc;//(?)) - 3dc;(1)) + 3 % [gA—I + 219

> 208.

117

Therefore by Lemma 5.2.20 v saves at least 6 units of charge on Ry U Ry U R3.

m = 4: If v lies in reducible configuration 2(b) or 3 then we are done. So assume that

G satisfies Lemmas 5.2.13 and 5.2.14 for v. If v saves % on each of Ry, ..

., Ry then

it saves 6, and we are done. Otherwise, without loss of generality assume that v

saves 1 on R; and Equation (5.2) holds for @, and Q2. Therefore using Lemma

5.2.13:
|Ro| + [R3] + [Ra| > dgr(v) — (|Q:1] +Q2]) — |Qs] — [Q4]
> den(v) — L%AJ 67 — 2(dg(v) — [gm _73)
> A —2dg(v) + der(v) +213
> 202.

Thus, by Lemma 5.2.20 v saves at least 6 units on Ry U R3 U Ry.
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m = 5: If G has reducible configuration 2(b) or 3 we are done. Otherwise, G satisfies
Lemmas 5.2.13 and 5.2.14 for v. So v saves at least 1 on every R;, by Lemma 5.2.21.
If there are at least two of R;’s such that v saves % or more on them then v saves
at least 6. Otherwise there is at most one R;, say Rs5, on which v saves at least %

Therefore Equation (5.2) must hold for |Q1] + |Q2] and |Q3| + |Q4], i.e:

Q1] + |Q2] + |@s] + [Q4] < 2 x L%AJ — 134,

Then using Lemma 5.2.13:

2 1
Y IRl > den(v) —da(v) + [SA]+T73—2x [SA] +134
1<i<5 3 3
> 196.
Therefore v saves at least 6 units of charge on R; U Ry U R3 U Ry U R5, by Lemma

5.2.20.

m > 6: v saves at least 1 on every R;, by Lemma 5.2.21. So v saves at least 6 and

therefore will have non-negative charge.

]

Proof of Theorem 5.1.7: By Lemmas 5.2.18, 5.2.19, and 5.2.22 every vertex of
G" will either have non-negative charge, after applying the discharging rules, or lie in
reducible configuration 2(a), 2(b) or 3. If G has a reducible configuration then we are
done. Otherwise the total charge over all the vertices of G” will be non-negative, but this
contradicts Equation (5.1). Therefore G must have one of the reducible configurations
listed in Subsection 5.2.2. This disproves the existence of a minimum counter-example

to the theorem.

Remark 5.2.23 Using a more careful analysis one can prove the bound [i(b —a+1)]
in Lemma 5.2.20, which in turn can be used to prove x(G?) < [2A] +61. By being even
more careful throughout the analysis one can probably prove the bound x(G?) < (gA} +51

or even maybe with 30 or 20 instead of 51.
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5.3 A Better Bound for Large Values of A

In this section we describe the modifications required to be made to the proof of Theorem
5.1.7 to obtain Theorem 5.1.8. The main steps of the proof of Theorem 5.1.8 are very
similar to those of Theorem 5.1.7, and we only have to modify a few lemmas and redo the
calculations. For these lemmas, since the proofs are almost identical and do not need any
new ideas, we only state the lemmas without giving further proofs. Let G be a minimum

counter-example to Theorem 5.1.8 such that A > 241.

Lemma 5.3.1 For every vertex v of G, if there exists a verter u € N(v), such that

de(v) + da(u) < A+ 2 then dgz(v) > [2A] + 25.

We construct the triangulated graphs G' and then G" exactly in the same way. Lemmas
5.2.3 to 5.2.12 are still valid. The analogues of Lemmas 5.2.13 and 5.2.14 will be as

follows.

Lemma 5.3.2 |Q;| < da(v) — [2A] =20, for 1 <i < m.

Lemma 5.3.3 Under the same assumption as in Lemma 5.2.14, we have:
1
Qil +1Qiva] < LgAJ — 14.

We apply the same initial charges and discharging rules. Again, all Lemmas 5.2.15 to
5.2.20 hold. The analogue of Lemma 5.2.21 will be:

Lemma 5.3.4 Suppose that m > 4. Then for every 1 < 1 < m either v saves at least %

on R;, or v saves at least 1 on R; and
1
|Qi| +|Qis1| < LgAJ — 14,
or G has reducible configuration 3.

Now it is straightforward to do the calculations of Lemma 5.2.22 with the above values

to see that it holds in this case too. This will complete the proof of Theorem 5.1.8.
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5.4 Generalization to Frequency Channel Assignment

In this section we prove Theorem 5.1.11. As we said in Section 5.1, the upper bound 3p
for AJ of planar graphs follows from the Four Colour Theorem (if we use colours from

{0,p,2p,3p}). So let’s assume that ¢ > 1. We prove the following theorem:

Theorem 5.4.1 For any planar graph G and positive integer p:

5)
M(G) < [SA] +18p+59.

Assuming Theorem 5.4.1, we can prove Theorem 5.1.11 as follows:

Proof of Theorem 5.1.11: Let ¢ = [3A] + 18[£] 4+ 60. By Theorem 5.4.1, there
is an L([2],1)-labeling of G with colours in {0,...,c¢ — 1}. Consider such a labeling
and multiply every colour by ¢. This yields an L(p, ¢)-labeling of G with colours in
{0,...,q(c—1)}. Noting that g(c — 1) < ¢[2A] + 18p + 77¢q — 18 completes the proof. m

In the rest of this section we give the proof of Theorem 5.4.1. The steps of the proof
are very similar to those of proof of Theorem 5.1.7. Let G be a planar graph which is a

counter-example to Theorem 5.4.1 with the minimum number of vertices. We set

C = @M + 18p + 60

and throughout this section we use colours from {0,...,C' — 1}. Recall that a vertex is

said to be big if dg(v) > 47.

Lemma 5.4.2 Suppose that v is a <5-vertex in G. If there exists a vertex u € N(v),

such that dg(v) + dg(u) < A+ 2 then dg2(v) > dg(v) + [3A] + 73.

Proof: Assume that v is such a vertex and assume that dg2(v) < de(v) + [2A] + 73.
Contract v on edge vu. The resulting graph has maximum degree at most A and because
G was a minimum counter-example, the new graph has an L(p, 1)-labeling with at most

¢ colours. Now consider such a labeling induced on G, in which every vertex other than
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v is coloured. Every vertex at distance (exactly) two of v in G forbids 1 colour for v,
and every vertex in N(v) forbids at most 2p — 1 colours for v. So the total number of
forbidden colours for v, i.e. the colours that we cannot assign to v, is at most:
da(v)(2p — 1) + dg2(v) — da(v) < 10p—5+ [3A]+73

= [3A]+10p+68

< C.
The last inequality follows from the assumption that p > 1. Therefore, there is still at
least one colour available for v whose absolute difference from its neighbours in G? is

large enough and so we can extend the colouring to G. ]

Observation 5.4.3 By Theorem 5.1.10 we can assume that A > 162, otherwise 2(2q —

1)A +10p+38¢g—23 < C.
Lemma 5.4.4 Every <5-verter must be adjacent to at least 2 big vertices.

Proof: By way of contradiction assume that there is a <5-vertex v which is adjacent
to at most one big vertex and so all its other neighbours are <46-vertices. Then, using
Observation 5.4.3, v along with one of these small vertices will contradict Lemma 5.4.2.
]

Now construct graph G’ from G and then G” from G’ in the same way we did in the
proof of Theorem 5.1.7. Also, we define the sparse segments in the same way. Consider
vertex v and let’s call the maximal sparse segments of it @y, Qs,...,Q,, in clockwise

order, where Q; = 4i1,4i,2,49i,3, - - -
Lemma 5.4.5 |Q;| < dg(v) — [2A] — 69.

Proof: Analogous to the proof of Lemma 5.2.13. ]

The next lemma is analogous to Lemma 5.2.14. The key difference is that we require
a bound on the degree of t. This is because each vertex adjacent to ¢ can forbid for ¢ up
to 2p — 1 colours. Thus we have to be more careful about controlling the number of such

vertices.
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Lemma 5.4.6 Suppose that u; and u;, are the big vertices adjacent to all the vertices
of Q; and Q;11, respectively. Furthermore assume that t is a <6-vertex adjacent to both
u; and w4 but not adjacent to v (see Figure 5.5) and there is a vertex w € N(t) such
that dg(t) + da(w) < A+ 2. Let X(t) be the set of vertices at distance at most two of t

that are not in N{u;] U Nu;1]. If | X(t)] < 6 then:
1
Q| + 1Qis1] < LgAJ — 60. (5.3)

Proof: Again, by way of contradiction, assume that [Q;] + |Qi+1| > [3A] — 59. Using
the same argument as at the beginning of the proof of Lemma 5.4.2, we can colour every
vertex of G' other than ¢ using colours in {0,...,C — 1} such that the vertices that are
adjacent receive colours that are at least p apart and the vertices at distance two receive
distinct colours. Consider such a colouring.

Remark: We often focus on the inner vertices of );. So recall that there are exactly
|Qi| — 2 such vertices (similarly for ;).

Claim 1: There are at least [2A] + 78 colours in Ngz(t) and they forbid all the C
colours for ¢.

Proof: Trivially, if there is a non-forbidden colour for ¢ then we can extend the
colouring to ¢, which contradicts the minimality of G.

If there are at most [2A] 4 77 colours in Ng2(t) then (because ¢ is not coloured and
has degree at most 6) they forbid at most [SA]+71+6(2p—1) = [2A] +12p+65 < C
colours for ¢, which contradicts what we proved in the previous paragraph. [ ]

Claim 2: There exists an inner vertex of ); or );1+1 whose colour is distinct from
the colour of every other vertex in Ngz(t) and differs from the colour of every vertex in
N(t) by at least p.

Proof: By way of contradiction assume the above statement is false. Let us count
the number of forbidden colours for ¢. The neighbours of ¢ forbid at most d¢(t) x (2p—1)

colours for t. Let’s denote this set of forbidden colours by R. The vertices at distance
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exactly two of ¢ are in N(u;) U N(u;41) U X(t) — N(t), and each of them forbids its own
colour for t. However, at least [Q;| — 2 + |Q;41] — 2 of these forbidden colours (for t)
are counted twice. This is because we assumed the claim is false; i.e. for every colour
« that appears on an inner vertex of ); or ();4; there is a neighbour of ¢ whose colour
differs from « by less than p (and so @ € R) or there is another vertex in Ng2(t) with
colour a. Since de2(t) < dg(w;) + da(uiv1) + | X (¢)] < 2A + 6, the total number of
forbidden colours for ¢ is at most dg(t) X (2p — 1) +2A 46 — dg(t) — |Qs| — |Qit1| +4 <

[2A]1+6(2p — 1) +63 < [2A] + 12p + 57 < C. This contradicts Claim 1. m

Without loss of generality, assume there exists an inner vertex of Qii1, say ¢iy12,
whose colour is different from the colour of every vertex in Ng2(t) and differs from the

colour of every vertex in N(t) by at least p.

Claim 3: There are at least [SA] + 77 colours in Ng2(gi412) and they forbid for

¢i+1,2, C' — 1 colours (all the colours except the one that appears on ¢;412).

Proof: First we show that the vertices in Ng2(git+1,2) must forbid all the colours
(except the one that appears on g1 2) for ¢i112. Otherwise, we can remove the colour
of ¢iy12 and assign it without any conflict to ¢ (because Claim 2 holds), and assign a
new colour (from the colours that are not forbidden) to ¢;+12. Hence, the number of

forbidden colors for g;12 is C' — 1.

If there are fewer than [2A]+77 different colours in Nz (git1,2) then, since dg(git12) <

4, the vertices in Ng2(git1,2) forbid fewer than 4(2p— 1)+ [2A] +73 = [2A] +8p+69 <

C — 1 colours for ¢;4;,2. This contradicts what we proved in the previous paragraph. =

From the definition of a sparse segment N(gi+12) C {v,Wit1, 411,113} Let’s
denote the set of colours on the vertices in N{u;41] U N(¢) U X (¢) U Ngiy1,1] U N[git1,3]

by S and call it the set of smaller colours.
Claim 4: |S| < dg(uiy1) + 14.

Proof: Follows from the definition of S. ]
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Let us call the set of colours that are forbidden for ¢ or ¢;4; 2 by the smaller colours
the smaller forbidden colours, and denote them by SF. Since d(t) < 6 and d(gi112) < 4

and w;41 is a common neighbour of ¢ and ;41 2,
|ISF| <9(2p—1)+|S| -9 =S|+ 18p — 18. (5.4)

So, SF contains S along with at most 18(p — 1) colours which differ from the colour of
some neighbour of ¢ or some neighbour of g;;; 2 by at most p — 1.

Claim 5: Every colour that is not in SF' differs from every colour in N(¢) UN(gj+12)
by at least p.

Proof: By the definition of SF', every colour which differs from the colour of a vertex
in N(t) UN(gi+12) by less than p is in SF. n

We will use Claim 5 at the end of the proof of this Lemma. By Claim 3, there are at
least C'— 1 — |SF| colours, different from the smaller forbidden colours, in N(v) — Q;41.
We call this set the larger colours and denote it by L.

Claim 6: |L| > [2A] — [S|+ 77 > [3A] — dg(uiq1) + 63.

Proof: Follows from the definition of L, Claim 4, and the bound on |SF| (Inequality
5.4). u

Since [N (v)| — (JQi| — 2) — |Qi+1] < A —[3A] +61 < |L], one of the larger colours
must be on an inner vertex of ;, which without loss of generality, we can assume is g;o.

Claim 7: The vertices in N(v) — Qi1 — {¢i2} forbid for ¢;» all the colours in L,
except the one that appears on g¢; ».

Proof: All the larger colors appear in N(v) — ;1 and so they are at distance at
most two of g; . n

Claim 8: The number of forbidden colours for g;» is at most [3A] 4+ 8p — 68 < C.

Proof: By noting that d(g;2) < 4, neighbours of ¢; » forbid at most 4(2p — 1) colours
for ¢; 2. Now let’s count the number of forbidden colours for g; » by the vertices at distance

exactly two of it.
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Since the colours in Nu;; 1] U N(t) U X () are smaller colours and forbid for ¢ only
colours that are in SF, by Claim 1, all the larger colours must appear in N|u;] — N(t).
Remember that the larger colours appear in N(v) — Q;41, too. Therefore, the number of
colours that are not in L and are forbidden for ¢;» by the vertices at distance exactly 2
of ¢;» is at most: d(w;) —1—(|L| —1)+d(v) —1—(|]L| —1) <2A —2|L|. By considering
the vertices at distance exactly two of ¢; » that have a larger colour and noting that g¢;»

has a larger colour too, and using Claim 6, the total number of forbidden colours for g; »

is at most:
1
42p—1)+ (2A =2|L))+ (|L] - 1) < LgAJ + dg(uiy1) + 8p — 68
4
< LgAJ + 8p — 68.

By Claim 8, we can assign the colour of g; » to t (because it is a larger colour and so
it is different from the colours in X (¢) and, by Claim 5, differs from all the colours in

N(t) by at least p) and find a new colour for ¢; » that is not forbidden for it. n

The rest of the proof is almost identical to that of Theorem 5.1.7. We use Lemmas
5.4.4, 5.4.5, and 5.4.6, instead of Lemmas 5.2.3, 5.2.13, and 5.2.14, respectively. The
initial charges and the discharging rules are the same. Without any modifications, Lem-
mas 5.2.15 to 5.2.20 hold in this case, too. In Lemma 5.2.21 we should replace Equation
(5.2) with Equation (5.3) and use Lemma 5.4.6 instead of Lemma 5.2.14. To do so, it is
important to note that whenever we used Lemma 5.2.14 in the proof of Lemma 5.2.21,
the degree of ¢ was at most 6; thus, we can use Lemma 5.4.6, instead. After doing these
modifications, the calculations for the proof of this revised version of Lemma 5.2.21 are

fairly straightforward.
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5.5 The Colouring Algorithms

In this section we show how to transform the proof of Theorem 5.1.7 into an algorithm.
that colours the vertices of a given embedded planar graph G' with gA + 78 colours such
that every pair of vertices at distance at most two from each other get different colours.
Since in any proper colouring of G* we need at least A+1 colours this will be a (3 +o0(1))-
approximation algorithm, for large enough values of A. With some minor modifications
in the algorithm, we can obtain colouring algorithms for Theorems 5.1.8 and 5.1.11.
Consider a planar graph G'. We may assume that A > 160 since for smaller values of
A it is straightforward to obtain an algorithm based on the result of [57] that uses at most
[gA} + 78 colours. Also, we assume that the input to our algorithm is connected, since
for a disconnected graph it is enough to colour each connected component, separately.
One iteration of the algorithm either finds a cut-vertex and breaks the graph into smaller
subgraphs, or reduces the size of the problem by contracting a suitable edge of G. Then
it colours the new smaller graph(s) recursively, and then extends the colouring(s) to G.

More specifically, we do the following steps, as long as the graph has at least one vertex:

1. Check to see whether G has a cut-vertex. If v is a cut-vertex and C',...,Cy are
connected components of G — v then colour each G; = C; U {v}, independently.
The union of these colourings, after permuting the colours in some of them will be

a colouring of G.

2. Else, check to see whether there is a <5>-vertex adjacent to at most one big vertex.
If such a vertex exists, then that vertex along with one of its small neighbours will

be the suitable edge to be contracted.
3. Else, construct the triangulated graph G”.

4. Apply the initial charges and the discharging rules.
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5. As the total charge is negative, we can find a vertex v with negative charge. This

vertex must have or lie in one of reducible configurations 2(a), 2(b) or 3.

If v is reducible configuration 2(a) then we continue as explained in the second
step. If we find reducible configuration 2(b) around v then one of the inner vertices
of the sparse segment along with one of its two big neighbours will be the suitable
edge to contract. Finally, if we find reducible configuration 3 around v then we can

contract edge tw (recall the specification of ¢ and w from Lemma 5.2.14).
6. Colour the new graph (after contracting the suitable edge), recursively.

7. This colouring can be easily extended to G by the arguments of proofs of Lemmas

5.2.3,5.2.5,5.2.13 or 5.2.14.

For a given graph G let n = |V/| be the size of G, and denote the worst case running
time of the algorithm for an input of size n by T'(n). We prove by induction that for all
values of n and for some constant C' > 0: T'(n) < Cn?. The inequality is trivial for small
values of n. So let’s assume that 7'(¢) < Ci? for 1 <4 < n and consider the case that the
input graph has size n.

Finding a cut-vertex in a graph takes linear time. Once we have done that we make
recursive calls on k smaller graphs G, ..., G, with 2 < k < n — 1. Let n; = |V(G;)|,
1 <i<k Notethat 2 <n; <n-—1 (for1 <i<k)and ¥F  (n;—1) = n—1. Therefore,
for some constant & > 0: T'(n) < an+YF, T'(n;) < an+C X%, n?. The last summation
is maximized when k£ = 2 and one of n; or ny is equal to n — 1. This easily implies that
T(n) < Cn?.

To do the second step we go through all < 5-vertices and check the degree of their
neighbours. This can be easily done in O(n).

To construct graph G' we spend at most O(|f|) time on every face f. So it takes
O(Xser |f]) time to make G', which is in O(n). To construct G" we should do at most

O(n) switching operations, each of which takes constant time.
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Applying the initial charges can be done in linear time, too. For each vertex v, it
takes at most O(dgr(v)) to apply the discharging rules to it. So, applying the discharging
rules takes O(Y,cy dgr(v)) time, which is linear in n. Finding a vertex v with negative
charge can be done in O(n) time. Finding a suitable edge to contract around v takes at
most O(n) time.

Once the suitable edge is found (in step 2 or 5) it takes at most O(n) time to contract
it. After finding the colouring of the new graph, it takes at most O(n) time to extend
this colouring to G using the arguments of the proofs of Lemmas 5.2.3, 5.2.13 or 5.2.14.
Therefore, for some constant o > 0: T'(n) < an+T(n—1) < an+ C(n—1)* < Cn?, as
wanted.

The algorithms for Theorems 5.1.8 and 5.1.11 work almost identically.

5.6 On Possible Asymptotic Improvements of the
Main Theorem

In this section, we only focus on the asymptotic order of the bounds, i.e. the coefficient
of A. As we said in Subsection 5.2.1, the main reducible configuration to prove the
bound x(G?) < 2A + O(1) for planar G, is a vertex v with at most 2A + O(1) vertices
in Ngz2(v). The results of [2] and [16, 14] are essentially based on showing that every
planar graph has such a vertex. However, as pointed out in [2] and [16, 14], this is the
best possible bound on the minimum degree of G2. That is, there are 2-connected planar
graphs in which every vertex v satisfies dg2(v) > [2A7. One of these extremal graphs
can be obtained from the icosahedron, by taking a perfect matching, adding k£ — 1 paths
of length two parallel to each edge of the perfect matching, and replacing every other
edge of the icosahedron by k parallel paths of length two (see Figure 5.10).

Therefore, by only bounding the minimum degree of G? we cannot improve the bound

gA + O(1), asymptotically. This is the reason we introduced reducible configuration 3.
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Figure 5.10: The icosahedron and the modified graph

We proved that any planar graph G either has a cut-vertex, or a vertex v such that
dg2(v) < 2A + O(1), or has configuration 3.

But there are graphs that are extremal for this new set of reducible configurations
in the following sense: these graphs do not have a cut-vertex, do not have a vertex v
with dgz2(v) < 2A, and do not have configuration 3. For an odd value of k, one of these
graphs, which is obtained from a tetrahedron, is shown in Figure 5.11. To interpret
this figure, we have to join the three copies of vg and remove the multiple edges (we
draw the graph in this way for clarity). Also, the dashed lines represent sequences of
consecutive 4-vertices. Around each of vy,...,v, there are 3k — 6 such vertices. So,
d(vy) = d(vy) = d(v3) = d(vy) = 3k, d(vs) = d(vg) = d(v7) = d(vs) = 3k + 3, A =3k + 3,
and for any vertex v € G: dgz(v) > 5k + 3 (with equality holding for v € {vy,...,v4}).
The minimum degree of G? is 2A + O(1) and it is easy to see that G does not have
configuration 3. Therefore, using reducible configurations similar to those of Subsection
5.2.2 the best asymptotic bound that we can achieve is 2A 4+ O(1). So we need another

reducible configuration to improve the multiplicative constant g
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Figure 5.11: The extremal graph for reducible configurations 2 and 3



Chapter 6

Concluding Remarks

In this thesis we studied two colouring problems on planar graphs and used the Dis-
charging Method to improve the previously best known result on each of them. The first
problem is Steinberg’s conjecture, which states that every planar graph without cycles
of size 4 and 5 is 3-colourable. We proved that planar graphs without cycles of size in
{4,...,7} are three colourable. The second problem is a conjecture by Wegner, which
states that the square of any planar graph G can be coloured with at most [3A] +1

colours. We improved the previously best known bound on the chromatic number of the

square of a planar graph G by showing that x(G?) < [2A] + O(1).

However, both of these conjectures (by Steinberg and Wegner) remain open. In this
chapter, along with these two major conjectures, we talk about several open problems.
Some of these problems are on possible improvements on the results we have obtained
in this thesis, with the hope of proving these two conjectures. These problems are the
more difficult problems we present. We also discuss some open problems related to these
two conjectures whose study might shed some light on paths toward resolving these
conjectures. Some of these problems seem to be easier than the former ones and have

not been studied seriously either in the literature or by the author.

131
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6.1 On 3-Colouring Planar Graphs and Steinberg’s

Conjecture

The next step toward the conjecture of Steinberg is to prove that planar graphs without
cycles of size in {4,5,6} are 3-colourable. We believe that by combining the ideas of
Chapters 3 and 4 and considering some more complicated reducible configurations (sim-
ilar to those in Chapter 3), which involve interactions of two or more faces, we might be
able to do this step. The main difficulty in this line of attack would be, of course, in
dealing with faces of size 7. Therefore, most of the new reducible configurations would
probably involve 7-faces. To prove Steinberg’s full conjecture using this approach we
would probably have to consider many more reducible configurations, so many so that a

computer-aided proof seems unavoidable.

Another, perhaps easier, step to consider is Steinberg’s conjecture under the extra
condition that every two triangles in the graph are far from each other. More specifically,
for a planar graph G, let d(G) denote the minimum distance between two triangles
in GG, given by the number of edges in a shortest path joining two triangles in G. If
d(G) > 0 (say at least 1 or 2) and G does not have 4- and 5-cycles, is it true that
G is 3-colourable? This weaker version of Steinberg’s conjecture seems easier to prove
since many of the reducible configurations we may need to consider to prove Steinberg’s
full conjecture involve adjacent triangles (two triangles sharing a vertex) or triangles
that are close to each other. For instance, if we assume d(G) is large enough, then we
can bound from above the number of bad vertices (3-vertices incident with a triangle)
incident with <12-faces. This will be quite helpful in the discharging phase (recall the
proofs of Example 2.2.4 and Theorem 3.2.1). Therefore, if we put a lower bound on the
distance between triangles, that will bring down the number of reducible configurations

significantly.

The problem suggested above is also a weaker version of an open problem discussed
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in Jensen and Toft [38] (Problem 2.10): If G is a planar graph with finite, but sufficiently
large (say 4 or 5) d(G), is G then 3-colourable? Note that here we do not have the
restriction of not having 4- and 5-cycles. If d(G') = oo then there is at most one triangle in
each component of G and by the theorem of Grétsch [33] and an extension by Griinbaum
[34] and by Aksinov [3], G is indeed 3-colourable. It is known that d(G) < 3 is not

sufficient, as there are planar graphs with d(G) = 3 that are not 3-colourable.

6.2 On Distance-2-Colouring and Related Problems

As we mentioned in Remark 5.2.23, the additive constant in the bound x(G?) < [2A] +
O(1) can be reduced somewhat by doing a more careful analysis of the total charges after
the discharging phase. But it is not clear how to bring this constant down close to 1 (say
below 10). However, reducing the additive constant does not seem as interesting nor as
important as improving this bound asymptotically.

As discussed in Section 5.6, to improve this bound (and the other two theorems of
Chapter 5) asymptotically and possibly prove Wegner’s conjecture (using the Discharging
Method), we have to find a new reducible configuration, different from configurations 1-3
listed in Subsection 5.2.2. We do not know exactly what the structure of a new reducible
configuration should look like, but one thing that we know is that this new configuration
must exist in the graph of Figure 5.11. The reason is that this graph is 2-connected (so
does not have configuration 1) and neither has a vertex v with dg2(v) < 3A nor has
configuration 3. Therefore, the best way to find a new reducible configuration is to look
at the extremal graph of Figure 5.11, since if it exists at all this graph must have it.

There seems to be a close relation between distance-2-colouring and another type
of colouring, called cyclic colouring (discussed below). As we explain soon, studying
the cyclic colouring problem might help to find a new reducible configuration for the

distance-2-colouring problem and improve the results of Chapter 5, asymptotically.
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Figure 6.1: A wheel graph

6.2.1 Cyclic Colourings of Planar Graphs

Consider an embedded planar graph G(V, E) with face set F. Define a new set of vertices
V* by putting a vertex vy in V* for every face f € F. Also, create a new edge set E* as
follows: for every edge uv € E consider the two (not necessarily distinct) faces f and f
that are on the two sides of wv. Let vy, vy € V* be the vertices corresponding to these
faces. Put the edge vjvp into E*. The new graph G*(V*, E¥) is called the dual graph
of G. Note that G* is not necessarily simple as it may have loops (if G has bridges) or
multiple edges (if two faces in G' share more than one edge). It is easy to see that the

dual graph is also a planar graph, and the dual graph of G* is G.

The 4CP was originally stated as follows: the number of colours required to colour
the faces of an arbitrary planar graph in such a way that, two distinct faces which are
incident with the same edge receive different colours, is at most 4. Note that this is

equivalent to colouring the vertices of the dual graph.

In 1969, Ore and Plummer [43] defined a new type of face colouring of planar graphs,
more restrictive than the one in 4CP. A face colouring is angularif two distinct faces which
are incident with the same verter receive distinct colours. Equivalently, we want to colour
a map of countries, such that two countries that share even a point on their borders (and
not necessarily a line segment) receive different colours. The angular chromatic number

of G is the minimum number of colours required in any angular colouring of GG. Clearly,
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k+1 edges

Figure 6.2: A graph with angular chromatic number [3A |
there is no constant bound on the number of colours required in angular colourings of
planar graphs, as the wheel graph on n vertices for instance (see Figure 6.1), requires n
colours in any angular face colouring.

It is easy to see that for a graph with maximum degree A, we need at least A colours
in any angular colouring. In fact there are planar graphs that require L%AJ colours
in any angular colouring. One of these graphs with A = 2k 4+ 1 is shown in Figure
6.2 (compare this graph with the graph of Figure 5.1). On the other hand, Ore and
Plummer [43] proved that no planar graph requires more than 2A colours in any angular
colouring. Thus, it is interesting to determine the best possible upper bound on the
angular chromatic number of a planar graph with maximum degree A.

Angular colouring is equivalent to a vertex colouring problem, known as cyclic colour-
ing. Consider a planar graph G' and its dual G*. An angular colouring of G is equivalent
to a vertex colouring of G*, such that two vertices receive different colours if they are
incident with the same face; we call such a vertex colouring a cyclic colouring. The key
parameter in G*, which corresponds to A(G), is the maximum face size, denoted by A*.
The minimum number of colours required in any cyclic colouring of a planar graph G,

denoted by x.(G), is the cyclic chromatic number of G. It is easy to see that in any cyclic
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L4 L4
u ® ® \Y
L4 L4

Figure 6.3: A graph with cyclic chromatic number [2A*]

colouring of the graph of Figure 6.3 all vertices should get different colours. Therefore,
the cyclic chromatic number of this graph is [3A*]. In fact, this graph is the dual graph
of the graph of Figure 6.2, with each path between u and v in Figure 6.3 corresponding
to a set of parallel edges in the graph of Figure 6.2.

In the cyclic colouring of the dual graph G* of a graph G, since we are colouring the
vertices, we can ignore loops and multiple edges, or simply remove them to make G*

simple. According to [38] the following conjecture is implicitly stated by Borodin [11]:

Conjecture 6.2.1 For every planar graph G with maximum face size A*:

(@) < oA,

It is not hard to see that this conjecture looks very similar to Wegner’s conjecture on
the chromatic number of the square of a planar graph. Not only do these two conjectures
look similar, but also the known results on them are quite similar. The result of Ore
and Plummer [43] provided a 2A* upper bound for x.(G). Borodin [12] improved this
result to 2A* — 3 for A* > 8. Then Borodin et al. [21] proved x.(G) < [2A*], and very
recently, Sanders and Zhao [50] showed x.(G) < [2A*]. The reducible configurations
used in the proofs of the last two results are very similar to the reducible configurations
used to prove the corresponding bounds for the chromatic number of the square of a
planar graph, in [17, 16] and in Chapter 5. In fact our proofs in Chapter 5 were inspired
by Sanders and Zhao [50].

Here we give a brief outline of the proof that x.(G) < [2A*]. Consider an arbitrary

planar graph G. Remember that the basic idea to prove x(G?) < [2A] + 1 was to
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show that there is a vertex v with dg2(v) < [2A7. We have a similar approach here.
Let us define the cyclic degree of a vertex v, denoted by cd(v), to be the number of
vertices, other than v, that are in the boundaries of the union of the faces containing
v. The key reducible configuration in this proof is a vertex v with cd(v) < [2A*] — 1.
The reducibility of this configuration follows from the fact that we can contract v on
one of its neighbours to get a smaller planar graph G’ with A*(G") < A*(G), colour G’
with [2A*(G)] colours, and extend the colouring to v. We can prove the existence of
this configuration in every planar graph using the Discharging Method. The following
structure is the key in this proof: two faces f; and fo, with a path vyvs ... v, of 2-vertices
that belongs to the boundaries of both f; and fs, i.e. f; and f, share this segment,
and z > &=, If G has such a configuration then cd(vs) < |fi| + [fo| — 2 — 1 < [2A7],
as wanted. We suggest that the reader takes a careful look back at the configuration

described in Subsection 5.2.1 or the configuration in Figure 5.4, and compare it with the

configuration described above to see their similar structure.

To prove x.(G) < [2A*] two main reducible configurations are required. One of them
is a vertex v with ch(v) < [3A*] — 1. We call this reducible configuration, configuration
2’ (as it corresponds to configuration 2 in Subsection 5.2.2). The other reducible config-
uration has a structure similar to that of configuration 3 in Subsection 5.2.2; so we call
it configuration 3’ (See [50] for a formal description of this configuration). These two
configurations are the key configurations to prove x.(G) < [2A*]. However, to improve
this result asymptotically, we need to find a new reducible configuration, since there are
planar graphs that are extremal for both configurations 2’ and 3’ in the following sense:
every vertex v in these graphs has cd(v) > 2A* — ¢ (for some constant ¢) and they do
not have configuration 3'. One of these graphs in shown in Figure 6.4. In this figure,
every dashed line is a path of length k£ — 2, and therefore, A* = 3k + 2. Note that the
structure of this graph is very similar to that of graph of Figure 5.11 (place a vertex in

the center of each face of this graph and connect it to all the vertices on the boundary of
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Figure 6.4: The extremal graph for configurations 2" and 3

that face). Similar to the discussion we had in the second paragraph of this section, to
improve the bound x.(G) < [3A*] asymptotically (using the Discharging Method) we
have to find a new reducible configuration (different from configurations 2" and 3'), and
if such a configuration exists, the graph of Figure 6.4 must have it. Therefore, the best
way to find a new reducible configuration may be to look for it in the graph of Figure
6.4.

We think there is a correlation between these two problems in the following sense:
any asymptotic improvement on the best known result on either of Conjectures 5.1.1
or 6.2.1 using the Discharging Method will require the introduction of a new reducible
configuration. The structure of this new reducible configuration will probably help to
find a new reducible configuration for the other problem and consequently to prove a
similar asymptotic improvement. The reason backing this belief is a transformation from
cyclic colouring to colouring the square of a planar graph, sketched below: Given a graph
G, create G' by adding a new vertex vy to each face f of G and connecting it to all the
vertices in the boundary of f. Now the vertices in f have distance at most 2 from each
other in G’. Therefore, any distance-2-colouring of G’ yields a cyclic colouring of G.

At first glance this transformation might seem as a correct reduction since the degree
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of every vertex vy € G’ is the same as the size of the corresponding face f € G, and
therefore, one might expect A* in GG to be the same as A in G. However, this is not
necessarily true since there might be a vertex v € GG with degree d > A* and that vertex

will have much larger degree than A* in G'.

Although the transformation explained above is not a correct reduction from the
cyclic colouring problem to the distance-2-colouring problem, it suggests that the former
problem is easier than the latter. The following facts about the most recent results
on these two problems support this guess: the most recent results for the distance-2-
colouring problem on planar graphs were obtained using the ideas behind the reducible
configurations used in the proofs of the corresponding results for the cyclic colouring
problem (for example, as we said, the results of Chapter 5 were inspired by the work of
Sanders and Zhao [50]). Furthermore, the structure of the reducible configurations used
in the bounds for the distance-2-colouring problem, although similar to their counter-
parts for the cyclic colouring problem, are more complicated. Consequently, there are
more discharging rules used in the proofs for the distance-2-colouring problem and these
rules are more complicated. For example, the number of discharging rules in the results
Xe(G) < [2A7] (in [21]) and x.(G) < [3A*] (in [50]) are 7 and 7, whereas the number of
discharging rules in the results x(G?) < [2A]+1 (in [16, 17]) and x(G?) < [SAT+O(1)

(in Chapter 5) are 10 and 12, respectively.

Therefore, it might be better to first attack the cyclic coloring problem and improve
the bound on the cyclic chromatic number of planar graphs asymptotically, and then
possibly use the ideas of that proof to improve the bound on the chromatic number of

the square of planar graphs.
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2k vertices

Figure 6.5: A graph with minimum degree 3 and high cyclic chromatic number

6.2.2 Distance-2-Colouring in Planar Graphs With High Con-
nectivity

Consider the cyclic colouring problem. In the previous subsection we saw that there
are planar graphs, such as the one in Figure 6.3, whose cyclic chromatic number has
asymptotic order of %A*. But this graph is not 3-connected and has many vertices of
degree 2. What if we assume that the graph is 3-connected? For this case, i.e. for 3-
connected planar graphs, Plummer and Toft [44] conjectured that the number of colours

required in a cyclic colouring is at most A* + 2:

Conjecture 6.2.2 [//] For every 3-connected planar graph G with mazimum face size

A% xe(G) < A* + 2.

Note that having only minimum degree at least 3 instead of 3-connectivity is not sufficient
to prove the upper bound x.(G) < A* + O(1). For instance, in the graph of Figure 6.5
(which is a modification of graph of Figure 6.3), § = 3, A* = 5k +2, and x.(G) > 6k +2.
However, neither this graph nor the graph of Figure 6.3 is 3-connected.

Plummer and Toft [44] proved that for 3-connected planar graphs x.(G) < A*+9 and
that x.(G) < A*+4 if A* > 42. Borodin and Woodall [10] and Hornék and Jendrol’ [37]
proved Conjecture 6.2.2 when A* > 61 and A* > 24, respectively. Furthermore, Borodin
and Woodall [10] and Enomoto et al. [25] showed that the cyclic chromatic number of

3-connected planar graphs is at most A* 4+ 1 if A* > 122 and A* > 60, respectively.
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Figure 6.6: Graph G with minimum degree 5 and x(G?) > 2A

Under some similar restrictions, can we have a similar upper bound (in which the

coefficient of A is 1) for the distance-2-colouring problem? It is natural to ask:

Question: If G is a planar graph with high connectivity (say at least 4- or

5-connected) then can we prove x(G*) < A+ O(1)?

Note that having only high minimum degree instead of high connectivity is not suf-
ficient to prove the upper bound x(G?) < A + O(1) or even to bring the multiplicative
constant below % For instance, we can modify the graph of Figure 5.1 (in a similar man-
ner to the way we modified the graph of Figure 6.3) and obtain the graph of Figure 6.6.
In this graph, v is adjacent to both u and w, each of u, v, w is connected to 2k gadgets as
shown on the left side of the figure, d(u) = d(w) = 4k+1, d(v) = A = 4k +2, and 0 = 5.
Since u, v, w, and all their neighbours are at distance at most two from each other, all of
them must get different colours in any distance-2-colouring. Thus x(G?) > 6k+3 = 2A.
So for this graph, which has minimum degree 5, not only is x(G?) not A + O(1), it
actually has the same asymptotic order as that of the extremal graph of Figure 5.1. In

fact, if we modify the graph of Figure 5.1 slightly so that all u, v, w have degree 2k, then
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.
////\
*

k+1 vertices

Figure 6.7: A 3-connected graph G with x(G?) = 3A +1

we obtain a graph, which is a subgraph of G (in Figure 6.6) and has the same maximum
degree as G.

The assumption that the given planar graph is 3-connected is not sufficient either since
we can modify the graph of Figure 5.1 such that it becomes 3-connected without changing
A, by adding an edge between every two consecutive neighbours of u in clockwise order,
and similarly between every two consecutive neighbours of v and w (See Figure 6.7).

The suitable assumption for this problem might be 4-connectivity. This assumption
immediately rules out the extremal graphs of Figure 6.6 and 6.7. But we don’t know
if it actually helps to reduce the coefficient of A down to 1 (or even below 2). This
problem does not seem to be studied in the literature. It would be very interesting if

with this extra condition we could match the results of cyclic colouring of 3-connected

planar graphs.
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Appendix A

More Hand-checkable Proofs For

Theorem 3.1.1

In Section 3.3.2 we listed 15 reducible configurations required in the proof of Theorem
3.1.1 and provided hand-checkable proofs of the first 7 ones. In this appendix, we explain
the hand-checkable proofs of configurations 8 to 12. All these proofs have a very similar
pattern; similar to the proofs of configurations 4-7 that we saw in Section 3.3.2. The
author has also proved, by hand, that the 49 subconfigurations for configurations 13-15
are reducible, but including the proofs here would make this section too long and too
repetitive (even more so than it is now!). These missing proofs follow the same patterns
as the included proofs, and armed with this plethora of examples, it will be very easy
(and time-consuming) for the reader to generate any of the missing proofs that he/she

desires.

Proof of configuration 8: Instead, we prove that the four configurations shown in
Figures A.1(a), (b), (c), and (d), are reducible. Each of these configurations contains
a semi-simple face f;, in which the both neighbours of its type 1 vertex, which are not
incident with f;, are 3-vertices. Note that any configuration that contains two semi-

simple faces that share a type 1 vertex must have one of the configurations in Figure

149
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(a) (b) © S ()
Figure A.1: Two semi-simple faces sharing their type 1 vertex

A.1l. We first give the proof for the configuration of Figure A.1(a): By minimality of
G, there is a 3-colouring of G' = G — vyvy, called C. So C(v;) = C(vy), which we can
assume is equal to 1. Consider this colouring induced on G. By the chaining argument
C(vy) = C(vg) = C(vg) = C(uy) = 1, otherwise we could 3-colour G. Without loss of
generality, assume C(wy) = 2. So C(vg) = 3 and C(u;) = 2, otherwise we could set
C(vy) = 3. If C(ug) = 1 then we could exchange C(u;) with C(vy) and set C'(v;) = 3.
Therefore C(ug) = 2. Now set C(v;) = 3, C(v9) = 1 and assign a colour different from 1
and C'(v7) (which is either 2 or 3) to vg and give a colour different from C(vg) (which is
1) and C'(vs) to u; (we can do this because C'(vg) = C'(ug) = 1). This gives a 3-colouring
of G, which is a contradiction.

Using very similar arguments, we can show that the configurations of Figures A.1(b),
(c), and (d) are reducible. u

Proof of configuration 9: Suppose that f; and f5 are two semi-type 2 faces sharing
a type 1 vertex. There are eight possible configurations of this type up to isomorphism,
we consider each one separately. Assume that vq,...,vy are the vertices of f;, where vy
is the type 2 vertex. In the first two cases we assume that vy is the type 1 vertex of f;
(Figures A.2(a) and A.3(a)). The other cases are based on vy, v3, or vy being the type 1

vertex of f, shown in Figure A.4.
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Figure A.2: Two semi-type 2 faces sharing their type 1 vertex

Configuration of Figure A.2(a): In this case u; is the type 2 vertex of fy. First we
remove some vertices and edges and add two gadgets each similar to the one in lemma
4. The vertices to be removed are vq,...,v9 and uy,...,ug, and the new graph G’ after
adding the gadgets is shown in Figure A.2(b). It is straightforward to verify that: (i)
G' € Gg, (ii) because of minimality of G there is a 3-colouring of G', say C, and (7ii)
wi, ..., w, cannot all have the same colour in C. Also, ti,...,t4 cannot all have the same
colour in C.

Consider this 3-colouring induced on G. First we show that C(w;) # C(t1). By
contradiction, assume that C'(w;) = C(t;) = 3. Now we can extend C to a new colouring
C' in this way: for all common vertices of G and G’, C' and C' are equal. Then assign
C'(v1) = 3, and colour wug, uz,...,u; greedily. Note that by the time we reach to u;
it has three coloured neighbours but two of them (v; and t;) have the same colour.
Assume that C'(uy) = 2. Set C'(vg) = 1, C'(vg) = 2, and colour vy, vs, ..., vs greedily.
Finally, assign a colour different from C'(vs) and C'(wy) to v;. By minimality of G,
both v; and vg have the same colour, which is 2. By the chaining argument we must

have C'(vs) = C'(v3) = C'(vy) = 2, but C'(vy) = 3. This contradiction shows that
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C(wy) # C(ty).

Now we extend C' to colour the uncoloured vertices of GG in a different way. Assume
that C'(w;) = 3. Since C(t1) # C(w;) we can assign C'(u;) = 3 and colour the uncoloured
vertices of G greedily in the following order: us, ..., us, vy, vg, Vs, V2, U3, ..., Ug. Note that
by the time we want to colour vy there are two neighbours of it (u; and w;) that have
the same colour and so we can find a colour for vg. We also assign a colour different from
C(vg) and C(wz) to vy. By definition of G, C'(vg) = C(v7), which we can assume is equal
to 1, By the chaining argument C'(vs) = C(v3) = C(v1) =1, and so C'(vg) = 2.

Suppose that C'(ug) # 2. We can set C'(vy) = 2, C(vg) = 1, and C(vg) = 2, unless
C(v9) = 2 and by the chaining argument C(vy) = C(v4) = C(vg) = 2. But this means
that all wy, ..., ws have colour 3, which contradicts property (7).

Now assume that C(ug) = 2. If we could exchange C(ug) and C(u7) then C'(us)
becomes different from 2 and we can use the argument of the previous paragraph. This
shows that C'(ug) = 2 and by the chaining argument C'(uy) = C(ug) = 2. If C(u3) # 3
then we can modify C in the following way: set C(up) = 3, C(u;) = 2, C(v,) = 3,
C(vg) = 1, C(vg) = 2, exchange C(vy) with C'(vs) if C(ve) = 3, exchange C(vy) with
C(vs) if C(v4) = 3, and finally exchange C'(vg) with C(v7) if C(vg) = 3, which yields a 3-
colouring of G. Therefore, C'(u3) = 3 and by the chaining argument C'(us) = C(u7) = 3.
But this means that all ¢y, ..., ¢4 have colour 1, again contradicting (7i7).

Configuration of Figure A.3(a): In this case u; is a 3-vertex in fy. First we remove
U9, ...,vs and add a gadget similar to that of Lemma 4. The new graph G’ is shown in
Figure A.3(b). It can be easily shown that: (i) G' € Gg, (i7) because of minimality of G
there is a 3-colouring of G', say C, and (iii) wy,...,w, cannot all have the same colour
in C'.

Consider this 3-colouring induced on G. We extend C' by colouring the uncoloured
vertices of GG greedily in the following order: vg, vy, ..., vs. Then assign a colour different

from C(vg) and C'(wq) to v7. By minimality of G, C'(v7) = C(vg) which we can assume
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Figure A.3: Two semi-type 2 faces sharing their type 1 vertex

both are 1. By the chaining argument C'(v;) = C(v3) = C(vy) = 1. Without loss of
generality, assume that C'(vg) = 2 and so C(u;) = C'(w;) = 3.

If C(u3) = 3 then we could set C'(vg) =2, C(vyg) =1, C(vy) = 2, then exchange C(vq)
with C'(v3) if C(vy) = 2, and then exchange C'(vs) with C(v4) if C'(vy) = 2. In this case
C(vg) # 2, otherwise wy, ..., w4 all are coloured 3, a contradiction.

So assume that C'(uz) = 2. If C(ug) = 2 then we can exchange C(v;) with C'(uy),
C(vy) with C(v3), C(vs) with C(vs), and C(vg) with C'(v7), which gives a 3-colouring
of G. If C(ug) = 1 then we set C(uy) = 2, C(v1) = 3, C(vy) = 1, and C(vs) = 2.
Then we can exchange C(vy) with C(v3) if C(ve) = 3, then exchange C(vy) with C(vs) if
C(v4) = 3, and finally exchange C(vg) with C'(v7) if C'(vs) = 3. So we get a 3-colouring
of G, which again is a contradiction.

Configurations of Figure A.J: The other possibilities, up to isomorphism, for two
semi-type 2 faces to share their type 1 vertex are shown in Figure A.4. Here we only
give the proof for configuration of Figure A.4(A). The proof for the other configurations
is almost the same.

By minimality of G, there is a 3-colouring of G — (v7,vs), called C'. Consider this

colouring induced on G in which both v; and vg have the same colour. Without loss of
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(B) (©)
(E) g (F)

Figure A.4: Two semi-type 2 faces sharing their type 1 vertex

(D)

generality, assume that C'(v7) = C'(vg) = 1. By the chaining argument C(vs) = C'(v3) =
C(u7) = C(us) = C(uz) = 1. So C(ve) # 1.

First assume that both u; and v; have the same colour different from 1, say 2. Then
we can exchange C'(ve) with C'(v3), C'(vy) with C(v;), and C(ve) with C'(v7), which yields
a 3-colouring of G, a contradiction. Also, {C(vy),C(u1)} # {2,3}, since C'(vy) # 1. So
at least one of C(vy) or C'(uy) is 1.

Assume that C'(v;) = 1 and C(u;) = 2. So C(vy) = 3. If C(vg) = 2 we can set
C(v1) = C(vg) = 2 and C(vg) = 1 which gives a 3-colouring of G. On the other hand, if
C(vg) = 3 we can modify C in this way: set C'(vg) =1, C(v1) = 3, C(vg) = 1, C(vg) = 3,
assign a colour different from C(v4) and 1 to vs. Now since C'(vy) = C'(u7) = 1, we can
assign a colour different from 1 and C'(v3) to ug. This gives a 3-colouring of G, an obvious
contradiction.

Now, let’s assume that C(u;) = 1 and C'(v;) = 2. So C(vg) = 3 and C(ug) = 2. If
C(uy) = 2 then set C(uy) =2, C(uy) = 1, C(u3) = 2, exchange C'(uy) with C(us), C(ug)
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Figure A.5: A semi-type 2 face sharing a type 1 vertex with a type 1 face

with C'(u7), C(ug) with C'(vs), C(v4) with C(vs), and C(vs) with C(v7), which yields a
3-colouring of G. If C(uy) = 3 then set C(u;) = C(uz) = 3, C(ug) = 1, C(vy) = 1,
exchange C(u4) with C(u;), and C'(ug) with C(uz). Assign a colour different from C'(vq)
(which is 1) and C(u7) to ug. Then assign a colour different from 1 and C(ug) to vs.
Now exchange C(v4) with C(v5) and C(vg) with C'(v7). This again is a 3-colouring of G.

Finally, assume that C'(v;) = C(u;) = 1. Without loss of generality, assume that
C(vg) = 2. If C(vy) = 2 we exchange it with C'(ug) so that C(vy) # C(vg). Now
set C(v1) = 2, C(vg) = 1, and C(vg) = 2. This yields a 3-colouring of G, which is a
contradiction. m

Proof of configuration 10: There are four possible configurations of this type up
to isomorphism, shown in Figures A.5(a), A.6(Al), A.6(B1), and A.6(C1). We consider
each one separately:

Configuration of Figure A.5(a): First remove vy, v3, ..., vs and all the incident edges
and create the graph G’ as in Figure A.5(b) by adding a gadget. It is straightforward to
verify that: (i) G' € Gg, (i7) because of minimality of G there is a 3-colouring of G', say
C, and (7i7) wy, ..., ws cannot all have the same colour in C.

Consider this 3-colouring induced on G. We extend C' by colouring the uncoloured
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vertices of G' greedily in the following order: vy, vg,v7,...,v4. We also assign a colour
different from C(vy) and C(w,4) to vs. By definition of G, C(v3) = C(vy), which we can
assume is equal to 1, and by the chaining argument C(vg) = C'(vg) = 1 and at least one
of C'(vy) or C(u7) must be 1.

First assume that C'(u7) = 1 and C(v;) # 1. By the chaining argument C(us) =
C(us) = C'(uy) = 1. Without loss of generality assume that C'(vg) = 2 and so C'(w;) = 3.
Now set C(vg) = 1 and C(uy) = C(vs) = 2, exchange C(uy) with C(u3), C(uy) with
C(us), C(ug) with C(u7), and C(v3) with C'(vy). The only conflict we may have is between
C(vs) and C(v7), which happens if C'(v7) = 2. We can exchange C(v7) with C(vs), unless
C(vs) = 2. In this case we can exchange C(vs) with C(v4), unless C'(v3) = 2. But this

means that all wq, ..., w, have been coloured 3, which contradicts (7iz).

Now assume that C'(v;) = 1 and C(u7) # 1. By the chaining argument C(uy) =
C(uy) = C(ug) = 1. Assume that C(vg) = 2. Set C(vg) = 1, C(vy) = C(vg) = 2,
and exchange C'(vy) with C'(vs). Similar to the previous case we can solve the possible
conflict between C(vg) and C(v7), unless all wy, ..., w, have colour 3, which is impossible,
according to (7).

Finally, assume that C'(v;) = C'(u7) = 1. If we could modify C'(v,) or C(u7) then we
would reduce to the one of the two cases we just considered. Therefore, by the chaining
argument and starting from uz: C(us) = C(u3) = C(u1) = 1, which is impossible, since
C(v1) = 1. This completes the proof of this configuration.

The other three possible configuration of this kind, up to isomorphism, are shown in

Figure A.6(Al), (B1), and (C1). First consider the configuration of Figure A.6(Al).

Remove vy, vs,...,v9 and uq,...,u7; and all the incident edges and create the graph
G’ as in Figure A.6(A2). It is straightforward to verify that: (i) G' € G, (ii) because of
minimality of G there is a 3-colouring of G', say C, and (iii) wy, ..., ws cannot all have

the same colour in C.

Consider this 3-colouring induced on G. We extend C' by colouring the uncoloured
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(C1) (C2)

(B1) (B2)

Figure A.6: A semi-type 2 face sharing a type 1 vertex with a type 1 face

vertices of GG greedily in the following order: wg, vy, vg, v7,...,v3, Uy, Ug, ..., u7. We also
assign a colour different from C'(vs) and C(uz7) to ve. By definition of G, C(vy) = C(v2),
which we can assume is equal to 1, and by the chaining argument C(vy) = C(vg) =
C(vg) = C(ug) = C(uyg) = C(uz) = 1. Without loss of generality assume that C(vg) = 2.

If C'(uy) = 3 then we can set C'(v) = C(vg) = 2, C(vg) = 1, then exchange C'(v7) with
C(vg) if C'(v7) = 2, then exchange C(vs) with C'(vy) if C(vs) = 2, and finally exchange
C(v3) with C'(u7) if C(v3) = 2. This yields a 3-colouring of G.

So we can assume that C'(u;) = 2. If we could exchange C'(u;) with C(us) we could
use the argument of the previous paragraph. So by the chaining argument C(u3) =
C(us) = 2. We could assign C'(vy) = C(vg) = 2, C(vy) = 1, exchange C'(u;) with C(uy),
C(u3) with C(u4), C(us) with C'(ug), and exchange C'(v7) with C(vs) if C'(v7) = 2, unless
C(vs) = 2. This means that all wy,...,ws have been coloured 3 in C, contradicting

property (i7i) we just mentioned. This completes the proof of this configuration.
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% (A2)

(C1) (C2)

(B1) (B2)

Figure A.7: A semi-simple face sharing a type 1 vertex with a type 1 face

Using a very similar argument, we can prove the reducibility of configurations of
Figure A.6(B1) and (C1). The gadget we have to add in each case is shown in Figures
A.6(B2) and (C2), respectively.

]

Proof of configuration 11: It is straightforward to check that there are five pos-
sible configurations of this type up to isomorphism. Omne of them is the same as the
configuration of Figure A.3(a), and the other four ones are equivalent to the configura-
tions of Figures A.1(Al), A.1(B1), A.1(C1), and A.1(D1). Each of these configurations
are already proved to be reducible. [ ]

Proof of configuration 12: There are three possible configuration up to isomor-
phism, shown in Figure A.7(A1), (B1), and (C1). Let’s consider (Al).

First remove vy, ...,v9 and uq,...,u7, and all the incident edges and create the graph

G’ as in Figure A.7(A2). It is straightforward to verify that: (i) G’ € Gg, (i7) because of
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minimality of G there is a 3-colouring of G', say C, and (iii) wy, ..., ws cannot all have
the same colour in C.

Consider this colouring induced on G and extend it by colouring the uncoloured
vertices of G in the following order: vy, vy, vs, u1,...,us, v7, e, ..., vs Also, assign a colour
different from C'(v3) and C'(w;) to C(ve). By minimality of G, C(v;) = C(vq), which we
can assume is 1. By the chaining argument C(vy) = C(vg) = C(ug) = C(uyg) = C(ug) =
C(vs) = 1. Without loss of generality assume that C(wg) = 2. So C(vg) = 3, otherwise
we could set C'(vy) = 3. Note that we can safely exchange C(v7) with C(u7). If C(uy) # 3
we can exchange C(vg) with C(vg) and set C'(v;) = 3. So C(u;) = 3 and by the chaining
argument C'(u3) = C'(u;) = C(vs) = C(vs) = 3. But this means that all wy, ..., ws have
colour 3, contradicting property (ii7).

Using a very similar argument, we can prove the reducibility of configurations of
Figures A.7(B1) and (C1). The gadget we have to add in each case is shown in parts
(B2) and (C2), respectively. u

The proofs of reducibility of configurations 13, 14, and 15 follow very similar steps.

We omit the hand-checkable proofs of them.



Appendix B

The C Program used in Chapter 3

This program and the file containing the reducible configurations and the description of

the program is also available at ftp://ftp.cs.toronto.edu/csrg-technical-reports/458/

/* Version 1.1, July 2002 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <time.h>

#tdefine Max_No_of_vertices 50

#define Error_filename "UnColorable_Config.txt"

int Nvertices, Nedges, /* No. of vertices and edges of the configuration */
Nbound, /* No. of boundary neighbors */
NConstrained_groups, /* No. of Constrained groups */

Ncolored, /* No. of colored vertices so far */

160
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Nof_colorings, /* No. of differenet colorings found for a config. */
is_in_bound [Max_No_of_vertices],
/* is_in_bound [v] = 1 if v is a boundary
neighbor, 0 otherwise */
adj_list[Max_No_of_vertices] [Max_No_of_vertices],
/* The adjacancy list; for vertex v adj_list[v][0]

specifies the degree of v */

bound [Max_No_of_vertices], /* The list of boundary neighbors */

non_bound[Max_No_of_vertices], /* The list of non-boundary vertices */

constrained_groups[10] [Max_No_of_vertices],
/* The list of constrained groups; the vertices in a group are those
boundary neighbors which must not all have the same color,
enforced by a gadget. For group i constrained_groups[i] [0]

specifies the number of vertices in that group */

color[Max_No_of_vertices], /#* Color of vertex v is color[v], 0 if
it is not colored */

Nof_configurations, /* No. of configuration in the file */

current_conf; /* index of the current configuration being tested */

FILE *fErrors; /* The file to write in any non-reducible configuration */

[ R KR oK KoK KKK K K R KoK oK K KoK Sk K KoK oK oK oK K ok KoK K ok kKoK sk ok KoK S K ok ok sk ok ok K ok ok Kok ok ok /
/* Function Prototypes */
int Check_Boundary_Colorings (int NColored_bound) ;

void Read_Data (char *filename);
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void UnColorable (void);
int Check_Extendable (int vertex);
int Valid_Boundary_Coloring (void);

int Check_Boundary_Colorings (int NColored_bound) ;

/*************************************************************************/
/* Read the configurations from a file whose name is "filename",
one by one, and check reducibility of each */

void Read_Data (char *filename){

FILE *fin;
int i, j, vl, v2, tempvertex;

char tmpStr[100];

/* Openning the input file */

if ((fin = fopen (filename, "r")) == NULL) {
printf ("Cannot open the input file! \n");
exit (1);

}

/* Openning the output (i.e. error) file */

if ((fErrors = fopen (Error_filename, "w")) == NULL) {
printf ("Cannot open the output file! \n");
fclose(fin);
exit (1);

}

fscanf (fin, "%d \n", &Nof_configurations);



ApPPENDIX B. THE C PROGRAM USED IN CHAPTER 3 163

/* Reading the information of configurations one by one and
checking the reducibility of them */

current_conf = 1;
for (current_conf = 1; current_conf <= Nof_configurations; current_conf++){

fgets (tmpStr, sizeof (tmpStr), fin);

fscanf (fin, "%d %d \n", &Nvertices, &Nedges);

printf ("%d %d \n", Nvertices, Nedges);

Ncolored = 0;

Nbound = 0;

Nof_colorings = O;

for (1 = 1; i <= Nvertices; i++){

adj_list[i][0] = O;
color[i] = 0;
is_in_bound[i] = 0;
}
/* Reading the adjacancy lists of the current configuration */

for (i = 1; i <= Nedges; i++){

fscanf (fin, "%d %d \n", &vi, &v2);

adj_list[vi] [++adj_list[v1i][0]] = v2;

adj_list[v2] [++adj_list[v2] [0]]

vl;

/* Setting up the boundary neighbors */
j=0;
for (1 = 1; i <= Nvertices; i++){

if (adj_list[i][0] <= 2){
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bound [++Nbound] = 1i;
is_in_bound[i] = 1;
}

else non_bound[++j] = i;

i=1;

while (is_in_bound[adj_list[non_bound[1]][i]]) i++;

tempvertex = adj_list[non_bound[1]][i];
adj_list[non_bound[1]][il=adj_list[non_bound[1]] [adj_list[non_bound[1]][0]];
adj_list[non_bound[1]][adj_list[non_bound[1]][0]]=tempvertex;

J=1;

while (adj_list[tempvertex][j]!=non_bound[1]) j++;

adj_list[tempvertex] [jl=adj_list[tempvertex] [adj_list[tempvertex] [0]];

adj_list[tempvertex] [adj_list[tempvertex] [0]]=non_bound[1];

/* Reading (just passing on) the information about the
coordinates of vertices x/
for (i = 1; i <= Nvertices; i++)

fscanf (fin, "%d %d \n", &vil, &v2);

/* Reading the number of groups of the constrained vertices
and then the vertices of each group */
fscanf (fin, "%d\n", &NConstrained_groups);
for (i = 1; i <= NConstrained_groups; i++){
constrained_groups[i] [0] = 0;

while (fscanf (fin, "%d\n", &vl1) == 1) {
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constrained_groups[i] [++constrained_groups[i] [0]] = v1;
}

fscanf (fin, "%s\n", tmpStr);

/* Check to see if the current configuration is reducible */
printf("Started!\n");
if (!Check_Boundary_Colorings (0)) {

printf ("Configuration No. %d is reducible! No of Colorings

Checked = %d\n", current_conf, Nof_colorings);

}
fclose (fin);

fclose (fErrors);

/**********************************************************************/
/* If the current configuration is not reducible this procedure writes
the index of the configuration as well as the coloring of the boundary
neighbors into a file. */
void UnColorable (void){
int i;
printf ("Configuration No. %d is *NOT* reducible \n", current_conf);
fprintf (fErrors, "Configurtion No %d\n", current_conf);
fprintf (fErrors, "The coloring of the boundary neighbors that

cannot be extended is :\n");
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for (i = 1; i <= Nbound; i++)
fprintf (fErrors, "Color of vertex %d = %d\n", bound[i], color[bound[ill);

fprintf (fErrors, "\n");

/**********************************************************************/
/* Checks whether the current 3-coloring of the boundary neighbors can
be extended to a 3-coloring of the whole configuration. Returns 1 when
it can NOT be extended, 0 otherwise */
int Check_Extendable (int vertex){
int i, j, Next_vertex, Equal, k;
char tmp;
Next_vertex = 0;
/* Find the "Next vertex" to be colored after coloring the current
"vertex", by finding an uncolored neighbor of it, if exists any */
for (i = 1; i <= adj_list[vertex][0]; i++)
if (!'color[adj_list([vertex][il]) {
Next_vertex = adj_list[vertex][i];

i = adj_list([vertex][0];

/* If all the neighbors of the current "vertex" are colored, find
the next (available) uncolored vertex */
if (Next_vertex == 0){

Nvertices-Nbound; i++)

for (i =1; i <
if (non_bound[i] !'= vertex && !color[non_bound[i]l]){

Next_vertex = non_bound[i];
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i = Nvertices-Nbound;

X
/* Check all possible colorings of the current "vertex" and continue
by coloring the "Next_vertex" x/
for (i = 1; i <= 3; i++){
Equal = O;
for (j = 1; j <= adj_list[vertex][0]; j++)
if (color[adj_list[vertex][j]l] == i) Equal = 1;

if (1Equal){

(=N

color[vertex] =
Ncolored++;
if (Ncolored == Nvertices || !Check_Extendable (Next_vertex)){

Ncolored—--;

Il
(@)

color[vertex]

return O;

}
Ncolored—--;

color[vertex] = 0;

}

return 1;

/KK Kook skokok ok skok ook skokok ok okokok ok okokok ok koo ok koo ok skl skl ok skokok ok sk ko ok okok ok ok /
/* Checks whether the current boundary coloring satisfies the

requirments by the constrained groups. That is, not all the vertices
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in the same group have the same color. Returns 1 if it does NOT
satisfy this condition, O otherwise. */
int Valid_Boundary_Coloring (void){
int 1, j;
for (i = 1; i <= NConstrained_groups; i++){
int All_Equal=1;
for (j = 2; j <= constrained_groups[i][0]; j++){
if (color[constrained_groups[i] [1]1] !'= color[constrained_groups[il[jl]l) {
All_Equal = 0;

j = constrained_groups[i] [0];

}

if (Al11_Equal) return 1;

return O;

/*********************************************************************/
/* For all possible (valid) colorings of the boundary neighbors checks if
it is extendable to a coloring of the whole configuration. Returns 1

if it is NOT, O otherwise */
int Check_Boundary_Colorings (int NColored_bound){

int v1, v2, Equal;

/* If all boundary neighbors are colored */
if (NColored_bound == Nbound) {

/* check if this coloring of the boundary neighbors satisfies the
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requirements by the constrained groups */
if (NConstrained_groups > 0 && Valid_Boundary_Coloring ()) return O;

vl = non_bound[1];

v2 = adj_list[non_bound[1]][adj_list[non_bound[1]][0]];
/* remove one edge, call e, from the configuration */
adj_list[v1] [0]--;
adj_list[v2] [0]--;
/* first check if the current coloring of boundary neighbors can
be extended to a coloring of G-e */
if (!Check_Extendable (non_bound[1])){
/* if so then put e back to G and check if this coloring can be
extended to a coloring of the non-boundary vertices of G */
adj_list[v1] [0]++;
adj_list[v2] [0]++;
if (!Check_Extendable (non_bound[1])) {
Nof_colorings++;
return O;
+
else {
UnColorable ();

return 1;

h
else {
/* if the current boundary coloring cannot be extended even to a

3-coloring of G-e put e back to G */
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adj_list[v1] [0]++;
adj_list[v2] [0]++;

return O;

}
else {
int i, j, MaxColor;
/* if this is the first boundary neighbor we want to color try
only color 1 */
if (NColored_bound == 0) {
Nof_colorings = O;
MaxColor = 1;
}
/* if this is the second boundary neighbor we want to color try
only colors 1 and 2 */
else if (NColored_bound == 1) MaxColor = 2;
/* Otherwise, try all possbile 3 colors */
else MaxColor = 3;
NColored_bound++;
for (i = 1; i <= MaxColor; i++){
Equal = 0;
for (j=1; j <= adj_list[bound[NColored_bound]][0]; j++)
if (color[adj_list[bound[NColored_bound]l][jl] == i)
Equal = 1;
if (!Equal){
color[bound[NColored_bound]] = i;

Ncolored++;

170
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if (Check_Boundary_Colorings (NColored_bound)) {
color[bound[NColored_bound]] = 0;
Ncolored--;

return 1;

¥

color[bound[NColored_bound]] = O;

Ncolored—--;

}

return O;

}

[ Ko KKk KK ok o Kok Kok Kok Kok KoK KoK oK oK ok K ok Kok KoK oK Kok KoK K ok ok KoK ok Kok Kok ok ok /
int main (int argc, char *argv[]){
time_t start_time = time(NULL);
if (argc >= 2)
Read_Data (argv[1]);
else Read_Data ("conf.dat");
printf ("All done in %g seconds!\n", difftime(time(NULL), start_time));

return O;



Appendix C

List of Reducible Configurations for

Theorem 3.1.1

The first three reducible configurations in the proof of Theorem 3.1.1 are the ones that
were also used in the proof of Theorem 3.2.1; a < 2-vertex, a cut-vertex, and a 2k-face
with at least 2k — 1 bad vertices. Here is the list of the other 74 reducible configurations,
including all subconfigurations of the configurations listed in Section 3.3.2. We have
listed them in twelve groups, each corresponding to a configuration listed in Section
3.3.2. For each group that contains at least two subconfigurations, we explain how the
list is generated. Each graph that has white vertices and dotted edges is the “modified’
version (by removing some vertices and edges and adding a gadget) of the graph to its
left. The vertices and the edges that have been removed are the white vertices and the

dotted edges, respectively.

1- Simple face: There is only one possible case:

2- Type 2 face: There is only one possible case:

172
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3- Two type O faces sharing their type 0 vertex: It is easy to see that there
are two possible configurations:

i 3

4- Three type 5 faces sharing a 5-vertex: There are only two possible configu-
rations of this type:

Rl i3

5- Two semi-simple faces sharing a type 1 vertex: Instead, we consider the

following configurations. It is easy to see that if we fix one of the semi-simple faces, based

on the location of its type 1 vertex we obtain one of the following structures:

17

6- Two semi-type 2 faces sharing a type 1 vertex: Fix one of the semi-type 2
faces, and consider different locations for its type 1 vertex, moving it around the boundary
of the face in counter-clockwise order. For each such case, by moving the position of the

type 2 vertex in the other face (in counter-clockwise order) we obtain the following eight
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configurations.

7- A semi-type 2 face sharing its type 1 vertex with a type 1 face: Again,
fix the semi-type 2 face, and consider different positions of its type 1 vertex, moving it
around the face in counter-clockwise order. There are four possible configurations of this

kind.

8- A semi-type 2 face sharing its type 1 vertex with a semi-simple face: It
is straightforward to check that there are five possible configurations of this kind. Four
of them are the same as the ones in item 5 above, and the other contains the second

configuration of item 6 above.

9- A semi-simple face sharing its type 1 vertex with a type 1 face: Fix

the semi-simple face and consider different locations of its type 1 vertex, moving it



ApPPENDIX C. LiIST OF REDUCIBLE CONFIGURATIONS FOR THEOREM 3.1.1 175

around the face in counter-clockwise order. There are three configurations of this kind.

10- Simple triple structure: It is easy to see that the semi-simple face of a simple
triple structure has one of the four possible structures given in item 5 above. Thus, the
reducibility of any simple triple structure follows from part 8 of Lemma 3.3.7 and we

don’t need to consider different possibilities for a simple triple structure.

11- Triple structure of kind 1: There are nine configurations of this kind. First
assume that the semi-type 0 and the type 0 face are sharing an edge. Then based on the
location of the type 1 vertex of the semi-type 0 face and moving it around the face in
counter-clockwise order, we obtain the first six configurations listed below. In the next
three configurations the semi-type 0 face and the type 0 face do not share any edges. It
is easy to see that there are only three configurations of this kind (listed below) up to

isomorphism.
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12- Triple structure of kind 2: First assume that the semi-type 0 and the type
0 face are sharing an edge. We consider all possible locations for the type 1 vertex of
the semi-type 0 face, moving it around the face in counter-clockwise order. The first
configuration below is when the type 1 vertex is adjacent to the type 0 vertex. If the
type 2 vertex of the semi-type 2 face is any vertex other than the one in the figure, then

the configuration will contain the second configuration we gave for group 6.

The rest of the configurations are obtained by considering all possible locations for

the type 2 vertex of the semi-type 2 face (again moving it around in counter-clockwise
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order). We do a similar thing for the case that the semi-type 0 face and the type 0 face

are not sharing an edge.




ApPPENDIX C. LiIST OF REDUCIBLE CONFIGURATIONS FOR THEOREM 3.1.1 178

G
%
2
e
o
S5



ApPPENDIX C. LiIST OF REDUCIBLE CONFIGURATIONS FOR THEOREM 3.1.1 179




