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In this thesis we study two olouring problems on planar graphs. The main tehnique

we use is the Disharging Method, whih was used to prove the Four Colour Theorem.

The �rst problem we study is a onjeture of Steinberg whih states that every planar

graph without 4 and 5-yles is 3-olourable. Erd�os relaxed this onjeture by asking if

there exists a k suh that every planar graph without yles of size in f4; : : : ; kg is 3-

olourable. Abbott and Zhou [1℄ answered the question of Erd�os by showing that suh

a k exists and an be as small as 11, i.e. any planar graph without yles of size in

f4; : : : ; 11g is 3-olourable. This result was improve by Borodin [15℄ to k = 10, and by

Borodin [14℄ and by Sanders and Zhao [49℄ to k = 9. We improve these results by two

steps.

First we redue k down to 8. That is, we show every planar graph without yles of

size in f4; : : : ; 8g is 3-olourable. This theorem is onstrutive and yields an O(n

2

) time

algorithm for 3-olouring suh graphs.

Then we improve this result one step further, by showing that every planar graph

without yles of size in f4; : : : ; 7g is 3-olourable. This theorem too is onstrutive and

yields an O(n

3

) time 3-olouring algorithm for suh graphs.

The seond problem is the problem of olouring the squares of planar graphs. Equiv-

alently, it is the problem of olouring the verties of a planar graph in suh a way that

verties at distane at most 2 from eah other get di�erent olours. This is also known
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as distane-2-olouring. Wegner in 1977 onjetured that, for every planar graph G with

maximum degree � � 8, the minimum number of olours required in any distane-2-

olouring of G is at most b

3

2

� + 1. This onjeture, if true, would be the best possible

upper bound for the number of olours needed, in terms of �. The previously best known

bound for this quantity is d

9

5

�e+ 1, for graphs with � � 47, by Borodin et al. [16, 17℄.

We improve this result by showing that d

5

3

�e+O(1) olours are enough for a distane-2-

olouring of a planar graph with maximum degree �. We also provide a better bound for

large values of �. Then we generalize this result to L(p; q)-labelings of planar graphs. An

L(p; q)-labeling of a graph G is an assignment of integers from f0; : : : ; kg to the verties

of G suh that every two adjaent verties in G reeive integers that are at least p apart

and every two verties at distane two from eah other reeive integers that are at least

q apart. The minimum k for whih there is an L(p; q)-labeling of G is denoted by �

p

q

(G).

We prove that for any planar graph G: �

p

q

(G) � qd

5

3

�e + O(p + q). This improves the

previously known bound of (4q�2)�+O(p+q), by Van den Huevel and MGuinness [57℄.

All these results are onstrutive; we provide eÆient algorithms for distane-2-olouring

of planar graphs with at most d

5

3

�e + O(1) olours and for L(p; q)-labeling of planar

graphs using only qd

5

3

�e+O(p+ q) olours.
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Chapter 1

Preliminaries

The Four Colour Problem (4CP) is perhaps one of the easiest ombinatorial problems

to state. This seemingly simple, yet extremely diÆult, problem was the most halleng-

ing problem in graph theory for well over a entury. Many parts of graph theory, in

partiular the branh of graph olouring, grew up around this problem as byproduts of

the e�orts researhers put into solving this problem. One of the tehniques whih was

spei�ally developed to solve the 4CP (and whih we use extensively in this thesis), is

the Disharging Method. Over the past few deades, this tehnique has been used to nail

down dozens of other problems. However, there are many problems left open, for whih

this tehnique seems to be the most promising tool to apply.

In this thesis, we address two of these problems, whih are in the same family as

the 4CP; both of them are problems on olourings of verties of planar graphs and

were introdued almost around the same time as the 4CP was solved. Sine then, some

partial results have been provided on eah of them, using the Disharging Method. The

improvements we obtain also use the Disharging Method. So we begin with a short

history of the 4CP and the development of the Disharging Method. This is done in the

next hapter. Before that, we have to de�ne some ommon notation used throughout

the thesis. This is done in this hapter (in the next setion), followed by an overview of

1



Chapter 1. Preliminaries 2

the thesis. Some more spei� terms are de�ned throughout the thesis, when they are

needed.

1.1 Notation and De�nitions

For a graph G, we denote the vertex set and edge set by V (G) and E(G) (or simply

V and E), respetively. All graphs are assumed to be �nite, undireted, and simple

(without loops or multiple edges) unless otherwise stated. A ut-vertex in a graph G is a

vertex v whose removal inreases the number of onneted omponents of G. A maximal

onneted subgraph of G that has no ut-vertex is a 2-onneted omponent or a blok of

G. A graph G is 2-onneted if it has no ut-verties. A ut-edge (or bridge) is an edge

whose removal inreases the number of onneted omponents of G.

The degree of a vertex v 2 V (G), denoted by d

G

(v), is the number of edges inident

with it. The maximum and minimum degree of a graph G are denoted by �(G) and

Æ(G) (or simply � and Æ), respetively. If the degree of v is i, at least i, or at most i

we all it an i-vertex, a �i-vertex, or a �i-vertex, respetively. By N

G

(v), we mean the

open neighbourhood of v in G, whih ontains all those verties that are adjaent to v

in G. The losed neighbourhood of v, whih is denoted by N

G

[v℄, is N

G

(v) [ fvg. We

usually use N(v) and N [v℄ instead of N

G

(v) and N

G

[v℄, respetively. The square of a

graph G, denoted by G

2

, is the graph on the same vertex set as G, in whih two verties

are adjaent i� their distane in G is at most two. In other words, G

2

is obtained from

G by adding the edges between the verties at distane two of eah other.

A graph G is embedded on a surfae S if its verties are mapped to distint points of S,

and edges are mapped to simple urves in S onneting its vertex-points. Moreover, no

two edge-urves share a point in S exept possibly a ommon vertex-point in G. A fae of

an embedding of G is a onneted omponent of the surfae S after deleting the graph G.

A graph G is planar if it has an embedding on the sphere. Sine a plane is topologially
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equivalent to a sphere with a hole in it, every planar graph is also embeddable on a plane,

and the fae ontaining the hole is alled the external or outside fae. For an embedding

of a planar graph G, the set of faes of G is denoted by F (G), or simply F . Through

a slight abuse of notation, when no onfusion is possible, we say verties of a fae f to

refer to the verties that are on the boundary of fae f , i.e. the verties that are inident

with f . For every fae f the size or length of f , denoted by jf j, is the number of edges

in f , with bridges (ut-edges) ounted twie. A fae is alled an i-fae, � i-fae, or a

� i-fae if the size of f is i, at most i, or at least i, respetively. A planar graph G is

alled a triangulation if every fae of G has size 3. Euler's formula (given below) plays

a key role in our proofs, and in general, in the proofs of problems on planar graphs that

use the Disharging Method.

Euler's Formula: For any planar graph G with vertex set V , edge set E,

and fae set F : jV j � jEj+ jF j = 2:

A (proper) vertex olouring of a graph G is a funtion ' : V (G) �! C, where C is a

set of olours, suh that no two adjaent verties reeive the same olour. The hromati

number of G, denoted by �(G), is the minimum jCj for whih G has a vertex-olouring.

A graph G is alled k-hromati if �(G) = k. A k-hromati graph G is alled k-ritial

if for any proper subgraph G

0

of G: �(G

0

) < k. Note that any k-hromati graph an be

transformed into a k-ritial graph by removing some verties and/or edges from it.

1.2 Overview

The main ontributions of this thesis are improvements on two di�erent onjetures

regarding olouring problems for planar graphs.

The �rst problem, whih is the primary subjet of Chapters 3 and 4, is on the olouring

of planar graphs without yles of size in f4; : : : ; kg. It is a long-standing onjeture by

Steinberg that any planar graph without yles of size in f4; 5g is 3-olourable. We will
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show in Chapter 3 that planar graphs without yles of size in f4; : : : ; 8g are 3-olourable.

This proof uses the Disharging Method.

In Chapter 4, we improve the result of Chapter 3 one step further, by showing that

even in the presene of yles of size 8, the planar graph is still 3-olourable. The proof

tehnique used here is di�erent than that of Chapter 3, although it also involves the

Disharging Method.

In Chapter 5 we study the problem of olouring the square of a planar graph. We

obtain an upper bound for the hromati number of the square of a planar graph in terms

of its maximum degree, �. This result tightens the asymptoti gap between the best

possible upper bound and the best known upper bound. We also show how this proof

an be applied to a more general setting of olouring, known as �-olouring, and obtain

a similar bound in terms of �, whih improves all previously known bounds. Finally, we

disuss some possible steps that would have to be taken to further improve these results,

asymptotially.

Chapter 6 ontains the onluding remarks and disussions about possible future

diretions.



Chapter 2

What is the Disharging Method?

In this hapter we explain, by the means of some examples, how the Disharging Method

works. As we mentioned in the previous hapter, this method was developed to solve the

4CP. For this reason, before talking about this method and giving the examples, we begin

with a short story of the journey of the 4CP and the e�orts that lead to the development

of the Disharging Method.

2.1 The Four Colour Problem

This problem seems to have been �rst posed by Guthrie in 1852, when he was a law

student at University College of London. He formulated this problem as a onjeture

[35℄:

\... the greatest neessary number of olours to be used in olouring a map

so as to avoid identity of olours in lineally ontiguous distrits is four."

In other words, we an olour any map of ountries with four olours in suh a way

that any two ountries sharing a ommon boundary segment (and not just a point) get

di�erent olours. When he ould not solve the problem himself, Guthrie talked about

this problem to his brother, who then passed it on to De Morgan. De Morgan ouldn't

5



Chapter 2. What is the Disharging Method? 6

ome up with an answer either and gave the problem to Hamilton, but the problem did

not draw his attention. In a note to De Morgan, Hamilton wrote: \I am not going to

attempt your quaternion of olour very soon". The �rst printed referene of the problem

is due to Cayley in 1879 [22℄, in an artile titled \On the olouring of maps". In this

paper, Cayley explains to some extend, why this is a diÆult problem. Before that, in

1860, Peire too had attempted to solve this problem and didn't sueed.

This mysterious problem seemed to be solved in 1879 , when Kempe published the

�rst \proof" of the 4CP in the Amerian Journal of Mathematis [40℄. Unfortunately, his

proof was awed, and surprisingly, it took mathematiians eleven years to notie the error,

whih was �nally spotted by Heawood [36℄. Another proof was proposed by Tait [53℄ in

1880. His proof was based on the assumption that every 3-onneted 3-regular planar

graph is Hamiltonian, whih is not true. This gap was pointed out by Peterson in 1891,

and the �rst expliit ounter-example was found by Tutte [55℄ in 1946. However, both

of these failed proofs were very useful; Heawood used a tehnique from Kempe's proof,

whih today is known as \Kempe hains", to prove that every map is �ve-olourable,

and Tait found an equivalent formulation of the 4CP in terms of 3-edge-olouring.

The next major ontribution ame from Birkho� [8℄ in 1913 who introdued the notion

of reduibility. In a paper titled \The reduibility of Maps" he talked about on�gurations

(sets of verties and edges) that annot exist in a minimum planar graph whih annot

be 4-oloured. That is, a on�guration that annot be ontained in a minimum ounter-

example to the 4CP. Franklin used this notion and went on to prove in 1922 that every

planar map with at most 25 regions is four-olourable. This method was used by Reynolds

in 1926 to prove the same statement for maps with up to 27 regions, then by Winn in

1940 for maps with 35 regions, by Ore and Stemple in 1970 for maps with 39 regions,

and Mayer in 1976 for maps with 95 regions. However, this tehnique alone didn't seem

to be suÆient to solve the 4CP for general planar graphs.
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Heesh, in 1969, ame up with a new idea, the method of Disharging, whih later,

together with the notion of reduibility, beame the main ingredients used to solve the

4CP. Although he ouldn't solve the 4CP himself, he onjetured that using the Dis-

harging Method and onsidering 8900 reduible on�gurations, one an �nish the job.

The ruial rule of the Disharging Method was to prove the \unavoidability" of the set

of reduible on�gurations. In other words, to prove that in any planar graph, one of

these reduible on�gurations must exist, and therefore from the de�nition of a reduible

on�guration, there is no minimum ounter-example to the 4CP.

In 1976, Appel and Haken [5℄ announed their proof of the Four Colour Theorem

(4CT), in whih they used the notion of reduibility and the Disharging Method. This

proof used an extensive amount of omputer time for verifying that more than 1400

on�gurations were reduible. They also had more than 300 disharging rules in the

seond step of their proof, whih again used a omputer to hek all the possible ases.

Overall, their proof needed more than 1200 hours of CPU time and it was inoneivable

to manually hek all the details of the proof.

This was the beginning of a ontroversy among mathematiians; should we onsider

suh a proof as a \mathematial" proof? This is not an easy question, and mathemati-

ians are still quite divided on its answer. The other, perhaps more serious, problem with

the proof of the 4CT in partiular, was that even those parts of the proof that were not

automated and were supposed to be hand-hekable, were extremely ompliated and

nobody ould verify them.

In 1996, Robertson, Sanders, Seymour, and Thomas [47℄ ame up with yet another

omputer-aided proof of the 4CT. This proof is easier in that it has only 633 reduible

on�gurations (ompared to more than 1400 in the original proof by Appel and Haken

[5, 7, 6℄) and only 32 disharging rules. In explaining why they regenerated another proof

of this theorem, Robertson et al. [47℄ list the following as the main two reasons the proof

of Appel and Haken was not fully aepted:
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(i) part of their proof uses a omputer and annot be veri�ed by hand, and

(ii) even the part that is supposed to be heked by hand is extraordinarily

ompliated and tedious, and as far as we know, no one has made a

omplete and independent hek of it.

However, reason (i) is an evil that still remains in the new proof, as pointed out by

the authors. To verify this new proof and in partiular part (i), an independent set of

programs has been written by Fijavz under the guidane of Mohar (see the 4CT webpage

at http://www.math.gateh.edu/~thomas/FC/fourolour.html).

But some mathematiians still look at these proofs with skeptiism. Thomas says: \It

is amazing that suh a simply stated result resisted a proof for one and a quarter enturies,

and even today it is not yet fully understood". Even today, some mathematiians are not

satis�ed with the proofs of the 4CT beause they think suh a nie and easy to explain

problem must have a better and more understandable proof. Certainly, this proof is not

from the \book"

1

. For more information on the 4CP see the nie survey by Claude [24℄.

While the most noteworthy appliation of the Disharging Method has been in the

proof of the 4CT, there are dozens of other problems that have been solved using this

tehnique. Some of the proofs are omputer-aided, but the vast majority of them are

hand-hekable. See, for example, [12, 13, 19, 20, 21, 51, 50℄. Therefore, this method

an be a handy tool for everybody who works on problems on planar graphs, and in

many ases, on graphs embeddable on other surfaes, suh as the projetive plane and

the torus.

1

Very nie and elegant proofs are sometimes alled \from the book" to refer to the total book, that

Erd�os believed might exist, and ontains the best answers to every question.
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2.2 How Does the Disharging Method Work?

Let � be a lass of planar graphs and suppose we want to prove that every graph in �

has a spei� property P . We take an arbitrary graph G 2 � and assign some harges

to the elements of G (e.g. to the verties, edges, or faes). Using Euler's formula,

jV j+ jF j�jEj = 2, we show that the total harge is some onstant. Then we redistribute

the harges aording to some set of disharging rules that we de�ne, while preserving

the total harge. After this disharging phase, we show that either the total harge

is now di�erent (whih of ourse is impossible) or G has some spei� strutures that

imply property P . This tehnique is alled the Disharging Method. Sometimes this

method an be applied to problems for graphs embeddable on other surfaes, suh as

the projetive plane or the torus, as Euler's formula holds for them with non-negative

onstants (1 and 0, respetively).

Often, we prove that the spei� strutures imply property P before applying the

Disharging Method. The most ommon way to do this is to start the proof by way

of ontradition and assume that there are graphs in � that do not satisfy property P .

Among all suh graphs we onsider one, alled G

0

, whih has the smallest size. Then

based on the assumption that G

0

is a minimum ounter-example we prove that ertain

strutures of verties, edges, or faes annot exist in G

0

. These strutures are alled

reduible on�gurations. One a set of reduible on�gurations has been de�ned, we

show that they are unavoidable. In other words, we prove that any graph in � must

have at least one of them. This proves that there is no minimum ounter-example to the

statement, or equivalently, every graph in � has property P .

To do this seond step, i.e. to prove unavoidability of the reduible on�gurations, we

use the Disharging Method. That is, we take an arbitrary graph G 2 � and apply the

initial harges to G. Using Euler's formula we show that the total harge is, for instane,

some negative onstant. Then we apply the disharging rules and prove that either every

element of G has non-negative harge (and so the total harge is non-negative), or G



Chapter 2. What is the Disharging Method? 10

must have one of these reduible on�gurations. Of ourse, the total harge must remain

negative, sine the disharging rules preserve the total harge. Therefore, there are some

elements with negative harge in G. We prove that suh elements must be in or near a

reduible on�guration.

Sometimes (as you will see soon) we don't use any set of reduible on�gurations.

Instead, by applying a set of initial harges and the disharging rules, we an derive the

required onlusion. However, in most appliations of the Disharging Method, before

applying the initial harges and the disharging rules, we ome up with a suitable set of

reduible on�gurations. For this reason, it is ommon to refer to both of the general

steps explained above, i.e. the proesses of �nding a set of reduible on�gurations and

proving the unavoidability of them, as the Disharging Method.

Here we demonstrate the use of this tehnique in a few examples. The �rst example

is a well-know fat whose standard proof does not require the Disharging Method. We

frame it in terms of the Disharging Method here for illustration of the tehnique, only.

Example 2.2.1 Every simple planar graph G(V;E) has a vertex of degree at most 5.

Proof: Let F be the set of faes of G. To every vertex v 2 V with degree d(v), we

assign d(v)� 6 units of harge, and to eah fae f 2 F with size jf j we assign 2jf j � 6

units of harge. By noting that 2jEj =

P

v2V

d(v) =

P

f2F

jf j, the total harge is:

P

v2V

(d(v)�6)+

P

f2F

(2jf j�6) = 2jEj�6jV j+4jEj�6jF j = 6(jEj� jV j� jF j) = �12.

Sine the graph is simple, every fae has size at least 3. So there must be a vertex with

negative harge. Therefore, for some vertex v: d(v)� 6 < 0, that is d(v) � 5, as wanted.

The above example was easy and we did not have to move any of the harges. The

next one is less trivial and ontains some harge movement; i.e., a disharging phase.

Example 2.2.2 In every simple planar graph G(V;E) with minimum degree at least

three, there is a vertex of degree d inident with a fae of length l suh that d+ l � 8.
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Proof: We all a vertex-fae inidene a orner. To every vertex v 2 V with degree d(v)

we assign a harge of d(v)�4, and to eah fae f 2 F with length jf j we assign a harge of

jf j�4. Again, using Euler's formula, the total harge is:

P

v2V

(d(v)�4)+

P

f2F

(jf j�4) =

2jEj � 4jV j + 2jEj � 4jF j = 4(jEj � jV j � jF j) = �8. In the disharging phase every

vertex v sends out

d(v)�4

d(v)

units of harge to eah orner that it partiipates in. Similarly,

eah fae f sends

jf j�4

jf j

harge to eah orner that it belongs to. Therefore, after the

disharging phase, all the verties and faes have harge 0. Sine the total harge was

negative, there must be a orner with negative harge. Assume that this orner is made

from the inidene of a vertex v with d(v) = d and a fae f with jf j = l. The harge

of this orner is

d�4

d

+

l�4

l

< 0. Therefore 2ld � 4l � 4d < 0, whih together with the

assumptions that the minimum degree is at least three and eah fae has size at least

three, imply:

d <

2l

l � 2

� 6 and l <

2d

d� 2

� 6:

Adding l to both sides of the �rst inequality yields d+ l <

l

2

l�2

, whih is at most 8 for

3 � l < 6.

The next example is more involved. It is atually a simpli�ed version of the problem

that is onsidered in Chapters 3 and 4. We will talk about the history of this problem

and the previous results on this in more detail in Chapter 3.

Example 2.2.3 (Abbott and Zhou [1℄) Every planar graph without any yle of size in

f4; : : : ; 11g is 3-olourable.

Proof: The proof ontains two main parts:

Part 1 (Reduible Con�gurations): By ontradition, assume that the statement

is false and let G(V;E) be a ounter-example with the minimum number of verties. So

G is a 4-ritial graph. Trivially, G must be onneted. We laim that (i) a vertex with

degree at most 2, and (ii) a ut-vertex are reduible on�gurations.
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(i) Suppose that v 2 V is a vertex with degree at most 2. Beause G is 4-ritial

there exists a 3-olouring of G � fvg. As v is adjaent to at most 2 verties, we an

extend this olouring to v by assigning a olour di�erent from its neighbours and obtain

a 3-olouring of G, a ontradition.

(ii) Suppose that v 2 V is a ut-vertex and C

1

; : : : ; C

k

are the onneted omponents

of G � fvg, with k � 2. By de�nition of G, eah C

0

i

= C

i

[ fvg, 1 � i � k, has a

3-olouring �

i

: V (C

0

i

) �! f1; 2; 3g. Now, without loss of generality, and by possibly

permuting the olours in some of �

i

's, we an assume that �

i

(v) = 1, for 1 � i � k. The

union of these olourings gives a 3-olouring of G, a ontradition.

Part 2 (Disharging): Now we prove that this set of reduible on�gurations is

unavoidable, i.e. any planar graph without yles of size in f4; : : : ; 11g has at least

one of them. This shows that there is no minimum ounter-example (and therefore

no ounter-example at all) to the statement. Let G be any planar graph without any

yle of size in f4; : : : ; 11g. To eah vertex v 2 V with degree d(v) we assign a harge

of d(v) � 6, and to eah fae f with size jf j we assign 2jf j � 6. The total harge is:

P

v2V

(d(v) � 6) +

P

f2F

(2jf j � 6) = 2jEj � 6jV j + 4jEj � 6jF j = �12. Sine eah fae

has size at least 3, all faes have non-negative harge. If G has a vertex of degree at

most 2, sine it is one of the reduible on�gurations desribed in Part 1, we are done.

Otherwise, the minimum degree of G is at least three, and therefore, the only verties

with negative harge are verties with degree 3, 4, or 5.

In the disharging phase, every fae f with jf j � 12 sends

3

2

units of harge to eah

of its verties. An important observation to make here is that sine G does not have

any yle of size 4, it annot have two faes f

1

; f

2

, eah of size 3, that have an edge in

ommon. If G has a ut-vertex then we are done, sine that is a reduible on�guration.

Otherwise, every vertex v 2 V is inident with at least d

d(v)

2

e distint faes that have size

at least 12, eah. Consider an arbitrary vertex v:

� If 3 � d(v) � 5 then it gets a total of at least

3

2

� d

3

2

e = 3. Its initial harge was at
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least d(v)� 6 � �3, and therefore, it has non-negative harge.

� if d(v) � 6, it had originally non-negative harge and it does not lose any harge in

the disharging phase.

So all the verties have non-negative harge. Faes of size 3 had originally a harge of

0 and they don't lose any harge in the disharging phase. There are no yles of size

in f4; : : : ; 11g, and therefore no faes of size in f4; : : : ; 11g. Every other fae f has size

at least 12 and it sends out

3

2

jf j units of harge whih is not more than 2jf j � 6, for

jf j � 12. Thus, all faes have non-negative harge after the disharging phase. However,

the total initial harge was �12. This ontradition ompletes the proof.

Now, one might ask if we an improve this statement by allowing yles of size 11.

In other words, an we still prove 3-olourability if the given planar graph does not have

yles of size in f4; : : : ; 10g? You will see in a moment that by being a little bit more

areful in the design of the disharging rules we an prove this, using the same set of

reduible on�gurations.

Example 2.2.4 (Borodin [15℄) Every planar graph without any yle of size in f4; : : : ; 10g

is 3-olourable.

Proof: Part 1 (Reduible Con�gurations): It is easy to see that the two reduible

on�gurations in the previous proof, i.e. a vertex with degree at most 2 (a � 2-vertex)

and a ut-vertex, still form a set of reduible on�gurations.

Part 2 (Disharging): LetG be any planar graph without yles of size in f4; : : : ; 10g

and apply the same set of initial harges to G. That is, to eah vertex v we assign d(v)�6

and to eah fae f we assign 2jf j � 6 units of harge. Reall that by Euler's formula

the total harge is �12. Now we have to de�ne the set of disharging rules and show

that after the disharging phase either we have one of the reduible on�gurations, or

the total harge is non-negative, whih of ourse is impossible. If we use the same set

of disharging rules as in the previous proof everything works out up to faes of size 11,



Chapter 2. What is the Disharging Method? 14

vv

(a) (b)

Figure 2.1: (a) A simple vertex and (b) a bad vertex

i.e., we an show that either we have a reduible on�guration (a � 2-vertex or a ut-

vertex) or all the verties and all the faes of size at least 12 have non-negative harge.

To omplete the proof we need to show that none of the faes of size 11 will end up with

negative harge, either. But this is not true, beause eah suh fae sends out

3

2

� 11,

whih is larger than its initial harge 16. But, do we really need to send

3

2

from eah fae

to all the verties inident with it?

It is not hard to see that 3-verties (with initial harge of �3) are the most desperate

verties for harge. If a 3-vertex v is inident with exatly one triangular fae we all it

a bad vertex and a 3-vertex whih is inident to no triangular fae is alled simple (see

Figure 2.1). Note that by absene of 4-yles, every 3-vertex is either simple or bad.

Sine triangular faes have harge 0, they annot a�ord to send any harges out in

the disharging phase. Therefore, if v is a bad vertex then eah of the two non-triangular

faes that v is inident with, must send

3

2

to v. So every fae f must send

3

2

to eah of

its bad verties. But if v is a simple vertex, then it is inident with three non-triangular

faes, and therefore, an reeive harges from eah of them. So it will be suÆient to

send only 1 unit of harge from eah of those faes to v. Also, if v is a � 4-vertex, its

initial harge (whih is d(v)� 6) is at least �2 and, as in the proof of Example 2.2.3, it

is inident with at least two non-triangular faes. If eah of those faes sends 1 unit of

harge to v then v will have non-negative harge. This way, we may save enough harge

on faes, so muh so that faes of size 11 have non-negative harge, too. So let's modify
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the disharging rule to:

Every non-triangle fae f sends

3

2

units of harge to eah of its bad verties

and 1 unit of harge to eah of its other verties.

As before, if we have a � 2-vertex or a ut-vertex we are done. Otherwise, by this

disharging rule every 3-vertex v reeives at least 3 units of harge: if v is a bad vertex

it reeives

3

2

units from eah of the non-triangular faes it is inident with, and if it is a

simple vertex it reeives 1 unit of harge from eah of the three faes it is inident with.

Also, as we proved above, every � 4-vertex reeives at least 2 units of harge and will

have non-negative harge. Regarding the faes, they are not sending more harges than

in the previous example, and therefore, faes of size at least 12 have non-negative harge

by the proof of Example 2.2.3. For a fae f of size 11, an important observation to make

is that it an be inident with at most 10 bad verties, beause of parity (bad verties

on a fae ome in pairs). Therefore, f sends out at most 10�

3

2

+1 = 16 = 2jf j � 6, and

hene has non-negative harge, whih ompletes the proof.

If we want to relax the ondition further and allow yles of size 10 then this set of

disharging rules does not seem to work, sine a fae of size 10 may be inident with 10 bad

verties, and therefore, must send 10�

3

2

> 2jf j�6. So, one might think that to improve

the result of Example 2.2.4 one step further, we should try to ome up with a better set

of disharging rules, and possibly a more areful assignment of the initial harges. Figure

2.2 shows a planar graph whih does not have any yle of size in f4; : : : ; 9g and, neither

has a � 2-vertex nor a ut-vertex. Therefore, hanging only the disharging part of the

proof does not help and we must look for a new reduible on�guration.

In general, to improve a result that uses the Disharging Method, sometimes it is

enough �nd a better set of initial harges and disharging rules (as we did in Example

2.2.4). But there are some situations (as desribed in the previous paragraph) that there
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Figure 2.2: A 2-onneted planar graph with Æ � 3 and without yles of size in f4; : : : ; 9g

is no way of improving a result just by hanging the disharging part sine there are

graphs that do not have any of the urrent reduible on�gurations. In those situations

we must �nd a new set of reduible on�gurations and possibly a new set of disharging

rules that work with them. Almost always these two proesses (�nding a set of reduible

on�gurations and designing a set of disharging rules that work with them) have to be

o-ordinated. That is, looking at a urrent set of disharging rules gives us some hints

as to what kind of new reduible on�gurations we should be looking for.

One way of doing this is by looking at the elements that have negative harge after

applying the urrent set of disharging rules, but do not lie in or near a member of our

urrent set of reduible on�gurations. (Of ourse, we must have suh an element, or else

we would already have a omplete proof.) Often these elements are in or near something

that we an prove to be a new reduible on�guration. For instane, when we tried to

apply our previous set of rules to graphs with 10-yles, we saw that a 10-fae with 10

bad verties got negative harge. This inspires us to show, in the next hapter, that suh

a fae is reduible. (Note that the graph in Figure 2.2 has many suh faes.) On the other
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hand, sometimes we annot �nd new reduible on�gurations. Then we should re�ne our

disharging rules to send more harge to those problemati negatively harged elements.

Very roughly speaking, one an say that the relation of proesses of �nding these two

sets (the reduible on�gurations and the disharging rules) is similar to the relation

between the primal and dual of a linear program in the design of algorithms based on

a primal-dual sheme. Hopefully these rough statements will be learer in Chapter 3,

when we explain how to improve the last example.

One �nal point worth mentioning is that in proofs using the Disharging Method,

there are usually equivalent forms of assigning initial harges to the elements of the

graph, in the sense that the proof based on one set of harges an be translated into a

proof based on another one, using a linear transformation of the initial harges and the

disharging rules. Furthermore, to be able to use Euler's formula to alulate the sum of

the initial harges there are a limited number of forms of initial harges we an use. So,

the role in the proof that the set of initial harges play is not as ruial as that played

by the disharging rules.

2.3 Designing Algorithms Using the Disharging Method

We lose this hapter by noting that almost all proofs using the Disharging Method are

onstrutive and yield eÆient polynomial time algorithms. Usually, the reduible on-

�gurations have size bounded by a onstant k and so, naively, we an just do exhaustive

searh and �nd one in time O(n

k

). Often, the Disharging Method helps to do this step

faster. For instane, the proof of Example 2.2.4 yields an O(n

2

) time reursive algorithm

suh that for a given embedded planar graph G without yles of size in f4; : : : ; 10g

produes a 3-olouring of G. For a disonneted graph, trivially it is enough to olour

eah onneted omponent separately. Therefore we give a proedure for 3-olouring

onneted planar graphs without yles of size in f4; : : : ; 10g.



Chapter 2. What is the Disharging Method? 18

Eah iteration of the proedure onsists of either �nding a � 2-vertex and removing

it to obtain a smaller graph, or �nding a ut-vertex and breaking the graph into smaller

subgraphs. Then we olour the new smaller graph(s) reursively, and extend the olour-

ing(s) to the whole graph. We keep doing this as long as there is at least one vertex in

the given graph. Here are the steps of the proedure:

� Apply the initial harges and the disharging rule.

� Sine the total harge is negative, there is some vertex with negative harge (note

that by the proof of Example 2.2.4 all faes will have non-negative harge).

� If v 2 V has negative harge, then either d(v) � 2 or v is a ut-vertex. We an hek

whether d(v) � 2 or not in onstant time. If d(v) � 2 then we �nd a 3-olouring

for eah onneted omponent of G� v, reursively. These olourings an be easily

extended to G, sine v has at most two oloured neighbours.

If v is a ut-vertex and the onneted omponents of G� v are C

1

; : : : ; C

k

, then we

�nd a 3-olouring for eah G

i

= C

i

[fvg, reursively. The union of these olourings,

possibly permuting the olours in eah, yields a 3-olouring of G.

Now we analyze the running time of this proedure. Sine in a planar graph the

number of edges and faes is linear in the number of verties, we onsider the size of a

planar graph to be the number of verties in it. Let T (n) be the worst ase running time

of the proedure on an input graph of size n. In eah iteration we apply the initial harges

and the disharging rule. For eah fae f it takes O(jf j) time to apply the disharging

rule to it. Sine only faes send harges in the disharging phase, this step takes at most

O(

P

f2F

jf j) time whih is in O(n). Then we �nd a vertex with negative harge whih

an be done in O(n) time. Extending the olourings of the smaller subgraphs (that are

obtained reursively) to G takes onstant time for the ase that the vertex with negative

harge was a �2-vertex, and takes at most O(n) time for the ase that it was a ut-vertex

(sine we may have to permute the olours in some of the subgraphs).
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We prove by indution that for some onstant C > 0 and all values of n � 1:

T (n) � Cn

2

. The inequality is trivial for small values of n. So let's assume that for all

values of 1 � i < n: T (i) � Ci

2

. Consider the proedure all in whih the input graph has

size n. If a �2-vertex is found we make reursive alls on at most two smaller graphs of

sizes n

1

and n

2

, respetively, with n

1

+n

2

= n�1. Therefore: T (n) � �n+T (n

1

)+T (n

2

),

for some onstant � > 0. Thus:

T (n) � �n+ T (n

1

) + T (n

2

) � �n+ Cn

2

1

+ Cn

2

2

� �n+ C(n

1

+ n

2

)

2

� Cn

2

;

where the last inequality holds if C is large enough with respet to �.

If a ut-vertex is found we make reursive alls on k smaller graphs G

1

; : : : ; G

k

, with

2 � k � n� 1. Let n

i

= jV (G

i

)j, 1 � i � k. Note that 2 � n

i

� n � 1 (for 1 � i � k)

and

P

k

i=1

(n

i

� 1) = n� 1. Therefore, for some onstant � > 0:

T (n) � �n+

k

X

i=1

T (n

i

) � �n+ C

k

X

i=1

n

2

i

:

The last summation is is maximized when k = 2 and one of n

1

or n

2

is n� 1 and the

other is 2. At this maximum, the sum is easily seen to be less than Cn

2

, as wanted.

2.3.1 An Extended Algorithm for Example 2.2.4

In Chapter 4 we will need to use a stronger version of the algorithm given above. Here we

desribe this new algorithm. The input to this algorithm is an embedded planar graph

G without yles of size in f4; : : : ; 7g. The algorithm either omes up with a 3-olouring

of G or �nds a yle of size in f4; : : : ; 10g. Again, we assume that the input graph is

onneted, as for disonneted graphs it is enough to run the algorithm on eah onneted

omponent, independently.

At eah iteration of the algorithm, we apply the initial harges and then the disharg-

ing rule as desribed in the proof of Example 2.2.4. Sine the total harge is negative
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there must be some element with negative harge after the disharging phase. If there

is no fae of size in f8; 9; 10g, then the only elements with negative harge will be 2-

verties and ut-verties. If we �nd suh a vertex with negative harge we proeed as in

the previous algorithm. The other possibility is to have a fae f with negative harge.

Suh a fae must be a fae with size in f8; 9; 10g. Sine the input at eah iteration of

the algorithm is a subgraph of the original graph, this fae f that has negative harge

orresponds to a yle of G. Therefore, at eah iteration of the new algorithm, either we

�nd a yle of size in f8; 9; 10g and the algorithm terminates and returns it, or we �nd

a � 2-vertex or a ut-vertex and we proeed as in the previous algorithm. It is easy to

see that this slight modi�ation does not hange the running time of the algorithm, and

therefore, this new algorithm runs in O(n

2

) time, too.



Chapter 3

The Three Colour Problem

Remark 3.0.1 The results in this hapter are based on paper [48℄.

3.1 Steinberg's Conjeture

In 1959, almost two deades before the Four Colour Theorem was proved, Gr�otsh [33℄

showed that every planar graph without 3-yles is 3-olourable. In 1976, Steinberg

[4, 52℄ onjetured that every planar graph without 4- and 5-yles is 3-olourable. Both

4- and 5-yles must be exluded. In fat there is an in�nite family of 4-ritial planar

graphs that have only four 4-yles and no 5-yles, and there is an in�nite family of 4-

ritial planar graphs that have no 4-yles and have only six 5-yles [1℄. An equivalent

formulation of this onjeture is that every 4-hromati planar graph has a 4- or 5-yle.

This problem is also disussed in the monograph by Jensen and Toft [38℄ (Problem 2.9).

In 1990, Erd�os relaxed the onjeture of Steinberg by asking if there exists an integer

k � 5, suh that every planar graph without yles of size in f4; : : : ; kg is 3-olourable.

An aÆrmative answer to the question of Erd�os (and therefore a partial answer to the

onjeture of Steinberg) was obtained by Abbott and Zhou [1℄, who showed that k = 11

is suitable, i.e. any planar graph without yles of size in f4; : : : ; 11g is 3-olourable.

This is in fat our Example 2.2.3 in Chapter 2. Borodin [15℄ improved this result to

21
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k = 10 (Example 2.2.4). To the date we started working on the problem, the best known

answer, whih states that k = 9 is suitable, was due to Borodin [14℄ and independently

to Sanders and Zhao [49℄ (An erroneous proof for the ase k = 8 was laimed by B. Xu

[61℄, but it was later withdrawn).

Let G

8

be the lass of planar graphs without yles of size in f4; : : : ; 8g. The main

result of this hapter is:

Theorem 3.1.1 Every graph in G

8

is 3-olourable.

The proof of this theorem is onstrutive and yields an O(n

2

) time algorithm for

�nding a 3-olouring of suh graphs.

One key idea in the proof of this theorem, that distinguishes it from the previously

known results, is the following. To prove the reduibility of (some of) the on�gurations,

we modify the on�guration by removing some verties and edges and by adding a smaller

number of verties and edges, whih will be alled the \gadget". This modi�ation

is designed arefully so that it enfores some properties that we require to prove the

reduibility, while preserving planarity and the key property of not having any yles of

size in f4; : : : ; 8g. Therefore, the new graph is in G

8

, and sine the graph we started with

was a minimum ounter-example, there must be a 3-olouring of this new graph. Then

using the properties of the gadget we have added, we show how this 3-olouring an be

extended to a 3-olouring of the original graph.

The total number of reduible on�gurations used in the proof of this theorem is muh

larger than in the previous results; it is about

1

77, ompared to 3 on�gurations needed

to prove the previous best known bound. To simplify the presentation of the proof, we

have divided these on�gurations into several groups based on their strutures. We have

heked the reduibility of these 77 on�gurations by hand, but writing a hand-hekable

proof for eah on�guration and also going through these proofs and heking every single

1

The atual number of reduible on�gurations is 69, sine reduibility of some of them follows from

the others. However, the presentation of the proof will be signi�antly easier if based on 77 on�gurations.
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on�guration by hand is a lengthy and tedious task. Instead, we give the hand-hekable

proofs of some of the on�gurations in eah group. These proofs have a very similar stru-

ture and, after seeing a few of them, heking the reduibility of the other ones beomes

straightforward (although tedious and time onsuming). But that's not all! We have veri-

�ed the reduibility of all of these on�gurations using a short and simple C program. So,

we also have a omputer-aided proof. The program and the list of all the reduible on-

�gurations appear in Appendies B and C, where we also explain how the on�gurations

have been generated. In Setion 3.5 we explain how this program works. The program

and the �le ontaining the reduible on�gurations and the desription of the program

is also available at ftp://ftp.s.toronto.edu/srg-tehnial-reports/458/.

The organization of this hapter is as follows. Instead of proving Theorem 3.1.1

right away, in the next setion we �rst try to improve on Example 2.2.4. We do this by

looking bak at the proof of that example. This will lead us to prove a weaker version of

Theorem 3.1.1, whih is basially the result of Borodin [14℄ and Sanders and Zhao [49℄.

The proof of Theorem 3.1.1 is provided in Setion 3.3. We present some more notation

and de�nitions in Subsetion 3.3.1. Subsetion 3.3.2 ontains the desription of all the

reduible on�gurations and the hand-hekable proofs of some of them. We explain the

disharging rules in Subsetion 3.3.3, whih also ompletes the proof of Theorem 3.1.1.

Appendix A ontains more hand-hekable proofs of reduible on�gurations. In Setion

3.4 we show how the proof of Theorem 3.1.1 yields a quadrati time algorithm for 3-

olouring of graphs in G

8

. Finally, in Setion 3.5 we talk about the automated proof of

reduibility and the program written for this purpose.

3.2 A Weaker Version of the Main Theorem

Let G

9

be the lass of planar graphs without any yle of size in f4; : : : ; 9g. Our goal is

to prove:



Chapter 3. The Three Colour Problem 24

Theorem 3.2.1 Every graph in G

9

is 3-olourable.

This is the previously best known result on this problem, proved by Borodin [14℄

and by Sanders and Zhao [49℄. To prove Theorem 3.2.1, we look bak at the proofs of

Examples 2.2.3 and 2.2.4, and try to �nd a weakness in the arguments and improve it.

Reall the proof of Example 2.2.4. We showed that a minimum ounter-example

annot have a ut-vertex or a � 2-vertex, i.e. these two are reduible on�gurations.

Then to show that any arbitrary planar graph G without yles of size in f4; : : : ; 10g

has one of these two reduible on�gurations we assigned d(v) � 6 units of harge to

every vertex v and 2jf j � 6 units to every fae f of G. In the disharging phase, every

non-triangle fae f sent

3

2

to eah of its bad verties and 1 to eah of its other verties.

This argument fails to work for graphs in G

9

sine for faes of size 10, the total harge

sent out might be more than their initial harges, and therefore, a 10-fae may have

negative harge after the disharging phase. That happens, for example, to every non-

triangle fae of the graph in Figure 2.2. The main problem here is that this graph does

not have any of the two reduible on�gurations (a � 2-vertex and a ut-vertex). Note

that every 10-fae in this graph has 10 bad verties. This inspires us to try to prove that

if f is a 10-fae in a minimum ounter-example to Theorem 3.2.1, then there are some

non-bad verties in the boundary of f . At least two non-bad verties will be enough

sine then in the disharging part of our proof, a non-reduible fae f of size 10 would

send out at most 8�

3

2

= 12 (to the bad verties) and 2� 1 = 2 (to the non-bad verties)

for a total of 14 = 2jf j � 6, and so would have non-negative harge after the disharging

phase.

Note that every minimum ounter-example to Theorem 3.2.1 is 4-ritial as if G 2 G

9

then G� e 2 G

9

for every e 2 E(G).

Claim 3.2.2 No 4-ritial planar graph (and therefore no minimum ounter-example to

Theorem 3.2.1) has a 2k-fae f (k � 2) with at least 2k � 1 bad verties.
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v
2k

v1
v
2

v
3f

Figure 3.1: A 2k-fae inident with at least 2k � 1 bad verties

Proof: Let G be a 4-ritial planar graph and let f be a 2k-fae of G whose verties

in lokwise order are v

1

; : : : ; v

2k

. By way of ontradition assume that v

1

; : : : ; v

2k�1

are

all bad verties. This implies that eah has degree 3 and is inident with exatly one

triangle. Without loss of generality, we an assume that v

2i�1

and v

2i

are inident with

the same triangle, 1 � i � k. Thus, v

2k

either is also bad or has degree at least four. (see

Figure 3.1). Sine G is 4-ritial, there is a 3-olouring of G � v

1

v

2k

, alled �. Beause

G is not 3-olourable, �(v

1

) = �(v

2k

); without loss of generality, we an assume both

are 1. We laim �(v

3

) = 1, otherwise we ould exhange �(v

1

) with �(v

2

) and obtain a

3-olouring of G. Using a similar argument, we an show that �(v

5

) = 1, and in general

by indution, one an easily prove that �(v

2i+1

) = 1, for 0 � i � k � 1. But �(v

2k�1

)

annot be equal to 1, as it is adjaent to v

2k

and �(v

2k

) = 1. This ontradition ompletes

the proof.

Remark 3.2.3 Note that the proof of this laim atually shows that any 3-olouring of

G � v

1

v

2k

an be extended to a 3-olouring of G in onstant time (for onstant k), by

only exhanging the olours of some of the verties of f .

Now we have a new set of reduible on�gurations (the �rst two were proved to be

reduible in Example 2.2.3 and those proofs learly extend to this setting):

� a vertex of degree at most 2,
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� a ut-vertex, and

� a 2k-fae with at least 2k � 1 bad verties.

We will use the Disharging Method to prove that every planar graph G 2 G

9

must

ontain at least one of these on�gurations.

Proof of Theorem 3.2.1: The set of initial harges and the disharging rules are

the same as in Example 2.2.4. Reall that by Euler's formula the total initial harge is

�12. By the arguments of the proof of Example 2.2.4, either we have a � 2-vertex or

a ut-vertex, or every vertex and every fae of size at least 11 has non-negative harge.

If G has a � 2-vertex or a ut-vertex we are done. Otherwise, beause the total harge

must remain negative after the disharging phase, there must be a fae of size 10 with

negative harge. Suppose f is suh a fae. As we disussed before Claim 3.2.2, f must

be inident with at least 9 bad verties to have negative harge. But suh a struture is

reduible by Claim 3.2.2. Therefore, G ontains one of the reduible on�gurations and

this ompletes the proof of Theorem 3.2.1.

Note that, as does the proof of Example 2.2.4, this proof yields a simple quadrati

time 3-olouring algorithm. Here we give a proedure that given a onneted embedded

graph G 2 G

9

as input, produes a 3-olouring of G. Obviously if we have a disonneted

graph G 2 G

9

, it is enough to apply this proedure to eah of its onneted omponents.

At eah iteration of the proedure, we apply the initial harges and then the disharging

rule. Sine the total harge is negative, there is either a vertex or a fae with negative

harge:

1. If there is a vertex v with negative harge, then either v is a � 2-vertex or a ut-

vertex. As in the algorithm of Example 2.2.4, for the ase that v is a � 2-vertex

we an olour eah onneted omponent of G�fvg, reursively, and extend these

olourings to v. For the ase that v is a ut-vertex and C

1

; : : : ; C

t

(t � 2) are the

onneted omponents of G � fvg, we an olour eah G

i

= C

i

[ fvg, 1 � i � t,
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reursively, and then ombine these olourings (possibly permuting some olours in

some of the olourings) to obtain a 3-olouring of G.

2. If there is a fae f with negative harge, then this fae must be a 10-fae with at

least 9 bad verties. We remove one of the edges as in the proof of Claim 3.2.2 and

olour the new graph reursively. By Remark 3.2.3, this olouring an be extended

to G in onstant time.

This proedure iterates as long as there is at least one vertex in the graph. Let the

size of the input graph G be n = jV j+ jEj and denote the worst ase running time of the

algorithm on an input of size n by T (n). As in the algorithm of Setion 2.3, sine faes

are the only elements that send harges in the disharging phase, applying the initial

harges and the disharging rule takes O(

P

f2F

jf j) time, whih is in O(n). After that,

�nding an element (vertex or fae) with negative harge takes O(n) time. If the element

with negative harge is a vertex then (as we had in the algorithm of Example 2.2.4) it

takes at most linear time to extend the olouring of the smaller graphs to G. If the

element with negative harge is a fae, by Remark 3.2.3, it takes onstant time to extend

the olouring to G. So we an assume that all these steps take at most �n time, for some

onstant � > 0.

By indution on n, we prove that for all values of n � 1 and for a suitable onstant

C > 0: T (n) � Cn

2

. For small values of n the inequality trivially holds, if C is large

enough. Suppose that T (i) � Ci

2

for all values of 1 � i < n, and onsider the iteration

in whih the input graph has size n. After the disharging phase:

� For the ase that the element with negative harge is a 2-vertex or a ut-vertex then

an analysis very similar to that of algorithm of Setion 2.3 shows that T (n) � Cn

2

.

� For the ase that the element with negative harge is a fae then we make a reursive

all on a graph obtained by removing a single edge of G, i.e. a graph with size n�1.

Therefore: T (n) � �n+ T (n� 1) � �n+ C(n� 1)

2

� Cn

2

, for large enough C.
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(b) (c)(a)

v v v

Figure 3.2: (a) A type 0 vertex, (b) a type 1 vertex, and () a type 2 vertex

So the running time of the algorithm is O(n

2

).

3.3 Proof of the Main Theorem

In this setion, we strengthen our arguments from the previous setion to prove Theorem

3.1.1. First we need to state a few more de�nitions used in the desription of reduible

on�gurations. We will also use the de�nitions from Chapter 2 for bad and simple

verties.

3.3.1 Preliminaries

Reall that a 3-vertex is bad if it is inident with exatly one triangle, and simple oth-

erwise. Let v be a vertex with degree 4. Then v is alled a type 0 vertex if it is not

inident with any triangles. If it is inident with exatly one or exatly two triangles,

then it is alled a type 1 or type 2 vertex, respetively. Note that by absene of 4-yles,

every 4-vertex is one of these three types (See Figure 3.2).

In the proof of Theorem 3.2.1 we saw how to deal with faes of size at least 10.

Dealing with 9-faes will require some are. We begin by de�ning some strutures that

involve 9-faes. Let f be a 9-fae inident with 8 bad verties. Then f is alled a simple,

a type 0, a type 1, a type 2, or a type 5 fae, if the ninth vertex of f is a simple, a type

0, a type 1, a type 2, or a 5-vertex, respetively (See Figure 3.3).

Now suppose that f is a 9-fae whih has exatly 7 bad verties (and therefore is
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Figure 3.3: (a) A simple fae, (b) a type 0 fae, () a type 1 fae, (d) a type 2 fae, and

(e) a type 5 fae.

adjaent to exatly four triangles), and has a type 1 vertex whih is inident with one

of these four triangles. This aounts for 8 of the verties. If the ninth vertex of f is a

simple vertex then f is alled a semi-simple fae. Similarly, if the ninth vertex of f is

a type 0 vertex, or a type 1 vertex, or a type 2 vertex, then it is alled a semi-type 0,

semi-type 1, or semi-type 2 fae, respetively (see Figure 3.4). We have not given a name

to every 9-fae. We named only 9-faes with 8 bad verties and a � 5-vertex, or with 7

bad verties and two 4-verties.

As you will see later, some reduible on�gurations are made from an interation of

three faes of size 9. For this reason we have to de�ne a few more strutures. Let f

1

be a

semi-type 0 fae whose verties (in ounter-lokwise order) are v

1

; v

2

; : : : ; v

9

, where v

1

is

the type 0 vertex, and let f

2

be a type 0 fae whose type 0 vertex is v

1

. If v

i

is the type

1 vertex of f

1

, for some 3 � i � 8, and f

3

is a semi-simple fae whose type 1 vertex is v

i

,

then we all this on�guration a \simple triple struture" (See Figure 3.5(a)). Similarly,
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Figure 3.4: (a) A semi-simple fae, (b) a semi-type 0 fae, () a semi-type 1 fae, (d) a

semi-type 2 fae
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Figure 3.5: (a) A simple triple struture with v

i

= v

4

, (b) a triple struture of kind 1

with v

i

= v

3

, () a triple struture of kind 2 with v

i

= v

3

if f

3

is a type 1 fae whose type 1 vertex is v

i

, then we all this on�guration a \triple

struture of kind 1". Finally, if f

3

is a semi-type 2 fae whose type 1 vertex is v

i

, then

we all this on�guration a \triple struture of kind 2". (See Figure 3.5)

3.3.2 Reduible Con�gurations

Suppose we were to follow the same steps as in the proof of Theorem 3.2.1. That is, in

the disharging part assign an initial harge of d(v) � 6 to every vertex v and 2jf j � 6

to every fae f . For the moment, let's assume that we used the same disharging rule,

i.e. every non-triangle fae f sends

3

2

to every bad vertex and 1 to every other vertex
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in its boundary. Then, as in the proof of Theorem 3.2.1, we ould show that either we

have one of the reduible on�gurations of the proof of Theorem 3.2.1, or every vertex

and every fae of size at least 10 has non-negative harge. But how about faes of size

9? Suppose that f is a 9-fae and has 8 bad verties v

1

; : : : ; v

8

. Therefore, f is sending

out all its 2jf j � 6 = 12 units of harge to these bad verties and has nothing left to

send to its ninth vertex. In partiular, if v

9

, the ninth vertex of f , is a simple vertex, i.e.

f is a simple fae as in Figure 3.3(a), then f must send 1 unit of harge to v

9

and will

have �1 harge. This inspires us to try to show that a simple fae is in fat a reduible

on�guration.

In the next �ve lemmas, by a minimum-ounter example we mean a graph G 2 G

8

whih is is a ounter-example to Theorem 3.1.1 with the minimum number of verties,

and that among those ounter-examples whih have the same number of verties as G,

G has the minimum number of edges.

Lemma 3.3.1 A minimum ounter-example annot have a simple fae.

Proof: Let G be a minimum ounter-example and suppose that f is a simple fae in

G. Let's denote the verties of f by v

1

; v

2

; : : : ; v

9

, in lokwise order, where v

1

; : : : ; v

8

are bad and v

9

is simple. We denote the vertex adjaent to both v

2i�1

and v

2i

by w

i

,

1 � i � 4. The neighbour of v

9

not in the boundary of f is alled w

5

. (see Figure 3.6(a)).

We modify G in the following way: remove v

1

; v

2

; : : : ; v

9

and their inident edges from

G and add 6 new verties u

1

; u

2

; : : : ; u

6

. Make u

1

; u

2

; u

3

and u

4

; u

5

; u

6

two triangles and

add the following edges: u

1

w

1

, u

2

w

2

, u

4

w

3

, u

5

w

4

, u

3

u

6

. (see Figure 3.6(b)).

Call this new graph G

0

and the new verties and edges the gadget. Clearly G

0

is planar

and it is straightforward to verify that the pairwise distanes of w

1

; : : : ; w

5

in G

0

using

only the verties and the edges of the gadget is not less than their orresponding distanes

in G using only the verties and the edges that are removed. Thus G

0

2 G

8

. The number

of verties of G

0

is smaller than in G. So by minimality of G, there is a 3-olouring of
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Figure 3.6: A simple fae and the gadget added

G

0

, alled C. A very useful property of the gadget is that w

1

; : : : ; w

4

annot have all the

same olour in C. We an easily prove this by ontradition. Assume that they all have

got the same olour, say 1. Therefore, the olours of u

1

; u

2

; u

4

; and u

5

are all di�erent

from 1. Sine u

1

; u

2

; u

3

and u

4

; u

5

; u

6

are triangles and we are using only three olours in

C, both u

3

and u

6

(whih are adjaent) should have been oloured 1, whih is impossible.

Consider olouring C indued on G � fv

1

; : : : ; v

9

g. The only oloured neighbour of

v

9

is w

5

. So we an extend C to v

9

by assigning a olour to it di�erent from C(w

5

). Now

the only two oloured neighbours of v

8

are w

4

and v

9

, so there is a olour available for

v

8

. Using the same argument we an extend C by olouring v

7

; v

6

; : : : ; v

2

, greedily. By

the time we get to v

1

this greedy algorithm will assign a olour to v

1

di�erent from C(v

2

)

and C(w

1

). But sine G is not 3-olourable, C(v

1

) must be equal to C(v

9

). Without

loss of generality assume that C(v

1

) = C(v

9

) = 1. We ould exhange C(v

1

) and C(v

2

)

to resolve the onit between C(v

1

) and C(v

9

), unless C(v

3

) = 1. So assume that

C(v

3

) = 1. Similarly, we ould exhange C(v

3

) and C(v

4

) to make C(v

3

) 6= 1, unless

C(v

5

) = 1. So we must have C(v

5

) = 1. By the same argument we an show that

C(v

7

) = 1.

Note: This tehnique is used by Sanders and Zhao [49℄. We have already seen it in

the proof of Claim 3.2.2 and will use it frequently in the proofs of other lemmas. We all
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this argument the \haining argument".

On the other hand, without loss of generality, we an assume that C(w

5

) = 2. Now if

C(v

8

) = 2 then we ould simply assign C(v

9

) = 3 and resolve the onit between C(v

9

)

and C(v

1

). We apply the haining argument again. Therefore C(v

8

) = 3 and C(w

4

) = 2.

If C(v

6

) 6= 3 then we ould simply exhange C(v

7

) with C(v

8

) and set C(v

9

) = 3.

Therefore C(v

6

) = 3 and C(w

3

) = 2. Using the same argument C(v

4

) = C(v

2

) = 3 and

C(w

2

) = C(w

1

) = 2. But this means that all w

1

; : : : ; w

4

have the same olour in C, a

ontradition.

2

Remark 3.3.2 By this lemma, any 3-olouring of G � fv

1

; : : : ; v

9

g in whih not all

w

1

; : : : ; w

4

have the same olour an be extended to a 3-olouring of G in onstant time.

One way of doing this is using exhaustive searh, onsidering all possible 3-olourings of

v

1

; : : : ; v

9

.

Continuing the disussions we had before Lemma 3.3.1, one other possibility for a 9-

fae f to have negative harge is that it has 8 bad verties v

1

; : : : ; v

8

and the ninth vertex

of it, v

9

, is a 4-vertex. In this ase too, f sends 1 unit of harge to v

9

, and therefore,

has �1 harge. One might argue that if v

9

is a type 0 vertex it is inident with four

non-triangular faes, and therefore, we might be able to hange the disharging rules so

that v

9

reeives harge from the other faes and f does not have to send any harge to

v

9

. This saves 1 unit of harge for f and it will not have negative harge. This is a valid

argument and in fat we do exatly that (see rule R5 in Setion 3.3.3). But if v

9

is a

type 2 vertex, i.e. if f is a type 2 fae (as in Figure 3.7(a)), then there are only two

non-triangular faes inident with v

9

, one of them is f and let's all the other one f

0

.

These are the only two non-triangle faes inident with v

9

and they should send harge to

v

9

. If f

0

too is a type 2 fae, then eah of f and f

0

must send 1 unit of harge to v

9

, but

2

The reader might have observed that this argument an be simpli�ed by using the well-known fat

that an odd yle an be 2-list oloured as long as the lists are not all the same. But we prefer to use the

above argument as we will generalize it to prove reduibility of some more ompliated on�gurations.
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Figure 3.7: A type 2 fae and the gadget added

they annot a�ord to do so, as eah of them is sending all of its harge to its bad verties.

So this is a situation in whih we should be looking for a reduible on�guration. In the

following lemma we show that in fat a type 2 fae (like f) is reduible.

Lemma 3.3.3 A minimum ounter-example annot have a type 2 fae.

Proof: Let G be a minimum ounter-example and suppose that f is a type 2 fae of G

whose bad verties are v

1

; v

2

; : : : ; v

8

and whose type 2 vertex is v

9

(see Figure 3.7(a)). We

modify G in a way similar to that of Lemma 3.3.1: remove v

1

; : : : ; v

9

and add a gadget

as in Figure 3.7(b).

It is straightforward to verify that the new graph G

0

is in G

8

, and by de�nition of

G, there exists a 3-olouring of G

0

, say C. Note that by the same argument as we had

in Lemma 3.3.1, we annot have all w

5

; w

1

; w

2

; w

3

oloured with the same olour in C.

Consider C indued on G. Sine the only oloured neighbours of v

9

are w

4

and w

5

, we

an extend C to v

9

. Assign a olour di�erent from C(v

9

) and C(w

5

) to v

1

. Also, starting

from v

8

and moving around f toward v

2

in ounter-lokwise order, we an extend C

by olouring v

8

; : : : ; v

3

greedily. We assign a olour di�erent from C(v

3

) and C(w

1

) to

v

2

. Sine G is 4-hromati, v

2

will get the same olour as v

1

, say 1. By the haining

argument C(v

4

) = C(v

6

) = C(v

8

) = 1. Without loss of generality we assume C(v

9

) = 2
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whih yields C(w

4

) = C(w

5

) = 3. If C(v

7

) 6= 2 then we ould set C(v

8

) = 2, C(v

9

) = 1,

and C(v

1

) = 2 and get a 3-olouring of G. So C(v

7

) = 2 and C(w

3

) = 3. By the haining

argument C(v

5

) = C(v

3

) = 2. This means that C(w

1

) = C(w

2

) = C(w

3

) = C(w

5

) = 3,

whih is a ontradition.

Remark 3.3.4 As in Remark 3.3.2, the proof of this lemma implies that any 3-olouring

of G�fv

1

; : : : ; v

9

g, in whih not all w

1

; w

2

; w

3

; w

5

have the same olour, an be extended

to a 3-olouring of G in onstant time using exhaustive searh.

The previous two on�gurations are our only reduible on�gurations that involve

only one 9-fae. By extending the arguments preeding these two lemmas, we see that

there are more ompliated strutures that we must prove are reduible. The general

idea of the proof of all of the other on�gurations is basially the same as above. In

most of them, we need to forbid some of the verties from all having the same olour. To

do this, we remove some verties and edges of the minimum ounter-example and add

a gadget whose struture is similar to the one in the previous lemmas. In all the ases,

the new graph is smaller and is in G

8

, hene is 3-olourable. Then we show that this

3-olouring indued on the original graph (whih will be a partial 3-olouring), an be

extended to a 3-olouring of the whole graph, ontraditing an assumption that it is a

minimum ounter-example. This establishes the reduibility of the on�guration.

The following lemma proves the reduibility of a on�guration that involves two 9-

faes, eah of whih is a type 0 fae.

Lemma 3.3.5 A minimum ounter-example annot have two type 0 faes sharing their

type 0 vertex.

Proof: Let G be a minimum ounter-example and suppose that f

1

and f

2

are two type

0 faes in G sharing their type 0 vertex. There are two possible on�gurations of this

kind (shown in Figures 3.8(a) and 3.9(a)). We onsider eah ase separately:
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Figure 3.8: Two type 0 faes sharing a type 0 vertex

Con�guration of Figure 3.8(a): First we remove v

1

; : : : ; v

9

and u

2

; : : : ; u

8

and all the

inident edges. Then add four new triangles and onnet them together and to the rest

of the verties of G as in Figure 3.8(b). Call this new graph G

0

. It is straightforward to

verify that: (i) G

0

2 G

8

(ii) beause of minimality of G there is a 3-olouring of G

0

, say

C, and (iii) w

1

; : : : ; w

6

annot all have the same olour in C.

Now onsider this 3-olouring indued on G. We an easily extend C to v

1

, sine only

one neighbour of v

1

, whih is u

1

, is oloured. Similarly, we an extend C by olouring

v

9

; : : : ; v

3

greedily. Also, starting from u

2

and moving around f

2

in lokwise order, we

an olour u

3

; : : : ; u

8

, greedily. Now assign a olour di�erent from C(v

3

) and C(u

8

) to v

2

,

whih will be equal to C(v

1

). Without loss of generality, assume that C(v

1

) = C(v

2

) = 1.

By the haining argument starting from v

2

and going around f

1

: C(v

4

) = C(v

6

) =

C(v

8

) = 1. Similarly, by the same argument for the verties around f

2

: C(u

7

) = C(u

5

) =

C(u

3

) = 1.

Without loss of generality assume C(u

1

) = 3. Suppose that C(u

2

) = 3. First exhange

C(v

3

) with C(u

8

) (if needed) so that C(v

3

) 6= C(v

5

). Now exhange C(v

9

) with C(v

8

),

C(v

7

) with C(v

6

), and C(v

5

) with C(v

4

), and set C(v

1

) = 2. This gives a 3-olouring

of G whih is a ontradition. Thus C(u

2

) = 2 and by the haining argument C(u

4

) =
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Figure 3.9: Two type 0 faes sharing a type 0 vertex

C(u

6

) = C(u

8

) = 2. Using exatly the same argument we an show that C(v

9

) = 2 and

by the haining argument C(v

7

) = C(v

5

) = 2. But this means that w

1

; : : : ; w

6

all have

olour 3 in C, ontraditing property (iii) mentioned for C.

Con�guration of Figure 3.9(a): First remove v

1

; : : : ; v

9

and u

1

; : : : ; u

8

and all the

inident edges. Then add four new triangles and onnet them together and to the rest of

the verties of G as in Figure 3.9(b). Call this new graph G

0

. Again, it is straightforward

to verify that: (i) G

0

2 G

8

, (ii) beause of minimality of G there is a 3-olouring of G

0

,

say C, (iii) w

1

; : : : ; w

4

annot all have the same olour in C. Similarly, t

1

; : : : ; t

4

annot

all have the same olour in C.

Now onsider this 3-olouring indued onG. We extend C by olouring the unoloured

verties of G greedily in the following order: u

8

; u

7

; : : : ; u

1

; v

1

; v

9

; v

8

; : : : ; v

3

, sine at eah

step there are at most two olours in the neighbourhood of the vertex we want to olour.

We an also assign a olour di�erent from C(w

1

) and C(v

3

) to v

2

. By de�nition of

G, C(v

1

) = C(v

2

), whih we an assume is equal to 1. By the haining argument
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C(v

4

) = C(v

6

) = C(v

8

) = 1.

Without loss of generality, assume that C(v

9

) = 3. We exhange C(v

9

) with C(v

8

). If

C(v

7

) = 3 exhange C(v

7

) with C(v

6

) and then if C(v

5

) = 3 exhange C(v

5

) with C(v

4

).

In this ase C(v

3

) annot be 3, otherwise all w

1

; : : : ; w

4

have olour 2, ontraditing (iii).

Note that now C(v

9

) = C(v

1

) = C(v

2

) = 1. We laim that fC(u

1

); C(u

8

)g 6= f2; 3g.

By way of ontradition, assume that C(u

1

) = 2 and C(u

8

) = 3. If we ould exhange

C(u

1

) with C(u

2

), or C(u

8

) with C(u

7

), then there would be at most two olours in the

neighbourhood of v

9

, and therefore, we ould assign a new olour to v

9

di�erent from its

neighbours, and get a 3-olouring of G. So, C(u

3

) = 2 and by the haining argument,

C(u

3

) = C(u

5

) = C(u

7

) = 2. Similarly, C(u

8

) = C(u

6

) = C(u

4

) = C(u

2

) = 3. But this

implies that all t

1

; : : : ; t

4

have olour 1 in C, ontraditing property (iii) of C.

So in Lemma 3.3.5 we atually proved the reduibility of two subon�gurations. The

same will be true for the next lemma. Our most ompliated reduible on�gurations

involve an interation of three 9-faes. Next we prove the reduibility of one of them.

Lemma 3.3.6 A minimum ounter-example annot have three type 5 faes sharing their

5-vertex.

Proof: Let G be a minimum ounter-example with three type 5 faes sharing their

5-vertex. There are two possible non-symmetri on�gurations of this kind, whih are

shown in Figures 3.10(a) and 3.11(a). We onsider eah ase separately:

Con�guration of Figure 3.10(a): First we remove u

1

; : : : ; u

7

, v

2

; : : : ; v

9

, t

1

; : : : ; t

7

, and

all the inident edges. Then add 6 new triangles and onnet them together and to

the rest of the verties of G as in Figure 3.10(b). Call this new graph G

0

. Again, it is

straightforward to verify that: (i) G

0

2 G

8

, (ii) beause of minimality of G there is a

3-olouring of G

0

, say C, and (iii) w

1

; : : : ; w

8

annot all have the same olour in C.

Consider this 3-olouring indued on G. We extend C by olouring the unoloured

verties ofG greedily in the following order: t

1

; t

2

; : : : ; t

7

; v

9

; v

8

; : : : ; v

2

; u

7

; u

6

; : : : ; u

2

, sine
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Figure 3.10: Three type 5 faes sharing a 5-vertex

at eah step there are at most two olours in the neighbourhood of the vertex we want

to olour. We also assign a olour di�erent from C(u

2

) and C(w

1

) to u

1

. Sine G is

not 3-olourable, C(u

1

) = C(v

1

), whih we an assume is equal to 1. By the haining

argument, C(u

3

) = 1, and also all u

5

; u

7

; v

4

; v

6

; v

8

; t

6

; t

4

; and t

2

must have been oloured

1. First we show that C(t

1

) 6= C(u

8

). Assume that they are both equal, say 2. We

an exhange C(t

7

) with C(v

9

) (if needed) so that C(v

9

) = 2, too. Similarly, we an

exhange C(v

2

) with C(v

3

) if needed to set C(v

2

) = 2. Then we an set C(v

1

) = 3 and

get a 3-olouring of G.

So we an assume that C(t

1

) = 3 and C(u

8

) = 2. If we ould exhange C(t

1

) with

C(t

2

), by an argument similar to the previous ase, we an set C(v

9

) = C(v

2

) = 2 and set

C(v

1

) = 3. This shows that we annot exhange C(t

1

) with C(t

2

), beause C(t

3

) = 3. By

the haining argument C(t

5

) = 3, too. Now, if C(v

7

) = 2 then we ould set C(v

8

) = 3,

C(v

9

) = 1, C(t

7

) = 2, and exhange C(t

6

) with C(t

5

), C(t

4

) with C(t

3

), and C(t

2

)

with C(t

1

), and set C(v

1

) = 3. This shows that C(v

7

) = 3. By the haining argument

C(v

5

) = 3, and by a similar argument we an show that C(u

6

) = C(u

4

) = C(u

2

) = 3.

All these show that w

1

; : : : ; w

8

are all oloured with 2 whih ontradits property (iii)

mentioned above for C.

Con�guration of Figure 3.11(a): First remove v

1

; : : : ; v

9

; t

1

; : : : ; t

8

; u

1

; : : : ; u

7

and all
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Figure 3.11: Three type 5 faes sharing a 5-vertex

the inident edges. Then add 6 new triangles and onnet them together and to the rest

of the verties of G as in Figure 3.11(b). Call this new graph G

0

. It is straightforward to

verify that: (i) G

0

2 G

8

, (ii) beause of minimality of G there is a 3-olouring of G

0

, say

C, and (iii) w

1

; : : : ; w

6

annot all have the same olour in C. Also, w

7

; : : : ; w

10

annot

all have the same olour in C.

Consider this 3-olouring indued on G. We extend C by olouring the unoloured

verties of G greedily in the following order: t

8

; t

7

; : : : ; t

1

; v

1

; v

9

; v

8

; : : : ; v

2

; u

7

; u

6

; : : : ; u

2

,

sine at eah step there are at most two olours in the neighbourhood of the vertex we

want to olour. We also assign a olour di�erent from C(u

2

) and C(w

1

) to u

1

. Sine G

is not 3-olourable, C(u

1

) = C(v

1

), whih we an assume is equal to 1. By the haining

argument, C(u

3

) = 1 = C(u

5

) = C(u

7

) = C(v

4

) = C(v

6

) = C(v

8

).

First we show that C(t

1

) 6= C(t

8

). By ontradition assume that they are equal to 2.

So C(v

9

) = 3, otherwise we ould simply set C(v

1

) = 3 and exhange C(v

2

) with C(v

3

)

if needed. By the haining argument C(v

7

) = C(v

5

) = 3. By the haining argument,

C(u

6

) = 3 = C(u

4

) = C(u

2

). But this requires that all w

1

; : : : ; w

6

be oloured 2, whih

ontradits property (iii) mentioned above.

So we an assume that C(t

1

) = 2 and C(t

8

) = 3. If we ould exhange C(t

8

) with
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C(t

7

) then we ould use the same argument as in the previous paragraph to modify C

so that there are only olours 1 and 2 in the neighbourhood of v

1

and set C(v

1

) = 3 to

get a 3-olouring of G. This ontradition shows that C(t

6

) = 3, and by the haining

argument C(t

4

) = C(t

2

) = 3. We an do a very similar argument to show that C(t

3

) = 2

and by the haining argument C(t

5

) = C(t

7

) = 2. But then we have to have C(w

7

) =

C(w

8

) = C(w

9

) = C(w

10

) = 1 whih ontradits property (iii) we mentioned.

In addition to the reduible on�gurations we used in the proof of Theorem 3.2.1,

we have seen four new on�gurations desribed in Lemmas 3.3.1 to 3.3.6, some of whih

have two subon�gurations. There are 8 other on�gurations. Below we list all these

�fteen on�gurations, inluding the four we proved above and the three used in the proof

of Theorem 3.2.1 (see Figure 3.12):

Reduible Con�gurations:

1. A �2-vertex.

2. A ut-vertex.

3. A 2k-fae with at least 2k � 1 bad verties.

4. A simple fae.

5. A type 2 fae.

6. Two type 0 faes sharing their type 0 vertex.

7. Three type 5 faes sharing their type 5 vertex.

8. Two semi-simple faes sharing a type 1 vertex.

9. Two semi-type 2 faes sharing a type 1 vertex.

10. A semi-type 2 fae sharing its type 1 vertex with a type 1 fae.

11. A semi-type 2 fae sharing its type 1 vertex with a semi-simple fae.
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7: Three type 5 faces

14: A triple structure of kind 113: A simple triple structure

4: A simple face 5: A type 2 face 6: Two type 0 faces

11: A semi−type 2 and a semi−simple face

8: Two semi−simple faces 9: Two semi−type 2 faces

10: A semi−type 2 and a type 1 faces 12: A semi−simple and a type 1 face

15: A triple structure of kind 2

Figure 3.12: Reduible on�gurations 4-15
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12. A semi-simple fae sharing its type 1 vertex with a type 1 fae.

13. A simple triple struture.

14. A triple struture of kind 1.

15. A triple struture of kind 2.

While this list has only 15 on�gurations, some of them (like on�gurations 6 and 7)

have two subon�gurations, and some of them (like on�gurations 14 and 15) have many

more subon�gurations, so many so that the total number of on�gurations (onsidering

all subon�gurations) is 77.

Lemma 3.3.7 A minimum ounter-example to Theorem 3.1.1 annot have any of the

on�gurations given above.

We have seen the hand-hekable proofs for on�gurations 1-7 (in the proofs of Ex-

ample 2.2.3, Theorem 3.2.1, and Lemmas 3.3.1 to 3.3.6). We defer the proof of other

on�gurations until Setion 3.5 and Appendies A, B, and C, where we desribe the

hand-hekable proofs of on�gurations 8-12 and we disuss the omputer-aided proof of

all on�gurations.

Remark 3.3.8 As in Remarks 3.2.3, 3.3.2, and 3.3.4, for eah of the on�gurations

given above, the proof of reduibility yields a onstant time algorithm for extending a

3-olouring of the graph obtained by removing the verties of the on�guration (and pos-

sibly adding a gadget to it) to a 3-olouring of the original graph. One way of doing

this is exhaustive searh, i.e. onsidering all possible 3-olourings of the verties of the

on�guration. Sine eah on�guration has onstant size this takes O(1) time.

We omplete the proof of Theorem 3.1.1 by proving the unavoidability of these on-

�gurations (using the Disharging Method) in the next setion.
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3.3.3 Disharging Rules

Let G be an arbitrary graph in G

8

. As in the proofs of Theorem 3.2.1 and Example 2.2.4,

we give an initial harge of d(v)� 6 units to eah vertex v and 2jf j � 6 units to eah fae

f . By Euler's formula, the total harge is �12. In the disharging rules, we move some

harges from faes to verties. So the verties do not lose any harge in the disharging

phase.

Let's try the disharging rule we had in the proof of Theorem 3.2.1. That is, assume

every non-triangle fae f sends

3

2

to eah of its bad verties and 1 unit to every other

vertex. By this rule, as we proved in Example 2.2.4, every � 11-fae will have non-

negative harge or else we have reduible on�guration 1 or 2. Also, the only 10-faes

with negative harge are those that have at least 9 bad verties. But these faes are

reduible (on�guration 3). Therefore, we an keep this rule for �10-faes:

R1: Every � 10-fae sends

3

2

to eah of its bad verties and 1 to eah of its

non-bad verties.

If we use the same rule for 9-faes, there are several possible 9-faes that will have

negative harge. For example, if a 9-fae f is inident with 8 bad verties and a type 0

vertex (i.e. f is a type 0 fae), then f sends

3

2

� 8 = 2jf j � 6 units of harge to the bad

verties and it annot a�ord to send another 1 unit of harge to its non-bad vertex. Some

but not all suh situations are dealt with using new reduible on�gurations introdued

in the previous subsetion. For others, we need to modify the disharging rule.

If a 9-fae is inident with at most 6 bad verties, then it has to send at most

3

2

�6 = 9

units to them, and an a�ord to send 1 unit of harge to every other vertex in its boundary.

So we an keep our standard rule for suh a 9-fae. Also, reall from the proof of Example

2.2.3 that, sine there are no 4-yles, every �5-vertex is inident with at least two non-

triangle faes. If v is a 5-vertex (the largest degree with negative initial harge), it has

initially �1 harge and it only needs to get at most

1

2

unit from eah of the at least two
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non-triangle faes that are inident with it. Therefore, if a 9-fae is inident with 7 bad

verties and at least one � 5-vertex, then it an send

3

2

� 7 = 10:5 to the bad verties,

1

2

to the 5-vertex (if there is one), and 1 to the other vertex. We ombine these into the

following rule:

R2: If f is a 9-fae with at most 6 bad verties, or with exatly 7 bad verties

and at least one � 5-vertex, then f sends

3

2

to eah of its bad verties, 1 to

eah of its 4-verties, and

1

2

to eah of its 5-verties.

Now we prove that by these two rules, every �5-vertex either has non-negative harge

after the disharging phase or lies in a reduible on�guration.

Lemma 3.3.9 Every �5-vertex will either have non-negative harge, after the disharg-

ing phase, or lie in a reduible on�guration

Proof: If d(v) � 6 then its initial harge is non-negative and it doesn't lose any harges

in the disharging phase. Assume that d(v) = 5 and the faes inident with v in lokwise

order are f

1

; f

2

; f

3

; f

4

; f

5

. Note that either all these faes are distint or v is a ut-vertex

(reduible on�guration 2). Reall that a type 5 fae is a 9-fae inident with 8 bad

verties and a 5-vertex. If none of f

1

; : : : ; f

5

is a triangle then at least three of them are

type 5 faes or at least three of them are not type 5 faes. In the former ase, G has

reduible on�guration 7. In the latter ase by rules R1 or R2 eah of the three sends at

least

1

2

to v and so v will have non-negative harge.

Assume that exatly one of f

1

; : : : ; f

5

, say f

1

, is a triangle. Then f

2

and f

5

are not

type 5 and so eah one is either a �10-fae or a 9-fae with at most 7 bad verties. Thus,

eah sends

1

2

to v, by rules R1 or R2.

Finally, assume that exatly two of f

1

; : : : ; f

5

are triangles (if more than two of them

are triangles then G will have a 4-yle). Note that these triangles annot be adjaent

beause G annot have a 4-yle. Without loss of generality, assume that f

1

and f

3

are
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v v

u
3/2

3/2

(a) (b)

Figure 3.13: (a) A simple vertex v inident with a simple fae f (b) a simple vertex v

inident with a semi-simple fae f

triangles. Thus, f

4

and f

5

annot be of type 5, and as in the previous ase, eah of them

sends at least

1

2

to v by rules R1 or R2.

So the only verties that remain to be dealt with are 3- and 4-verties. Remember

that 3-verties (with initial harge of �3) are the most desperate verties for harge. As

we have argued before, every bad vertex should get

3

2

from the non-triangular faes that

are inident with it. Thus, in all our rules we insist that every 9-fae sends

3

2

to eah of

its bad verties. Also, if v is a simple vertex, it needs to get 3 units of harge from the

three faes it is inident with. Eah of these faes sends 1 unit of harge to v by the rules

given so far, if it is a �10-fae or a 9-fae with at most 6 bad verties, or a 9-fae inident

with 7 bad verties and a � 5-vertex. What if some of these three faes are 9-faes to

whih rule R2 does not apply? For example, if f is a 9-fae inident with simple vertex

v and 8 bad verties (see Figure 3.13(a)), then f must send

3

2

� 8 = 2jf j � 6 to its bad

verties and it has nothing left to send to v. This is why we proved in Lemma 3.3.1 that

a fae like f (a simple fae) is reduible. Thus, if G has suh a on�guration we are done.

To omplete our analysis of the 3-verties, the only other possibility we have to

onsider is when f is a 9-fae with 7 bad verties, one simple vertex (whih is v) and

the other vertex u is a �4-vertex (sine otherwise rule R2 applies to f). This is possible

only if u is a type 1 vertex, i.e. f is a semi-simple fae (see Figure 3.13(b)). In this ase,
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f must send

3

2

� 7 = 10:5 to its bad verties and, as we disussed above, it has to send 1

unit to its simple vertex, v. Therefore, it has only

1

2

unit of harge left to be sent to its

type 1 vertex, u. We hope that sine u is inident with two other non-triangle faes, it

an reeive enough harge from them to have non-negative harge. So, for the moment,

let's assume that u will be �ne. We will deal with it later. Thus, every 9-fae that has a

simple vertex (other than a simple fae whih is reduible on�guration 4) an a�ord to

send 1 unit of harge to it. This way, we are sure that every 3-vertex, whether it is bad or

simple, gets 3 units of harge from the faes inident with it and will have non-negative

harge. So we introdue the following rule:

R3: Every 9-fae sends

3

2

to eah of its bad verties and 1 unit of harge to

eah of its simple verties.

Note that if f is semi-simple (as in Figure 3.13(b)), by the above rule it sends out

3

2

� 7 + 1 = 11:5 units, and still has

1

2

units of harge. Later, we will give a rule to make

use of this harge by moving it from f to its type 1 vertex, u.

Sine in R3 we say every 9-fae sends

3

2

units to eah of its bad verties, it is redundant

to say in R2 that every 9-fae with at most 6 bad verties, or with 7 bad verties and at

least one �5-vertex sends

3

2

to its bad verties. So we an modify R2 as follows:

New R2: If f is a 9-fae inident with at most 6 bad verties, or with

exatly 7 bad verties and at least one �5-vertex, then f sends 1 to eah of

its 4-verties, and

1

2

to eah of its 5-verties.

Therefore, these three rules ensure that every 3-vertex has non-negative harge, or it

is a ut-vertex (reduible on�guration 1) or in a simple fae (reduible on�guration 4).

Thus, we have proved:

Lemma 3.3.10 Eah 3-vertex will either have non-negative harge after the disharging

phase or lie in a reduible on�guration.
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f
1

f2

v

Figure 3.14: A type 2 vertex v

By these three rules, we also know that, so far, all�9-faes that do not lie in reduible

on�gurations have non-negative harge and in many ases they have positive harge. So

the only elements with negative harge that we have to deal with are 4-verties. By the

�rst rule we know that 4-verties are getting 1 unit of harge from every �10-fae that

they are inident with. So the remaining ases we have to onsider are inidenes of

4-verties with 9-faes. The rest of the rules we introdue here are for dealing with these

ases, by moving the remaining positive harge on 9-faes to degree 4 verties.

If every non-triangle fae (inluding every 9-fae) ould send 1 unit of harge to its

�4-verties, then by the arguments of the proof of Theorem 3.2.1, all �4-verties would

have non-negative harge, too. But the problem is that 9-faes annot neessarily a�ord

to do this. For example, if a 9-fae has 7 bad verties and two 4-verties, it sends

3

2

� 7 = 10:5 units to its bad verties by the third rule above, and it has only

3

2

units of

harge left for its two 4-verties. Therefore, some 9-faes an only a�ord to send 1 unit

of harge to one of their 4-verties and at most

1

2

unit of harge to the other one.

Reall that there are only three kinds of 4-verties: type 0, type 1, and type 2. Assume

that v is a type 2 vertex, inident with two triangles and two non-triangle faes f

1

and

f

2

(See Figure 3.14). Note that f

1

6= f

2

, or else v is a ut-vertex (reduible on�guration

2) and we are done. Sine f

1

and f

2

are the only non-triangle faes inident with v, they

should provide the 2 units of harge that v needs. If eah of f

1

and f

2

is a �10-fae, or a

9-fae that has at most 6 bad verties, or a 9-fae with 7 bad verties and a �5-vertex,

then eah sends 1 unit of harge to v by R1 or R2 and v will have non-negative harge.
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Figure 3.15: (a) f

1

is inident with 8 bad verties and a type 2 vertex, (b) f

1

is a semi-type

2 fae inident with v

Problems may arise when none of R1 or R2 applies to f

1

, or none of R1 or R2 applies

to f

2

. Without loss of generality, let's assume that none of R1 or R2 applies to f

1

. This

implies that f

1

is a 9-fae with at least 7 bad verties.

If f

1

is a 9-fae with 8 bad verties and a type 2 vertex, v (see Figure 3.15(a)), then f

1

sends

3

2

� 8 = 2jf j � 6 units to its bad verties by R3 and annot a�ord to send anything

to v. This is why we proved in Lemma 3.3.3 that this on�guration, i.e. a type 2 fae, is

reduible (on�guration 5).

If f

1

ontains 7 bad verties and R2 does not apply to it, then f

1

ontains two 4-

verties, one of whih is v (a type 2 vertex), and the other is a type 1 vertex, say u.

In other words, f

1

is a semi-type 2 fae (See Figure 3.15(b)). In this ase, f

1

sends

3

2

� 7 = 10:5 to its bad verties by R3 and must send 1 unit to v. So it will be left

with only

1

2

unit to be sent to u (its type 1 vertex). As before, we hope that sine u is

inident with three non-triangle faes, it will reeive enough harge from the other faes

it is inident with, so muh so that it too will have non-negative harge. So we introdue

the following rule:

R4: If f is a semi-type 2 fae then it sends 1 unit of harge to its type 2
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1f

2f

3f

4fv

Figure 3.16: (a) A type 0 vertex v and the four faes around it

vertex and

1

2

unit of harge to its type 1 vertex.

By this rule, we ensure that all type 2 verties have non-negative harge, and that no

9-fae has negative harge, unless it ontains or lies in one of reduible on�gurations 1,

2, 4, 5, or 7. So, the only 4-verties whih still onern us are type 0 and type 1 verties.

Consider a type 0 vertex v, i.e. one that is inident with four faes f

1

; f

2

; f

3

; and f

4

(see Figure 3.16), where none of these faes is a triangle. These faes are all distint,

otherwise v is a ut-vertex (reduible on�guration 2) and we are done. If we an prove

that v reeives at least

1

2

unit of harge from eah of f

1

; : : : ; f

4

then it will have non-

negative harge. This de�nitely happens if eah of f

1

; : : : ; f

4

is a � 10-fae, or a 9-fae

with at most 6 bad verties, or a 9-fae with 7 bad verties and at least one �5-vertex,

as eah of f

1

; f

2

; f

3

; f

4

sends 1 unit of harge to v by R1 or R2. Even if some (or all) of

f

1

; f

2

; f

3

and f

4

are 9-faes with 7 bad verties and two �4-verties (one of whih is v),

then they send

3

2

� 7 = 10:5 to their bad verties and an a�ord to send

1

2

to v and 1 to

their other 4-vertex. In this ase too v gets at least 4�

1

2

units and will have non-negative

harge.

The only possible problem is when at least one of f

1

; f

2

; f

3

; f

4

, say f

1

, annot a�ord

to send even

1

2

to v. This happens only if f

1

is a 9-fae with 8 bad verties, i.e. it is

a type 0 fae. In this ase f

1

sends

3

2

� 8 = 2jf

1

j � 6 units to its bad verties and has
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nothing to ontribute to v. But if f

1

is type 0 then none of f

2

; f

3

; f

4

an be a type 0 fae,

or else G has reduible on�guration 6 and we are done. So eah of f

2

; f

3

; f

4

an a�ord

to send at least

1

2

unit of harge to v. If at least one of them sends at least 1 unit of

harge to v (by R1 or R2) then v has non-negative harge. This does not happen only

if eah of f

2

; f

3

; and f

4

is a 9-fae with 7 bad verties and a 4-vertex (other than v),

whih is a type 1 vertex, i.e. it is a semi-type 0 fae. In this ase, eah of them an only

a�ord to send

3

4

units of harge to eah of its 4-verties. Again, we hope that for eah

fae f

2

; f

3

; f

4

the other 4-vertex, whih is a type 1 vertex, reeives enough harge from

the other faes to have non-negative harge. Therefore, we add the following to our bag

of disharging rules:

R5: If f is a semi-type 0 fae with a type 0 vertex v whih is not inident

with a type 0 fae, then f sends

1

2

to v and 1 unit to its type 1 vertex. If v is

inident with a type 0 fae (like f

1

above), then f sends

3

4

to v and

3

4

to its

type 1 vertex.

This ensures that every type 0 vertex not lying in a reduible on�guration will have

non-negative harge. Also, no fae will end up with negative harge unless it is in a

reduible on�guration. Thus, with the disharging rules we have given so far:

Lemma 3.3.11 Every type 0 or type 2 vertex will either have non-negative harge after

the disharging phase, or lie in a reduible on�guration.

So the only 4-verties with possible negative harge are type 1 verties. By following

similar arguments we develop two other disharging rules (rules R6 and R7 below), whih

ensure that if a type 1 vertex has negative harge then it is in a reduible on�guration.

We design these two new rules to make sure that 9-faes that are not in a reduible

on�guration have non-negative harge too. We an summarize the disharging rules as:

R1: Every � 10-fae sends

3

2

to eah of its bad verties and 1 to eah of its non-bad

verties.
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R2: If f is a 9-fae inident with at most 6 bad verties, or with exatly 7 bad verties

and at least one �5-vertex, then f sends 1 to eah of its 4-verties, and

1

2

to eah

of its 5-verties.

R3: Every 9-fae sends

3

2

to eah of its bad verties and 1 unit of harge to eah of its

simple verties.

R4: If f is a semi-type 2 fae then it sends 1 unit of harge to its type 2 vertex and

1

2

unit of harge to its type 1 vertex.

R5: If f is a semi-type 0 fae with a type 0 vertex v whih is not inident with a type

0 fae, then f sends

1

2

to v and 1 unit to its type 1 vertex. If v is inident with a

type 0 fae (like f

1

above), then f sends

3

4

to v and

3

4

to its type 1 vertex.

R6: If f is semi-simple then it sends

1

2

units to its type 1 vertex.

R7: If f is semi-type 1 then it sends 1 unit to its type 1 vertex whih is inident to a

triangle that shares an edge with f , and sends

1

2

to its other type 1 vertex.

An important observation, that will be helpful in the rest of the proof, is:

Observation 3.3.12 Every non-triangle fae sends at most 1 to eah of its �4-verties.

We have already established that any 9-fae to whih only R2-R5 apply has non-

negative harge, unless it is in or ontains a reduible on�guration. The only remaining

9-faes to onsider are those to whih R6 or R7 apply.

If R6 applies to a fae f then f is semi-simple. So, it has 7 bad verties and sends

7�

3

2

= 10:5 to them by R3 and 1+

1

2

to its 4-verties by R6, for a total of 12, and no other

rule applies to f . If R7 applies to fae f then f is semi-type 1 and sends 7�

3

2

= 10:5 to

its 7 bad verties by R3 and sends 1 +

1

2

to its 4-verties by R7, for a total of 12, and no

other rule applies to f . Thus, we have:
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f1

f
2

f3v

Figure 3.17: A type 1 vertex v

Lemma 3.3.13 Eah 9-fae f will either have non-negative harge after the disharging

phase, or lie in or ontain a reduible on�guration.

The only remaining elements to onsider are type 1 verties. We prove that eah type

1 vertex either lies in a reduible on�gurations listed in the previous subsetion, or has

non-negative harge after the disharging phase.

Lemma 3.3.14 Every type 1 vertex v will either have non-negative harge after the

disharging phase, or lie in a reduible on�guration.

Proof: Sine the initial harge of v is �2 it is enough to show that during the disharging

phase v gets at least 2 units of harge. Label the non-triangle faes inident with v: f

1

; f

2

;

and f

3

. (see Figure 3.17).

Note that f

1

and f

3

annot be 9-faes with 8 bad verties, beause v is a type 1 vertex

for eah of them that is inident with a triangle that shares an edge with eah of them.

Therefore, f

1

and f

3

annot be simple, type 0, type 1, or type 2. So eah of f

1

and f

3

an only be a �10-fae or a 9-fae with at most 7 bad verties.

If at least two of f

1

; f

2

; f

3

send 1 unit to v, then v has non-negative harge. So

let's assume that at least two of them eah send less than 1 unit of harge to v. This

implies that at least one of f

1

or f

3

is sending less than 1 unit of harge. Without loss of

generality, assume it is f

1

(by symmetry, the same arguments work for f

3

). Thus rules

R1 and R2 do not apply to f

1

. Thus, sine we said f

1

annot have 8 bad verties, f

1

has exatly 7 bad verties and has no �5-vertex. Also, f

1

annot be semi-type 1, by the

assumption that it is sending less than 1 unit of harge to v and by rule R7.
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Therefore, f

1

is either (1) semi-simple, (2) semi-type 0, or (3) semi-type 2. f

3

an

be either of the following: (1) a � 10-fae, (2) a 9-fae with at most 6 bad verties, (3)

semi-simple, (4) semi-type 0, (5) semi-type 1, or (6) semi-type 2. We onsider di�erent

ases based on the types of f

1

and f

3

:

� f

1

is semi-simple: So f

1

sends

1

2

to v by R6. Sine f

1

is semi-simple, if f

2

is of type

1, then G has reduible on�guration 12. Otherwise f

2

sends at least

1

2

to v, by

rules R1, R2, or R7. It is enough to show that either f

3

sends at least 1 unit to v

or G has a reduible on�guration. We onsider di�erent possible ases for f

3

:

- �10-fae: Sends 1 unit to v by R1.

- 9-fae with at most 6 bad verties: Sends 1 unit to v by R2.

- semi-simple: Sine f

1

is semi-simple then G has reduible on�guration 8.

- semi-type 0: It sends 1 unit of harge by rule R5, unless its type 0 vertex is

inident with a type 0 fae, say f

4

, in whih ase it only sends

3

4

to v by R5.

But, in that ase f

3

, f

4

, and f

1

form a simple triple struture (see Figure

3.18(a)), whih is reduible on�guration 13.

- semi-type 1: It sends 1 unit to v by R7.

- semi-type 2: Sine f

1

is semi-simple then G has reduible on�guration 11.

� f

1

is semi-type 0: So f

1

sends

3

4

to v by R5 (sine we assumed it sends less than 1

unit to v). This implies that it is adjaent to a type 0 fae, say f

4

. If f

2

is a type

1 fae then f

1

, f

2

, and f

4

form a triple struture of kind 1 (see Figure 3.18(b)),

whih is reduible on�guration 14. Otherwise, f

2

sends at least

1

2

to v by R1, R2,

or R7. So v reeives a total of at least

3

4

+

1

2

from f

1

and f

2

. It is enough to show

that it reeives at least

3

4

from f

3

or G has a reduible on�guration. We onsider

di�erent possible ases for f

3

.
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Figure 3.18: (a) f

1

is semi-simple, f

3

semi-type 0, and f

4

type 0 (b) f

1

is semi-type 0, f

2

type 1, and f

4

type 0

- �10-fae: Sends at least 1 unit to v by R1.

- 9-fae with at most 6 bad verties: Sends at least 1 unit to v by R2.

- semi-simple: Then f

1

, f

4

and f

3

form a simple triple struture (reduible on�g-

uration 13).

- semi-type 0: Then f

3

sends at least

3

4

to v by R5.

- semi-type 1: It sends 1 unit of harge to v by rule R7.

- semi-type 2: Then f

1

, f

4

, and f

3

form a triple struture of kind 2 (reduible

on�guration 15).

� f

1

is semi-type 2: Thus f

1

sends

1

2

to v by R4. Sine f

1

is semi-type 2, if f

2

is of

type 1, then G has reduible on�guration 10. Therefore, f

2

sends at least

1

2

to v

by R1, R2, or R7. So v gets a total of at least 1 unit from f

1

and f

2

. It is enough

to show that f

3

sends at least 1 unit to v or G has a reduible on�guration. We

onsider di�erent ases based on the type of f

3

:

- �10-fae: Sends 1 unit to v by R1.

- 9-fae with at most 6 bad verties: Sends 1 unit to v by R2.
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- semi-simple: Beause f

1

is semi-type 2, if f

3

is semi-simple then they form

reduible on�guration 11.

- semi-type 0: If it is of a kind that sends

3

4

to v by rule R5, then f

3

with its

adjaent type 0 fae (that is sharing the type 0 vertex of f

3

), together with

f

1

form a triple struture of kind 2 (reduible on�guration 15). Otherwise it

sends 1 unit to v.

- semi-type 1: Then it sends 1 unit to v by rule R7.

- semi-type 2: If f

3

is semi-type 2 then G has reduible on�guration 9.

Proof of Theorem 3.1.1: By Lemmas 3.3.9, 3.3.10, 3.3.11, 3.3.13, and 3.3.14 either

G has a reduible on�guration listed in the previous subsetion, or all the elements of G

have non-negative harge, after applying the disharging rules. The latter is impossible,

sine the total initial harge is �12. So every graph G 2 G

8

has one of the reduible on-

�gurations, whih proves the non-existene of a minimal ounter-example to the theorem.

3.4 A 3-Colouring Algorithm for Planar GraphsWith-

out 4- to 8-Cyles

As for the proofs of Example 2.2.4 and Theorem 3.2.1, the proof of Theorem 3.1.1 yields

a quadrati time algorithm that given an embedded graphs in G

8

produes a 3-olouring

of G. At eah iteration of the algorithm, we �nd a reduible on�guration, break the

graph into smaller subgraphs or redue the number of verties or edges of the graph by

at least one, �nd a olouring of the smaller graphs, and extend these olourings to the

original graph. We keep doing this as long as the graph is non-empty. We assume that

the input graph to our olouring proedure is onneted, as for a disonneted graph it
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is enough to �nd a 3-olouring for eah of its onneted omponents.

More spei�ally, at eah iteration we apply the initial harges and the disharging

rules, as desribed in Setion 3.3.3. Sine the total harge is negative, there must be

some element (fae or vertex) with negative harge. If it is a fae it must be a 10-fae

with at least 9 bad verties, or a simple, or a type 2 fae. If the element is a vertex, all

it v, then by Lemmas 3.3.9, 3.3.10, 3.3.11, and 3.3.14, v must be a �2-vertex, or a ut-

vertex, or a vertex of one of on�gurations 6-15. Therefore, in any of these two ases (a

fae with negative harge or a vertex with negative harge), we �nd one of the reduible

on�gurations from our list. If the on�guration is one of the �rst three on�gurations,

we do as in the algorithm of Theorem 3.2.1. Otherwise, we onstrut a smaller graph

G

0

2 G

8

, whih is obtained by removing some verties and edges, and possibly adding a

gadget, aording to the proof of that reduible on�guration. Then we �nd a 3-olouring

of G

0

, reursively. By Remark 3.3.8 we an extend this 3-olouring to a 3-olouring of G,

in onstant time.

Applying the initial harges takes at most O(jV j + jF j) time. For eah fae f , it

takes onstant time to �nd the rules that apply to fae f and it takes O(jf j) to apply

them to f . So applying the disharging rules takes at most O(

P

f2F

jf j) time, whih is

in O(jEj), and one we have done that, we an �nd an element with negative harge in

O(jV j + jF j) time. Finding a reduible on�guration around an element with negative

harge and onstruting the graph G

0

from G (i.e. removing the verties and edges and

adding the gadget) takes at most onstant time. Thus if we de�ne the size of the graph,

n, to be jV j + jEj, we an say all these steps take at most �n time, for some onstant

� > 0.

Let's denote the worst ase running time of the proedure for an input of size n by

T (n). As in the analysis of the algorithms of Example 2.2.4 and Theorem 3.2.1, we an use

indution to prove that for all values of n � 1 and for some onstant C > 0: T (n) � Cn

2

.

The inequality is trivial for small values of n. So let's assume that T (i) � Ci

2

for all
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Figure 3.19: (a) A simple fae and (b) the gadget

values of 1 � i < n and onsider the proedure all when the input has size n.

If a 2-vertex or a ut-vertex or a fae with negative harge is found, by an argument

idential to that of the analysis of algorithm of Theorem 3.2.1 we an show that T (n) �

Cn

2

. If a vertex with negative harge is found and this vertex belongs to one of the

on�gurations 6-15 then the algorithm makes a reursive all on the modi�ed graph

G

0

, obtained aording to the proof of that reduible on�guration. Sine G

0

has fewer

verties and/or edges with respet to G, the size of G

0

, n

0

, is smaller than n. Therefore

T (n) � �n+ T (n

0

) � �n+ Cn

02

� �n+ C(n� 1)

2

� Cn

2

, for large enough C.

3.5 Automated Proof of the Reduible Con�gura-

tions

Appendix A gives hand-hekable proofs for on�gurations 8-12, but it does not ontain

proofs for the last three on�gurations. Instead, we have an automated proof for all the

on�gurations (See Appendix B). Here we desribe how that proof works.

Consider the simple fae of Figure 3.19(a). To prove that this is a reduible on�g-

uration, it is enough to hek that every 3-olouring of the verties w

1

; : : : ; w

5

, in whih

not all w

1

; : : : ; w

4

have the same olour, an be extended to a 3-olouring of v

1

; : : : ; v

9

.
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Figure 3.20: Con�guration 6 whih has two onstrained groups

This easy task an be done by a simple program. The program generates all 3-olourings

of w

1

; : : : ; w

5

in whih not all w

1

; : : : ; w

4

have the same olour. For eah suh olouring

C, sine every vertex in fv

1

; : : : ; v

9

g is adjaent to exatly one oloured vertex, there is

a list of two olours available for every vertex in fv

1

; : : : ; v

9

g. Then the program uses

exhaustive searh to see if C an be extended to v

1

; : : : ; v

9

using these lists. We have to

do a similar job for eah of the other on�gurations.

For any reduible on�guration R, a vertex v whih is not in R but has a neighbour in

R is alled a boundary neighbour. For example w

1

; : : : ; w

5

in Figure 3.19(a) are boundary

neighbours. For some on�gurations, suh as a simple fae, we have to forbid some

of the boundary neighbours from all having the same olour. We do this by adding a

gadget. We all this set of boundary neighbours a onstrained group. For some reduible

on�gurations (suh as the on�guration of Figure 3.20) we have two onstrained groups.

A 3-olouring of the boundary neighbours of a reduible on�guration is alled valid if it

satis�es the requirements of its onstrained groups. That is, not all the verties in the
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same onstrained group have the same olour.

To prove the reduibility of the on�gurations, we need to hek (1) that every valid

3-olouring of the boundary neighbours an be extended to a 3-olouring of the verties of

the on�guration, and (2) that the modi�ed graph (obtained by adding the orresponding

gadget) does not have any i-yles, 4 � i � 8. Condition (2) an be hand-heked easily

by looking at eah on�guration and the orresponding modi�ed version, and making

sure that for every pair of verties in the original graph that partiipate in a gadget,

the shortest path between them using only the edges of the gadget is not shorter than

the shortest suh path in the original graph using only the edges that were deleted to

onstrut G

0

. Condition (1) is heked with a C program.

As we said, the total number of reduible on�gurations (onsidering all possible

subases for on�gurations 4-15 listed in Setion 3.3.2) is 77. The �rst three of these

on�gurations are the ones used in Theorem 3.2.1. Eah of the new 74 on�gurations is

listed in Appendix C. Eah �gure in this list is drawn by hand using a program alled

graphwin, whih is one of the standard demo programs inluded in the pakage LEDA

(Library for EÆient Data types and Algorithms) version 4.1, distributed by Algorithmi

Solutions Software GmbH (available at http://www.algorithmi-solutions.om). Us-

ing this program we an store the adjaeny list of the drawn graph in a �le and also save

the graph as a Postsript �gure. Therefore, for eah on�guration shown in Appendix

C, the adjaeny list, whih is used as input to the program, is generated automatially

with the �gure. The adjaeny lists of all 74 on�gurations and the information about

the onstrained group(s) of verties are put into a single �le, with eah on�guration

separated by a blank line. For more detailed information about the format of input see

ftp://ftp.s.toronto.edu/srg-tehnial-reports/458/.

The program reads the on�gurations one by one and the orresponding onstrained

group(s) of verties. For eah on�guration the program generates all the possible valid

3-olourings of its boundary neighbours and then heks whether or not eah 3-olouring
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is extendible to a 3-olouring of the unoloured verties of the on�guration. This hek

is done using exhaustive searh plus a bit of intelligene; the program olours the verties

one at a time and for eah unoloured vertex, the program only onsiders all possible

olours that have not appeared in its neighbourhood. For example, if a vertex already

has olours 1 and 2 in its neighbourhood, there is only one olour (i.e. olour 3) that

an be assigned to this vertex, and the program does not try olours 1 or 2. If all the

valid 3-olourings of the boundary neighbours are extendible, then the on�guration is

reduible. We didn't attempt to make any other optimizations in the program, sine

this simple straightforward implementation heks all the reduible on�gurations very

quikly, on a desktop omputer, and further optimizations would be at the ost of losing

its readability.



Chapter 4

One Further Step on Steinberg's

Conjeture

Remark 4.0.1 The results of this hapter are based on paper [18℄.

In this hapter, we tighten the gap between Steinberg's onjeture and the best known

result on this problem by improving Theorem 3.1.1. Let G

7

be the lass of planar graphs

without yles of size in f4; : : : ; 7g.

Theorem 4.0.2 Every graph in G

7

is 3-olourable.

So, we are only two steps away from the onjeture of Steinberg. The proof of Theorem

4.0.2 is more elegant and shorter than that of Theorem 3.1.1. There are just a handful

of reduible on�gurations and the proof is ompletely hand-hekable.

One important feature of this proof is that it does not rely on Theorem 3.1.1. It

only uses Example 2.2.4, as the basis of an indution, and the overall proof is muh

shorter than the proof of Theorem 3.1.1. Consequently, the 3-olouring algorithm that

we provide uses only the 3-olouring algorithm of Subsetion 2.3 for the base ase of a

reursion, and therefore, it does not need to hek all the on�gurations desribed in the

previous hapter.

62
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The organization of this hapter is as follows. In the next setion, we point out a

very simple struture that appears in most of the reduible on�gurations of the pre-

vious hapter. We investigate the required onditions under whih we an prove the

reduibility of this simple struture. Proving the reduibility of this struture helps us

to bring down the total number of reduible on�gurations, signi�antly. In Setion 4.2

we present the proof of Theorem 4.0.2. This is done by proving a stronger statement,

namely Theorem 4.2.1, whih in turn implies Theorem 4.0.2. Again, the proof uses the

Disharging Method. The reduible on�gurations are presented and their reduibility

is proved in Subsetion 4.2.1. Then, in Subsetion 4.2.2, we show the unavoidability of

these on�gurations by applying a suitable set of initial harges and disharging rules.

Finally, in Setion 4.3 we present a 3-olouring algorithm for graphs in G

7

, based on the

proof of Theorem 4.0.2.

4.1 Some New Ideas

A areful look at the reduible on�gurations used in the proof of Theorem 3.1.1 suggests

that there are very similar patterns that repeat in most of them. So, before trying to

prove Theorem 4.0.2, let's see if we an re�ne our proof ideas, to show the reduibility

of most of the on�gurations onsidered in the previous hapter, all at one.

A path v

1

v

2

v

3

v

4

is alled a tetrad if d(v

i

) = 3, 1 � i � 4, : : : xv

1

v

2

v

3

v

4

x

0

: : : is on the

boundary of some fae f , and there are triangles tv

1

v

2

and t

0

v

3

v

4

, suh that t and t

0

do

not belong to the boundary of f (See Figure 4.1). By this de�nition, it is easy to see that

at least one tetrad appears in most of the on�gurations used in the previous hapter. So,

if we an prove that a tetrad is reduible, that will redue the number of on�gurations

signi�antly, and might even help in �nding some new reduible on�gurations.

To do this, let's assume that G 2 G

7

is a ounter-example with the minimum number

of verties and onsider a tetrad in G. Delete v

1

; v

2

; v

3

; and v

4

, along with all inident
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v v v vx 1 2 3 4

t t’

x’

Figure 4.1: A tetrad

edges. Consider a 3-olouring C of this new smaller graph G

0

. If we ould assume that

C(x) = C(t

0

) then we ould easily extend C to a 3-olouring of G: we �rst olour v

4

and

v

3

(in this order); then sine x and v

3

have di�erent olours, it is easy to olour v

1

and

v

2

. This will show the reduibility of a tetrad. But the assumption that C(x) = C(t

0

) is

a ruial point. Can we make this assumption?

One way to make sure that C(x) = C(t

0

) is to identify x with t

0

in G

0

before olouring

C. But this auses some new problems: this identi�ation may reate small yles (yles

of size in f4; : : : ; 7g), and therefore we annot laim that G

0

is 3-olourable anymore.

Can we show that suh a yle annot exist? If suh a small yle exists in G

0

, then the

sequene of verties of this yle starting from x, plus v

1

v

2

v

3

forms a yle in G whih

separates t from x

0

, i.e. one of t and x

0

is inside the yle and the other one outside of it.

Now, we have to argue that G annot have suh a yle, whih will be alled a separating

yle.

Fortunately there is a way to prove something along these lines. Under some assump-

tions (to be leared soon), if there exists a separating yle in G then we an olour the

subgraphs of G inside and outside the separating yle independently, and ensure that

their olourings math on this yle. This shows that suh a yle will be reduible in

G. These arguments suggest that if we strengthen our statement (i.e. have a stronger

indution hypothesis) we may be able to prove that separating yles are reduible and

from that show that tetrads are reduible, too. This will help us to bring down the

number of reduible on�gurations dramatially.
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4.2 Proof of the Main Theorem

Following the arguments of the previous setion, in order to prove Theorem 4.0.2, we

prove the following stronger theorem:

Theorem 4.2.1 Consider any onneted graph G 2 G

7

and let f be any fae of G with

size in f8; : : : ; 11g. Every proper 3-olouring of the subgraph indued by the verties of f

an be extended to a proper 3-olouring of G.

Assuming Theorem 4.2.1, we an easily prove Theorem 4.0.2. Before doing so, we

state a ouple of de�nitions. Let C be a yle of length k whose sequene of verties is

v

0

v

1

: : : v

k�1

. An edge between two non-onseutive verties of this yle is alled a hord

for C. If a hord is between v

i

and v

i+2

, for some 0 � i � k� 1, where the addition is in

mod k, then we say this hord uts triangle v

i

v

i+1

v

i+2

from C, or it is a triangular hord.

Proof of Theorem 4.0.2: Suppose that G is a ounter-example to Theorem 4.0.2

with the smallest number of verties. Clearly, G is onneted and by Example 2.2.4 it

has a yle C of length in f8; 9; 10g. By the absene of yles of length in f4; : : : ; 7g in

G, C an only have triangular hords, if it has hords at all. Let e = uv be a triangular

hord of C, whih uts triangle uwv from C. We all w a triangular vertex of C. w

annot be the end-point of any hord of C, otherwise if wx is a hord (whih must be a

triangular hord) then fu; v; w; xg forms a 4-yle in G (See Figure 4.2). If we remove

all the triangular verties of C, the remaining verties of C indue a yle C

0

, whih is

formed by the hords of C and some of the edges of C. We an �nd a 3-olouring '

0

of C

0

. Sine eah triangular vertex of C is adjaent to exatly two oloured verties of

C

0

, we an extend '

0

to a 3-olouring ' of all the verties of C. Now delete the possible

hords of C. If we remove the verties inside C this yle beomes a fae with size in

f8; 9; 10g, and by Theorem 4.2.1, ' an be extended to the verties of G outside C. Also,

if we remove the verties outside of C from G, by Theorem 4.2.1, ' an be extended to

the verties of G inside C. The union of these two olourings is a 3-olouring of G.
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w

u
v

x

C

Figure 4.2: A yle C with triangular hords

In the rest of this setion we will give the proof of Theorem 4.2.1. Before starting the

proof, we state more notation used in the proof.

Throughout this setion, we denote the outside fae of an embedded planar graph

G 2 G

7

by f

0

. Any fae other than f

0

is internal. Also, the verties of G that do not

belong to f

0

are internal. We rede�ne a bad vertex to be an internal 3-vertex whih is

inident with a 3-fae. Note that this de�nition is slightly di�erent from that of Chapter

3, as we impose the ondition of being an internal vertex. Any vertex that is not bad

is alled a good vertex. The set of verties of G lying inside and outside of a yle S

are denoted by In(S) and Out(S), respetively. If In(S) 6= ; and Out(S) 6= ;, then S is

alled a separating yle.

4.2.1 Reduible Con�gurations

In this subsetion only, by a minimum ounter-example we mean a graph G 2 G

7

and a

3-olouring ' of the verties of a fae f of G that form a ounter-example to Theorem

4.2.1 with the minimum number of verties. Without loss of generality, we assume that

f is the outside fae, f

0

.

The �rst two reduible on�gurations we had in the proofs of Examples 2.2.3 and

2.2.4, and Theorems 3.2.1 and 3.1.1 were � 2-verties and ut-verties. First we prove

that ut-verties are reduible for G:
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Lemma 4.2.2 Every minimum ounter-example is 2-onneted; in partiular, it annot

have 1-verties.

Proof: Assume that G is a minimum ounter-example. If there is a ut-vertex v 2 f

0

,

then beause 8 � jf

0

j � 11 and G 2 G

7

, there is a blok B of G ontaining v whih is a

single edge or a triangle. In eah ase it is easy to see that G � (B � fvg) is a smaller

ounter-example, ontraditing the de�nition of G.

Now assume that B is a pendant blok with ut-vertex v 62 f

0

. We �rst extend ' to

G� (B�fvg), then 3-olour B (using the minimality of G), and �nally get an extension

of ' to G.

For 2-verties, we annot prove that they don't exist in a minimum ounter-example,

but we an show if they exist then they must belong to fae f

0

. Before proving this, we

prove the following lemma whih, as we disussed in the previous setion, will also be

used in the proof of reduibility of tetrads.

Lemma 4.2.3 A minimum ounter-example has no separating yle of length at most

11.

Proof: By way of ontradition, assume that G is a minimum ounter-example and S

is a separating yle of length at most 11 in G. Beause of the minimality of G, we

an extend ' to G � In(S). Let '

S

be the olouring of S in this extension. Then we

delete the (possible) hords of S. Thus S beomes a fae in G�Out(S). If jSj 6= 3 then

8 � jSj � 11, and therefore by the minimality of G, we an extend '

S

to G � Out(S),

thus obtaining a 3-olouring of G.

If jSj = 3, either there exists a 3-olouring '

0

of G � Out(S) by Example 2.2.3, or

G�Out(S) has a yle C of length between 8 and 11. In the latter ase, by an argument

similar to that of proof of Theorem 4.0.2, we an �nd a 3-olouring of C and then extend

this olouring to a 3-olouring '

0

of G � Out(S), using the minimality of G. Sine S is
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a lique, we an permute the olours in '

0

suh that '

0

on S beomes equal to '

S

. Thus

we have 3-olouring of G.

Lemma 4.2.4 In every minimum ounter-example, eah 2-vertex belongs to f

0

and no

2-vertex is inident with a 3-fae.

Proof: Let G be a minimum ounter-example. If v is an internal 2-vertex of G then we

an extend ' to G� v by minimality of G and then olour v.

If v is a 2-vertex in f

0

that belongs to a triangle T then, by Lemma 4.2.3, T is not

a separating yle; so T is a fae. Therefore if we remove v from f

0

, the size of the

boundary of the outer fae dereases by exatly one, and all its verties have a olour

in '. Sine G 2 G

7

, this new fae has size in f8; 9; 10g. Consider this new graph G

0

obtained by removing v from G. By minimality of G, ' indued on G

0

an be extended

to a 3-olouring of G

0

. This olouring is also an extension of ' to G, a ontradition.

Using the previous two lemmas we an show that every relatively small yle in a

minimum ounter-example has no non-triangular hords.

Lemma 4.2.5 In a minimum ounter-example, no yle of length at most 13 has a non-

triangular hord, and f

0

has no hords at all.

Proof: Let G be a minimum ounter-example. If a yle C in G has a non-triangular

hord it must be divided by this hord into two yles of length at least 8 eah. This

implies that jCj � 14.

For the seond part, assume that a hord uv uts a triangle T = fu; v; wg from f

0

in

G. Then by Lemma 4.2.3, T is a 3-fae, i.e. there are no verties inside T . This implies

that d(w) = 2, whih ontradits Lemma 4.2.4.

We said in the previous setion that one key struture in our proof, that helps to

bring down the number of reduible on�gurations signi�antly, is a tetrad. Now we are

ready to prove that a minimum ounter-example annot have this struture. We all a

tetrad T = v

1

v

2

v

3

v

4

(as in Figure 4.3(a)) internal if v

1

; v

2

; v

3

; and v

4

are internal verties.
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Lemma 4.2.6 A minimum ounter-example annot have an internal tetrad.

Proof: By way of ontradition, let G be a minimum ounter-example and take an

internal tetrad in G (as in Figure 4.3(a)). Note that sine G has no ut-verties, all faes

f

1

; f

2

; f

3

; and f

4

are distint. First delete edges tv

1

and tv

2

from G. Then delete vertex

v

4

and ontrat the following edges: xv

1

, v

1

v

2

, v

2

v

3

, and v

3

t

0

. Let's all this new graph

G

�

. Clearly G

�

is an embedded planar graph sine we removed some verties and edges

from G and then ontrated an indued path. In fat, this is a planar embedding of the

graph obtained by deleting v

1

; v

2

; v

3

; v

4

and identifying x with t

0

in G. We will explain

later how this might a�et the olouring ' if one or both of x or t

0

are in f

0

.

We laim that G

�

has no faes of size in f4; : : : ; 7g: one of the new faes is reated

from the verties in f

1

� fv

1

; v

2

; v

3

; v

4

g and f

4

� fv

4

g, and therefore has size at least

jf

1

j � 5+ jf

4

j � 2 � 9. The other new fae in G

�

is reated from the verties in f

2

�fv

1

g

and f

3

� fv

2

; v

3

g (note that x and t

0

are the same in G

�

), and therefore has size at least

jf

2

j � 2 + jf

3

j � 3 � 11. Hene, if G

�

has any yle of size in f4; : : : ; 7g, that yle

must be a separating yle (beause it annot be a fae). We now prove that G

�

annot

have a separating yle of size in f4; : : : ; 7g, either. The only way for G

�

to have suh a

yle, is to have a path of length in f4; : : : ; 7g from x to t in G whih does not use any

of v

1

; v

2

; v

3

; and v

4

. That will reate a yle S

�

= xz

1

: : : z

k

t, where 3 � k � 6. Then

S = xz

1

: : : z

k

tv

3

v

2

v

1

separates t from v

4

in G (see Figure 4.3(b)). Indeed, t annot lie

on S by Lemma 4.2.5. But this means that S is a separating yle in G with size in

f8; : : : ; 11g, whih ontradits Lemma 4.2.3.

A loop in G

�

orresponds to an edge between x and t

0

in G. But suh an edge,

together with xv

1

v

2

v

3

t would reate a yle of size 5 in G. So G

�

has no loops. If there

are multiple edges in G

�

they must be between the uni�ed vertex in G

�

(orresponding to

x and t) and some other vertex. This means that x and t have some ommon neighbours

in G. But this neighbour, together with xv

1

v

2

v

3

t would form a yle of size 6 in G. So

G

�

has no multiple edges, either. Thus G

�

2 G

7

.
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v1 v2 v3 v4

f1

f2
f3 f4

t t’

x x’ v v v v

z
z

z

1 2 3 4

1

2
k

t t’

x’x

(a) (b)

Figure 4.3: (a) A tetrad and (b) the separating yle

Next reall that any 3-olouring  of G

�

an be extended to a 3-olouring of G: x

and t

0

eah get the olour of the uni�ed vertex. We �rst olour v

4

and v

3

(in this order);

then, sine x and v

3

have di�erent olours, it is easy to olour v

1

and v

2

. If the olouring

' of f

0

is not damaged by identifying x with t

0

, then by minimality of G, G

�

has a 3-

olouring that extends '. This 3-olouring an be extended to a 3-olouring of G whih

is a ontradition. It follows that while identifying x with t we damaged ', i.e. we either

(a) identi�ed two verties of f

0

oloured di�erently, or (b) inserted an edge between two

verties of f

0

oloured the same. For at least one of these two situations to happen, the

total of the distanes from x to f

0

and from t

0

to f

0

must be at most 1.

Let d

1

: : : d

jf

0

j

be the sequene of verties of f

0

, with the subsripts inreasing in the

lokwise order. Suppose d

1

is a vertex of f

0

nearest to x (and possibly equal to x), while

d

j

is losest to t

0

(possibly equal to t

0

). Sine jf

0

j � 11, it follows that the boundary

of f

0

is split by d

1

and d

j

into paths P

1

, P

2

one of whih, say P

1

= d

1

: : : d

j

, onsists

of at most 5 edges. This path, ombined with the path d

j

t

0

v

3

v

2

v

1

d

1

(for the ase that

x = d

1

and t

0

6= d

j

), or with d

j

v

3

v

2

v

1

xd

1

(for the ase that x 6= d

1

and t

0

= d

j

), or with

d

j

v

3

v

2

v

1

d

1

(for the ase that x = d

1

and t

0

= d

j

) yields a yle C of length at most 10

in G. By Lemma 4.2.5, sine tv

2

is an edge and v

2

2 C, it follows that t annot belong

to C. Reall that by de�nition of an internal tetrad, xv

1

v

2

v

3

v

4

x

0

is on the boundary of
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some internal fae. Therefore, C separates t from v

4

. But this ontradits Lemma 4.2.3.

Remark 4.2.7 By the proof of this lemma, if T is a tetrad as in Figure 4.3(a) in a graph

G 2 G

7

(whih is not neessarily a ounter-example) and  is a 3-olouring of the verties

of G

�

(onstruted as in the proof of the lemma), then  indued on G (in whih x and

t

0

have the same olour as the uni�ed vertex of G

�

) an be extended to a 3-olouring of

G in onstant time.

Now that we have proved tetrads are reduible, it is not hard to see that most of

the reduible on�gurations we had in the previous hapter are reduible as they have

a tetrad. If we were to try to do a proof similar to that of Chapter 3 then many of the

reduible on�gurations that involve 8-faes would have tetrads. So Lemma 4.2.6 an be

used to eliminate most of them. As a result we only have to introdue two new reduible

on�gurations. We de�ne them below and show that they are reduible.

Let f be an 8-fae with boundary v

1

; : : : ; v

8

(in ounter-lokwise order), where

v

1

; v

2

; v

3

; v

5

; v

6

; v

7

are bad, while v

4

and v

8

are internal good verties. Assume that

v

2

v

3

t

23

, v

5

v

6

t

56

, v

1

v

8

t

18

, and v

7

v

8

t

78

are 3-faes adjaent to f (see Figure 4.4(a)). So

d(v

8

) = 4 and d(v

4

) � 3. Then f is alled an M-fae.

Lemma 4.2.8 A minimum ounter-example annot have an M-fae.

Proof: Assume that G is a minimum ounter-example with an M -fae f as in Figure

4.4(a). We obtain G

�

from G by deleting all the bad verties of f and identifying v

4

with

v

8

. As in the proof of Lemma 4.2.6, it is easy to hek that G

�

does not have a fae of

size in f4; : : : ; 7g, and it annot have a separating yle of size in f4; : : : ; 7g, or else G

has a separating yle of size in f8; : : : ; 11g ontaining t

18

v

1

v

2

v

3

v

4

(separating t

23

from

v

8

), or a yle of size in f8; : : : ; 11g ontaining t

78

v

7

v

6

v

5

v

4

(separating t

56

from v

8

), thus

ontraditing Lemma 4.2.3 (see Figure 4.4(b)). Also, G

�

has neither loops nor multiple
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v2

v1

v3
v5

v6

v7

v8

t18

t23 t56

t78

v2

v1

v4
v3

v5

v6

v7

v8

t18

t23 t56

t78

v4

(a) (b)

f f

Figure 4.4: (a)An M -fae f , (b) a possible separating yle

edges, or else G would have a yle of size in f4; 5; 6g ontaining v

5

; v

6

; v

7

. Therefore, G

�

has no yles of size in f4; : : : ; 7g, i.e. G

�

2 G

7

.

The same arguments as in the last two paragraphs of the proof of Lemma 4.2.6 show

that the olouring ' of f

0

is not damaged by identifying v

4

with v

8

, as otherwise G would

have a yle of size at most 11 through v

4

v

5

v

6

v

7

t

78

(or v

4

v

3

v

2

v

1

t

18

) whih separates t

56

from v

8

(or t

23

from v

8

), thus ontraditing Lemma 4.2.3.

Sine G

�

is smaller than G, ' an be extended to a 3-olouring  of G

�

. We will

show that  an be extended to a 3-olouring of G. Consider  indued on G and give

v

4

and v

8

the same olour as the uni�ed vertex in G

�

. First olour v

1

and v

7

. Sine

 (v

4

) 6=  (v

1

) and  (v

4

) 6=  (v

7

), we an easily extend this olouring to v

2

, v

3

, v

5

, and

v

6

.

Remark 4.2.9 By the proof of this lemma, if f is an M-fae as in Figure 4.4(a) in

a graph G 2 G

7

(whih is not neessarily a ounter-example) and  is a 3-olouring of

the verties of G

�

(onstruted as in the proof), then this olouring indued on G an be

extended to a 3-olouring of G in onstant time.

The other struture we de�ne is very similar to the previous one. Let f be an 8-fae

with boundary verties v

1

; : : : ; v

8

(in ounter-lokwise order), where v

1

; : : : ; v

4

and v

6

; v

7
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v2

v1

v3
v5

v6

v7

v8

t18

t23 t56

t78

v4
t45

v2

v1

v3
v5

v6

v7

v8

t18

t23 t56

t78

v4
t45

(a) (b)

Figure 4.5: (a) An MM -fae, (b)a possible separating yle

are bad verties, while v

5

and v

8

are internal 4-verties. Assume that v

2

v

3

t

23

, v

4

v

5

t

45

,

v

5

v

6

t

56

, v

7

v

8

t

78

, and v

8

v

1

t

18

are 3-faes adjaent to f (see Figure 4.5(a)). Then f is alled

an MM-fae.

Lemma 4.2.10 A minimum ounter-example annot have an MM-fae.

Proof: By way of ontradition, let G be a minimum ounter-example and f an MM -

fae of G as in Figure 4.5(a). We obtain G

�

from G by deleting v

1

; : : : ; v

8

and identifying

t

18

with t

56

. As in the previous two lemmas, it is easy to hek that G

�

2 G

7

. Otherwise

there is a yle of size at most 11 in G through t

56

v

6

v

7

v

8

t

18

(see Figure 4.5(b)), whih

separates t

78

from v

5

, ontraditing Lemma 4.2.3. Also, as in the previous two lemmas,

the olouring ' of f

0

is not damaged by this identi�ation, or else there is a yle of size

at most 11 through t

56

v

6

v

7

v

8

t

18

separating v

5

and t

78

, whih ontradits Lemma 4.2.3.

Now we show that every 3-olouring  of G

�

an be extended to a 3-olouring of

G. Let  be an arbitrary 3-olouring of G

�

and onsider  indued on G, with t

18

and t

56

having the same olour as the uni�ed vertex of G

�

. Without loss of generality,

assume that  (t

18

) =  (t

56

) = 1. If  (t

45

) 6= 1, we �rst olour v

5

, v

4

, and v

6

, (in

this order); then, using an argument as in the proof of Lemma 4.2.6, we an olour v

8
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and v

7

, then v

1

, and �nally v

2

and v

3

, as  (v

4

) = 1 6=  (v

1

). If  (t

45

) = 1, we set

1 6=  (v

8

) =  (v

6

) =  (v

4

) 6=  (t

78

), then olour v

1

, v

5

, v

7

(in this order), and �nally v

2

and v

3

.

Remark 4.2.11 By the proof of this lemma, if f is an MM-fae as in Figure 4.5(a) in

a graph G 2 G

7

(whih is not neessarily a ounter-example) and  is a 3-olouring of

the verties of G

�

(onstruted as in the proof), then this olouring indued on G an be

extended to a 3-olouring of G in onstant time.

In summary, here is the list of on�gurations that are proved to be reduible in

Lemmas 4.2.2-4.2.10:

1. A ut-vertex

2. A separating yle of length at most 11

3. An internal 2-vertex

4. A 2-vertex in f

0

inident with a 3-fae

5. A hord in f

0

6. An internal tetrad

7. An M -fae

8. An MM -fae

In the next subsetion we prove that this set of reduible on�gurations is unavoidable,

using the Disharging Method.

4.2.2 Disharging Rules

Let G be an arbitrary onneted graph in G

7

given with a proper 3-olouring of the

verties of one of its faes f

0

, with 8 � jf

0

j � 11. Consider an embedding of G in whih
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f

0

is the outside fae. We use the Disharging Method to show that G must have one of

the reduible on�gurations listed in the previous subsetion.

The initial harges we apply are very similar to the ones we have seen in Chapters 2

and 3. To eah vertex v we assign d(v) � 6 units of harge and to eah fae f 6= f

0

we

assign 2jf j � 6 units. The only di�erene is that we assign 2jf

0

j+ 5:5 units of harge to

f

0

. We need to do this beause of the possible presene of 2-verties on f

0

. Using Euler's

formula, the total harge is

X

v2V

(d(v)� 6) +

X

f 6=f

0

(2jf j � 6) + 2jf

0

j+ 5:5 = �

1

2

:

In the disharging phase we move harges from faes to verties and show that after

this phase every vertex and fae has non-negative harge (and therefore the total harge

is non-negative), unless G has one of the reduible on�gurations listed in the previous

subsetion. Of ourse, if G has a reduible on�guration then G annot be a minimum

ounter-example. This shows that there is no minimum ounter-example to Theorem

4.2.1.

It is easy to see that by this set of initial harges, the only elements with negative

initial harge are 2- to 5-verties. First assume that v is a 2-vertex inident with two faes

f and f

0

. These two faes must be distint or else v is a ut-vertex, whih is reduible

on�guration 1. Sine the initial harge of v is �4, f and f

0

must send 4 units of harge

in total to v. One of these two faes, say f , is the outside fae, i.e. f = f

0

, or else we

have reduible on�guration 3. Beause f

0

has larger harge/size ratio with respet to

the other faes, it seems better to send more harge from f

0

to v than from the internal

fae f

0

. So, instead of sending 2 units of harge from eah of f

0

and f

0

to v, we send

5

2

units of harge from f

0

and

3

2

from f

0

to v. In fat it is not hard to see that f

0

an a�ord

to send

5

2

units of harge to every vertex v 2 f

0

: the initial harge of f

0

is 2jf

0

j + 5:5

and if it sends

5

2

jf

0

j it is left with 5:5�

jf

0

j

2

units of harge. Sine 8 � jf

0

j � 11, the �nal

harge of f

0

will be non-negative. So we introdue the following rules:
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1
2

3
2

f f

f0 f’=f0

Figure 4.6: Disharging rule R3

R1: f

0

sends

5

2

to eah of its verties.

R2: Every internal non-triangular fae sends

3

2

units to its 2-verties.

If a 2-vertex v does not belong to f

0

, then G has reduible on�guration 3 and we

are done. Otherwise, every 2-vertex v belongs to f

0

and reeives

5

2

from f

0

by R1. Also,

the other fae inident with v is a non-triangular fae and sends

3

2

to v by R2, or else G

has a 2-vertex in f

0

inident with a triangular fae, whih is reduible on�guration 4.

Therefore, these two rules ensure that either every 2-vertex v has non-negative harge,

or G has reduible on�guration 3 or 4.

The �rst disharging rule in the proofs of Theorems 3.2.1 and 3.1.1 was to send

3

2

from \large" non-triangular faes to eah of their bad verties. Here we keep this rule,

with slight modi�ations. If v 2 f

0

is a 3-vertex inident with a triangle, it reeives

5

2

from f

0

by R1, and it only requires

1

2

from the internal non-triangular fae. Note that

by the de�nition of bad in this hapter, v is not bad (beause it is not internal). Here is

the new rule:

R3: Every internal non-triangular fae f sends

3

2

units to eah of its bad

verties and

1

2

to every 3-vertex in its boundary that also belongs to f

0

and

is inident with one 3-fae (see Figure 4.6).

Reall the de�nition of a simple vertex from the previous hapter: a 3-vertex not

inident with any triangles. These verties have initial harge �3 and so require 3 units
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1
4

0f’=f

f f

f0

1

f’’=f
0

Figure 4.7: Disharging rule R4

of harge. If suh a vertex is in f

0

it gets

5

2

of harge from f

0

and it only needs

1

4

units

from eah of the other (internal) faes it is inident with. Otherwise, eah of the faes

must send 1 unit to it. So:

R4: Every internal non-triangular fae f sends 1 unit to eah of its internal

simple verties and

1

4

to eah of its simple verties that also belongs to f

0

.

(see Figure 4.7)

Rules R1-R4 ensure that every 3-vertex whih is not a ut-vertex (reduible on�gu-

ration 1) has non-negative �nal harge: if v is a 3-vertex and is in f

0

it reeives

5

2

from

f

0

by R1 and

1

2

by rules R3 or R4 from the other non-triangular fae inident with it,

depending on whether it is inident with a triangle or is simple. If v 62 f

0

then if it is

bad it reeives 2�

3

2

by R3 and if it is simple it reeives 3� 1 by R4.

The only remaining verties are 4- and 5-verties. If a � 4-vertex v belongs to f

0

it

reeives

5

2

from f

0

and so has positive harge. Thus we only need to deal with internal

4- and 5-verties.

Reall from Chapter 3 that a type 0, type 1, or a type 2 vertex is a 4-vertex inident

with 0, 1, or 2 triangles, respetively. Every 4-vertex is one of these types. Every 4-

vertex v is inident with 4 distint faes, otherwise v is a ut-vertex whih is reduible

on�guration 1. If v is an internal type 0 vertex it is enough to send

1

2

units to it from eah

of its faes. If v is a type 2 vertex, it needs to get 1 unit from eah of its non-triangular

faes to have non-negative harge. Finally, if v is a type 1 vertex, we an send

1

2

from
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1
2

1
2

1
2

1 1

(a) (b) (c)

Figure 4.8: Disharging rule R5

eah of the non-triangular faes inident with v that share an edge with the triangular

fae, and 1 unit from the other fae to v. We ombine these in the following rule (see

Figure 4.8):

R5: Every internal non-triangular fae f sends:

(a)

1

2

to eah of its internal type 0 verties,

(b) 1 to eah of its internal type 2 verties,

()

1

2

to every internal type 1 vertex v in its boundary if the triangle inident

with v shares an edge with f ,

(d) 1 to every internal type 1 vertex v in its boundary if the triangle inident

with v does not share an edge with f .

Let's assume v is an internal 4-vertex. If it is type 0, type 2, or type 1 it reeives

4 �

1

2

, or 2 � 1, or 2 �

1

2

+ 1 by R5 parts (a), or (b), or () and (d), respetively. So

by rules R1 and R5 every 4-vertex either has non-negative harge after the disharging

phase, or is a ut-vertex (reduible on�guration 1).

The only remaining verties are internal 5-verties. Let v be an internal 5-vertex

inident with 5 faes. All these faes are distint, otherwise v is a ut-vertex whih is

reduible on�guration 1. By absene of 4-yles, v is inident with at least three non-

triangular faes and it is enough to send

1

2

from two of them to v. So we add the following

disharging rule to our set:
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1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(a) (c)(b)

Figure 4.9: Disharging rule R6

R6: Every internal non-triangular fae f sends

1

2

to eah internal 5-vertex v

in its boundary if v is not inident with two edges of f that eah belong to a

triangular fae adjaent to f (see Figure 4.9).

If v is an internal 5-vertex then it is inident with at least three non-triangular faes.

If it is inident with at least 4 non-triangular faes then eah of them sends

1

2

to v by R6,

for a total of at least 2. If v is inident with two triangles then two of the non-triangular

faes send

1

2

eah by R6, for a total of 1.

Therefore, by these disharging rules:

Lemma 4.2.12 Every vertex v has non-negative harge, unless it is reduible on�gura-

tion 1, 3 or 4.

Now we prove that every fae has non-negative harge, or else G has a reduible

on�guration. Sine R1 is the only rule by whih f

0

sends harge, by the arguments

given before R1:

Lemma 4.2.13 f

0

has non-negative harge after the disharging phase.

Finally, we show that every internal fae f either has non-negative harge, or has a

reduible on�guration.

Lemma 4.2.14 Every fae f 6= f

0

has non-negative �nal harge, unless it has reduible

on�guration 3, 6, 7 or 8.
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Proof: If jf j = 3 then its initial harge is 0 and it does not lose any harge in the

disharging phase.

Suppose jf j � 12. As f sends to eah inident vertex at most

3

2

by R2-R6, its �nal

harge is 2jf j � 6�

3

2

jf j � 0.

The only remaining ases are when 8 � jf j � 11. Assume that f is an internal

fae with jf j � 8, whih is inident with a 2-vertex v. If v 62 f

0

then G has reduible

on�guration 3. Otherwise f is inident with two �3-verties of f

0

, namely the ends of a

maximal path of 2-verties on the boundary of f . These verties get at most

1

2

from f by

R3 and R4, and therefore, the �nal harge of f is at least 2jf j�6� (jf j�2)�

3

2

�2�

1

2

�

jf j

2

�4 � 0. Thus, from now on, we may assume that f is not inident with any 2-verties.

Also, observe that f sends

3

2

to eah of its bad verties by R3 and at most 1 to

its good verties by rules R4 to R6 (note that sine we have assumed that f has no

2-verties, R3-R6 are the only rules that apply to f). We will use this fat frequently in

our arguments without referring to it expliitly.

Suppose jf j = 11. By parity, f an have at most 10 bad verties and sends at most

10�

3

2

to them by R3, plus at most 1 to its good vertex by R4, R5, or R6. So, its �nal

harge is at least 22� 6� 10�

3

2

� 1 = 0

Now suppose jf j = 10. If f sends to at least two inident verties at most 1 eah, it

sends at most 8 �

3

2

to its other verties and we are done, as its �nal harge is at least

20 � 6 � 8 �

3

2

� 2 = 0. The only danger omes from f being inident with at least 9

bad verties. But learly every 5 onseutive bad verties on the boundary of f inlude

a tetrad, whih is reduible on�guration 6.

Next suppose jf j = 9. If f sends to at least three inident verties at most 1 eah, or

sends at most

1

2

to one vertex and 1 to another vertex, we are done, as its �nal harge is

at least 18 � 6 � 6 �

3

2

� 3 = 0 or 18 � 6 � 7 �

3

2

� 1 �

1

2

= 0, respetively. If f has 8

bad verties it will ertainly form a tetrad, whih is reduible on�guration 6. So, there

are at most 7 bad verties and the other two must be internal verties and take 1 from
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v1

v2

v3

v4

v5v6

v7

v8

v9

Figure 4.10: A 9-fae as in the proof of Lemma 4.2.14

f , eah. So, the good verties are � 4-verties. Clearly those 7 bad verties must be

split by the two good verties as 4+3, otherwise they form a tetrad, whih is reduible

on�guration 6. Furthermore, the quadruple should fail to be a tetrad, or else we are

done. It is not diÆult to hek that the only struture that f may have is as in Figure

4.10. But in this ase, one of the good verties (v

1

in the �gure) takes

1

2

from f by R5()

and the other good vertex, v

5

, gets only 1 by R5(b). Therefore the �nal harge of f is at

least 18� 6� 7�

3

2

� 1�

1

2

= 0.

Finally, assume jf j = 8. This ase is more ompliated and requires some are to

analyze. If there are at most 4 bad verties in f , or if f sends at most

1

2

to at least

two verties, then we are done, as its �nal harge is at least 16 � 6 � 4 �

3

2

� 4 = 0 or

16 � 6 � 6 �

3

2

� 2 �

1

2

= 0, respetively. So we may assume that f has at least 5 bad

verties (whih by de�nition are all internal). We prove that the other three verties of

f are also internal.

First suppose that exatly one vertex v of f belongs to f

0

. Then f annot share an

edge with f

0

(or else it will share at least two verties with f

0

). Thus d(v) � 4 and so f

sends nothing to v by any rules (rules R2 and R3 only apply to 3-verties and rules R4,

R5 and R6 only apply to the internal �4-verties). If the other 7 verties of f are all bad,

G has a tetrad whih is reduible on�guration 6. Otherwise, f has at most 6 bad verties
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and sends at most 1 to its other good vertex. So f has at least 16� 6� 6�

3

2

� 1 = 0

�nal harge. Now suppose that at least two verties of f belong to f

0

. Then, sine f

sends at most

1

2

to eah of them by R3 or R4, f has non-negative harge as disussed in

the previous paragraph. So all the verties of f must be internal.

If f is inident with at least 7 bad verties (and so with at most one good vertex),

G has a tetrad and we are done. The only other ase we have to onsider is when f is

inident with exatly 6 or exatly 5 bad verties. Let v

1

: : : v

8

be the sequene of verties

of f in lokwise order.

Case 1. f has preisely 5 bad verties.

If at least one good vertex of f gets at most

1

2

from f , sine the other two good

verties get at most 1 from f eah, we are done, as the �nal harge of f is at least

16� 6� 5�

3

2

� 2� 1�

1

2

= 0. So suppose that eah of these three good verties takes 1

unit of harge from f . It follows by R4 and R5 that all of them are internal �4-verties,

and eah is either (i) simple, (ii) type 2, or (iii) a type 1 vertex whih is is inident with

a triangle that does not share any edges with f . However, this is impossible by parity:

the number of bad verties should be even or else f should ontain a type 1 vertex whih

is inident with a 3-fae that shares an edge with f (i.e. is adjaent to f).

Case 2. f has preisely 6 bad verties.

These 6 bad verties must be split by the two good verties as 4+2 or 3+3, sine eah

path of 5 bad verties ontains a tetrad, and tetrads are reduible. We onsider eah of

these two subases separately:

Subase 2.1: 4+2

Assume that the group of 4 bad verties is v

1

; : : : ; v

4

and the other two bad verties

are v

6

; v

7

, with v

5

and v

8

being good. In order to not form a tetrad, v

1

and v

4

should

form triangles with the good verties v

8

and v

5

, respetively. Let's all an edge inident

with a 3-fae a triangular edge. If the edge v

6

v

7

is triangular, then both v

5

and v

8

get at most

1

2

from f by R5() or R6, and we are done, as the harge of f is at least
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16� 6� 6�

3

2

� 2�

1

2

= 0.

The only alternative is that both v

5

v

6

and v

7

v

8

are triangular. Observe that d(v

5

) � 4

and d(v

8

) � 4. If d(v

5

) � 5 then sine it is inident with two triangular edges (v

5

v

6

and

v

4

v

5

) rule R6 does not apply and f sends nothing to v

5

. By a similar argument, if

d(v

8

) � 5 then f sends nothing to v

8

. Therefore, if d(v

5

) � 5 or d(v

8

) � 5 then we are

done as the �nal harge of f is at least 16� 6� 6�

3

2

� 1 = 0. Thus, the only remaining

ase to onsider is when both v

5

and v

8

are internal 4-verties and furthermore, we have

3-faes v

1

v

8

t

18

, v

2

v

3

t

23

, v

4

v

5

t

45

, v

5

v

6

t

56

, and v

7

v

8

t

78

as in Figure 4.5(a). But this is an

MM -fae, i.e. reduible on�guration 8.

Subase 2.2: 3+3

Let v

1

; : : : ; v

8

be the sequene of verties of f in lokwise order, with v

4

and v

8

being

the good verties. Without loss of generality assume that v

1

v

2

is a triangular edge. So

v

3

v

4

is also triangular.

If v

5

v

6

is triangular then v

7

v

8

must be triangular and therefore, v

4

and v

8

take at

most

1

2

from f by R5() or R6 and the harge of f is at least 16� 6� 6�

3

2

� 2�

1

2

= 0.

If v

5

v

6

is not triangular then v

5

v

4

and v

6

v

7

are triangular. If d(v

4

) � 5 then f sends

nothing to v

4

and therefore its �nal harge is at least 16� 6� 6�

3

2

� 1 = 0. If d(v

4

) = 4

then then f is an M -fae (as in Figure 4.4(a)), i.e. reduible on�guration 7. So we are

done.

So by Lemmas 4.2.12 and 4.2.14 all the verties and faes have non-negative �nal

harge, or else G has a reduible on�guration. Thus there is no minimum ounter-

example and so no ounter-example at all to Theorem 4.2.1.
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4.3 A 3-Colouring Algorithm for Planar GraphsWith-

out 4- to 7-Cyles

In this setion we provide an algorithm for Theorem 4.0.2 that given an embedded graph

G 2 G

7

as input, produes a 3-olouring of G. We assume that the input to the algorithm

is onneted. For disonneted graphs it is enough to olour eah onneted omponent

independently. The algorithm onsist of two main proedures.

Proedure 1: This proedure takes as input an embedded onneted graph G 2 G

7

and produes a 3-olouring ofG. In the �rst part of this proedure we apply the algorithm

desribed in Subsetion 2.3.1 to G. This will either produe a 3-olouring of G or give a

yle C of size in f8; 9; 10g in G. If we �nd a 3-olouring of G then the proedure returns

this 3-olouring and terminates.

Otherwise, let C be the yle of G that the proedure has found. The same arguments

as in the proof of Theorem 4.0.2 show that C an only have triangular hords (beause

G 2 G

7

) and that we an �nd a 3-olouring ' of C. Remove the (possible) hords from C

and onsider ' on C and the graphs G

1

= G� In(C) and G

2

= G�Out(C). Therefore,

eah of G

1

and G

2

is a onneted graph in G

7

along with a 3-olouring of one of its faes

(the one whose boundary is C), whih has size in f8; 9; 10g. Then we all Proedure 2

on eah of these graphs along with olouring ', independently. This will produe a 3-

olouring for eah of G

1

and G

2

that are extensions of '. The union of these 3-olourings

is a 3-olouring of G.

Proedure 2: This proedure takes as input an embedded onneted graph G 2 G

7

together with a 3-olouring ' of a fae f

0

of size in f8; : : : ; 11g of G and produes a

3-olouring of G. In fat, this proedure orresponds to Theorem 4.2.1.

We assume that f

0

is the outside fae of G. At eah iteration of this proedure, we

apply the initial harges and the disharging rules, as desribed in Subsetion 4.2.2. Sine

the total harge is negative, after the disharging phase there must be either a vertex v
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or a fae f 6= f

0

with negative harge (note that by Lemma 4.2.13 f

0

has non-negative

harge):

1. A vertex v with negative harge: By Lemma 4.2.12, v must be one of on�gurations

1, 3, or 4. We onsider eah ase separately.

(a) First assume that v is a ut-vertex. If v 2 f

0

then, beause G 2 G

7

, there is a

blok B of G ontaining v whih is a single edge or a triangle. In eah ase we

get an extension of ' toG�(B�fvg), by alling Proedure 2 reursively. If v is

an internal ut-vertex with a pendant blok B then we get an extension of ' to

G�(B�fvg), by alling Proedure 2 reursively. Then we run Proedure 1 on

B to obtain a 3-olouring of B. This 3-olouring, after possibly permuting the

olours, together with the extension of ' to G� (B�fvg) yield a 3-olouring

of G.

(b) Next assume that v is an internal 2-vertex. We all Proedure 2 or Proedure

1 on eah of the at most two onneted omponents of G � v, depending on

whether the omponent ontains f

0

(and the olouring ') or not. If Proedure

2 is alled on a onneted omponent, say G

2

, it returns a 3-olouring of G

2

,

whih is an extension of '. If Proedure 1 is alled on a onneted omponent,

say G

1

, then it returns a 3-olouring ofG

1

. The union of these two 3-olourings

yields a 3-olouring of G� v. We an extend this 3-olouring to v in onstant

time.

() Finally, assume that v is a 2-vertex of f

0

inident with a triangle T . If T

is a fae then we all Proedure 2 on G � v and the olouring ' indued on

f

0

� v, to obtain a 3-olouring of G. This olouring, together with the olour

of v indued by ', yields a 3-olouring of G. If T is a separating yle, then

we all Proedure 2 with G � In(T ) and olouring ', to obtain a 3-olouring

of G � In(T ). Then we all Proedure 1 on graph G � Out(T ). This will
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produe a 3-olouring of G�Out(T ). The union of 3-olourings of G� In(T )

and G � Out(T ), after possibly permuting the olours in the olouring of

G�Out(T), yields a 3-olouring of G.

2. A fae f 6= f

0

with negative harge: By Lemma 4.2.14 f must have one of on�gu-

rations 3, 6, 7, or 8. We onsider eah ase separately.

(a) If f has an internal 2-vertex we do as explained in ase 1(b).

(b) Suppose f has a tetrad as in Figure 4.3. By a Breadth First Searh (BFS)

starting at vertex x, we an easily hek whether there exists a path x; z

1

; : : : ; z

k

; t,

3 � k � 6, with all z

i

's di�erent from v

1

; v

2

; v

3

; v

4

.

i. If suh a path exists, we have a separating yle C of size in f8; : : : ; 11g in

G. In this ase we all Proedure 2 on G� In(C) to obtain a 3-olouring

of it. Let '

C

be the olouring of C in this 3-olouring. Then we delete

the possible hords from C and all Proedure 2 with G � Out(C) and

'

C

. We obtain a 3-olouring of G � Out(C). The union of these two

3-olourings yields a 3-olouring of G

ii. If suh a path does not exist then we remove v

1

; v

2

; v

3

; v

4

and identify x

with t

0

as in the proof of Lemma 4.2.6. Let this new graph be G

�

. We

all Proedure 2 on G

�

together with '. This gives a 3-olouring of G

�

.

By Remark 4.2.7 we an extend this olouring to a 3-olouring of G in

onstant time.

() Next, suppose that f is anM -fae as in Figure 4.4. By a BFS starting from v

4

we hek whether there exists a path of length in f4; : : : ; 7g in G onneting

v

4

to t

78

(or v

4

to t

18

) whih does not use any edge of f .

i. If the path exists then this path, together with v

4

v

5

v

6

v

7

t

78

(or with v

4

v

3

v

2

v

1

t

18

)

forms a separating yle C of length in f8; : : : ; 11g in G. We ontinue as

in ase 2(b)i explained above.
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ii. If the path does not exist then we remove all the bad verties of f and

identify v

4

with v

8

to obtain graph G

�

. We all Proedure 2 onG

�

together

with ' to get a 3-olouring of G

�

. By Remark 4.2.9 this 3-olouring an

be extended to G in onstant time.

(d) Finally, assume that f is an MM -fae as in Figure 4.5. By a BFS starting

from t

18

we hek whether there exists a path of length in f4; : : : ; 7g between

t

18

and t

56

that does not use any edge of f .

i. If suh a path exists then this path, together with t

18

v

8

v

7

v

6

t

56

forms a

separating yle C of length in f8; : : : ; 11g. We ontinue as in ase 2(b)i

explained above.

ii. If the path does not exist then we remove all v

1

; : : : ; v

8

from f and identify

t

18

with t

56

to obtain graph G

�

. We all Proedure 2 on G

�

together with

' to get a 3-olouring of G

�

. By Remark 4.2.11 this 3-olouring an be

extended to G in onstant time.

The main proedure of the algorithm starts by alling Proedure 1. In eah proedure

if the graph has only one vertex then the proedure immediately returns the trivial

olouring of the input graph.

4.3.1 Analysis of the Algorithm

For a graph G, let n = jV j + jEj denote the size of G. Let T

1

(n) and T

2

(n) be the

worst ase running time of Proedure 1 and Proedure 2 on an input graph of size n,

respetively. Our goal is to show that T

1

(n); T

2

(n) 2 O(n

3

). We do this by proving that

there are onstants �; �

1

; �

2

> 0, suh that for all values of n � 1: T

1

(n) � �n

3

+ �

1

n

2

and T

2

(n) � �n

3

+�

2

n

2

. Both of the inequalities are trivial for small values of n. Assume

that T

1

(i) � �i

3

+ �

1

i

2

and T

2

(i) � �i

3

+ �

2

i

2

for 1 � i < n and suppose that the input

graph has size n.
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First onsider Proedure 1. The part where we run the algorithm of Subsetion

2.3.1 takes O(n

2

) time. If a 3-olouring is found the proedure terminates. Otherwise,

the proedure has found a yle C. Removing the triangular verties of C (as in the

proof of Theorem 4.0.2) and �nding a 3-olouring of yle C an be done in linear time.

Then we should remove the possible hords of C, whih again an be done in linear

time. If we remove this yle from the graph we an easily �nd G

1

= G � In(C) and

G

2

= G � Out(C) in linear time. Then we make reursive alls to Proedure 2 on G

1

and G

2

, whih take T

2

(n

1

) and T

2

(n

2

) time, if n

1

and n

2

are the sizes of G

1

and G

2

,

respetively. Note that n

1

; n

2

� 8 and n

1

+ n

2

� n + 11, sine the size of C is in

f8; : : : ; 11g. Thus T

1

(n) � n

2

+ T

2

(n

1

) + T

2

(n

2

) � n

2

+ �(n

3

1

+ n

3

2

) + �

2

(n

2

1

+ n

2

2

),

for some onstant  > 0. This is maximized when n

1

= n and n

2

= 11. So T

1

(n) �

n

2

+ �(n

3

+ 11

3

) + �

2

(n

2

+ 11

2

) � �n

3

+ �

1

n

2

, if �

1

> �

2

+ .

Now onsider Proedure 2. Applying the initial harges takes O(n). Sine only faes

send harge during the disharging phase and for eah fae f it takes at most O(jf j) time

to do the disharging, it takes at most O(

P

f2F

jf j) time, whih is in O(n), to apply the

disharging rules. Finding an element with negative harge also takes linear time. Now

we analyze eah step of this proedure:

1. A vertex v with negative harge:

(a) Cheking if a vertex is a ut-vertex an be done in linear time. If v is a ut-

vertex and in f

0

then we only make a reursive all to Proedure 2 on a graph

with size n

0

� n � 1. So for some onstant  > 0: T

2

(n) � n + T

2

(n

0

) �

n + �n

03

+ �

2

n

02

� �n

3

+ �

2

n

2

.

If v is an internal ut-vertex we make a all to Proedure 2 on a graph of size

n

2

and a all to Proedure 1 on a graph of size n

1

, with n

1

+ n

2

= n+ 1 and

n

1

; n

2

� 2. This takes at most T

2

(n

2

)+T

1

(n

1

) � �(n

3

2

+n

3

1

)+�

1

n

2

1

+�

2

n

2

2

time,

whih is maximized when n

1

= n�1 and n

2

= 2, sine �

1

> �

2

. After this step
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we may have to permute the olours in one of the olourings obtained, whih

takes linear time. Therefore, T

2

(n) � n+�((n�1)

3

+2

3

)+�

1

(n�1)

2

+�

2

2

2

,

for some onstant  > 0. This implies that T

2

(n) � �n

3

+ �

2

n

2

, if � is large

enough with respet to �

1

and �

2

.

(b) Cheking if v is a 2-vertex takes onstant time. If v is an internal 2-vertex

then we all Proedure 1 or Proedure 2 on eah of the at most two onneted

omponents of G � v. Suppose that Proedure 2 is alled on a onneted

omponent of size n

2

and Proedure 1 is alled on a onneted omponent

of size n

1

, with n

1

+ n

2

= n � 1 and n

1

; n

2

� 0. Then we take the union

of these two olourings and extend it to v in onstant time. So T

2

(n) �

T

1

(n

1

) + T

2

(n

2

) + n � �(n

3

1

+ n

3

2

) + �

1

n

2

1

+ �

2

n

2

2

+ n, for some onstant

. This is maximized when n

1

= n � 1 and n

2

= 0. This implies that

T

2

(n) � �n

3

+ �

2

n

2

. For the ase that v 2 f

0

almost the same analysis works.

2. A fae f 6= f

0

with negative harge: One we �nd a fae f with negative harge we

an �nd out whether it has a 2-vertex, a tetrad, or it is an M -fae, or an MM -fae

in O(jf j) time.

(a) If f has a 2-vertex the same analysis as in ase 1(b) works.

(b) If f has a tetrad we do a BFS whih takes O(n) time.

If we �nd a separating yle C with size in f8; : : : ; 11g, we an onstrut

graphs G

1

= G� In(C) and G

2

= G�Out(C) in linear time. Assume that n

1

and n

2

are the sizes of G

1

and G

2

, respetively. Note that n

1

+ n

2

� n + 11

(beause of the size of C) and 9 � n

1

; n

2

� n � 1 (beause C is a separating

yle). Making reursive alls to Proedure 2 on graphs G

1

and G

2

takes

T

2

(n

1

) + T

2

(n

2

) � �(n

3

1

+ n

3

2

) + �

2

(n

2

1

+ n

2

2

) time. This is maximized when

one of n

1

or n

2

is equal to n � 1 and the other one is 12. Therefore T

2

(n) �

�[(n � 1)

3

+ 12

3

℄ + �

2

[(n � 1)

2

+ 12

2

℄ + n for some onstant  > 0. This



Chapter 4. One Further Step on Steinberg's Conjeture 90

implies that T

2

(n) � �n

3

+ �

2

n

2

, for large enough �.

If we don't �nd a separating yle, then we onstrut graph G

�

whih takes

at most linear time. Calling Proedure 2 on this graph with size n� 4 takes

T

2

(n � 4). Then the 3-olouring of G

�

an be extended to a 3-olouring of

G in onstant time by Remark 4.2.7. Therefore, for some onstant  > 0:

T

2

(n) � n+ T

2

(n� 4) � �n

3

+ �

2

n

2

. .

() If f is an M -fae then we do a BFS whih takes linear time. If we �nd

a separating yle, an analysis almost idential to that of the previous ase

implies that T

2

(n) � �n

3

+ �

2

n

2

. Otherwise we onstrut the graph G

�

with

size n�6, whih takes linear time. Finding a 3-olouring of G

�

takes T

2

(n�6)

time and extending this olouring to G takes onstant time by Remark 4.2.9.

Therefore, for some onstant  > 0: T

2

(n) � n + T

2

(n� 6) � �n

3

+ �

2

n

2

.

(d) If f is anMM -fae, again we spend linear time to do the BFS. If a separating

yle is found as in the analysis of the previous two ases: T

2

(n) � �n

3

+�

2

n

2

.

Otherwise, we onstrut the graph G

�

with size n� 8 in linear time. Finding

a 3-olouring of G

�

takes T

2

(n � 8) time and extending this olouring to G

takes onstant time by Remark 4.2.11. So for some onstant  > 0: T

2

(n) �

n + T

2

(n� 8) � �n

3

+ �

2

n

2

, as wanted.



Chapter 5

Colouring the Square of a Planar

Graph

Remark 5.0.1 The results of this hapter are based on papers [41, 42℄.

5.1 The Problem and Previous Works

A natural generalization of the 4CP is the following: for a given planar graph G, �nd

the minimum number of olours required in a olouring of the verties of G suh that

every two verties at distane at most two of eah other get di�erent olours. This kind

of olouring is also referred to in the literature as distane-2-olouring. Note that this

problem is equivalent to the standard vertex olouring of G

2

, the square of graph G.

The question of �nding the best possible upper bound for the hromati number of

the square of a planar graph seems to have �rst been asked by Wegner [58℄ in 1977. He

posed the following onjeture:

Conjeture 5.1.1 [58℄ For a planar graph G:

�(G

2

) �

8

>

>

<

>

>

:

�+ 5 if 4 � � � 7;

b

3

2

� + 1 if � � 8:

91
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u w

v

k+1

k
k

vertices

vertices
vertices

Figure 5.1: A planar graph with �(G

2

) =

3

2

�+ 1

He gave examples illustrating that these bounds are best possible. Figure 5.1 shows suh

an example for large values of �. In this graph, there are k paths of length 2 between

u; v and v; w, and k + 1 paths of length 2 between u; w. So � = 2k + 2 and all verties

should get di�erent olours. Therefore, �(G

2

) = 3k+4 = b

3

2

�+1. He also showed that

if � = 3 then G

2

an be 8-oloured and onjetured that 7 olours would be enough.

Very reently, Thomassen [54℄ has solved this onjeture for � = 3, by showing that the

square of every ubi planar graph is 7-olourable, but the onjeture for general planar

graphs remains open. This onjeture is mentioned in Jensen and Toft [38℄, Setion 2.18,

followed by a brief history of it.

One might think that the straightforward greedy algorithm will give a linear upper

bound of approximately 5� on �(G

2

), beause every planar graph has a vertex of degree

at most 5. But with being more areful in the analysis, one an �nd out why this

argument does not work that easily. For instane, we an argue that sine every planar

graph G has a vertex with degree at most 5, there is an ordering v

1

; v

2

; : : : ; v

n

of the

verties of G, suh that eah v

i

has at most 5 neighbours in fv

1

; : : : ; v

i�1

g. This implies a

greedy olouring algorithm whih uses at most 6 olours to olour G (but not G

2

). One
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may try to extend this argument by saying that, sine vertex v

i

has at most 5 neighbours

in fv

1

; : : : ; v

i�1

g, it has at most 5(� � 1) verties at distane two in fv

1

; : : : ; v

i�1

g, and

therefore the same algorithm will olour G

2

with at most 5� + 1 olours. However, the

verties at distane two from v

i

in fv

1

; : : : ; v

i�1

g are not neessarily adjaent to a vertex

in fv

1

; : : : ; v

i�1

g. So, the number of verties in fv

1

; : : : ; v

i�1

g at distane two from v

i

might be muh larger than 5(�� 1).

Another naive (and failed) argument for showing that �(G

2

) � 5�+1 is the following:

in any planar graph G there is a vertex v of degree at most 5; by indution there is a

olouring C of the square of G� v, with at most 5�+1 olours. Sine there are at most

5� verties at distane at most 2 of v we an assign a olour to v. What's the aw?

Some neighbours of v might have the same olour in C, but they are at distane 2 of

eah other in G (beause of v). So we annot leave them with their old olours.

The �rst non-trivial upper bound on �(G

2

) for eah planar graph G was given by

Jonas [39℄ in his Ph.D. thesis, who proved something lose to the 5� that these failed

arguments tried to obtain:

Theorem 5.1.2 [39℄ For every planar graph G: �(G

2

) � 8�� 22.

This bound was later improved by Wong in his M.S. thesis [60℄:

Theorem 5.1.3 [60℄ For every planar graph G: �(G

2

) � 3� + 5.

Wong also onsidered the problem of olouring larger powers of planar graphs and, using

the above theorem as the base ase of an indution, proved that for every planar graph

G and integer k � 1: �(G

k

) 2 O(�

b

k

2



). Note that a rooted tree of height b

k

2

 in whih

every internal node has degree � requires 
(�

b

k

2



) olours in any olouring of its kth

power. Therefore the above bound is asymptotially best possible.

Van den Heuvel and MGuinness [57℄ gave the following result:

Theorem 5.1.4 [57℄ For every planar G: �(G

2

) � 2� + 25.
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They also applied the same proof tehnique to a more generalized setting of olouring,

whih we will disuss soon. For large values of �, Agnarsson and Halld�orsson [2℄ found

a better asymptoti bound:

Theorem 5.1.5 [2℄ If G is a planar graph with � � 749, then �(G

2

) � b

9

5

�+ 2.

Reently, Borodin et al. [16, 17℄ have been able to extend these results further:

Theorem 5.1.6 [16, 17℄ For a planar graph G with � � 47: �(G

2

) � d

9

5

�e + 1.

In this hapter we give some upper bounds for the hromati number of the square of

a planar graph in terms of the maximum degree, whih are asymptotially better than

all the previously known bounds. More spei�ally, we redue the oeÆient of � from

9

5

to

5

3

and obtain �(G

2

)d

5

3

�e+O(1). The main theorem of this hapter is:

Theorem 5.1.7 For a planar graph G: �(G

2

) � d

5

3

�e+ 78.

For larger values of �, we an redue the additive onstant somewhat:

Theorem 5.1.8 For a planar graph G, if � � 241, then: �(G

2

) � d

5

3

�e + 25.

Remark 5.1.9 The proof of Theorem 5.1.7 is more ompliated than the main results

of the previous two hapters. That is why we kept this theorem for the last hapter, even

though this result was obtained earlier than the previous ones.

Sine the standard vertex olouring for planar graphs [28℄ and distane-2-olouring for

general graphs [32℄ are both NP-omplete, one might expet omputing �(G

2

) for planar

G to be NP-omplete. Indeed this is true, as proved by Ramanathan and Loyd [46℄ that

the distane-2-olouring problem (and therefore omputing �(G

2

)) is NP-omplete for

planar graphs.

A generalization of standard vertex olouring is L(p; q)-labeling. For verties u; v 2 V

let dist(u; v) denote the distane between u and v. For integers p; q � 0, an L(p; q)-

labeling of a graph G is a mapping L : V (G) �! f0; : : : ; kg suh that



Chapter 5. Colouring the Square of a Planar Graph 95

� jL(u)� L(v)j � p if dist(u; v) = 1, and

� jL(u)� L(v)j � q if dist(u; v) = 2.

The p; q-span of G, denoted by �

p

q

(G), is the minimum k for whih an L(p; q)-labeling

exists. It is easy to see that for any graph G: �(G

2

) = �

1

1

(G) + 1. The problem of

determining �

p

q

(G) has been studied for some spei� lasses of graphs, suh as paths,

yles, wheels, and omplete k-partite graphs [32℄, trees [23, 32℄, ographs [23℄, k-almost

trees [26℄, and uniyles and biyles [39℄ (See also [9, 27, 29, 30, 31, 46, 45, 56, 59℄).

The motivation for this problem omes from the hannel assignment problem in radio

and ellular phone systems, where eah vertex of the graph orresponds to a transmitter

loation, with the label assigned to it determining the frequeny hannel on whih it

transmits. In appliations, beause of possible interferene between neighbouring trans-

mitters, the hannels assigned to them must have a ertain distane from eah other. A

similar requirement arises from transmitters that are not neighbours but are lose, i.e at

distane 2. This problem is also known as the Frequeny Assignment Problem.

Not surprisingly, omputing �

p

q

(G) is an NP-hard problem, as the simplest non-trivial

ase, i.e. L(1; 0)-labeling, is the standard vertex olouring of G. The L(p; q)-labeling

problem, and speially the ase p = 2 and q = 1, has been studied extensively on several

lasses of graphs (see for example [9, 23, 26, 27, 29, 30, 31, 32℄). The L(2; 1)-labeling

problem is NP-omplete for planar, split, hordal, and bipartite graphs [9℄, and for graphs

of diameter 2 [32℄, and it is polynomially solvable for paths and yles [32℄, and trees

[23℄. However, the omplexity of L(p; q)-labeling in general is still open for trees.

Beause of the motivating appliation for this problem, it is quite natural to onsider

it on planar graphs. Sine the ase q = 0 orresponds to labeling the verties of a graph

with integers suh that adjaent verties reeive labels at least p apart, the upper bound

3p for �

p

0

of planar graphs is easily seen to follow from the Four Colour Theorem. So,

let's assume that q � 1. For any planar graph G, a straightforward argument shows that

�

p

q

(G) � q�+ p � q + 1. There are planar graphs G (suh as the one in Figure 5.1) for
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whih �

p

q

(G) �

3

2

q� + O(p + q). The best known upper bound for �

p

q

(G), for a planar

graph G, is (4q � 2)� +O(p+ q) proved in [57℄:

Theorem 5.1.10 [57℄ For any planar graph G and positive integers p and q, suh that

p � q:

�

p

q

(G) � (4q � 2)� + 10p+ 38q � 24:

We sharpen the gap between this result and the best possible bound asymptotially, by

obtaining the upper bound qd

5

3

�e+O(p+ q).

Theorem 5.1.11 For any planar graph G and positive integers p and q:

�

p

q

(G) � qd

5

3

�e + 18p+ 77q � 18:

In [9℄ Bodlaender et al. give approximation algorithms to ompute �

2

1

for some lasses

of graphs and noted that the result of Jonas [39℄ yields an 8-approximation algorithm

for planar graphs. Fotakis et al. [27℄ point out that the result of [57℄ yields a (2 + o(1))-

approximation algorithm for omputing �

1

1

on planar graphs. Agnarsson and Halld�orsson

[2℄ also give a 2-approximation algorithm. Fotakis et al. [27℄ asks if one an obtain a

polynomial time approximation algorithm of approximation ratio < 2. Theorem 5.1.11

answers this question as explained below.

Consider Theorem 5.1.7. It is easy to see that this Theorem yields a (

5

3

+ �)-

approximation algorithm for omputing �(G

2

) for any planar graph G, where � is a

onstant that goes to zero when � goes to in�nity. Note that this is a trivial approxima-

tion algorithm as all we need to do is to ompute

5

3

�+78 and return it. But we atually

obtain something more interesting. The proofs of Theorems 5.1.7, 5.1.8, and 5.1.11 are

onstrutive and yield eÆient algorithms for �nding the orresponding olourings. For

example, for Theorem 5.1.7, we obtain an algorithm that produes a distane-2-olouring

of any given planar graph G with at most

5

3

�+ 78 olours.

The organization of this hapter is as follows. The next setion ontains the proof of

the main Theorem, i.e. Theorem 5.1.7. We start by explaining some of the ideas behind
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the proof. We formalize these ideas in Subsetion 5.2.2 by stating some notation and

de�nitions that will be used throughout the proof, and then desribing the reduible on-

�gurations. Subsetion 5.2.3 explains the set of disharging rules. Finally in Subsetion

5.2.4 we omplete the proof of the theorem by proving unavoidability of the reduible

on�gurations, using the Disharging Method. In Setion 5.3 we show how some simple

modi�ations in the arguments of Setion 5.2 yield the proof of Theorem 5.1.8. Then we

show in Setion 5.4 how to adapt the arguments to prove Theorem 5.1.11. The approxi-

mation algorithms obtained based on the proofs of Theorems 5.1.7, 5.1.8, and 5.1.11 are

explained in Setion 5.5. Finally we talk about the asymptoti tightness of the results of

this hapter, if the same set of reduible on�gurations is used.

5.2 Proof of the Main Theorem

In this setion, we give the proof of Theorem 5.1.7 whih uses the Disharging Method.

Before going into the details of the proof, we explain, very roughly, some of the basi and

simple ideas behind this proof and the previously known results.

5.2.1 Going from

9

5

� to

5

3

�

Let G be an arbitrary planar graph, and assume that G has a very large maximum degree,

�. Also, assume that we have d

9

5

�e+C olours to use, for some large onstant C (as we

said, this is the previously best known upper bound for �(G

2

) and Borodin et al. [16, 17℄

proved it for C = 1).

The main reduible on�guration to prove the bound �(G

2

) � d

9

5

�e + C is a vertex

v with d

G

2

(v) � d

9

5

�e + C � 1, whih is adjaent to a vertex u with small degree (say

at most 4). Suppose that G has suh a vertex v. Then we an ontrat v on edge uv,

i.e. remove uv and identify v with u and remove the multiple edges. Call this new graph

G

0

. Sine d(u) � 4, it is easy to see that �(G

0

) � �(G), and therefore, we an olour G

0
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u v

a
1

a
2

ax

Figure 5.2: Two verties with many ommon neighbours

with d

9

5

�e + C olours. This olouring indued on G an be easily extended to v, sine

there are at most d

9

5

�e + C � 1 oloured verties in N

G

2

(v). We all a vertex like v, a

light vertex.

So it is enough to show that G has a light vertex. In order to do this, we de�ne

two other on�gurations, eah of whih ontains a light vertex and then prove (using the

Disharging Method) that G has at least one of these two on�gurations.

The �rst of these two on�gurations is a � 5-vertex t, all but at most one of whose

neighbours have very small degree (say at most 4). In this ase, the number of verties

at distane at most two of t is at most 4� 4 + �, whih is smaller than d

9

5

�e + C, if �

is large enough. Therefore t is a light vertex.

For the seond on�guration, suppose that G is a triangulation. Consider two verties

u and v with large degrees, say �, that have x ommon neighbours. For example,

assume that a

1

; : : : ; a

x

are onseutive (in lokwise order) neighbours of u whih are also

neighbours of v. Sine G is a triangulation, eah a

i

, 2 � i � x� 1, has degree exatly 4

and is adjaent to u; v; a

i�1

; and a

i+1

(See Figure 5.2). Fix one of these verties, say a

2

,

and let's ount the number of verties at distane at most two from it. It is easy to see

that d

G

2

(a

2

) � d

G

(u) + d

G

(v) + d

G

(a

1

) + d

G

(a

3

)� x, sine a

1

; : : : ; a

x

are ounted twie,

one in d

G

(u), and one in d

G

(v). Therefore, if x �

�

5

, then d

G

2

(a

2

) � d

9

5

�e. So a

2

is a

light vertex.

If we assume that G is a triangulation then using the Disharging Method one an
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show that G indeed has a � 5-vertex like t or a 4-vertex like a

2

, whose number of

neighbours at distane at most two is at most d

9

5

�e + C � 1. Of ourse, dealing with

non-triangulations adds some ompliations.

As we will see in Setion 5.6, there are planar graphs G in whih for every vertex

v: d

G

2

(v) � d

9

5

�e. Thus, using the idea explained above, we annot hope for a bound

better than d

9

5

�e+1 and we need to ome up with another reduible on�guration. This

reduible on�guration is explained in the next setion (Lemma 5.2.14).

5.2.2 Preliminaries and Reduible Con�gurations

A vertex v is alled big if d

G

(v) � 47, otherwise we all it a small vertex. For this

subsetion only, we assume that G is a ounter-example to Theorem 5.1.7 with the

minimum number of verties. By a olouring we impliitly mean a olouring in whih

verties at distane at most two from eah other get di�erent olours. Trivially G is

onneted. The next lemma formalizes the �rst struture we talked about in the previous

subsetion.

Lemma 5.2.1 For every vertex v of G, if there exists a vertex u 2 N(v), suh that

d

G

(v) + d

G

(u) � �+ 2 then d

G

2

(v) � d

5

3

�e+ 78.

Proof: Assume that v is suh a vertex. Contrat v on edge uv. The resulting graph has

maximum degree at most � and beause G was a minimum ounter-example, the new

graph an be oloured with d

5

3

�e + 78 olours. Now onsider this olouring indued on

G, in whih every vertex other than v is oloured. If d

G

2

(v) < d

5

3

�e + 78 then we an

assign a olour to v to extend the olouring to v, whih ontradits the de�nition of G.

Reall that by [57℄: �(G

2

) � 2� + 25. Therefore:

Observation 5.2.2 We an assume that � � 160, otherwise 2� + 25 � d

5

3

�e+ 78.

Lemma 5.2.3 Every �5-vertex in G must be adjaent to at least two big verties.
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Proof: By way of ontradition assume that this is not true. Then there is a �5-vertex v

whih is adjaent to at most one big vertex and all its other neighbours are �46-verties.

Then, using Observation 5.2.2, v along with one of these small verties will ontradit

Lemma 5.2.1.

Corollary 5.2.4 Every vertex of G is a �2-vertex.

Lemma 5.2.5 G is 2-onneted.

Proof: By ontradition, let v be a ut-vertex of G and let C

1

; : : : ; C

t

(t � 2) be the

onneted omponents of G � fvg. By the de�nition of G, for eah 1 � i � t, there is

a olouring '

i

of G

i

= C

i

[ fvg with d

5

3

�e + 78 olours. We an permute the olours

in eah '

i

(if needed) suh that v has the same olour in all '

i

's and the sets of olours

appearing in N

G

i

(v), 1 � i � t, are all disjoint. Now the union of these olourings will

be a olouring of G, a ontradition.

As mentioned in Subsetion 5.2.1, our proof beomes signi�antly simpler if we an

assume that the underlying graph is a triangulation, i.e. all faes are triangles. It will

also simplify things to assume that it has minimum degree at least 4. To be able to make

these assumptions, we begin by modifying graph G in two phases.

Phase 1: In this phase we transform G into a (simple) triangulated graph G

0

, by

adding edges to every non-triangle fae of G. Let G

0

be initially equal to G. Consider

any non-triangle fae f = v

1

; v

2

; : : : ; v

k

of G

0

. Beause G is 2-onneted, we annot have

both v

1

v

3

2 E(G

0

) and v

2

v

4

2 E(G

0

) at the same time sine they both have to be outside

of f . So we an add at least one of these edges to E(G

0

) inside f , without reating any

multiple edges. We follow this proedure to redue the faes' sizes as long as we have

any non-triangle fae in G

0

. At the end we have a triangulated graph G

0

whih ontains

G as a subgraph.

Observation 5.2.6 For every vertex v, N

G

(v) � N

G

0

(v).
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y

t

x

z

v

Figure 5.3: The swithing operation

Lemma 5.2.7 All verties of G

0

are �3-verties.

Proof: By Corollary 5.2.4 and Observation 5.2.6 all the verties of G

0

are �2-verties.

Suppose that we have a 2-vertex v in G

0

having neighbours x and y. Sine G

0

is trian-

gulated, the faes on eah side of edge vx must be triangles, all them f

1

and f

2

. So we

must have xy 2 f

1

and also xy 2 f

2

. Sine G

0

has at least 4 verties, f

1

6= f

2

and so we

have a multiple edge. But G

0

is simple.

Lemma 5.2.8 Eah �4-vertex v in G

0

an have at most

d(v)

2

neighbours whih are 3-

verties.

Proof: Let x

0

; x

1

; : : : ; x

d

G

0

(v)�1

be the sequene of neighbours of v in G

0

, in lokwise

order. We show that we annot have two onseutive 3-verties in this sequene. If there

are two onseutive 3-verties, say d(x

i

) = d(x

i+1

) = 3, where addition is in mod d

G

0

(v),

then there is a fae ontaining x

i�1

; x

i

; x

i+1

; x

i+2

. But G

0

is a triangulated graph.

Phase 2: In this phase we transform graph G

0

into another triangulated graph G

00

,

whose minimum degree is at least 4. Initially G

00

is equal to G

0

. As long as there is any

3-vertex v we do the following swithing operation: let x; y; z be the three neighbours of

v. At least two of them, say x and y, are big in G

0

by Lemma 5.2.3 and Observation 5.2.6.

Remove edge xy. Sine G

0

(and also G

00

) is triangulated this leaves a fae of size 4, say

x; v; y; t. Add edge vt to G

00

(see Figure 5.3). This way, the graph is still triangulated.

Observation 5.2.9 If v is not a big vertex in G then N

G

(v) � N

G

00

(v).
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Lemma 5.2.10 If v is a big vertex in G then d

G

00

(v) � 24.

Proof: Follows easily from Lemma 5.2.8 and the de�nition of the swithing operation.

So a big vertex v in G will not be a �23-vertex in G

00

. Let v be a big vertex in G and

x

0

; x

2

; : : : ; x

d

G

00

(v)�1

be the neighbours of v in G

00

in lokwise order. We all x

a

; : : : ; x

a+b

(where addition is in mod d

G

00

(v)) a sparse segment in G

00

i�:

� b � 2,

� Eah x

i

is a 4-vertex.

In the next two lemmas, let's assume that x

a

; : : : ; x

a+b

is a maximal sparse segment of

v in G

00

, whih is not equal to the whole neighbourhood of v. Also assume that x

a�1

and x

a+b+1

are the neighbours of v immediately before x

a

and immediately after x

a+b

,

respetively.

Lemma 5.2.11 There is a big vertex in G other than v, that is onneted to all the

verties of x

a+1

; : : : ; x

a+b�1

, in G

00

(and in G).

Proof: Follows easily from Observation 5.2.9, Lemma 5.2.3, and the de�nition of a sparse

segment.

We use u to denote the big vertex, other than v, that is onneted to all x

a+1

; : : : ; x

a+b�1

.

Lemma 5.2.12 All the verties x

a+1

; : : : ; x

a+b�1

are onneted to both u and v in G. If

x

a�1

is not big in G then x

a

is onneted to both u and v in G. Otherwise it is onneted

to at least one of them. Similarly if x

a+b+1

is not big in G, x

b

is onneted to both u and

v in G, and otherwise it is onneted to at least one of them.

Proof: Sine the only big neighbours of x

a+1

; : : : ; x

a+b�1

in G

00

are v and u, by Lemma

5.2.3 they must be onneted to both of them in G as well. For the same reason x

a

and

x

a+b

will be onneted to u and v in G, if x

a�1

and x

a+b�1

are not big.
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qi,2

ui

iQ

v

Figure 5.4: The on�guration of Lemma 5.2.13

We all x

a+1

; : : : ; x

a+b�1

the inner verties of the sparse segment, and x

a

and x

a+b

the end verties of the sparse segment. Consider a vertex v and let us denote the

maximal sparse segments of N(v) by Q

1

; Q

2

; : : : ; Q

m

in lokwise order, where Q

i

=

q

i;1

; q

i;2

; q

i;3

; : : :. The next two lemmas desribe the key two reduible on�gurations for a

graph that is a minimum ounter-example to the theorem. We have already talked about

the �rst one in Subsetion 5.2.1. Here we formalize it.

Lemma 5.2.13 jQ

i

j � d

G

(v)� d

2

3

�e � 73, for 1 � i � m.

Proof: We prove this by ontradition. Assume that for some i, jQ

i

j > d

G

(v)�d

2

3

�e�73.

Let u

i

be the big vertex that is adjaent to all the inner verties of Q

i

(in both G and

G

00

). See Figure 5.4. For an inner vertex of Q

i

, say q

i;2

, we have:

d

G

2

(q

i;2

) � d

G

(u

i

) + d

G

(v) + 2� (jQ

i

j � 3)

� �+ d

G

(v)� jQ

i

j+ 5

< d

5

3

�e + 78:

If q

i;2

is adjaent to q

i;1

or q

i;3

in G then it ontradits Lemma 5.2.1. Otherwise it is only

adjaent to v and u

i

in G, therefore has degree 2, and so along with v or u

i

ontradits

Lemma 5.2.1.

Lemma 5.2.14 Consider G and suppose that u

i

and u

i+1

are the big verties adjaent

to all the inner verties of Q

i

and Q

i+1

, respetively. Furthermore assume that t is a



Chapter 5. Colouring the Square of a Planar Graph 104

v

ui+1

t

qi,2

ui

qi+1,2

iQ Qi+1

w

Figure 5.5: Con�guration of Lemma 5.2.14

vertex adjaent to both u

i

and u

i+1

but not adjaent to v (see Figure 5.5) and there is a

vertex w 2 N

G

(t) suh that d

G

(t) + d

G

(w) � � + 2. Let X(t) be the set of verties at

distane at most 2 of t that are not in N

G

[u

i

℄ [N

G

[u

i+1

℄. If jX(t)j � 6 then:

jQ

i

j+ jQ

i+1

j � b

1

3

� � 67:

Proof: Again we use ontradition. Assume that jQ

i

j + jQ

i+1

j � b

1

3

� � 66. Using

the argument of the proof of Lemma 5.2.1 we an olour every vertex of G other than t.

Note that d

G

2

(t) � d

G

(u

i

) + d

G

(u

i+1

) + jX(t)j � 2� + 6. If all the olours of the inner

verties of Q

i

have appeared on the verties of N

G

[u

i+1

℄[X(t)�Q

i+1

and all the olours

of inner verties of Q

i+1

have appeared on the verties of N

G

[u

i

℄ [X(t)�Q

i

then there

are at least jQ

i

j � 2+ jQ

i+1

j � 2 repeated olours at N

G

2

(t). So the number of olours at

N

G

2

(t) is at most 2�+ 6� jQ

i

j � jQ

i+1

j+ 4 � d

5

3

�e+ 76 and so there is still one olour

available for t, whih is a ontradition.

Therefore, without loss of generality, there exists an inner vertex of Q

i+1

, say q

i+1;2

,

whose olour is not in N

G

[u

i

℄ [ X(t) � Q

i

. If there are less than d

5

3

�e + 77 olours at

N

G

2

(q

i+1;2

) then we ould assign a new olour to q

i+1;2

and assign the old olour of it to

t and get a olouring for G. So there must be d

5

3

�e + 77 or more di�erent olours at

N

G

2

(q

i+1;2

).
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From the de�nition of a sparse segment N

G

(q

i+1;2

) � fv; u

i+1

; q

i+1;1

; q

i+1;3

g. There are

at most d

G

(u

i+1

)+7 olours, alled the smaller olours, at N

G

[u

i+1

℄[X(t)[N

G

[q

i+1;1

℄[

N

G

[q

i+1;3

℄�fvg�fq

i+1;2

g (note that t is not oloured). So there must be at least d

2

3

�e+70

di�erent olours, alled the larger olours, at N

G

[v℄�Q

i+1

. Sine jN

G

[v℄j�jQ

i

j�jQ

i+1

j �

�+ 1� b

1

3

�+ 66 � d

2

3

�e+ 67, one of the larger olours must be on an inner vertex of

Q

i

, whih without loss of generality, we an assume is q

i;2

. Beause t is not oloured, we

must have all the d

5

3

�e+ 78 olours at N

G

2

(t). Otherwise we ould assign a olour to t.

As there are at most �+6 olours, all from the smaller olours, at N

G

[u

i+1

℄[X(t), all the

larger olours must be in N

G

[u

i

℄, too. Let L be the number of larger olours. Therefore,

the number of forbidden olours for q

i;2

that are not from the larger olours, is at most

d(u

i

)� L + d(u

i+1

)� L � 2�� 2L. By onsidering the verties at distane exatly two

of q

i;2

that have a larger olour and noting that q

i;2

has a larger olour too, the total

number of forbidden olours for q

i;2

is at most 2��L � b

4

3

��70, and so we an assign

a new olour to q

i;2

and assign the old olour of q

i;2

, whih is one of the larger olours

and is not in N

G

2

(t)� fq

i+1;2

g, to t and extend the olouring to G, a ontradition.

In summary here is the list of reduible on�gurations we proved in this subsetion:

Reduible Con�gurations:

1. A ut-vertex.

2. A vertex violating Lemma 5.2.1. Suh a vertex exists if (but not only if) there exists:

2(a). a �5-vertex violating Lemma 5.2.3, or

2(b). a maximal sparse segment Q

i

of a big vertex violating Lemma 5.2.13.

3. Two maximal sparse segments Q

i

and Q

i+1

whih ontradit Lemma 5.2.14.

In the next two subsetions, we prove the unavoidability of this set of on�gurations.

As before, this is done using the Disharging Method. The disharging rules used in this

proof are more ompliated than the ones we have seen in the previous hapters.
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5.2.3 Disharging Rules

Assume that G is an arbitrary planar graph with � � 160 as the theorem holds for

smaller values of � by the result of [57℄. Our goal is to show that G has at least one of

the reduible on�gurations listed above. If G has reduible on�gurations 1 or 2(a), we

are done. Otherwise, we onstrut graphs G

0

and G

00

from G as desribed in the previous

subsetion. We give an initial harge of d

G

00

(v)� 6 units to eah vertex v. Using Euler's

formula, jV j � jEj+ jF j = 2, and noting that 3jF (G

00

)j = 2jE(G

00

)j, it is straightforward

to hek that:

X

v2V

(d

G

00

(v)� 6) = 2jE(G

00

)j � 6jV j+ 4jE(G

00

)j � 6jF (G

00

)j = �12: (5.1)

By these initial harges, the only verties that have negative harges are 4- and 5-verties,

whih have harges �2 and �1, respetively. The goal is to show that, either G has a

reduible on�guration listed in the previous subsetion or we an send harges from

other verties to �5-verties suh that all the verties have non-negative harge, whih

is of ourse a ontradition sine the total harge must be negative by Equation (5.1).

We all a vertex v pseudo-big (in G

00

) if v is big (in G) and d

G

00

(v) � d

G

(v)�11. Note

that a pseudo-big vertex is also a big vertex, but a big vertex might or might not be a

pseudo-big vertex. Before explaining the disharging rules, we more notation.

Suppose that v; x

1

; x

2

; : : : ; x

k

; u is a sequene of verties suh that v is adjaent to x

1

,

x

i

is adjaent to x

i+1

, 1 � i < k, and x

k

is adjaent to u.

De�nition: By \v sends  units of harge through x

1

; : : : ; x

k

to u" we mean v sends

 units of harge to x

1

, it passes the harge to x

2

... et, and �nally x

k

passes the harge

to u. In this ase, we also say \v sends  units of harge through x

1

" and \u gets  units

of harge through x

k

".

In order to simplify the alulations of the total harges on vertex x

i

, 1 � i � k, we

do not take into aount the harges that only pass through x

i

. We say v saves k units of

harge on a set of size h of its neighbours if the net harge loss of v on these neighbours
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is smaller than h by at least k. More formally, v saves k units of harge on this set if

the total harge sent from v to (or through) them minus the total harge sent from (or

through) them to v is at most h� k units. For example, if v is sending nothing to u and

is getting

1

2

through u then h = jfugj = 1 and the net loss is 0�

1

2

= �

1

2

. Setting h� k

to be equal to the net loss, we get k =

3

2

and so v saves

3

2

on u.

In the disharging phase, a big vertex v of G:

1) Sends 1 unit of harge to eah 4-vertex u in N

G

00

(v).

2) Sends

1

2

unit of harge to eah 5-vertex u in N

G

00

(v).

In addition, if v is a big vertex and u

0

; u

1

; u

2

; u

3

; u

4

are onseutive neighbours of v in

lokwise or ounter-lokwise order, where d

G

00

(u

0

) = 4 (see Figure 5.6), then:

3) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) = 4, d

G

00

(u

4

) � 5, and the neighbours of u

1

in lokwise or ounter-lokwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

2

; u

1

.

4) If d

G

00

(u

1

) = 5, 5 � d

G

00

(u

2

) � 6, d

G

00

(u

3

) � 7, and the neighbours of u

1

in lokwise or

ounter-lokwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

3

; u

2

; u

1

.

5) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) � 5, and the neighbours of u

1

in lokwise or

ounter-lokwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

4

to x

1

through u

2

; u

1

.

6) If d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 5, d

G

00

(u

3

) � 7, and the neighbours of u

1

in lokwise or

ounter-lokwise order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

2

to x

1

through u

1

.

7) If d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 6, and the neighbours of u

1

in lokwise or ounter-

lokwise order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

4

to x

1

through u

1

.

If 7 � d

G

00

(v) < 12 then:

8) If u is a big vertex and u

0

; u

1

; u

2

; v; u

3

; u

4

; u

5

are onseutive neighbours of u where

all u

0

; u

1

; u

2

; u

3

; u

4

; u

5

are 4-verties then v sends

1

2

to u.
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Figure 5.6: Disharging rules
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9) If u

0

; u

1

; u

2

; u

3

are onseutive neighbours of v, suh that d

G

00

(u

1

) = d

G

00

(u

2

) = 5, u

0

and u

3

are big, and t is the other ommon neighbour of u

1

and u

2

(other than v),

then v sends

1

2

to t.

Every �12-vertex v of G

00

that was not big in G:

10) Sends

1

2

to eah of its neighbours.

A �5-vertex v sends harges as follows:

11) If d

G

00

(v) = 4 and its neighbours in lokwise order are u

0

; u

1

; u

2

; u

3

, suh that

u

0

; u

1

; u

2

are big in G and u

3

is small, then v sends

1

2

to eah of u

0

and u

2

through

u

1

.

12) If d

G

00

(v) = 5 and its neighbours in lokwise order are u

0

; u

1

; u

2

; u

3

; u

4

, suh that

d

G

00

(u

0

) � 11, d

G

00

(u

1

) � 12, d

G

00

(u

2

) � 12, d

G

00

(u

3

) � 11, and u

4

is big, then v

sends

1

2

to u

4

.

From now on, by \the total harge sent from v to one of its neighbours u", we mean

the total harge sent from v to u or through u. Similarly, by \the total harge v reeived

from u", we mean the total harge sent from or through u to v.

5.2.4 Details of the Proof

Here we show the unavoidability of the reduible on�gurations desribed before. As

usual, this is done by establishing a ontradition by alulating the total harge after

the disharging phase.

Lemma 5.2.15 Every big vertex v sends at most

1

2

to every 5� or 6-vertex in N

G

00

(v).

Proof: For any 5� or 6-vertex u, v sends harges to u by at most one rule.

Lemma 5.2.16 If v is big and u

0

; u

1

; u

2

; u

3

; u

4

are onseutive neighbours of v in ounter-

lokwise order, suh that d

G

00

(u

2

) � 7 then v sends at most

1

2

through u

2

, or sends 1

through u

2

and d

G

00

(u

0

) = d

G

00

(u

4

) = 5 and u

1

and u

3

are 5� or 6-verties.



Chapter 5. Colouring the Square of a Planar Graph 110

Proof: If u

2

is big and one of rules 3 or 5 applies then it is easy to verify that it is the

only rule by whih u

2

gets harge from v. If u

1

and u

3

are both 5-verties then rule 5

may apply twie, one for sending harge to a neighbour of u

1

and one for sending harge

to a neighbour of u

3

, so overall u

2

gets at most

1

2

from v. It is straightforward to hek

that there is no on�guration in whih we an apply rule 3 twie.

The only other way for v to send harge to u

2

is by rule 4. Note that if this rule applies

then none of the other rules apply. Also, v an send harge to u

2

twie by rule 4 sine it

might apply under lokwise and ounter-lokwise orientations of neighbours of v. This

happens if d

G

00

(u

0

) = 5, 5 � d

G

00

(u

1

) � 6, 5 � d

G

00

(u

3

) � 6, d

G

00

(u

4

) = 5, v; u

1

; x

2

; x

1

; x

0

are neighbours of u

0

in lokwise order where d

G

00

(x

0

) = 4, and y

0

; y

1

; y

2

; u

3

; v are neigh-

bours of u

4

in lokwise order where d

G

00

(y

0

) = 4. In this ase v sends

1

2

to x

1

through

u

2

; u

1

; u

0

and sends

1

2

to y

1

through u

2

; u

3

; u

4

, and this is the only on�guration in whih

v sends harge to u

2

twie. This proves the lemma.

Lemma 5.2.17 If a vertex v saves a total of at least 6 units of harge on its neighbour-

hood it will have non-negative harge.

Proof: If it saves at least 6 units of harge on its neighbourhood, the total net harge

sent out from v is at most d

G

00

(v)� 6 units of harge, and sine the initial harge of v is

d

G

00

(v)� 6, it will have non-negative harge.

Lemma 5.2.18 Every vertex v that is not big in G will either have non-negative harge

after the disharging phase or is reduible on�guration 2(a).

Proof: If v is a 4-vertex it gets a total of at least 2 units of harge by rule 1 and if it

is a 5-vertex it gets a total of at least 1 unit of harge by rule 2, unless v is reduible

on�guration 2(a). Also, the � 5-verties that send harges by rules 11 and 12 will

have non-negative harges, sine they are adjaent to at least three � 12-verties. If

d

G

00

(v) � 12 then it sends

1

2

d

G

00

(v) � d

G

00

(v)� 6 by rule 10 and so will have non-negative

harge. It is straightforward to verify that there is no on�guration in whih a 7-vertex



Chapter 5. Colouring the Square of a Planar Graph 111

yi

xi
zi

u
i,1

u i,li

xi+1 zi+1

yi+1

v

Figure 5.7: Con�guration of Lemma 5.2.19

v sends more than 1 unit of harge in rules 8 or 9. Finally, it is not diÆult to see that

by rules 8 and 9, a vertex sends at most

1

2

for every two neighbours that it has. So if

8 � d

G

00

(v) < 12 it sends at most

d

G

00

(v)

4

� d

G

00

(v) � 6, and therefore it will have non-

negative harge in any of these ases. Finally, rules 3 to 7 do not apply to the verties

that are not big in G.

Lemma 5.2.19 Every big vertex v that is not pseudo-big will have non-negative harge.

Proof: Suppose that v is suh a vertex. So d

G

00

(v) � d

G

(v) � 12 and therefore v was

involved in at least 12 swithing operations, in eah of whih the edge between v and

another big vertex of G was removed. Sine G

0

is simple, these big verties are distint.

Call them y

1

; y

2

; : : : ; y

k

, where k � 12, in lokwise order. Let x

i

z

i

be the edge that

was added during the swithing operation that removed vy

i

, and the order of x

i

's and

z

i

's is suh that x

i

omes before z

i

in lokwise order. Note that all x

i

's and all z

i

's are

neighbours of v in G

00

(see Figure 5.7).

Let us all the verties between z

i

and x

i+1

, u

i;1

; u

i;2

; : : : ; u

i;l

i

, starting from z

i

. For

onsisteny, let us relabel temporarily z

i

and x

i+1

to u

i;0

and u

i;l

i

+1

, respetively. To show

that v saves at least 6 in total, it is enough to show that either v saves at least

1

2

on a

vertex from z

i

to x

i+1

, or v saves at least 1 on the verties from z

i+1

to x

i+2

, for 1 � i � k.

First we show that there is at least one �5-vertex in u

i;0

; : : : ; u

i;l

i

+1

, for eah 1 � i � k.

If u

i;0

is a 4-vertex we must have y

i

u

i;1

2 G

00

, beause G

00

is a triangulation. Assuming

that u

i;1

is a 4-vertex we must have y

i

u

i;2

2 G

00

and so on, until we have y

i+1

u

i;l

i

+1

2 G

00
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and so u

i;l

i

+1

will be a �5-vertex. So for every 1 � i � k, there is a �5-vertex between z

i

and x

i+1

. Take any suh vertex and all it u

i;j

i

. By Lemmas 5.2.15 and 5.2.16 and rule

10, it an be seen that v saves at least

1

2

on u

i;j

i

, unless 7 � d

G

00

(u

i;j

i

) � 11.

So assume that 7 � d

G

00

(u

i;j

i

) � 11 and v sends 1 through u

i;j

i

. By Lemma 5.2.16

both of the neighbours of v before and after u

i;j

i

are 5� or 6-verties and so v saves

1

2

on

them. If z

i

6= x

i+1

then at least one of these lies between z

i

and x

i+1

and therefore v saves

1

2

on the verties from z

i

to x

i+1

. If z

i

= x

i+1

then u

i;j

i

= z

i

= x

i+1

, so 5 � d

G

00

(z

i+1

) � 6

and, d

G

00

(u

i+1;1

) = 5 if z

i+1

6= x

i+2

, or d

G

00

(z

i+2

) = 5 otherwise.

First assume that z

i+1

= x

i+2

. Now if d

G

00

(z

i+1

) = 5 then v gets bak

1

2

from z

i+1

by

rule 12 and so saves 1 on that. If d

G

00

(z

i+1

) = 6 then it is easy to verify that v sends

nothing to z

i+1

by any rule and so saves 1 on that.

Otherwise if z

i+1

6= x

i+2

then there are at least two verties between z

i+1

; : : : ; x

i+2

,

that are 5� or 6-verties and so v saves at least

1

2

on eah of them, and therefore saves

a total of 1 on the verties z

i+1

; : : : ; x

i+2

.

So the only verties that may have negative harges are pseudo-big verties in G

00

.

Assume that v is a pseudo-big vertex of G

00

whose neighbourhood sequene in lokwise

order is x

1

; : : : ; x

k

. Let m be the number of maximal sparse segments of the neighbour-

hood of v and all these segments Q

1

; Q

2

; : : : ; Q

m

in lokwise order. Also, let R

i

be the

sequene of neighbours of v between the last vertex of Q

i

and the �rst vertex of Q

i+1

,

where Q

m+1

= Q

1

. If m = 0 then we de�ne R

1

to be equal to N

G

00

(v).

Lemma 5.2.20 Let R = x

a

; : : : ; x

b

, where R is one of R

1

; : : : ; R

m

. Then v saves at least

b

jRj

6

 on the verties of R.

Proof: Sine R does not overlap with any maximal sparse segment, from every three

onseutive verties x

i

; x

i+1

; x

i+2

in R (where we onsider the neighbours ylily if R =

N

G

00

(v)), at least one of them is a �5-vertex. Either v sends at most

1

2

to this vertex, or

sends 1 and by Lemma 5.2.16 the two verties before that and the two verties after that
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Figure 5.8: The �rst struture in Lemma 5.2.21

are 5� or 6-verties and v saves at least

1

2

on eah of them. Thus in either ase v saves at

least

1

2

on every three onseutive verties of R and so saves at least b

1

6

(b�a+1) = b

jRj

6

.

Lemma 5.2.21 Suppose that m � 4. Then for every 1 � i � m either v saves at least

3

2

on R

i

, or v saves at least 1 on R

i

and

jQ

i

j+ jQ

i+1

j � b

1

3

� � 67; (5.2)

or G has reduible on�guration 2(a) or 3.

Proof: We onsider di�erent ases based on jR

i

j:

jR

i

j = 1: Assume that R

i

= u. Sine u is the only vertex between two maximal sparse

segments, d

G

00

(u) � 5. First let d

G

00

(u) = 5. Sine Q

i

and Q

i+1

are sparse segments,

there must be two big verties u

i

and u

i+1

that are onneted to all the verties of

Q

i

and Q

i+1

, respetively. Also, u must be onneted to these two verties, beause

G

00

is a triangulation (see Figure 5.8).

Note that by rule 12, v gets bak the

1

2

harge it had sent to u. So v is saving at

least 1, so far. Let t be the other vertex that makes a triangle with edge u

i

u

i+1

.
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Assume that d

G

00

(t) = 4, and w

1

; w

2

are the two neighbours of t other than u

i

and

u

i+1

. If d

G

00

(w

1

) � 4 and d

G

00

(w

2

) � 4 then sine Q

i

and Q

i+1

are sparse segments

and u

i

and u

i+1

are big verties in G, either Equation (5.2) holds, or G has reduible

on�guration 3. Next assume that d

G

00

(w

1

) � 5. Then by rule 3 u

i

will be sending

extra

1

2

to v through u. So overall, v saves

3

2

on u. If d

G

00

(t) � 5 then eah of u

i

and u

i+1

will send an extra

1

4

to v through u by rule 5 and therefore v saves

3

2

on

u.

Now let d

G

00

(u) = 6, whose neighbours will be v; u

i

; u

i+1

; t, and the end verties

of Q

i

and Q

i+1

. Note that in this ase v will send nothing to u and so is saving

at least 1. Assume that d

G

00

(t) = 4 and its other neighbour is w. If d

G

00

(w) � 6

then either Equation (5.2) holds, or G has reduible on�guration 3. Otherwise,

d

G

00

(w) � 7 and so eah of u

i

and u

i+1

sends an extra

1

2

to v through u by rule 6

and so v saves 2 on u. Next assume d

G

00

(t) = 5 and its other neighbours are w

1

and w

2

. If d

G

00

(w

1

) � 6 and d

G

00

(w

2

) � 6 then either Equation (5.2) holds, or G

has reduible on�guration 3. Otherwise at least one of w

1

and w

2

has degree � 7

and so one of u

i

or u

i+1

will send an extra

1

2

unit of harge to v through u by rule

6 and so v saves

3

2

. If d

G

00

(t) � 6 then both u

i

and u

i+1

send an extra

1

4

harge to

v through u by rule 7. So v saves

3

2

on u.

If 7 � d

G

00

(u) � 11, or 12 � d

G

00

(u) and u was not big in G, then u sends

1

2

to v by

rules 8 or 10 and so v saves

3

2

on u.

If u was big in G then by rule 11 v gets bak

1

2

through u for eah of the end verties

of Q

i

and Q

i+1

that are adjaent to u, and so v saves at least 2 on u.

jR

i

j = 2: Assume that R

i

= v

1

; v

2

. If d

G

00

(v

1

) � 6 or d

G

00

(v

2

) � 6 then it is easy

to hek that v sends nothing to one of v

1

; v

2

and sends at most

1

2

to the other

one, or sends

1

4

to eah, and so saves at least

3

2

on R

i

. So let us assume that

d

G

00

(v

1

) = d

G

00

(v

2

) = 5 and let t be the other vertex whih makes a triangle with
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Figure 5.9: Two other strutures for Lemma 5.2.21

v

1

; v

2

. Note that v sends only

1

2

to eah of v

1

and v

2

and so is saving 1 on R

i

, so

far.

If d

G

00

(t) = 4 then either Equation (5.2) holds, or G has reduible on�guration 3.

Let d

G

00

(t) = 5 and all the other neighbour of t (other than u

i

; v

1

; v

2

; u

i+1

), w (see

Figure 5.9(a)). If d

G

00

(w) � 6 then either Equation (5.2) holds, or G has reduible

on�guration 3. Otherwise d

G

00

(w) � 7 and by rule 4 u

i

and u

i+1

eah send an

extra

1

2

to v (through v

1

and v

2

respetively) and therefore v saves 2 on R

i

. Now

let d

G

00

(t) = 6 whose neighbours are w

1

; w

2

; u

i

; u

i+1

; v

1

; v

2

(see Figure 5.9(b)). If

d

G

00

(w

1

) � 6 and d

G

00

(w

2

) � 6 then either Equation (5.2) holds, or G has reduible

on�guration 3. Otherwise, at least one of w

1

or w

2

is a �7-vertex and so one of u

i

or u

i+1

sends an extra

1

2

to v (through v

1

or v

2

) by rule 4 and therefore v saves

3

2

on R

i

. If 7 � d

G

00

(t) < 12 then t sends

1

2

to v by rule 9 and so v saves

3

2

on R

i

. If

12 � d

G

00

(t) then v gets bak the

1

2

it had sent to eah of v

1

and v

2

by rule 12 and

so saves at least 2 on R

i

.

jR

i

j � 3: If there is no 4-vertex in R

i

then they are all �5-verties and by Lemmas

5.2.15 and 5.2.16 v saves at least

3

2

on R

i

. If jR

i

j � 5, sine R

i

annot have three
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onseutive 4-verties, we must have at least three�5-verties and again by Lemmas

5.2.15 and 5.2.16 v saves at least

3

2

. So onsider the ase that R

i

= v

1

; v

2

; v

3

; v

4

,

d

G

00

(v

1

) � 5, d

G

00

(v

4

) � 5, and d

G

00

(v

2

) = d

G

00

(v

3

) = 4 (exatly the same argument

works for the ase that jR

i

j = 3 and v

2

= v

3

). There must be a big vertex w, other

than v, onneted to all the verties of R

i

, or else G has reduible on�guration

2(a). If d

G

00

(v

1

) = 5 then v gets bak

1

2

from v

1

by rule 12 and so saves 1 on v

1

. If

d

G

00

(v

1

) � 6 it an be veri�ed that v sends nothing to v

1

by any rule and so saves

1 on v

1

. Sine v saves at least

1

2

on v

2

, it saves at least

3

2

on R

i

.

Lemma 5.2.22 Every pseudo-big vertex v either has non-negative harge or lies in re-

duible on�guration 2(b) or 3.

Proof: Note that the initial harge of v was d

G

00

(v)� 6. So it is enough to show that v

saves at least 6 units of harge somewhere in its neighbourhood. We onsider di�erent

ases based on the value of m, the number of maximal sparse segments of v. Reall that

we assume � � 160.

m = 0: Sine v is pseudo-big d

G

00

(v) � d

G

(v) � 11 � 36. Using Lemma 5.2.20 v will

save at least b

1

6

d

G

00

(v) � 6 and therefore will have non-negative harge.

1 � m � 3: Either G has reduible on�guration 2(b), or Lemma 5.2.13 holds for G.

Then by de�nition of a pseudo-big vertex, if:

� m = 1: Then:

jR

1

j = d

G

00

(v)�Q

1

� d

G

00

(v)� d

G

(v) + d

2

3

�e + 73

� d

2

3

� 160e+ 62

� 36:
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So by Lemma 5.2.20 v saves at least 6 units of harge on R

1

.

� m = 2: Then:

X

1�i�2

jR

i

j= d

G

00

(v)�

X

1�i�2

jQ

i

j

� d

G

00

(v)� 2d

G

(v) + 2� d

2

3

�e+ 146

�d

1

3

�e + 135

� 36:

So by Lemma 5.2.20 v saves at least 6 units of harge on R

1

[ R

2

.

� m = 3: Then:

X

1�i�3

jR

i

j= d

G

00

(v)�

X

1�i�3

jQ

i

j

� d

G

00

(v)� 3d

G

(v) + 3� d

2

3

�e+ 219

� 208:

Therefore by Lemma 5.2.20 v saves at least 6 units of harge on R

1

[R

2

[R

3

.

m = 4: If v lies in reduible on�guration 2(b) or 3 then we are done. So assume that

G satis�es Lemmas 5.2.13 and 5.2.14 for v. If v saves

3

2

on eah of R

1

; : : : ; R

4

then

it saves 6, and we are done. Otherwise, without loss of generality assume that v

saves 1 on R

1

and Equation (5.2) holds for Q

1

and Q

2

. Therefore using Lemma

5.2.13:

jR

2

j+ jR

3

j+ jR

4

j � d

G

00

(v)� (jQ

1

j+ jQ

2

j)� jQ

3

j � jQ

4

j

� d

G

00

(v)� b

1

3

� + 67� 2(d

G

(v)� d

2

3

�e � 73)

� �� 2d

G

(v) + d

G

00

(v) + 213

� 202:

Thus, by Lemma 5.2.20 v saves at least 6 units on R

2

[R

3

[ R

4

.
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m = 5: If G has reduible on�guration 2(b) or 3 we are done. Otherwise, G satis�es

Lemmas 5.2.13 and 5.2.14 for v. So v saves at least 1 on every R

i

, by Lemma 5.2.21.

If there are at least two of R

i

's suh that v saves

3

2

or more on them then v saves

at least 6. Otherwise there is at most one R

i

, say R

5

, on whih v saves at least

3

2

.

Therefore Equation (5.2) must hold for jQ

1

j+ jQ

2

j and jQ

3

j+ jQ

4

j, i.e:

jQ

1

j+ jQ

2

j+ jQ

3

j+ jQ

4

j � 2� b

1

3

� � 134:

Then using Lemma 5.2.13:

X

1�i�5

jR

i

j � d

G

00

(v)� d

G

(v) + d

2

3

�e + 73� 2� b

1

3

�+ 134

� 196:

Therefore v saves at least 6 units of harge on R

1

[R

2

[R

3

[R

4

[R

5

, by Lemma

5.2.20.

m � 6: v saves at least 1 on every R

i

, by Lemma 5.2.21. So v saves at least 6 and

therefore will have non-negative harge.

Proof of Theorem 5.1.7: By Lemmas 5.2.18, 5.2.19, and 5.2.22 every vertex of

G

00

will either have non-negative harge, after applying the disharging rules, or lie in

reduible on�guration 2(a), 2(b) or 3. If G has a reduible on�guration then we are

done. Otherwise the total harge over all the verties of G

00

will be non-negative, but this

ontradits Equation (5.1). Therefore G must have one of the reduible on�gurations

listed in Subsetion 5.2.2. This disproves the existene of a minimum ounter-example

to the theorem.

Remark 5.2.23 Using a more areful analysis one an prove the bound d

1

4

(b � a + 1)e

in Lemma 5.2.20, whih in turn an be used to prove �(G

2

) � d

5

3

�e+61. By being even

more areful throughout the analysis one an probably prove the bound �(G

2

) � d

5

3

�e+51

or even maybe with 30 or 20 instead of 51.



Chapter 5. Colouring the Square of a Planar Graph 119

5.3 A Better Bound for Large Values of �

In this setion we desribe the modi�ations required to be made to the proof of Theorem

5.1.7 to obtain Theorem 5.1.8. The main steps of the proof of Theorem 5.1.8 are very

similar to those of Theorem 5.1.7, and we only have to modify a few lemmas and redo the

alulations. For these lemmas, sine the proofs are almost idential and do not need any

new ideas, we only state the lemmas without giving further proofs. Let G be a minimum

ounter-example to Theorem 5.1.8 suh that � � 241.

Lemma 5.3.1 For every vertex v of G, if there exists a vertex u 2 N(v), suh that

d

G

(v) + d

G

(u) � �+ 2 then d

G

2

(v) � b

5

3

�+ 25.

We onstrut the triangulated graphs G

0

and then G

00

exatly in the same way. Lemmas

5.2.3 to 5.2.12 are still valid. The analogues of Lemmas 5.2.13 and 5.2.14 will be as

follows.

Lemma 5.3.2 jQ

i

j � d

G

(v)� d

2

3

�e � 20, for 1 � i � m.

Lemma 5.3.3 Under the same assumption as in Lemma 5.2.14, we have:

jQ

i

j+ jQ

i+1

j � b

1

3

� � 14:

We apply the same initial harges and disharging rules. Again, all Lemmas 5.2.15 to

5.2.20 hold. The analogue of Lemma 5.2.21 will be:

Lemma 5.3.4 Suppose that m � 4. Then for every 1 � i � m either v saves at least

3

2

on R

i

, or v saves at least 1 on R

i

and

jQ

i

j+ jQ

i+1

j � b

1

3

� � 14;

or G has reduible on�guration 3.

Now it is straightforward to do the alulations of Lemma 5.2.22 with the above values

to see that it holds in this ase too. This will omplete the proof of Theorem 5.1.8.
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5.4 Generalization to Frequeny Channel Assignment

In this setion we prove Theorem 5.1.11. As we said in Setion 5.1, the upper bound 3p

for �

p

0

of planar graphs follows from the Four Colour Theorem (if we use olours from

f0; p; 2p; 3pg). So let's assume that q � 1. We prove the following theorem:

Theorem 5.4.1 For any planar graph G and positive integer p:

�

p

1

(G) � d

5

3

�e + 18p+ 59:

Assuming Theorem 5.4.1, we an prove Theorem 5.1.11 as follows:

Proof of Theorem 5.1.11: Let  = d

5

3

�e + 18d

p

q

e + 60. By Theorem 5.4.1, there

is an L(d

p

q

e; 1)-labeling of G with olours in f0; : : : ;  � 1g. Consider suh a labeling

and multiply every olour by q. This yields an L(p; q)-labeling of G with olours in

f0; : : : ; q(� 1)g. Noting that q(� 1) � qd

5

3

�e+ 18p+ 77q� 18 ompletes the proof.

In the rest of this setion we give the proof of Theorem 5.4.1. The steps of the proof

are very similar to those of proof of Theorem 5.1.7. Let G be a planar graph whih is a

ounter-example to Theorem 5.4.1 with the minimum number of verties. We set

C = d

5

3

�e+ 18p+ 60

and throughout this setion we use olours from f0; : : : ; C � 1g. Reall that a vertex is

said to be big if d

G

(v) � 47.

Lemma 5.4.2 Suppose that v is a �5-vertex in G. If there exists a vertex u 2 N(v),

suh that d

G

(v) + d

G

(u) � �+ 2 then d

G

2

(v) � d

G

(v) + d

5

3

�e + 73.

Proof: Assume that v is suh a vertex and assume that d

G

2

(v) < d

G

(v) + d

5

3

�e + 73.

Contrat v on edge vu. The resulting graph has maximum degree at most � and beause

G was a minimum ounter-example, the new graph has an L(p; 1)-labeling with at most

 olours. Now onsider suh a labeling indued on G, in whih every vertex other than
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v is oloured. Every vertex at distane (exatly) two of v in G forbids 1 olour for v,

and every vertex in N(v) forbids at most 2p � 1 olours for v. So the total number of

forbidden olours for v, i.e. the olours that we annot assign to v, is at most:

d

G

(v)(2p� 1) + d

G

2

(v)� d

G

(v) < 10p� 5 + d

5

3

�e + 73

= d

5

3

�e + 10p+ 68

� C:

The last inequality follows from the assumption that p � 1. Therefore, there is still at

least one olour available for v whose absolute di�erene from its neighbours in G

2

is

large enough and so we an extend the olouring to G.

Observation 5.4.3 By Theorem 5.1.10 we an assume that � � 162, otherwise 2(2q �

1)� + 10p+ 38q � 23 � C.

Lemma 5.4.4 Every �5-vertex must be adjaent to at least 2 big verties.

Proof: By way of ontradition assume that there is a �5-vertex v whih is adjaent

to at most one big vertex and so all its other neighbours are �46-verties. Then, using

Observation 5.4.3, v along with one of these small verties will ontradit Lemma 5.4.2.

Now onstrut graph G

0

from G and then G

00

from G

0

in the same way we did in the

proof of Theorem 5.1.7. Also, we de�ne the sparse segments in the same way. Consider

vertex v and let's all the maximal sparse segments of it Q

1

; Q

2

; : : : ; Q

m

in lokwise

order, where Q

i

= q

i;1

; q

i;2

; q

i;3

; : : :.

Lemma 5.4.5 jQ

i

j � d

G

(v)� d

2

3

�e � 69.

Proof: Analogous to the proof of Lemma 5.2.13.

The next lemma is analogous to Lemma 5.2.14. The key di�erene is that we require

a bound on the degree of t. This is beause eah vertex adjaent to t an forbid for t up

to 2p� 1 olours. Thus we have to be more areful about ontrolling the number of suh

verties.
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Lemma 5.4.6 Suppose that u

i

and u

i+1

are the big verties adjaent to all the verties

of Q

i

and Q

i+1

, respetively. Furthermore assume that t is a �6-vertex adjaent to both

u

i

and u

i+1

but not adjaent to v (see Figure 5.5) and there is a vertex w 2 N(t) suh

that d

G

(t) + d

G

(w) � �+ 2. Let X(t) be the set of verties at distane at most two of t

that are not in N [u

i

℄ [N [u

i+1

℄. If jX(t)j � 6 then:

jQ

i

j+ jQ

i+1

j � b

1

3

� � 60: (5.3)

Proof: Again, by way of ontradition, assume that jQ

i

j + jQ

i+1

j � b

1

3

� � 59. Using

the same argument as at the beginning of the proof of Lemma 5.4.2, we an olour every

vertex of G other than t using olours in f0; : : : ; C � 1g suh that the verties that are

adjaent reeive olours that are at least p apart and the verties at distane two reeive

distint olours. Consider suh a olouring.

Remark: We often fous on the inner verties of Q

i

. So reall that there are exatly

jQ

i

j � 2 suh verties (similarly for Q

i+1

).

Claim 1: There are at least d

5

3

�e + 78 olours in N

G

2

(t) and they forbid all the C

olours for t.

Proof: Trivially, if there is a non-forbidden olour for t then we an extend the

olouring to t, whih ontradits the minimality of G.

If there are at most d

5

3

�e+ 77 olours in N

G

2

(t) then (beause t is not oloured and

has degree at most 6) they forbid at most d

5

3

�e+71+6(2p� 1) = d

5

3

�e+12p+65 < C

olours for t, whih ontradits what we proved in the previous paragraph.

Claim 2: There exists an inner vertex of Q

i

or Q

i+1

whose olour is distint from

the olour of every other vertex in N

G

2

(t) and di�ers from the olour of every vertex in

N(t) by at least p.

Proof: By way of ontradition assume the above statement is false. Let us ount

the number of forbidden olours for t. The neighbours of t forbid at most d

G

(t)� (2p�1)

olours for t. Let's denote this set of forbidden olours by R. The verties at distane
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exatly two of t are in N(u

i

) [N(u

i+1

) [X(t)�N(t), and eah of them forbids its own

olour for t. However, at least jQ

i

j � 2 + jQ

i+1

j � 2 of these forbidden olours (for t)

are ounted twie. This is beause we assumed the laim is false; i.e. for every olour

� that appears on an inner vertex of Q

i

or Q

i+1

there is a neighbour of t whose olour

di�ers from � by less than p (and so � 2 R) or there is another vertex in N

G

2

(t) with

olour �. Sine d

G

2

(t) � d

G

(u

i

) + d

G

(u

i+1

) + jX(t)j � 2� + 6, the total number of

forbidden olours for t is at most d

G

(t)� (2p� 1) + 2�+6� d

G

(t)� jQ

i

j � jQ

i+1

j+4 �

d

5

3

�e + 6(2p� 1) + 63 � d

5

3

�e + 12p+ 57 < C. This ontradits Claim 1.

Without loss of generality, assume there exists an inner vertex of Q

i+1

, say q

i+1;2

,

whose olour is di�erent from the olour of every vertex in N

G

2

(t) and di�ers from the

olour of every vertex in N(t) by at least p.

Claim 3: There are at least d

5

3

�e + 77 olours in N

G

2

(q

i+1;2

) and they forbid for

q

i+1;2

, C � 1 olours (all the olours exept the one that appears on q

i+1;2

).

Proof: First we show that the verties in N

G

2

(q

i+1;2

) must forbid all the olours

(exept the one that appears on q

i+1;2

) for q

i+1;2

. Otherwise, we an remove the olour

of q

i+1;2

and assign it without any onit to t (beause Claim 2 holds), and assign a

new olour (from the olours that are not forbidden) to q

i+1;2

. Hene, the number of

forbidden olors for q

i+1;2

is C � 1.

If there are fewer than d

5

3

�e+77 di�erent olours inN

G

2

(q

i+1;2

) then, sine d

G

(q

i+1;2

) �

4, the verties in N

G

2

(q

i+1;2

) forbid fewer than 4(2p�1)+ d

5

3

�e+73 = d

5

3

�e+8p+69 �

C � 1 olours for q

i+1;2

. This ontradits what we proved in the previous paragraph.

From the de�nition of a sparse segment N(q

i+1;2

) � fv; u

i+1

; q

i+1;1

; q

i+1;3

g. Let's

denote the set of olours on the verties in N [u

i+1

℄ [ N(t) [X(t) [N [q

i+1;1

℄ [ N [q

i+1;3

℄

by S and all it the set of smaller olours.

Claim 4: jSj � d

G

(u

i+1

) + 14.

Proof: Follows from the de�nition of S.
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Let us all the set of olours that are forbidden for t or q

i+1;2

by the smaller olours

the smaller forbidden olours, and denote them by SF . Sine d(t) � 6 and d(q

i+1;2

) � 4

and u

i+1

is a ommon neighbour of t and q

i+1;2

,

jSF j � 9(2p� 1) + jSj � 9 = jSj+ 18p� 18: (5.4)

So, SF ontains S along with at most 18(p� 1) olours whih di�er from the olour of

some neighbour of t or some neighbour of q

i+1;2

by at most p� 1.

Claim 5: Every olour that is not in SF di�ers from every olour in N(t)[N(q

i+1;2

)

by at least p.

Proof: By the de�nition of SF , every olour whih di�ers from the olour of a vertex

in N(t) [N(q

i+1;2

) by less than p is in SF .

We will use Claim 5 at the end of the proof of this Lemma. By Claim 3, there are at

least C � 1� jSF j olours, di�erent from the smaller forbidden olours, in N(v)�Q

i+1

.

We all this set the larger olours and denote it by L.

Claim 6: jLj � d

5

3

�e � jSj+ 77 � d

5

3

�e � d

G

(u

i+1

) + 63.

Proof: Follows from the de�nition of L, Claim 4, and the bound on jSF j (Inequality

5.4).

Sine jN(v)j � (jQ

i

j � 2) � jQ

i+1

j � � � b

1

3

� + 61 < jLj, one of the larger olours

must be on an inner vertex of Q

i

, whih without loss of generality, we an assume is q

i;2

.

Claim 7: The verties in N(v) � Q

i+1

� fq

i;2

g forbid for q

i;2

all the olours in L,

exept the one that appears on q

i;2

.

Proof: All the larger olors appear in N(v) � Q

i+1

and so they are at distane at

most two of q

i;2

.

Claim 8: The number of forbidden olours for q

i;2

is at most b

4

3

� + 8p� 68 < C.

Proof: By noting that d(q

i;2

) � 4, neighbours of q

i;2

forbid at most 4(2p� 1) olours

for q

i;2

. Now let's ount the number of forbidden olours for q

i;2

by the verties at distane

exatly two of it.
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Sine the olours in N [u

i+1

℄ [ N(t) [ X(t) are smaller olours and forbid for t only

olours that are in SF , by Claim 1, all the larger olours must appear in N [u

i

℄� N(t).

Remember that the larger olours appear in N(v)�Q

i+1

, too. Therefore, the number of

olours that are not in L and are forbidden for q

i;2

by the verties at distane exatly 2

of q

i;2

is at most: d(u

i

)� 1� (jLj � 1)+ d(v)� 1� (jLj � 1) � 2�� 2jLj. By onsidering

the verties at distane exatly two of q

i;2

that have a larger olour and noting that q

i;2

has a larger olour too, and using Claim 6, the total number of forbidden olours for q

i;2

is at most:

4(2p� 1) + (2�� 2jLj) + (jLj � 1) � b

1

3

�+ d

G

(u

i+1

) + 8p� 68

� b

4

3

�+ 8p� 68:

By Claim 8, we an assign the olour of q

i;2

to t (beause it is a larger olour and so

it is di�erent from the olours in X(t) and, by Claim 5, di�ers from all the olours in

N(t) by at least p) and �nd a new olour for q

i;2

that is not forbidden for it.

The rest of the proof is almost idential to that of Theorem 5.1.7. We use Lemmas

5.4.4, 5.4.5, and 5.4.6, instead of Lemmas 5.2.3, 5.2.13, and 5.2.14, respetively. The

initial harges and the disharging rules are the same. Without any modi�ations, Lem-

mas 5.2.15 to 5.2.20 hold in this ase, too. In Lemma 5.2.21 we should replae Equation

(5.2) with Equation (5.3) and use Lemma 5.4.6 instead of Lemma 5.2.14. To do so, it is

important to note that whenever we used Lemma 5.2.14 in the proof of Lemma 5.2.21,

the degree of t was at most 6; thus, we an use Lemma 5.4.6, instead. After doing these

modi�ations, the alulations for the proof of this revised version of Lemma 5.2.21 are

fairly straightforward.
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5.5 The Colouring Algorithms

In this setion we show how to transform the proof of Theorem 5.1.7 into an algorithm.

that olours the verties of a given embedded planar graph G with

5

3

�+78 olours suh

that every pair of verties at distane at most two from eah other get di�erent olours.

Sine in any proper olouring of G

2

we need at least �+1 olours this will be a (

5

3

+o(1))-

approximation algorithm, for large enough values of �. With some minor modi�ations

in the algorithm, we an obtain olouring algorithms for Theorems 5.1.8 and 5.1.11.

Consider a planar graph G. We may assume that � � 160 sine for smaller values of

� it is straightforward to obtain an algorithm based on the result of [57℄ that uses at most

d

5

3

�e + 78 olours. Also, we assume that the input to our algorithm is onneted, sine

for a disonneted graph it is enough to olour eah onneted omponent, separately.

One iteration of the algorithm either �nds a ut-vertex and breaks the graph into smaller

subgraphs, or redues the size of the problem by ontrating a suitable edge of G. Then

it olours the new smaller graph(s) reursively, and then extends the olouring(s) to G.

More spei�ally, we do the following steps, as long as the graph has at least one vertex:

1. Chek to see whether G has a ut-vertex. If v is a ut-vertex and C

1

; : : : ; C

k

are

onneted omponents of G � v then olour eah G

i

= C

i

[ fvg, independently.

The union of these olourings, after permuting the olours in some of them will be

a olouring of G.

2. Else, hek to see whether there is a �5-vertex adjaent to at most one big vertex.

If suh a vertex exists, then that vertex along with one of its small neighbours will

be the suitable edge to be ontrated.

3. Else, onstrut the triangulated graph G

00

.

4. Apply the initial harges and the disharging rules.
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5. As the total harge is negative, we an �nd a vertex v with negative harge. This

vertex must have or lie in one of reduible on�gurations 2(a), 2(b) or 3.

If v is reduible on�guration 2(a) then we ontinue as explained in the seond

step. If we �nd reduible on�guration 2(b) around v then one of the inner verties

of the sparse segment along with one of its two big neighbours will be the suitable

edge to ontrat. Finally, if we �nd reduible on�guration 3 around v then we an

ontrat edge tw (reall the spei�ation of t and w from Lemma 5.2.14).

6. Colour the new graph (after ontrating the suitable edge), reursively.

7. This olouring an be easily extended to G by the arguments of proofs of Lemmas

5.2.3, 5.2.5, 5.2.13 or 5.2.14.

For a given graph G let n = jV j be the size of G, and denote the worst ase running

time of the algorithm for an input of size n by T (n). We prove by indution that for all

values of n and for some onstant C > 0: T (n) � Cn

2

. The inequality is trivial for small

values of n. So let's assume that T (i) � Ci

2

for 1 � i < n and onsider the ase that the

input graph has size n.

Finding a ut-vertex in a graph takes linear time. One we have done that we make

reursive alls on k smaller graphs G

1

; : : : ; G

k

, with 2 � k � n � 1. Let n

i

= jV (G

i

)j,

1 � i � k. Note that 2 � n

i

� n�1 (for 1 � i � k) and

P

k

i=1

(n

i

�1) = n�1. Therefore,

for some onstant � > 0: T (n) � �n+

P

k

i=1

T (n

i

) � �n+C

P

k

i=1

n

2

i

: The last summation

is maximized when k = 2 and one of n

1

or n

2

is equal to n� 1. This easily implies that

T (n) � Cn

2

.

To do the seond step we go through all � 5-verties and hek the degree of their

neighbours. This an be easily done in O(n).

To onstrut graph G

0

we spend at most O(jf j) time on every fae f . So it takes

O(

P

f2F

jf j) time to make G

0

, whih is in O(n). To onstrut G

00

we should do at most

O(n) swithing operations, eah of whih takes onstant time.
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Applying the initial harges an be done in linear time, too. For eah vertex v, it

takes at most O(d

G

00

(v)) to apply the disharging rules to it. So, applying the disharging

rules takes O(

P

v2V

d

G

00

(v)) time, whih is linear in n. Finding a vertex v with negative

harge an be done in O(n) time. Finding a suitable edge to ontrat around v takes at

most O(n) time.

One the suitable edge is found (in step 2 or 5) it takes at most O(n) time to ontrat

it. After �nding the olouring of the new graph, it takes at most O(n) time to extend

this olouring to G using the arguments of the proofs of Lemmas 5.2.3, 5.2.13 or 5.2.14.

Therefore, for some onstant � > 0: T (n) � �n+ T (n� 1) � �n+C(n� 1)

2

� Cn

2

, as

wanted.

The algorithms for Theorems 5.1.8 and 5.1.11 work almost identially.

5.6 On Possible Asymptoti Improvements of the

Main Theorem

In this setion, we only fous on the asymptoti order of the bounds, i.e. the oeÆient

of �. As we said in Subsetion 5.2.1, the main reduible on�guration to prove the

bound �(G

2

) �

9

5

�+ O(1) for planar G, is a vertex v with at most

9

5

�+ O(1) verties

in N

G

2

(v). The results of [2℄ and [16, 14℄ are essentially based on showing that every

planar graph has suh a vertex. However, as pointed out in [2℄ and [16, 14℄, this is the

best possible bound on the minimum degree of G

2

. That is, there are 2-onneted planar

graphs in whih every vertex v satis�es d

G

2

(v) � d

9

5

�e. One of these extremal graphs

an be obtained from the iosahedron, by taking a perfet mathing, adding k� 1 paths

of length two parallel to eah edge of the perfet mathing, and replaing every other

edge of the iosahedron by k parallel paths of length two (see Figure 5.10).

Therefore, by only bounding the minimum degree of G

2

we annot improve the bound

9

5

� + O(1), asymptotially. This is the reason we introdued reduible on�guration 3.
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Figure 5.10: The iosahedron and the modi�ed graph

We proved that any planar graph G either has a ut-vertex, or a vertex v suh that

d

G

2

(v) �

5

3

�+O(1), or has on�guration 3.

But there are graphs that are extremal for this new set of reduible on�gurations

in the following sense: these graphs do not have a ut-vertex, do not have a vertex v

with d

G

2

(v) �

5

3

�, and do not have on�guration 3. For an odd value of k, one of these

graphs, whih is obtained from a tetrahedron, is shown in Figure 5.11. To interpret

this �gure, we have to join the three opies of v

8

and remove the multiple edges (we

draw the graph in this way for larity). Also, the dashed lines represent sequenes of

onseutive 4-verties. Around eah of v

1

; : : : ; v

4

there are 3k � 6 suh verties. So,

d(v

1

) = d(v

2

) = d(v

3

) = d(v

4

) = 3k, d(v

5

) = d(v

6

) = d(v

7

) = d(v

8

) = 3k+ 3, � = 3k + 3,

and for any vertex v 2 G: d

G

2

(v) � 5k + 3 (with equality holding for v 2 fv

1

; : : : ; v

4

g).

The minimum degree of G

2

is

5

3

� + O(1) and it is easy to see that G does not have

on�guration 3. Therefore, using reduible on�gurations similar to those of Subsetion

5.2.2 the best asymptoti bound that we an ahieve is

5

3

�+O(1). So we need another

reduible on�guration to improve the multipliative onstant

5

3

.
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Figure 5.11: The extremal graph for reduible on�gurations 2 and 3



Chapter 6

Conluding Remarks

In this thesis we studied two olouring problems on planar graphs and used the Dis-

harging Method to improve the previously best known result on eah of them. The �rst

problem is Steinberg's onjeture, whih states that every planar graph without yles

of size 4 and 5 is 3-olourable. We proved that planar graphs without yles of size in

f4; : : : ; 7g are three olourable. The seond problem is a onjeture by Wegner, whih

states that the square of any planar graph G an be oloured with at most b

3

2

� + 1

olours. We improved the previously best known bound on the hromati number of the

square of a planar graph G by showing that �(G

2

) � d

5

3

�e+ O(1).

However, both of these onjetures (by Steinberg and Wegner) remain open. In this

hapter, along with these two major onjetures, we talk about several open problems.

Some of these problems are on possible improvements on the results we have obtained

in this thesis, with the hope of proving these two onjetures. These problems are the

more diÆult problems we present. We also disuss some open problems related to these

two onjetures whose study might shed some light on paths toward resolving these

onjetures. Some of these problems seem to be easier than the former ones and have

not been studied seriously either in the literature or by the author.

131
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6.1 On 3-Colouring Planar Graphs and Steinberg's

Conjeture

The next step toward the onjeture of Steinberg is to prove that planar graphs without

yles of size in f4; 5; 6g are 3-olourable. We believe that by ombining the ideas of

Chapters 3 and 4 and onsidering some more ompliated reduible on�gurations (sim-

ilar to those in Chapter 3), whih involve interations of two or more faes, we might be

able to do this step. The main diÆulty in this line of attak would be, of ourse, in

dealing with faes of size 7. Therefore, most of the new reduible on�gurations would

probably involve 7-faes. To prove Steinberg's full onjeture using this approah we

would probably have to onsider many more reduible on�gurations, so many so that a

omputer-aided proof seems unavoidable.

Another, perhaps easier, step to onsider is Steinberg's onjeture under the extra

ondition that every two triangles in the graph are far from eah other. More spei�ally,

for a planar graph G, let d(G) denote the minimum distane between two triangles

in G, given by the number of edges in a shortest path joining two triangles in G. If

d(G) > 0 (say at least 1 or 2) and G does not have 4- and 5-yles, is it true that

G is 3-olourable? This weaker version of Steinberg's onjeture seems easier to prove

sine many of the reduible on�gurations we may need to onsider to prove Steinberg's

full onjeture involve adjaent triangles (two triangles sharing a vertex) or triangles

that are lose to eah other. For instane, if we assume d(G) is large enough, then we

an bound from above the number of bad verties (3-verties inident with a triangle)

inident with � 12-faes. This will be quite helpful in the disharging phase (reall the

proofs of Example 2.2.4 and Theorem 3.2.1). Therefore, if we put a lower bound on the

distane between triangles, that will bring down the number of reduible on�gurations

signi�antly.

The problem suggested above is also a weaker version of an open problem disussed
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in Jensen and Toft [38℄ (Problem 2.10): If G is a planar graph with �nite, but suÆiently

large (say 4 or 5) d(G), is G then 3-olourable? Note that here we do not have the

restrition of not having 4- and 5-yles. If d(G) =1 then there is at most one triangle in

eah omponent of G and by the theorem of Gr�otsh [33℄ and an extension by Gr�unbaum

[34℄ and by Aksinov [3℄, G is indeed 3-olourable. It is known that d(G) � 3 is not

suÆient, as there are planar graphs with d(G) = 3 that are not 3-olourable.

6.2 On Distane-2-Colouring and Related Problems

As we mentioned in Remark 5.2.23, the additive onstant in the bound �(G

2

) � d

5

3

�e+

O(1) an be redued somewhat by doing a more areful analysis of the total harges after

the disharging phase. But it is not lear how to bring this onstant down lose to 1 (say

below 10). However, reduing the additive onstant does not seem as interesting nor as

important as improving this bound asymptotially.

As disussed in Setion 5.6, to improve this bound (and the other two theorems of

Chapter 5) asymptotially and possibly prove Wegner's onjeture (using the Disharging

Method), we have to �nd a new reduible on�guration, di�erent from on�gurations 1-3

listed in Subsetion 5.2.2. We do not know exatly what the struture of a new reduible

on�guration should look like, but one thing that we know is that this new on�guration

must exist in the graph of Figure 5.11. The reason is that this graph is 2-onneted (so

does not have on�guration 1) and neither has a vertex v with d

G

2

(v) �

5

3

� nor has

on�guration 3. Therefore, the best way to �nd a new reduible on�guration is to look

at the extremal graph of Figure 5.11, sine if it exists at all this graph must have it.

There seems to be a lose relation between distane-2-olouring and another type

of olouring, alled yli olouring (disussed below). As we explain soon, studying

the yli olouring problem might help to �nd a new reduible on�guration for the

distane-2-olouring problem and improve the results of Chapter 5, asymptotially.
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Figure 6.1: A wheel graph

6.2.1 Cyli Colourings of Planar Graphs

Consider an embedded planar graph G(V;E) with fae set F . De�ne a new set of verties

V

�

by putting a vertex v

f

in V

�

for every fae f 2 F . Also, reate a new edge set E

�

as

follows: for every edge uv 2 E onsider the two (not neessarily distint) faes f and f

0

that are on the two sides of uv. Let v

f

; v

f

0

2 V

�

be the verties orresponding to these

faes. Put the edge v

f

v

f

0

into E

�

. The new graph G

�

(V

�

; E

�

) is alled the dual graph

of G. Note that G

�

is not neessarily simple as it may have loops (if G has bridges) or

multiple edges (if two faes in G share more than one edge). It is easy to see that the

dual graph is also a planar graph, and the dual graph of G

�

is G.

The 4CP was originally stated as follows: the number of olours required to olour

the faes of an arbitrary planar graph in suh a way that, two distint faes whih are

inident with the same edge reeive di�erent olours, is at most 4. Note that this is

equivalent to olouring the verties of the dual graph.

In 1969, Ore and Plummer [43℄ de�ned a new type of fae olouring of planar graphs,

more restritive than the one in 4CP. A fae olouring is angular if two distint faes whih

are inident with the same vertex reeive distint olours. Equivalently, we want to olour

a map of ountries, suh that two ountries that share even a point on their borders (and

not neessarily a line segment) reeive di�erent olours. The angular hromati number

of G is the minimum number of olours required in any angular olouring of G. Clearly,



Chapter 6. Conluding Remarks 135

u w

v

k
k

k+1

edges

edges

edges

Figure 6.2: A graph with angular hromati number b

3

2

�

there is no onstant bound on the number of olours required in angular olourings of

planar graphs, as the wheel graph on n verties for instane (see Figure 6.1), requires n

olours in any angular fae olouring.

It is easy to see that for a graph with maximum degree �, we need at least � olours

in any angular olouring. In fat there are planar graphs that require b

3

2

� olours

in any angular olouring. One of these graphs with � = 2k + 1 is shown in Figure

6.2 (ompare this graph with the graph of Figure 5.1). On the other hand, Ore and

Plummer [43℄ proved that no planar graph requires more than 2� olours in any angular

olouring. Thus, it is interesting to determine the best possible upper bound on the

angular hromati number of a planar graph with maximum degree �.

Angular olouring is equivalent to a vertex olouring problem, known as yli olour-

ing. Consider a planar graph G and its dual G

�

. An angular olouring of G is equivalent

to a vertex olouring of G

�

, suh that two verties reeive di�erent olours if they are

inident with the same fae; we all suh a vertex olouring a yli olouring. The key

parameter in G

�

, whih orresponds to �(G), is the maximum fae size, denoted by �

�

.

The minimum number of olours required in any yli olouring of a planar graph G,

denoted by �



(G), is the yli hromati number of G. It is easy to see that in any yli
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vu

Figure 6.3: A graph with yli hromati number b

3

2

�

�



olouring of the graph of Figure 6.3 all verties should get di�erent olours. Therefore,

the yli hromati number of this graph is b

3

2

�

�

. In fat, this graph is the dual graph

of the graph of Figure 6.2, with eah path between u and v in Figure 6.3 orresponding

to a set of parallel edges in the graph of Figure 6.2.

In the yli olouring of the dual graph G

�

of a graph G, sine we are olouring the

verties, we an ignore loops and multiple edges, or simply remove them to make G

�

simple. Aording to [38℄ the following onjeture is impliitly stated by Borodin [11℄:

Conjeture 6.2.1 For every planar graph G with maximum fae size �

�

:

�



(G) � b

3

2

�

�

:

It is not hard to see that this onjeture looks very similar to Wegner's onjeture on

the hromati number of the square of a planar graph. Not only do these two onjetures

look similar, but also the known results on them are quite similar. The result of Ore

and Plummer [43℄ provided a 2�

�

upper bound for �



(G). Borodin [12℄ improved this

result to 2�

�

� 3 for �

�

� 8. Then Borodin et al. [21℄ proved �



(G) � b

9

5

�

�

, and very

reently, Sanders and Zhao [50℄ showed �



(G) � d

5

3

�

�

e. The reduible on�gurations

used in the proofs of the last two results are very similar to the reduible on�gurations

used to prove the orresponding bounds for the hromati number of the square of a

planar graph, in [17, 16℄ and in Chapter 5. In fat our proofs in Chapter 5 were inspired

by Sanders and Zhao [50℄.

Here we give a brief outline of the proof that �



(G) � b

9

5

�

�

. Consider an arbitrary

planar graph G. Remember that the basi idea to prove �(G

2

) � d

9

5

�e + 1 was to
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show that there is a vertex v with d

G

2

(v) � d

9

5

�e. We have a similar approah here.

Let us de�ne the yli degree of a vertex v, denoted by d(v), to be the number of

verties, other than v, that are in the boundaries of the union of the faes ontaining

v. The key reduible on�guration in this proof is a vertex v with d(v) � b

9

5

�

�

 � 1.

The reduibility of this on�guration follows from the fat that we an ontrat v on

one of its neighbours to get a smaller planar graph G

0

with �

�

(G

0

) � �

�

(G), olour G

0

with b

9

5

�

�

(G) olours, and extend the olouring to v. We an prove the existene of

this on�guration in every planar graph using the Disharging Method. The following

struture is the key in this proof: two faes f

1

and f

2

, with a path v

1

v

2

: : : v

x

of 2-verties

that belongs to the boundaries of both f

1

and f

2

, i.e. f

1

and f

2

share this segment,

and x �

�

�

5

. If G has suh a on�guration then d(v

2

) � jf

1

j + jf

2

j � x � 1 < b

9

5

�

�

,

as wanted. We suggest that the reader takes a areful look bak at the on�guration

desribed in Subsetion 5.2.1 or the on�guration in Figure 5.4, and ompare it with the

on�guration desribed above to see their similar struture.

To prove �



(G) � d

5

3

�

�

e two main reduible on�gurations are required. One of them

is a vertex v with h(v) � d

5

3

�

�

e � 1. We all this reduible on�guration, on�guration

2

0

(as it orresponds to on�guration 2 in Subsetion 5.2.2). The other reduible on�g-

uration has a struture similar to that of on�guration 3 in Subsetion 5.2.2; so we all

it on�guration 3

0

(See [50℄ for a formal desription of this on�guration). These two

on�gurations are the key on�gurations to prove �



(G) � d

5

3

�

�

e. However, to improve

this result asymptotially, we need to �nd a new reduible on�guration, sine there are

planar graphs that are extremal for both on�gurations 2

0

and 3

0

in the following sense:

every vertex v in these graphs has d(v) �

5

3

�

�

�  (for some onstant ) and they do

not have on�guration 3

0

. One of these graphs in shown in Figure 6.4. In this �gure,

every dashed line is a path of length k � 2, and therefore, �

�

= 3k + 2. Note that the

struture of this graph is very similar to that of graph of Figure 5.11 (plae a vertex in

the enter of eah fae of this graph and onnet it to all the verties on the boundary of
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Figure 6.4: The extremal graph for on�gurations 2

0

and 3

0

that fae). Similar to the disussion we had in the seond paragraph of this setion, to

improve the bound �



(G) � d

5

3

�

�

e asymptotially (using the Disharging Method) we

have to �nd a new reduible on�guration (di�erent from on�gurations 2

0

and 3

0

), and

if suh a on�guration exists, the graph of Figure 6.4 must have it. Therefore, the best

way to �nd a new reduible on�guration may be to look for it in the graph of Figure

6.4.

We think there is a orrelation between these two problems in the following sense:

any asymptoti improvement on the best known result on either of Conjetures 5.1.1

or 6.2.1 using the Disharging Method will require the introdution of a new reduible

on�guration. The struture of this new reduible on�guration will probably help to

�nd a new reduible on�guration for the other problem and onsequently to prove a

similar asymptoti improvement. The reason baking this belief is a transformation from

yli olouring to olouring the square of a planar graph, skethed below: Given a graph

G, reate G

0

by adding a new vertex v

f

to eah fae f of G and onneting it to all the

verties in the boundary of f . Now the verties in f have distane at most 2 from eah

other in G

0

. Therefore, any distane-2-olouring of G

0

yields a yli olouring of G.

At �rst glane this transformation might seem as a orret redution sine the degree
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of every vertex v

f

2 G

0

is the same as the size of the orresponding fae f 2 G, and

therefore, one might expet �

�

in G to be the same as � in G. However, this is not

neessarily true sine there might be a vertex v 2 G with degree d > �

�

and that vertex

will have muh larger degree than �

�

in G

0

.

Although the transformation explained above is not a orret redution from the

yli olouring problem to the distane-2-olouring problem, it suggests that the former

problem is easier than the latter. The following fats about the most reent results

on these two problems support this guess: the most reent results for the distane-2-

olouring problem on planar graphs were obtained using the ideas behind the reduible

on�gurations used in the proofs of the orresponding results for the yli olouring

problem (for example, as we said, the results of Chapter 5 were inspired by the work of

Sanders and Zhao [50℄). Furthermore, the struture of the reduible on�gurations used

in the bounds for the distane-2-olouring problem, although similar to their ounter-

parts for the yli olouring problem, are more ompliated. Consequently, there are

more disharging rules used in the proofs for the distane-2-olouring problem and these

rules are more ompliated. For example, the number of disharging rules in the results

�



(G) � d

9

5

�

�

e (in [21℄) and �



(G) � d

5

3

�

�

e (in [50℄) are 7 and 7, whereas the number of

disharging rules in the results �(G

2

) � d

9

5

�e+1 (in [16, 17℄) and �(G

2

) � d

5

3

�e+O(1)

(in Chapter 5) are 10 and 12, respetively.

Therefore, it might be better to �rst attak the yli oloring problem and improve

the bound on the yli hromati number of planar graphs asymptotially, and then

possibly use the ideas of that proof to improve the bound on the hromati number of

the square of planar graphs.
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u v

2k vertices

Figure 6.5: A graph with minimum degree 3 and high yli hromati number

6.2.2 Distane-2-Colouring in Planar Graphs With High Con-

netivity

Consider the yli olouring problem. In the previous subsetion we saw that there

are planar graphs, suh as the one in Figure 6.3, whose yli hromati number has

asymptoti order of

3

2

�

�

. But this graph is not 3-onneted and has many verties of

degree 2. What if we assume that the graph is 3-onneted? For this ase, i.e. for 3-

onneted planar graphs, Plummer and Toft [44℄ onjetured that the number of olours

required in a yli olouring is at most �

�

+ 2:

Conjeture 6.2.2 [44℄ For every 3-onneted planar graph G with maximum fae size

�

�

: �



(G) � �

�

+ 2:

Note that having only minimum degree at least 3 instead of 3-onnetivity is not suÆient

to prove the upper bound �



(G) � �

�

+ O(1). For instane, in the graph of Figure 6.5

(whih is a modi�ation of graph of Figure 6.3), Æ = 3, �

�

= 5k+2, and �



(G) � 6k+2.

However, neither this graph nor the graph of Figure 6.3 is 3-onneted.

Plummer and Toft [44℄ proved that for 3-onneted planar graphs �



(G) � �

�

+9 and

that �



(G) � �

�

+4 if �

�

� 42. Borodin and Woodall [10℄ and Hor�n�ak and Jendrol' [37℄

proved Conjeture 6.2.2 when �

�

� 61 and �

�

� 24, respetively. Furthermore, Borodin

and Woodall [10℄ and Enomoto et al. [25℄ showed that the yli hromati number of

3-onneted planar graphs is at most �

�

+ 1 if �

�

� 122 and �

�

� 60, respetively.
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u w

v

k gadgets

a gadget

Figure 6.6: Graph G with minimum degree 5 and �(G

2

) �

3

2

�

Under some similar restritions, an we have a similar upper bound (in whih the

oeÆient of � is 1) for the distane-2-olouring problem? It is natural to ask:

Question: If G is a planar graph with high onnetivity (say at least 4- or

5-onneted) then an we prove �(G

2

) � �+O(1)?

Note that having only high minimum degree instead of high onnetivity is not suf-

�ient to prove the upper bound �(G

2

) � � + O(1) or even to bring the multipliative

onstant below

3

2

. For instane, we an modify the graph of Figure 5.1 (in a similar man-

ner to the way we modi�ed the graph of Figure 6.3) and obtain the graph of Figure 6.6.

In this graph, v is adjaent to both u and w, eah of u; v; w is onneted to 2k gadgets as

shown on the left side of the �gure, d(u) = d(w) = 4k+1, d(v) = � = 4k+2, and Æ = 5.

Sine u; v; w; and all their neighbours are at distane at most two from eah other, all of

them must get di�erent olours in any distane-2-olouring. Thus �(G

2

) � 6k+3 =

3

2

�.

So for this graph, whih has minimum degree 5, not only is �(G

2

) not � + O(1), it

atually has the same asymptoti order as that of the extremal graph of Figure 5.1. In

fat, if we modify the graph of Figure 5.1 slightly so that all u; v; w have degree 2k, then



Chapter 6. Conluding Remarks 142

u

v

k vertices

k+1 vertices

k vertices

w

Figure 6.7: A 3-onneted graph G with �(G

2

) =

3

2

�+ 1

we obtain a graph, whih is a subgraph of G (in Figure 6.6) and has the same maximum

degree as G.

The assumption that the given planar graph is 3-onneted is not suÆient either sine

we an modify the graph of Figure 5.1 suh that it beomes 3-onneted without hanging

�, by adding an edge between every two onseutive neighbours of u in lokwise order,

and similarly between every two onseutive neighbours of v and w (See Figure 6.7).

The suitable assumption for this problem might be 4-onnetivity. This assumption

immediately rules out the extremal graphs of Figure 6.6 and 6.7. But we don't know

if it atually helps to redue the oeÆient of � down to 1 (or even below

3

2

). This

problem does not seem to be studied in the literature. It would be very interesting if

with this extra ondition we ould math the results of yli olouring of 3-onneted

planar graphs.
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Appendix A

More Hand-hekable Proofs For

Theorem 3.1.1

In Setion 3.3.2 we listed 15 reduible on�gurations required in the proof of Theorem

3.1.1 and provided hand-hekable proofs of the �rst 7 ones. In this appendix, we explain

the hand-hekable proofs of on�gurations 8 to 12. All these proofs have a very similar

pattern; similar to the proofs of on�gurations 4-7 that we saw in Setion 3.3.2. The

author has also proved, by hand, that the 49 subon�gurations for on�gurations 13-15

are reduible, but inluding the proofs here would make this setion too long and too

repetitive (even more so than it is now!). These missing proofs follow the same patterns

as the inluded proofs, and armed with this plethora of examples, it will be very easy

(and time-onsuming) for the reader to generate any of the missing proofs that he/she

desires.

Proof of on�guration 8: Instead, we prove that the four on�gurations shown in

Figures A.1(a), (b), (), and (d), are reduible. Eah of these on�gurations ontains

a semi-simple fae f

1

, in whih the both neighbours of its type 1 vertex, whih are not

inident with f

1

, are 3-verties. Note that any on�guration that ontains two semi-

simple faes that share a type 1 vertex must have one of the on�gurations in Figure

149
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Figure A.1: Two semi-simple faes sharing their type 1 vertex

A.1. We �rst give the proof for the on�guration of Figure A.1(a): By minimality of

G, there is a 3-olouring of G

0

= G � v

1

v

2

, alled C. So C(v

1

) = C(v

2

), whih we an

assume is equal to 1. Consider this olouring indued on G. By the haining argument

C(v

4

) = C(v

6

) = C(v

8

) = C(u

2

) = 1, otherwise we ould 3-olour G. Without loss of

generality, assume C(w

0

) = 2. So C(v

9

) = 3 and C(u

1

) = 2, otherwise we ould set

C(v

1

) = 3. If C(u

8

) = 1 then we ould exhange C(u

1

) with C(v

9

) and set C(v

1

) = 3.

Therefore C(u

8

) = 2. Now set C(v

1

) = 3, C(v

9

) = 1 and assign a olour di�erent from 1

and C(v

7

) (whih is either 2 or 3) to v

8

and give a olour di�erent from C(v

9

) (whih is

1) and C(v

8

) to u

1

(we an do this beause C(v

9

) = C(u

2

) = 1). This gives a 3-olouring

of G, whih is a ontradition.

Using very similar arguments, we an show that the on�gurations of Figures A.1(b),

(), and (d) are reduible.

Proof of on�guration 9: Suppose that f

1

and f

2

are two semi-type 2 faes sharing

a type 1 vertex. There are eight possible on�gurations of this type up to isomorphism,

we onsider eah one separately. Assume that v

1

; : : : ; v

9

are the verties of f

1

, where v

9

is the type 2 vertex. In the �rst two ases we assume that v

1

is the type 1 vertex of f

1

(Figures A.2(a) and A.3(a)). The other ases are based on v

2

, v

3

, or v

4

being the type 1

vertex of f

1

, shown in Figure A.4.
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Figure A.2: Two semi-type 2 faes sharing their type 1 vertex

Con�guration of Figure A.2(a): In this ase u

1

is the type 2 vertex of f

2

. First we

remove some verties and edges and add two gadgets eah similar to the one in lemma

4. The verties to be removed are v

1

; : : : ; v

9

and u

1

; : : : ; u

8

, and the new graph G

0

after

adding the gadgets is shown in Figure A.2(b). It is straightforward to verify that: (i)

G

0

2 G

8

, (ii) beause of minimality of G there is a 3-olouring of G

0

, say C, and (iii)

w

1

; : : : ; w

4

annot all have the same olour in C. Also, t

1

; : : : ; t

4

annot all have the same

olour in C.

Consider this 3-olouring indued on G. First we show that C(w

1

) 6= C(t

1

). By

ontradition, assume that C(w

1

) = C(t

1

) = 3. Now we an extend C to a new olouring

C

0

in this way: for all ommon verties of G and G

0

, C

0

and C are equal. Then assign

C

0

(v

1

) = 3, and olour u

8

; u

7

; : : : ; u

1

greedily. Note that by the time we reah to u

1

it has three oloured neighbours but two of them (v

1

and t

1

) have the same olour.

Assume that C

0

(u

1

) = 2. Set C

0

(v

9

) = 1, C

0

(v

8

) = 2, and olour v

2

; v

3

; : : : ; v

6

greedily.

Finally, assign a olour di�erent from C

0

(v

6

) and C

0

(w

2

) to v

7

. By minimality of G,

both v

7

and v

8

have the same olour, whih is 2. By the haining argument we must

have C

0

(v

5

) = C

0

(v

3

) = C

0

(v

1

) = 2, but C

0

(v

1

) = 3. This ontradition shows that
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C(w

1

) 6= C(t

1

).

Now we extend C to olour the unoloured verties of G in a di�erent way. Assume

that C(w

1

) = 3. Sine C(t

1

) 6= C(w

1

) we an assign C(u

1

) = 3 and olour the unoloured

verties of G greedily in the following order: u

2

; : : : ; u

8

, v

1

; v

9

; v

8

; v

2

; v

3

; : : : ; v

6

. Note that

by the time we want to olour v

9

there are two neighbours of it (u

1

and w

1

) that have

the same olour and so we an �nd a olour for v

9

. We also assign a olour di�erent from

C(v

6

) and C(w

2

) to v

7

. By de�nition of G, C(v

8

) = C(v

7

), whih we an assume is equal

to 1, By the haining argument C(v

5

) = C(v

3

) = C(v

1

) = 1, and so C(v

9

) = 2.

Suppose that C(u

8

) 6= 2. We an set C(v

1

) = 2, C(v

9

) = 1, and C(v

8

) = 2, unless

C(v

2

) = 2 and by the haining argument C(v

2

) = C(v

4

) = C(v

6

) = 2. But this means

that all w

1

; : : : ; w

4

have olour 3, whih ontradits property (iii).

Now assume that C(u

8

) = 2. If we ould exhange C(u

8

) and C(u

7

) then C(u

8

)

beomes di�erent from 2 and we an use the argument of the previous paragraph. This

shows that C(u

6

) = 2 and by the haining argument C(u

4

) = C(u

2

) = 2. If C(u

3

) 6= 3

then we an modify C in the following way: set C(u

2

) = 3, C(u

1

) = 2, C(v

1

) = 3,

C(v

9

) = 1, C(v

8

) = 2, exhange C(v

2

) with C(v

3

) if C(v

2

) = 3, exhange C(v

4

) with

C(v

5

) if C(v

4

) = 3, and �nally exhange C(v

6

) with C(v

7

) if C(v

6

) = 3, whih yields a 3-

olouring of G. Therefore, C(u

3

) = 3 and by the haining argument C(u

5

) = C(u

7

) = 3.

But this means that all t

1

; : : : ; t

4

have olour 1, again ontraditing (iii).

Con�guration of Figure A.3(a): In this ase u

1

is a 3-vertex in f

2

. First we remove

v

2

; : : : ; v

8

and add a gadget similar to that of Lemma 4. The new graph G

0

is shown in

Figure A.3(b). It an be easily shown that: (i) G

0

2 G

8

, (ii) beause of minimality of G

there is a 3-olouring of G

0

, say C, and (iii) w

1

; : : : ; w

4

annot all have the same olour

in C.

Consider this 3-olouring indued on G. We extend C by olouring the unoloured

verties of G greedily in the following order: v

8

; v

2

; : : : ; v

6

. Then assign a olour di�erent

from C(v

6

) and C(w

2

) to v

7

. By minimality of G, C(v

7

) = C(v

8

) whih we an assume
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Figure A.3: Two semi-type 2 faes sharing their type 1 vertex

both are 1. By the haining argument C(v

5

) = C(v

3

) = C(v

1

) = 1. Without loss of

generality, assume that C(v

9

) = 2 and so C(u

1

) = C(w

1

) = 3.

If C(u

3

) = 3 then we ould set C(v

8

) = 2, C(v

9

) = 1, C(v

1

) = 2, then exhange C(v

2

)

with C(v

3

) if C(v

2

) = 2, and then exhange C(v

5

) with C(v

4

) if C(v

4

) = 2. In this ase

C(v

6

) 6= 2, otherwise w

1

; : : : ; w

4

all are oloured 3, a ontradition.

So assume that C(u

3

) = 2. If C(u

2

) = 2 then we an exhange C(v

1

) with C(u

1

),

C(v

2

) with C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whih gives a 3-olouring

of G. If C(u

2

) = 1 then we set C(u

1

) = 2, C(v

1

) = 3, C(v

9

) = 1, and C(v

8

) = 2.

Then we an exhange C(v

2

) with C(v

3

) if C(v

2

) = 3, then exhange C(v

4

) with C(v

5

) if

C(v

4

) = 3, and �nally exhange C(v

6

) with C(v

7

) if C(v

6

) = 3. So we get a 3-olouring

of G, whih again is a ontradition.

Con�gurations of Figure A.4: The other possibilities, up to isomorphism, for two

semi-type 2 faes to share their type 1 vertex are shown in Figure A.4. Here we only

give the proof for on�guration of Figure A.4(A). The proof for the other on�gurations

is almost the same.

By minimality of G, there is a 3-olouring of G � (v

7

; v

8

), alled C. Consider this

olouring indued on G in whih both v

7

and v

8

have the same olour. Without loss of
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Figure A.4: Two semi-type 2 faes sharing their type 1 vertex

generality, assume that C(v

7

) = C(v

8

) = 1. By the haining argument C(v

5

) = C(v

3

) =

C(u

7

) = C(u

5

) = C(u

3

) = 1. So C(v

2

) 6= 1.

First assume that both u

1

and v

1

have the same olour di�erent from 1, say 2. Then

we an exhange C(v

2

) with C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whih yields

a 3-olouring of G, a ontradition. Also, fC(v

1

); C(u

1

)g 6= f2; 3g, sine C(v

2

) 6= 1. So

at least one of C(v

1

) or C(u

1

) is 1.

Assume that C(v

1

) = 1 and C(u

1

) = 2. So C(v

2

) = 3. If C(v

9

) = 2 we an set

C(v

1

) = C(v

8

) = 2 and C(v

9

) = 1 whih gives a 3-olouring of G. On the other hand, if

C(v

9

) = 3 we an modify C in this way: set C(v

2

) = 1, C(v

1

) = 3, C(v

9

) = 1, C(v

8

) = 3,

assign a olour di�erent from C(v

4

) and 1 to v

3

. Now sine C(v

2

) = C(u

7

) = 1, we an

assign a olour di�erent from 1 and C(v

3

) to u

8

. This gives a 3-olouring of G, an obvious

ontradition.

Now, let's assume that C(u

1

) = 1 and C(v

1

) = 2. So C(v

2

) = 3 and C(u

8

) = 2. If

C(u

2

) = 2 then set C(u

1

) = 2, C(u

2

) = 1, C(u

3

) = 2, exhange C(u

4

) with C(u

5

), C(u

6

)
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Figure A.5: A semi-type 2 fae sharing a type 1 vertex with a type 1 fae

with C(u

7

), C(u

8

) with C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whih yields a

3-olouring of G. If C(u

2

) = 3 then set C(u

1

) = C(u

3

) = 3, C(u

2

) = 1, C(v

2

) = 1,

exhange C(u

4

) with C(u

5

), and C(u

6

) with C(u

7

). Assign a olour di�erent from C(v

2

)

(whih is 1) and C(u

7

) to u

8

. Then assign a olour di�erent from 1 and C(u

8

) to v

3

.

Now exhange C(v

4

) with C(v

5

) and C(v

6

) with C(v

7

). This again is a 3-olouring of G.

Finally, assume that C(v

1

) = C(u

1

) = 1. Without loss of generality, assume that

C(v

9

) = 2. If C(v

2

) = 2 we exhange it with C(u

8

) so that C(v

2

) 6= C(v

9

). Now

set C(v

1

) = 2, C(v

9

) = 1, and C(v

8

) = 2. This yields a 3-olouring of G, whih is a

ontradition.

Proof of on�guration 10: There are four possible on�gurations of this type up

to isomorphism, shown in Figures A.5(a), A.6(A1), A.6(B1), and A.6(C1). We onsider

eah one separately:

Con�guration of Figure A.5(a): First remove v

2

; v

3

; : : : ; v

8

and all the inident edges

and reate the graph G

0

as in Figure A.5(b) by adding a gadget. It is straightforward to

verify that: (i) G

0

2 G

8

, (ii) beause of minimality of G there is a 3-olouring of G

0

, say

C, and (iii) w

1

; : : : ; w

4

annot all have the same olour in C.

Consider this 3-olouring indued on G. We extend C by olouring the unoloured
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verties of G greedily in the following order: v

2

; v

8

; v

7

; : : : ; v

4

. We also assign a olour

di�erent from C(v

2

) and C(w

4

) to v

3

. By de�nition of G, C(v

3

) = C(v

4

), whih we an

assume is equal to 1, and by the haining argument C(v

6

) = C(v

8

) = 1 and at least one

of C(v

1

) or C(u

7

) must be 1.

First assume that C(u

7

) = 1 and C(v

1

) 6= 1. By the haining argument C(u

5

) =

C(u

3

) = C(u

1

) = 1. Without loss of generality assume that C(v

9

) = 2 and so C(w

1

) = 3.

Now set C(v

9

) = 1 and C(u

1

) = C(v

8

) = 2, exhange C(u

2

) with C(u

3

), C(u

4

) with

C(u

5

), C(u

6

) with C(u

7

), and C(v

3

) with C(v

2

). The only onit we may have is between

C(v

8

) and C(v

7

), whih happens if C(v

7

) = 2. We an exhange C(v

7

) with C(v

6

), unless

C(v

5

) = 2. In this ase we an exhange C(v

5

) with C(v

4

), unless C(v

3

) = 2. But this

means that all w

1

; : : : ; w

4

have been oloured 3, whih ontradits (iii).

Now assume that C(v

1

) = 1 and C(u

7

) 6= 1. By the haining argument C(u

2

) =

C(u

4

) = C(u

6

) = 1. Assume that C(v

9

) = 2. Set C(v

9

) = 1, C(v

1

) = C(v

8

) = 2,

and exhange C(v

2

) with C(v

3

). Similar to the previous ase we an solve the possible

onit between C(v

8

) and C(v

7

), unless all w

1

; : : : ; w

4

have olour 3, whih is impossible,

aording to (iii).

Finally, assume that C(v

1

) = C(u

7

) = 1. If we ould modify C(v

1

) or C(u

7

) then we

would redue to the one of the two ases we just onsidered. Therefore, by the haining

argument and starting from u

7

: C(u

5

) = C(u

3

) = C(u

1

) = 1, whih is impossible, sine

C(v

1

) = 1. This ompletes the proof of this on�guration.

The other three possible on�guration of this kind, up to isomorphism, are shown in

Figure A.6(A1), (B1), and (C1). First onsider the on�guration of Figure A.6(A1).

Remove v

1

; v

2

; : : : ; v

9

and u

1

; : : : ; u

7

and all the inident edges and reate the graph

G

0

as in Figure A.6(A2). It is straightforward to verify that: (i) G

0

2 G

8

, (ii) beause of

minimality of G there is a 3-olouring of G

0

, say C, and (iii) w

1

; : : : ; w

6

annot all have

the same olour in C.

Consider this 3-olouring indued on G. We extend C by olouring the unoloured
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Figure A.6: A semi-type 2 fae sharing a type 1 vertex with a type 1 fae

verties of G greedily in the following order: v

9

; v

1

; v

8

; v

7

; : : : ; v

3

; u

1

; u

2

; : : : ; u

7

. We also

assign a olour di�erent from C(v

3

) and C(u

7

) to v

2

. By de�nition of G, C(v

1

) = C(v

2

),

whih we an assume is equal to 1, and by the haining argument C(v

4

) = C(v

6

) =

C(v

8

) = C(u

6

) = C(u

4

) = C(u

2

) = 1. Without loss of generality assume that C(v

9

) = 2.

If C(u

1

) = 3 then we an set C(v

1

) = C(v

8

) = 2, C(v

9

) = 1, then exhange C(v

7

) with

C(v

6

) if C(v

7

) = 2, then exhange C(v

5

) with C(v

4

) if C(v

5

) = 2, and �nally exhange

C(v

3

) with C(u

7

) if C(v

3

) = 2. This yields a 3-olouring of G.

So we an assume that C(u

1

) = 2. If we ould exhange C(u

1

) with C(u

2

) we ould

use the argument of the previous paragraph. So by the haining argument C(u

3

) =

C(u

5

) = 2. We ould assign C(v

1

) = C(v

8

) = 2, C(v

9

) = 1, exhange C(u

1

) with C(u

2

),

C(u

3

) with C(u

4

), C(u

5

) with C(u

6

), and exhange C(v

7

) with C(v

6

) if C(v

7

) = 2, unless

C(v

5

) = 2. This means that all w

1

; : : : ; w

6

have been oloured 3 in C, ontraditing

property (iii) we just mentioned. This ompletes the proof of this on�guration.
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Figure A.7: A semi-simple fae sharing a type 1 vertex with a type 1 fae

Using a very similar argument, we an prove the reduibility of on�gurations of

Figure A.6(B1) and (C1). The gadget we have to add in eah ase is shown in Figures

A.6(B2) and (C2), respetively.

Proof of on�guration 11: It is straightforward to hek that there are �ve pos-

sible on�gurations of this type up to isomorphism. One of them is the same as the

on�guration of Figure A.3(a), and the other four ones are equivalent to the on�gura-

tions of Figures A.1(A1), A.1(B1), A.1(C1), and A.1(D1). Eah of these on�gurations

are already proved to be reduible.

Proof of on�guration 12: There are three possible on�guration up to isomor-

phism, shown in Figure A.7(A1), (B1), and (C1). Let's onsider (A1).

First remove v

1

; : : : ; v

9

and u

1

; : : : ; u

7

, and all the inident edges and reate the graph

G

0

as in Figure A.7(A2). It is straightforward to verify that: (i) G

0

2 G

8

, (ii) beause of
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minimality of G there is a 3-olouring of G

0

, say C, and (iii) w

1

; : : : ; w

6

annot all have

the same olour in C.

Consider this olouring indued on G and extend it by olouring the unoloured

verties of G in the following order: v

1

; v

9

; v

8

; u

1

; : : : ; u

7

; v

7

; v

6

; : : : ; v

3

Also, assign a olour

di�erent from C(v

3

) and C(w

1

) to C(v

2

). By minimality of G, C(v

1

) = C(v

2

), whih we

an assume is 1. By the haining argument C(v

4

) = C(v

6

) = C(u

6

) = C(u

4

) = C(u

2

) =

C(v

8

) = 1. Without loss of generality assume that C(w

0

) = 2. So C(v

9

) = 3, otherwise

we ould set C(v

1

) = 3. Note that we an safely exhange C(v

7

) with C(u

7

). If C(u

1

) 6= 3

we an exhange C(v

9

) with C(v

8

) and set C(v

1

) = 3. So C(u

1

) = 3 and by the haining

argument C(u

3

) = C(u

5

) = C(v

5

) = C(v

3

) = 3. But this means that all w

1

; : : : ; w

6

have

olour 3, ontraditing property (iii).

Using a very similar argument, we an prove the reduibility of on�gurations of

Figures A.7(B1) and (C1). The gadget we have to add in eah ase is shown in parts

(B2) and (C2), respetively.

The proofs of reduibility of on�gurations 13, 14, and 15 follow very similar steps.

We omit the hand-hekable proofs of them.
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The C Program used in Chapter 3

This program and the �le ontaining the reduible on�gurations and the desription of

the program is also available at ftp://ftp.s.toronto.edu/srg-tehnial-reports/458/.

/* Version 1.1, July 2002 */

#inlude <stdio.h>

#inlude <stdlib.h>

#inlude <string.h>

#inlude <time.h>

#define Max_No_of_verties 50

#define Error_filename "UnColorable_Config.txt"

int Nverties, Nedges, /* No. of verties and edges of the onfiguration */

Nbound, /* No. of boundary neighbors */

NConstrained_groups, /* No. of Constrained groups */

Nolored, /* No. of olored verties so far */

160
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Nof_olorings, /* No. of differenet olorings found for a onfig. */

is_in_bound [Max_No_of_verties℄,

/* is_in_bound [v℄ = 1 if v is a boundary

neighbor, 0 otherwise */

adj_list[Max_No_of_verties℄[Max_No_of_verties℄,

/* The adjaany list; for vertex v adj_list[v℄[0℄

speifies the degree of v */

bound[Max_No_of_verties℄, /* The list of boundary neighbors */

non_bound[Max_No_of_verties℄, /* The list of non-boundary verties */

onstrained_groups[10℄[Max_No_of_verties℄,

/* The list of onstrained groups; the verties in a group are those

boundary neighbors whih must not all have the same olor,

enfored by a gadget. For group i onstrained_groups[i℄[0℄

speifies the number of verties in that group */

olor[Max_No_of_verties℄, /* Color of vertex v is olor[v℄, 0 if

it is not olored */

Nof_onfigurations, /* No. of onfiguration in the file */

urrent_onf; /* index of the urrent onfiguration being tested */

FILE *fErrors; /* The file to write in any non-reduible onfiguration */

/*************************************************************************/

/* Funtion Prototypes */

int Chek_Boundary_Colorings (int NColored_bound);

void Read_Data (har *filename);
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void UnColorable (void);

int Chek_Extendable (int vertex);

int Valid_Boundary_Coloring (void);

int Chek_Boundary_Colorings (int NColored_bound);

/*************************************************************************/

/* Read the onfigurations from a file whose name is "filename",

one by one, and hek reduibility of eah */

void Read_Data (har *filename){

FILE *fin;

int i, j, v1, v2, tempvertex;

har tmpStr[100℄;

/* Openning the input file */

if ((fin = fopen (filename, "r")) == NULL) {

printf ("Cannot open the input file! \n");

exit (1);

}

/* Openning the output (i.e. error) file */

if ((fErrors = fopen (Error_filename, "w")) == NULL) {

printf ("Cannot open the output file! \n");

flose(fin);

exit (1);

}

fsanf (fin, "%d \n", &Nof_onfigurations);
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/* Reading the information of onfigurations one by one and

heking the reduibility of them */

urrent_onf = 1;

for (urrent_onf = 1; urrent_onf <= Nof_onfigurations; urrent_onf++){

fgets (tmpStr, sizeof (tmpStr), fin);

fsanf (fin, "%d %d \n", &Nverties, &Nedges);

printf ("%d %d \n", Nverties, Nedges);

Nolored = 0;

Nbound = 0;

Nof_olorings = 0;

for (i = 1; i <= Nverties; i++){

adj_list[i℄[0℄ = 0;

olor[i℄ = 0;

is_in_bound[i℄ = 0;

}

/* Reading the adjaany lists of the urrent onfiguration */

for (i = 1; i <= Nedges; i++){

fsanf (fin, "%d %d \n", &v1, &v2);

adj_list[v1℄[++adj_list[v1℄[0℄℄ = v2;

adj_list[v2℄[++adj_list[v2℄[0℄℄ = v1;

}

/* Setting up the boundary neighbors */

j = 0;

for (i = 1; i <= Nverties; i++){

if (adj_list[i℄[0℄ <= 2){
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bound[++Nbound℄ = i;

is_in_bound[i℄ = 1;

}

else non_bound[++j℄ = i;

}

i=1;

while (is_in_bound[adj_list[non_bound[1℄℄[i℄℄) i++;

tempvertex = adj_list[non_bound[1℄℄[i℄;

adj_list[non_bound[1℄℄[i℄=adj_list[non_bound[1℄℄[adj_list[non_bound[1℄℄[0℄℄;

adj_list[non_bound[1℄℄[adj_list[non_bound[1℄℄[0℄℄=tempvertex;

j=1;

while (adj_list[tempvertex℄[j℄!=non_bound[1℄) j++;

adj_list[tempvertex℄[j℄=adj_list[tempvertex℄[adj_list[tempvertex℄[0℄℄;

adj_list[tempvertex℄[adj_list[tempvertex℄[0℄℄=non_bound[1℄;

/* Reading (just passing on) the information about the

oordinates of verties */

for (i = 1; i <= Nverties; i++)

fsanf (fin, "%d %d \n", &v1, &v2);

/* Reading the number of groups of the onstrained verties

and then the verties of eah group */

fsanf (fin, "%d\n", &NConstrained_groups);

for (i = 1; i <= NConstrained_groups; i++){

onstrained_groups[i℄[0℄ = 0;

while (fsanf (fin, "%d\n", &v1) == 1) {
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onstrained_groups[i℄[++onstrained_groups[i℄[0℄℄ = v1;

}

fsanf (fin, "%s\n", tmpStr);

}

/* Chek to see if the urrent onfiguration is reduible */

printf("Started!\n");

if (!Chek_Boundary_Colorings (0)) {

printf ("Configuration No. %d is reduible! No of Colorings

Cheked = %d\n", urrent_onf, Nof_olorings);

}

}

flose (fin);

flose (fErrors);

}

/**********************************************************************/

/* If the urrent onfiguration is not reduible this proedure writes

the index of the onfiguration as well as the oloring of the boundary

neighbors into a file. */

void UnColorable (void){

int i;

printf ("Configuration No. %d is *NOT* reduible \n", urrent_onf);

fprintf (fErrors, "Configurtion No %d\n", urrent_onf);

fprintf (fErrors, "The oloring of the boundary neighbors that

annot be extended is :\n");
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for (i = 1; i <= Nbound; i++)

fprintf (fErrors, "Color of vertex %d = %d\n", bound[i℄, olor[bound[i℄℄);

fprintf(fErrors, "\n");

}

/**********************************************************************/

/* Cheks whether the urrent 3-oloring of the boundary neighbors an

be extended to a 3-oloring of the whole onfiguration. Returns 1 when

it an NOT be extended, 0 otherwise */

int Chek_Extendable (int vertex){

int i, j, Next_vertex, Equal, k;

har tmp;

Next_vertex = 0;

/* Find the "Next vertex" to be olored after oloring the urrent

"vertex", by finding an unolored neighbor of it, if exists any */

for (i = 1; i <= adj_list[vertex℄[0℄; i++)

if (!olor[adj_list[vertex℄[i℄℄) {

Next_vertex = adj_list[vertex℄[i℄;

i = adj_list[vertex℄[0℄;

}

/* If all the neighbors of the urrent "vertex" are olored, find

the next (available) unolored vertex */

if (Next_vertex == 0){

for (i = 1; i <= Nverties-Nbound; i++)

if (non_bound[i℄ != vertex && !olor[non_bound[i℄℄){

Next_vertex = non_bound[i℄;
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i = Nverties-Nbound;

}

}

/* Chek all possible olorings of the urrent "vertex" and ontinue

by oloring the "Next_vertex" */

for (i = 1; i <= 3; i++){

Equal = 0;

for (j = 1; j <= adj_list[vertex℄[0℄; j++)

if (olor[adj_list[vertex℄[j℄℄ == i) Equal = 1;

if (!Equal){

olor[vertex℄ = i;

Nolored++;

if (Nolored == Nverties || !Chek_Extendable (Next_vertex)){

Nolored--;

olor[vertex℄ = 0;

return 0;

}

Nolored--;

olor[vertex℄ = 0;

}

}

return 1;

}

/********************************************************************/

/* Cheks whether the urrent boundary oloring satisfies the

requirments by the onstrained groups. That is, not all the verties
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in the same group have the same olor. Returns 1 if it does NOT

satisfy this ondition, 0 otherwise. */

int Valid_Boundary_Coloring (void){

int i, j;

for (i = 1; i <= NConstrained_groups; i++){

int All_Equal=1;

for (j = 2; j <= onstrained_groups[i℄[0℄; j++){

if (olor[onstrained_groups[i℄[1℄℄ != olor[onstrained_groups[i℄[j℄℄) {

All_Equal = 0;

j = onstrained_groups[i℄[0℄;

}

}

if (All_Equal) return 1;

}

return 0;

}

/*********************************************************************/

/* For all possible (valid) olorings of the boundary neighbors heks if

it is extendable to a oloring of the whole onfiguration. Returns 1

if it is NOT, 0 otherwise */

int Chek_Boundary_Colorings (int NColored_bound){

int v1, v2, Equal;

/* If all boundary neighbors are olored */

if (NColored_bound == Nbound) {

/* hek if this oloring of the boundary neighbors satisfies the
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requirements by the onstrained groups */

if (NConstrained_groups > 0 && Valid_Boundary_Coloring ()) return 0;

v1 = non_bound[1℄;

v2 = adj_list[non_bound[1℄℄[adj_list[non_bound[1℄℄[0℄℄;

/* remove one edge, all e, from the onfiguration */

adj_list[v1℄[0℄--;

adj_list[v2℄[0℄--;

/* first hek if the urrent oloring of boundary neighbors an

be extended to a oloring of G-e */

if (!Chek_Extendable (non_bound[1℄)){

/* if so then put e bak to G and hek if this oloring an be

extended to a oloring of the non-boundary verties of G */

adj_list[v1℄[0℄++;

adj_list[v2℄[0℄++;

if (!Chek_Extendable (non_bound[1℄)) {

Nof_olorings++;

return 0;

}

else {

UnColorable ();

return 1;

}

}

else {

/* if the urrent boundary oloring annot be extended even to a

3-oloring of G-e put e bak to G */
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adj_list[v1℄[0℄++;

adj_list[v2℄[0℄++;

return 0;

}

}

else {

int i, j, MaxColor;

/* if this is the first boundary neighbor we want to olor try

only olor 1 */

if (NColored_bound == 0) {

Nof_olorings = 0;

MaxColor = 1;

}

/* if this is the seond boundary neighbor we want to olor try

only olors 1 and 2 */

else if (NColored_bound == 1) MaxColor = 2;

/* Otherwise, try all possbile 3 olors */

else MaxColor = 3;

NColored_bound++;

for (i = 1; i <= MaxColor; i++){

Equal = 0;

for (j=1; j <= adj_list[bound[NColored_bound℄℄[0℄; j++)

if (olor[adj_list[bound[NColored_bound℄℄[j℄℄ == i)

Equal = 1;

if (!Equal){

olor[bound[NColored_bound℄℄ = i;

Nolored++;
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if (Chek_Boundary_Colorings (NColored_bound)) {

olor[bound[NColored_bound℄℄ = 0;

Nolored--;

return 1;

}

olor[bound[NColored_bound℄℄ = 0;

Nolored--;

}

}

return 0;

}

}

/*******************************************************************/

int main (int arg, har *argv[℄){

time_t start_time = time(NULL);

if (arg >= 2)

Read_Data (argv[1℄);

else Read_Data ("onf.dat");

printf ("All done in %g seonds!\n", difftime(time(NULL), start_time));

return 0;

}



Appendix C

List of Reduible Con�gurations for

Theorem 3.1.1

The �rst three reduible on�gurations in the proof of Theorem 3.1.1 are the ones that

were also used in the proof of Theorem 3.2.1; a � 2-vertex, a ut-vertex, and a 2k-fae

with at least 2k�1 bad verties. Here is the list of the other 74 reduible on�gurations,

inluding all subon�gurations of the on�gurations listed in Setion 3.3.2. We have

listed them in twelve groups, eah orresponding to a on�guration listed in Setion

3.3.2. For eah group that ontains at least two subon�gurations, we explain how the

list is generated. Eah graph that has white verties and dotted edges is the \modi�ed"

version (by removing some verties and edges and adding a gadget) of the graph to its

left. The verties and the edges that have been removed are the white verties and the

dotted edges, respetively.

1- Simple fae: There is only one possible ase:

2- Type 2 fae: There is only one possible ase:

172
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3- Two type 0 faes sharing their type 0 vertex: It is easy to see that there

are two possible on�gurations:

4- Three type 5 faes sharing a 5-vertex: There are only two possible on�gu-

rations of this type:

5- Two semi-simple faes sharing a type 1 vertex: Instead, we onsider the

following on�gurations. It is easy to see that if we �x one of the semi-simple faes, based

on the loation of its type 1 vertex we obtain one of the following strutures:

6- Two semi-type 2 faes sharing a type 1 vertex: Fix one of the semi-type 2

faes, and onsider di�erent loations for its type 1 vertex, moving it around the boundary

of the fae in ounter-lokwise order. For eah suh ase, by moving the position of the

type 2 vertex in the other fae (in ounter-lokwise order) we obtain the following eight
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on�gurations.

7- A semi-type 2 fae sharing its type 1 vertex with a type 1 fae: Again,

�x the semi-type 2 fae, and onsider di�erent positions of its type 1 vertex, moving it

around the fae in ounter-lokwise order. There are four possible on�gurations of this

kind.

8- A semi-type 2 fae sharing its type 1 vertex with a semi-simple fae: It

is straightforward to hek that there are �ve possible on�gurations of this kind. Four

of them are the same as the ones in item 5 above, and the other ontains the seond

on�guration of item 6 above.

9- A semi-simple fae sharing its type 1 vertex with a type 1 fae: Fix

the semi-simple fae and onsider di�erent loations of its type 1 vertex, moving it
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around the fae in ounter-lokwise order. There are three on�gurations of this kind.

10- Simple triple struture: It is easy to see that the semi-simple fae of a simple

triple struture has one of the four possible strutures given in item 5 above. Thus, the

reduibility of any simple triple struture follows from part 8 of Lemma 3.3.7 and we

don't need to onsider di�erent possibilities for a simple triple struture.

11- Triple struture of kind 1: There are nine on�gurations of this kind. First

assume that the semi-type 0 and the type 0 fae are sharing an edge. Then based on the

loation of the type 1 vertex of the semi-type 0 fae and moving it around the fae in

ounter-lokwise order, we obtain the �rst six on�gurations listed below. In the next

three on�gurations the semi-type 0 fae and the type 0 fae do not share any edges. It

is easy to see that there are only three on�gurations of this kind (listed below) up to

isomorphism.
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12- Triple struture of kind 2: First assume that the semi-type 0 and the type

0 fae are sharing an edge. We onsider all possible loations for the type 1 vertex of

the semi-type 0 fae, moving it around the fae in ounter-lokwise order. The �rst

on�guration below is when the type 1 vertex is adjaent to the type 0 vertex. If the

type 2 vertex of the semi-type 2 fae is any vertex other than the one in the �gure, then

the on�guration will ontain the seond on�guration we gave for group 6.

The rest of the on�gurations are obtained by onsidering all possible loations for

the type 2 vertex of the semi-type 2 fae (again moving it around in ounter-lokwise
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order). We do a similar thing for the ase that the semi-type 0 fae and the type 0 fae

are not sharing an edge.
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