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In this thesis we study two 
olouring problems on planar graphs. The main te
hnique

we use is the Dis
harging Method, whi
h was used to prove the Four Colour Theorem.

The �rst problem we study is a 
onje
ture of Steinberg whi
h states that every planar

graph without 4 and 5-
y
les is 3-
olourable. Erd�os relaxed this 
onje
ture by asking if

there exists a k su
h that every planar graph without 
y
les of size in f4; : : : ; kg is 3-


olourable. Abbott and Zhou [1℄ answered the question of Erd�os by showing that su
h

a k exists and 
an be as small as 11, i.e. any planar graph without 
y
les of size in

f4; : : : ; 11g is 3-
olourable. This result was improve by Borodin [15℄ to k = 10, and by

Borodin [14℄ and by Sanders and Zhao [49℄ to k = 9. We improve these results by two

steps.

First we redu
e k down to 8. That is, we show every planar graph without 
y
les of

size in f4; : : : ; 8g is 3-
olourable. This theorem is 
onstru
tive and yields an O(n

2

) time

algorithm for 3-
olouring su
h graphs.

Then we improve this result one step further, by showing that every planar graph

without 
y
les of size in f4; : : : ; 7g is 3-
olourable. This theorem too is 
onstru
tive and

yields an O(n

3

) time 3-
olouring algorithm for su
h graphs.

The se
ond problem is the problem of 
olouring the squares of planar graphs. Equiv-

alently, it is the problem of 
olouring the verti
es of a planar graph in su
h a way that

verti
es at distan
e at most 2 from ea
h other get di�erent 
olours. This is also known
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as distan
e-2-
olouring. Wegner in 1977 
onje
tured that, for every planar graph G with

maximum degree � � 8, the minimum number of 
olours required in any distan
e-2-


olouring of G is at most b

3

2

�
 + 1. This 
onje
ture, if true, would be the best possible

upper bound for the number of 
olours needed, in terms of �. The previously best known

bound for this quantity is d

9

5

�e+ 1, for graphs with � � 47, by Borodin et al. [16, 17℄.

We improve this result by showing that d

5

3

�e+O(1) 
olours are enough for a distan
e-2-


olouring of a planar graph with maximum degree �. We also provide a better bound for

large values of �. Then we generalize this result to L(p; q)-labelings of planar graphs. An

L(p; q)-labeling of a graph G is an assignment of integers from f0; : : : ; kg to the verti
es

of G su
h that every two adja
ent verti
es in G re
eive integers that are at least p apart

and every two verti
es at distan
e two from ea
h other re
eive integers that are at least

q apart. The minimum k for whi
h there is an L(p; q)-labeling of G is denoted by �

p

q

(G).

We prove that for any planar graph G: �

p

q

(G) � qd

5

3

�e + O(p + q). This improves the

previously known bound of (4q�2)�+O(p+q), by Van den Huevel and M
Guinness [57℄.

All these results are 
onstru
tive; we provide eÆ
ient algorithms for distan
e-2-
olouring

of planar graphs with at most d

5

3

�e + O(1) 
olours and for L(p; q)-labeling of planar

graphs using only qd

5

3

�e+O(p+ q) 
olours.
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Chapter 1

Preliminaries

The Four Colour Problem (4CP) is perhaps one of the easiest 
ombinatorial problems

to state. This seemingly simple, yet extremely diÆ
ult, problem was the most 
halleng-

ing problem in graph theory for well over a 
entury. Many parts of graph theory, in

parti
ular the bran
h of graph 
olouring, grew up around this problem as byprodu
ts of

the e�orts resear
hers put into solving this problem. One of the te
hniques whi
h was

spe
i�
ally developed to solve the 4CP (and whi
h we use extensively in this thesis), is

the Dis
harging Method. Over the past few de
ades, this te
hnique has been used to nail

down dozens of other problems. However, there are many problems left open, for whi
h

this te
hnique seems to be the most promising tool to apply.

In this thesis, we address two of these problems, whi
h are in the same family as

the 4CP; both of them are problems on 
olourings of verti
es of planar graphs and

were introdu
ed almost around the same time as the 4CP was solved. Sin
e then, some

partial results have been provided on ea
h of them, using the Dis
harging Method. The

improvements we obtain also use the Dis
harging Method. So we begin with a short

history of the 4CP and the development of the Dis
harging Method. This is done in the

next 
hapter. Before that, we have to de�ne some 
ommon notation used throughout

the thesis. This is done in this 
hapter (in the next se
tion), followed by an overview of

1



Chapter 1. Preliminaries 2

the thesis. Some more spe
i�
 terms are de�ned throughout the thesis, when they are

needed.

1.1 Notation and De�nitions

For a graph G, we denote the vertex set and edge set by V (G) and E(G) (or simply

V and E), respe
tively. All graphs are assumed to be �nite, undire
ted, and simple

(without loops or multiple edges) unless otherwise stated. A 
ut-vertex in a graph G is a

vertex v whose removal in
reases the number of 
onne
ted 
omponents of G. A maximal


onne
ted subgraph of G that has no 
ut-vertex is a 2-
onne
ted 
omponent or a blo
k of

G. A graph G is 2-
onne
ted if it has no 
ut-verti
es. A 
ut-edge (or bridge) is an edge

whose removal in
reases the number of 
onne
ted 
omponents of G.

The degree of a vertex v 2 V (G), denoted by d

G

(v), is the number of edges in
ident

with it. The maximum and minimum degree of a graph G are denoted by �(G) and

Æ(G) (or simply � and Æ), respe
tively. If the degree of v is i, at least i, or at most i

we 
all it an i-vertex, a �i-vertex, or a �i-vertex, respe
tively. By N

G

(v), we mean the

open neighbourhood of v in G, whi
h 
ontains all those verti
es that are adja
ent to v

in G. The 
losed neighbourhood of v, whi
h is denoted by N

G

[v℄, is N

G

(v) [ fvg. We

usually use N(v) and N [v℄ instead of N

G

(v) and N

G

[v℄, respe
tively. The square of a

graph G, denoted by G

2

, is the graph on the same vertex set as G, in whi
h two verti
es

are adja
ent i� their distan
e in G is at most two. In other words, G

2

is obtained from

G by adding the edges between the verti
es at distan
e two of ea
h other.

A graph G is embedded on a surfa
e S if its verti
es are mapped to distin
t points of S,

and edges are mapped to simple 
urves in S 
onne
ting its vertex-points. Moreover, no

two edge-
urves share a point in S ex
ept possibly a 
ommon vertex-point in G. A fa
e of

an embedding of G is a 
onne
ted 
omponent of the surfa
e S after deleting the graph G.

A graph G is planar if it has an embedding on the sphere. Sin
e a plane is topologi
ally
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equivalent to a sphere with a hole in it, every planar graph is also embeddable on a plane,

and the fa
e 
ontaining the hole is 
alled the external or outside fa
e. For an embedding

of a planar graph G, the set of fa
es of G is denoted by F (G), or simply F . Through

a slight abuse of notation, when no 
onfusion is possible, we say verti
es of a fa
e f to

refer to the verti
es that are on the boundary of fa
e f , i.e. the verti
es that are in
ident

with f . For every fa
e f the size or length of f , denoted by jf j, is the number of edges

in f , with bridges (
ut-edges) 
ounted twi
e. A fa
e is 
alled an i-fa
e, � i-fa
e, or a

� i-fa
e if the size of f is i, at most i, or at least i, respe
tively. A planar graph G is


alled a triangulation if every fa
e of G has size 3. Euler's formula (given below) plays

a key role in our proofs, and in general, in the proofs of problems on planar graphs that

use the Dis
harging Method.

Euler's Formula: For any planar graph G with vertex set V , edge set E,

and fa
e set F : jV j � jEj+ jF j = 2:

A (proper) vertex 
olouring of a graph G is a fun
tion ' : V (G) �! C, where C is a

set of 
olours, su
h that no two adja
ent verti
es re
eive the same 
olour. The 
hromati


number of G, denoted by �(G), is the minimum jCj for whi
h G has a vertex-
olouring.

A graph G is 
alled k-
hromati
 if �(G) = k. A k-
hromati
 graph G is 
alled k-
riti
al

if for any proper subgraph G

0

of G: �(G

0

) < k. Note that any k-
hromati
 graph 
an be

transformed into a k-
riti
al graph by removing some verti
es and/or edges from it.

1.2 Overview

The main 
ontributions of this thesis are improvements on two di�erent 
onje
tures

regarding 
olouring problems for planar graphs.

The �rst problem, whi
h is the primary subje
t of Chapters 3 and 4, is on the 
olouring

of planar graphs without 
y
les of size in f4; : : : ; kg. It is a long-standing 
onje
ture by

Steinberg that any planar graph without 
y
les of size in f4; 5g is 3-
olourable. We will
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show in Chapter 3 that planar graphs without 
y
les of size in f4; : : : ; 8g are 3-
olourable.

This proof uses the Dis
harging Method.

In Chapter 4, we improve the result of Chapter 3 one step further, by showing that

even in the presen
e of 
y
les of size 8, the planar graph is still 3-
olourable. The proof

te
hnique used here is di�erent than that of Chapter 3, although it also involves the

Dis
harging Method.

In Chapter 5 we study the problem of 
olouring the square of a planar graph. We

obtain an upper bound for the 
hromati
 number of the square of a planar graph in terms

of its maximum degree, �. This result tightens the asymptoti
 gap between the best

possible upper bound and the best known upper bound. We also show how this proof


an be applied to a more general setting of 
olouring, known as �-
olouring, and obtain

a similar bound in terms of �, whi
h improves all previously known bounds. Finally, we

dis
uss some possible steps that would have to be taken to further improve these results,

asymptoti
ally.

Chapter 6 
ontains the 
on
luding remarks and dis
ussions about possible future

dire
tions.



Chapter 2

What is the Dis
harging Method?

In this 
hapter we explain, by the means of some examples, how the Dis
harging Method

works. As we mentioned in the previous 
hapter, this method was developed to solve the

4CP. For this reason, before talking about this method and giving the examples, we begin

with a short story of the journey of the 4CP and the e�orts that lead to the development

of the Dis
harging Method.

2.1 The Four Colour Problem

This problem seems to have been �rst posed by Guthrie in 1852, when he was a law

student at University College of London. He formulated this problem as a 
onje
ture

[35℄:

\... the greatest ne
essary number of 
olours to be used in 
olouring a map

so as to avoid identity of 
olours in lineally 
ontiguous distri
ts is four."

In other words, we 
an 
olour any map of 
ountries with four 
olours in su
h a way

that any two 
ountries sharing a 
ommon boundary segment (and not just a point) get

di�erent 
olours. When he 
ould not solve the problem himself, Guthrie talked about

this problem to his brother, who then passed it on to De Morgan. De Morgan 
ouldn't

5
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ome up with an answer either and gave the problem to Hamilton, but the problem did

not draw his attention. In a note to De Morgan, Hamilton wrote: \I am not going to

attempt your quaternion of 
olour very soon". The �rst printed referen
e of the problem

is due to Cayley in 1879 [22℄, in an arti
le titled \On the 
olouring of maps". In this

paper, Cayley explains to some extend, why this is a diÆ
ult problem. Before that, in

1860, Peir
e too had attempted to solve this problem and didn't su

eed.

This mysterious problem seemed to be solved in 1879 , when Kempe published the

�rst \proof" of the 4CP in the Ameri
an Journal of Mathemati
s [40℄. Unfortunately, his

proof was 
awed, and surprisingly, it took mathemati
ians eleven years to noti
e the error,

whi
h was �nally spotted by Heawood [36℄. Another proof was proposed by Tait [53℄ in

1880. His proof was based on the assumption that every 3-
onne
ted 3-regular planar

graph is Hamiltonian, whi
h is not true. This gap was pointed out by Peterson in 1891,

and the �rst expli
it 
ounter-example was found by Tutte [55℄ in 1946. However, both

of these failed proofs were very useful; Heawood used a te
hnique from Kempe's proof,

whi
h today is known as \Kempe 
hains", to prove that every map is �ve-
olourable,

and Tait found an equivalent formulation of the 4CP in terms of 3-edge-
olouring.

The next major 
ontribution 
ame from Birkho� [8℄ in 1913 who introdu
ed the notion

of redu
ibility. In a paper titled \The redu
ibility of Maps" he talked about 
on�gurations

(sets of verti
es and edges) that 
annot exist in a minimum planar graph whi
h 
annot

be 4-
oloured. That is, a 
on�guration that 
annot be 
ontained in a minimum 
ounter-

example to the 4CP. Franklin used this notion and went on to prove in 1922 that every

planar map with at most 25 regions is four-
olourable. This method was used by Reynolds

in 1926 to prove the same statement for maps with up to 27 regions, then by Winn in

1940 for maps with 35 regions, by Ore and Stemple in 1970 for maps with 39 regions,

and Mayer in 1976 for maps with 95 regions. However, this te
hnique alone didn't seem

to be suÆ
ient to solve the 4CP for general planar graphs.
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Hees
h, in 1969, 
ame up with a new idea, the method of Dis
harging, whi
h later,

together with the notion of redu
ibility, be
ame the main ingredients used to solve the

4CP. Although he 
ouldn't solve the 4CP himself, he 
onje
tured that using the Dis-


harging Method and 
onsidering 8900 redu
ible 
on�gurations, one 
an �nish the job.

The 
ru
ial rule of the Dis
harging Method was to prove the \unavoidability" of the set

of redu
ible 
on�gurations. In other words, to prove that in any planar graph, one of

these redu
ible 
on�gurations must exist, and therefore from the de�nition of a redu
ible


on�guration, there is no minimum 
ounter-example to the 4CP.

In 1976, Appel and Haken [5℄ announ
ed their proof of the Four Colour Theorem

(4CT), in whi
h they used the notion of redu
ibility and the Dis
harging Method. This

proof used an extensive amount of 
omputer time for verifying that more than 1400


on�gurations were redu
ible. They also had more than 300 dis
harging rules in the

se
ond step of their proof, whi
h again used a 
omputer to 
he
k all the possible 
ases.

Overall, their proof needed more than 1200 hours of CPU time and it was in
on
eivable

to manually 
he
k all the details of the proof.

This was the beginning of a 
ontroversy among mathemati
ians; should we 
onsider

su
h a proof as a \mathemati
al" proof? This is not an easy question, and mathemati-


ians are still quite divided on its answer. The other, perhaps more serious, problem with

the proof of the 4CT in parti
ular, was that even those parts of the proof that were not

automated and were supposed to be hand-
he
kable, were extremely 
ompli
ated and

nobody 
ould verify them.

In 1996, Robertson, Sanders, Seymour, and Thomas [47℄ 
ame up with yet another


omputer-aided proof of the 4CT. This proof is easier in that it has only 633 redu
ible


on�gurations (
ompared to more than 1400 in the original proof by Appel and Haken

[5, 7, 6℄) and only 32 dis
harging rules. In explaining why they regenerated another proof

of this theorem, Robertson et al. [47℄ list the following as the main two reasons the proof

of Appel and Haken was not fully a

epted:
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(i) part of their proof uses a 
omputer and 
annot be veri�ed by hand, and

(ii) even the part that is supposed to be 
he
ked by hand is extraordinarily


ompli
ated and tedious, and as far as we know, no one has made a


omplete and independent 
he
k of it.

However, reason (i) is an evil that still remains in the new proof, as pointed out by

the authors. To verify this new proof and in parti
ular part (i), an independent set of

programs has been written by Fijavz under the guidan
e of Mohar (see the 4CT webpage

at http://www.math.gate
h.edu/~thomas/FC/four
olour.html).

But some mathemati
ians still look at these proofs with skepti
ism. Thomas says: \It

is amazing that su
h a simply stated result resisted a proof for one and a quarter 
enturies,

and even today it is not yet fully understood". Even today, some mathemati
ians are not

satis�ed with the proofs of the 4CT be
ause they think su
h a ni
e and easy to explain

problem must have a better and more understandable proof. Certainly, this proof is not

from the \book"

1

. For more information on the 4CP see the ni
e survey by Claude [24℄.

While the most noteworthy appli
ation of the Dis
harging Method has been in the

proof of the 4CT, there are dozens of other problems that have been solved using this

te
hnique. Some of the proofs are 
omputer-aided, but the vast majority of them are

hand-
he
kable. See, for example, [12, 13, 19, 20, 21, 51, 50℄. Therefore, this method


an be a handy tool for everybody who works on problems on planar graphs, and in

many 
ases, on graphs embeddable on other surfa
es, su
h as the proje
tive plane and

the torus.

1

Very ni
e and elegant proofs are sometimes 
alled \from the book" to refer to the total book, that

Erd�os believed might exist, and 
ontains the best answers to every question.
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2.2 How Does the Dis
harging Method Work?

Let � be a 
lass of planar graphs and suppose we want to prove that every graph in �

has a spe
i�
 property P . We take an arbitrary graph G 2 � and assign some 
harges

to the elements of G (e.g. to the verti
es, edges, or fa
es). Using Euler's formula,

jV j+ jF j�jEj = 2, we show that the total 
harge is some 
onstant. Then we redistribute

the 
harges a

ording to some set of dis
harging rules that we de�ne, while preserving

the total 
harge. After this dis
harging phase, we show that either the total 
harge

is now di�erent (whi
h of 
ourse is impossible) or G has some spe
i�
 stru
tures that

imply property P . This te
hnique is 
alled the Dis
harging Method. Sometimes this

method 
an be applied to problems for graphs embeddable on other surfa
es, su
h as

the proje
tive plane or the torus, as Euler's formula holds for them with non-negative


onstants (1 and 0, respe
tively).

Often, we prove that the spe
i�
 stru
tures imply property P before applying the

Dis
harging Method. The most 
ommon way to do this is to start the proof by way

of 
ontradi
tion and assume that there are graphs in � that do not satisfy property P .

Among all su
h graphs we 
onsider one, 
alled G

0

, whi
h has the smallest size. Then

based on the assumption that G

0

is a minimum 
ounter-example we prove that 
ertain

stru
tures of verti
es, edges, or fa
es 
annot exist in G

0

. These stru
tures are 
alled

redu
ible 
on�gurations. On
e a set of redu
ible 
on�gurations has been de�ned, we

show that they are unavoidable. In other words, we prove that any graph in � must

have at least one of them. This proves that there is no minimum 
ounter-example to the

statement, or equivalently, every graph in � has property P .

To do this se
ond step, i.e. to prove unavoidability of the redu
ible 
on�gurations, we

use the Dis
harging Method. That is, we take an arbitrary graph G 2 � and apply the

initial 
harges to G. Using Euler's formula we show that the total 
harge is, for instan
e,

some negative 
onstant. Then we apply the dis
harging rules and prove that either every

element of G has non-negative 
harge (and so the total 
harge is non-negative), or G
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must have one of these redu
ible 
on�gurations. Of 
ourse, the total 
harge must remain

negative, sin
e the dis
harging rules preserve the total 
harge. Therefore, there are some

elements with negative 
harge in G. We prove that su
h elements must be in or near a

redu
ible 
on�guration.

Sometimes (as you will see soon) we don't use any set of redu
ible 
on�gurations.

Instead, by applying a set of initial 
harges and the dis
harging rules, we 
an derive the

required 
on
lusion. However, in most appli
ations of the Dis
harging Method, before

applying the initial 
harges and the dis
harging rules, we 
ome up with a suitable set of

redu
ible 
on�gurations. For this reason, it is 
ommon to refer to both of the general

steps explained above, i.e. the pro
esses of �nding a set of redu
ible 
on�gurations and

proving the unavoidability of them, as the Dis
harging Method.

Here we demonstrate the use of this te
hnique in a few examples. The �rst example

is a well-know fa
t whose standard proof does not require the Dis
harging Method. We

frame it in terms of the Dis
harging Method here for illustration of the te
hnique, only.

Example 2.2.1 Every simple planar graph G(V;E) has a vertex of degree at most 5.

Proof: Let F be the set of fa
es of G. To every vertex v 2 V with degree d(v), we

assign d(v)� 6 units of 
harge, and to ea
h fa
e f 2 F with size jf j we assign 2jf j � 6

units of 
harge. By noting that 2jEj =

P

v2V

d(v) =

P

f2F

jf j, the total 
harge is:

P

v2V

(d(v)�6)+

P

f2F

(2jf j�6) = 2jEj�6jV j+4jEj�6jF j = 6(jEj� jV j� jF j) = �12.

Sin
e the graph is simple, every fa
e has size at least 3. So there must be a vertex with

negative 
harge. Therefore, for some vertex v: d(v)� 6 < 0, that is d(v) � 5, as wanted.

The above example was easy and we did not have to move any of the 
harges. The

next one is less trivial and 
ontains some 
harge movement; i.e., a dis
harging phase.

Example 2.2.2 In every simple planar graph G(V;E) with minimum degree at least

three, there is a vertex of degree d in
ident with a fa
e of length l su
h that d+ l � 8.
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Proof: We 
all a vertex-fa
e in
iden
e a 
orner. To every vertex v 2 V with degree d(v)

we assign a 
harge of d(v)�4, and to ea
h fa
e f 2 F with length jf j we assign a 
harge of

jf j�4. Again, using Euler's formula, the total 
harge is:

P

v2V

(d(v)�4)+

P

f2F

(jf j�4) =

2jEj � 4jV j + 2jEj � 4jF j = 4(jEj � jV j � jF j) = �8. In the dis
harging phase every

vertex v sends out

d(v)�4

d(v)

units of 
harge to ea
h 
orner that it parti
ipates in. Similarly,

ea
h fa
e f sends

jf j�4

jf j


harge to ea
h 
orner that it belongs to. Therefore, after the

dis
harging phase, all the verti
es and fa
es have 
harge 0. Sin
e the total 
harge was

negative, there must be a 
orner with negative 
harge. Assume that this 
orner is made

from the in
iden
e of a vertex v with d(v) = d and a fa
e f with jf j = l. The 
harge

of this 
orner is

d�4

d

+

l�4

l

< 0. Therefore 2ld � 4l � 4d < 0, whi
h together with the

assumptions that the minimum degree is at least three and ea
h fa
e has size at least

three, imply:

d <

2l

l � 2

� 6 and l <

2d

d� 2

� 6:

Adding l to both sides of the �rst inequality yields d+ l <

l

2

l�2

, whi
h is at most 8 for

3 � l < 6.

The next example is more involved. It is a
tually a simpli�ed version of the problem

that is 
onsidered in Chapters 3 and 4. We will talk about the history of this problem

and the previous results on this in more detail in Chapter 3.

Example 2.2.3 (Abbott and Zhou [1℄) Every planar graph without any 
y
le of size in

f4; : : : ; 11g is 3-
olourable.

Proof: The proof 
ontains two main parts:

Part 1 (Redu
ible Con�gurations): By 
ontradi
tion, assume that the statement

is false and let G(V;E) be a 
ounter-example with the minimum number of verti
es. So

G is a 4-
riti
al graph. Trivially, G must be 
onne
ted. We 
laim that (i) a vertex with

degree at most 2, and (ii) a 
ut-vertex are redu
ible 
on�gurations.
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(i) Suppose that v 2 V is a vertex with degree at most 2. Be
ause G is 4-
riti
al

there exists a 3-
olouring of G � fvg. As v is adja
ent to at most 2 verti
es, we 
an

extend this 
olouring to v by assigning a 
olour di�erent from its neighbours and obtain

a 3-
olouring of G, a 
ontradi
tion.

(ii) Suppose that v 2 V is a 
ut-vertex and C

1

; : : : ; C

k

are the 
onne
ted 
omponents

of G � fvg, with k � 2. By de�nition of G, ea
h C

0

i

= C

i

[ fvg, 1 � i � k, has a

3-
olouring �

i

: V (C

0

i

) �! f1; 2; 3g. Now, without loss of generality, and by possibly

permuting the 
olours in some of �

i

's, we 
an assume that �

i

(v) = 1, for 1 � i � k. The

union of these 
olourings gives a 3-
olouring of G, a 
ontradi
tion.

Part 2 (Dis
harging): Now we prove that this set of redu
ible 
on�gurations is

unavoidable, i.e. any planar graph without 
y
les of size in f4; : : : ; 11g has at least

one of them. This shows that there is no minimum 
ounter-example (and therefore

no 
ounter-example at all) to the statement. Let G be any planar graph without any


y
le of size in f4; : : : ; 11g. To ea
h vertex v 2 V with degree d(v) we assign a 
harge

of d(v) � 6, and to ea
h fa
e f with size jf j we assign 2jf j � 6. The total 
harge is:

P

v2V

(d(v) � 6) +

P

f2F

(2jf j � 6) = 2jEj � 6jV j + 4jEj � 6jF j = �12. Sin
e ea
h fa
e

has size at least 3, all fa
es have non-negative 
harge. If G has a vertex of degree at

most 2, sin
e it is one of the redu
ible 
on�gurations des
ribed in Part 1, we are done.

Otherwise, the minimum degree of G is at least three, and therefore, the only verti
es

with negative 
harge are verti
es with degree 3, 4, or 5.

In the dis
harging phase, every fa
e f with jf j � 12 sends

3

2

units of 
harge to ea
h

of its verti
es. An important observation to make here is that sin
e G does not have

any 
y
le of size 4, it 
annot have two fa
es f

1

; f

2

, ea
h of size 3, that have an edge in


ommon. If G has a 
ut-vertex then we are done, sin
e that is a redu
ible 
on�guration.

Otherwise, every vertex v 2 V is in
ident with at least d

d(v)

2

e distin
t fa
es that have size

at least 12, ea
h. Consider an arbitrary vertex v:

� If 3 � d(v) � 5 then it gets a total of at least

3

2

� d

3

2

e = 3. Its initial 
harge was at
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least d(v)� 6 � �3, and therefore, it has non-negative 
harge.

� if d(v) � 6, it had originally non-negative 
harge and it does not lose any 
harge in

the dis
harging phase.

So all the verti
es have non-negative 
harge. Fa
es of size 3 had originally a 
harge of

0 and they don't lose any 
harge in the dis
harging phase. There are no 
y
les of size

in f4; : : : ; 11g, and therefore no fa
es of size in f4; : : : ; 11g. Every other fa
e f has size

at least 12 and it sends out

3

2

jf j units of 
harge whi
h is not more than 2jf j � 6, for

jf j � 12. Thus, all fa
es have non-negative 
harge after the dis
harging phase. However,

the total initial 
harge was �12. This 
ontradi
tion 
ompletes the proof.

Now, one might ask if we 
an improve this statement by allowing 
y
les of size 11.

In other words, 
an we still prove 3-
olourability if the given planar graph does not have


y
les of size in f4; : : : ; 10g? You will see in a moment that by being a little bit more


areful in the design of the dis
harging rules we 
an prove this, using the same set of

redu
ible 
on�gurations.

Example 2.2.4 (Borodin [15℄) Every planar graph without any 
y
le of size in f4; : : : ; 10g

is 3-
olourable.

Proof: Part 1 (Redu
ible Con�gurations): It is easy to see that the two redu
ible


on�gurations in the previous proof, i.e. a vertex with degree at most 2 (a � 2-vertex)

and a 
ut-vertex, still form a set of redu
ible 
on�gurations.

Part 2 (Dis
harging): LetG be any planar graph without 
y
les of size in f4; : : : ; 10g

and apply the same set of initial 
harges to G. That is, to ea
h vertex v we assign d(v)�6

and to ea
h fa
e f we assign 2jf j � 6 units of 
harge. Re
all that by Euler's formula

the total 
harge is �12. Now we have to de�ne the set of dis
harging rules and show

that after the dis
harging phase either we have one of the redu
ible 
on�gurations, or

the total 
harge is non-negative, whi
h of 
ourse is impossible. If we use the same set

of dis
harging rules as in the previous proof everything works out up to fa
es of size 11,
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vv

(a) (b)

Figure 2.1: (a) A simple vertex and (b) a bad vertex

i.e., we 
an show that either we have a redu
ible 
on�guration (a � 2-vertex or a 
ut-

vertex) or all the verti
es and all the fa
es of size at least 12 have non-negative 
harge.

To 
omplete the proof we need to show that none of the fa
es of size 11 will end up with

negative 
harge, either. But this is not true, be
ause ea
h su
h fa
e sends out

3

2

� 11,

whi
h is larger than its initial 
harge 16. But, do we really need to send

3

2

from ea
h fa
e

to all the verti
es in
ident with it?

It is not hard to see that 3-verti
es (with initial 
harge of �3) are the most desperate

verti
es for 
harge. If a 3-vertex v is in
ident with exa
tly one triangular fa
e we 
all it

a bad vertex and a 3-vertex whi
h is in
ident to no triangular fa
e is 
alled simple (see

Figure 2.1). Note that by absen
e of 4-
y
les, every 3-vertex is either simple or bad.

Sin
e triangular fa
es have 
harge 0, they 
annot a�ord to send any 
harges out in

the dis
harging phase. Therefore, if v is a bad vertex then ea
h of the two non-triangular

fa
es that v is in
ident with, must send

3

2

to v. So every fa
e f must send

3

2

to ea
h of

its bad verti
es. But if v is a simple vertex, then it is in
ident with three non-triangular

fa
es, and therefore, 
an re
eive 
harges from ea
h of them. So it will be suÆ
ient to

send only 1 unit of 
harge from ea
h of those fa
es to v. Also, if v is a � 4-vertex, its

initial 
harge (whi
h is d(v)� 6) is at least �2 and, as in the proof of Example 2.2.3, it

is in
ident with at least two non-triangular fa
es. If ea
h of those fa
es sends 1 unit of


harge to v then v will have non-negative 
harge. This way, we may save enough 
harge

on fa
es, so mu
h so that fa
es of size 11 have non-negative 
harge, too. So let's modify
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the dis
harging rule to:

Every non-triangle fa
e f sends

3

2

units of 
harge to ea
h of its bad verti
es

and 1 unit of 
harge to ea
h of its other verti
es.

As before, if we have a � 2-vertex or a 
ut-vertex we are done. Otherwise, by this

dis
harging rule every 3-vertex v re
eives at least 3 units of 
harge: if v is a bad vertex

it re
eives

3

2

units from ea
h of the non-triangular fa
es it is in
ident with, and if it is a

simple vertex it re
eives 1 unit of 
harge from ea
h of the three fa
es it is in
ident with.

Also, as we proved above, every � 4-vertex re
eives at least 2 units of 
harge and will

have non-negative 
harge. Regarding the fa
es, they are not sending more 
harges than

in the previous example, and therefore, fa
es of size at least 12 have non-negative 
harge

by the proof of Example 2.2.3. For a fa
e f of size 11, an important observation to make

is that it 
an be in
ident with at most 10 bad verti
es, be
ause of parity (bad verti
es

on a fa
e 
ome in pairs). Therefore, f sends out at most 10�

3

2

+1 = 16 = 2jf j � 6, and

hen
e has non-negative 
harge, whi
h 
ompletes the proof.

If we want to relax the 
ondition further and allow 
y
les of size 10 then this set of

dis
harging rules does not seem to work, sin
e a fa
e of size 10 may be in
ident with 10 bad

verti
es, and therefore, must send 10�

3

2

> 2jf j�6. So, one might think that to improve

the result of Example 2.2.4 one step further, we should try to 
ome up with a better set

of dis
harging rules, and possibly a more 
areful assignment of the initial 
harges. Figure

2.2 shows a planar graph whi
h does not have any 
y
le of size in f4; : : : ; 9g and, neither

has a � 2-vertex nor a 
ut-vertex. Therefore, 
hanging only the dis
harging part of the

proof does not help and we must look for a new redu
ible 
on�guration.

In general, to improve a result that uses the Dis
harging Method, sometimes it is

enough �nd a better set of initial 
harges and dis
harging rules (as we did in Example

2.2.4). But there are some situations (as des
ribed in the previous paragraph) that there
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Figure 2.2: A 2-
onne
ted planar graph with Æ � 3 and without 
y
les of size in f4; : : : ; 9g

is no way of improving a result just by 
hanging the dis
harging part sin
e there are

graphs that do not have any of the 
urrent redu
ible 
on�gurations. In those situations

we must �nd a new set of redu
ible 
on�gurations and possibly a new set of dis
harging

rules that work with them. Almost always these two pro
esses (�nding a set of redu
ible


on�gurations and designing a set of dis
harging rules that work with them) have to be


o-ordinated. That is, looking at a 
urrent set of dis
harging rules gives us some hints

as to what kind of new redu
ible 
on�gurations we should be looking for.

One way of doing this is by looking at the elements that have negative 
harge after

applying the 
urrent set of dis
harging rules, but do not lie in or near a member of our


urrent set of redu
ible 
on�gurations. (Of 
ourse, we must have su
h an element, or else

we would already have a 
omplete proof.) Often these elements are in or near something

that we 
an prove to be a new redu
ible 
on�guration. For instan
e, when we tried to

apply our previous set of rules to graphs with 10-
y
les, we saw that a 10-fa
e with 10

bad verti
es got negative 
harge. This inspires us to show, in the next 
hapter, that su
h

a fa
e is redu
ible. (Note that the graph in Figure 2.2 has many su
h fa
es.) On the other
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hand, sometimes we 
annot �nd new redu
ible 
on�gurations. Then we should re�ne our

dis
harging rules to send more 
harge to those problemati
 negatively 
harged elements.

Very roughly speaking, one 
an say that the relation of pro
esses of �nding these two

sets (the redu
ible 
on�gurations and the dis
harging rules) is similar to the relation

between the primal and dual of a linear program in the design of algorithms based on

a primal-dual s
heme. Hopefully these rough statements will be 
learer in Chapter 3,

when we explain how to improve the last example.

One �nal point worth mentioning is that in proofs using the Dis
harging Method,

there are usually equivalent forms of assigning initial 
harges to the elements of the

graph, in the sense that the proof based on one set of 
harges 
an be translated into a

proof based on another one, using a linear transformation of the initial 
harges and the

dis
harging rules. Furthermore, to be able to use Euler's formula to 
al
ulate the sum of

the initial 
harges there are a limited number of forms of initial 
harges we 
an use. So,

the role in the proof that the set of initial 
harges play is not as 
ru
ial as that played

by the dis
harging rules.

2.3 Designing Algorithms Using the Dis
harging Method

We 
lose this 
hapter by noting that almost all proofs using the Dis
harging Method are


onstru
tive and yield eÆ
ient polynomial time algorithms. Usually, the redu
ible 
on-

�gurations have size bounded by a 
onstant k and so, naively, we 
an just do exhaustive

sear
h and �nd one in time O(n

k

). Often, the Dis
harging Method helps to do this step

faster. For instan
e, the proof of Example 2.2.4 yields an O(n

2

) time re
ursive algorithm

su
h that for a given embedded planar graph G without 
y
les of size in f4; : : : ; 10g

produ
es a 3-
olouring of G. For a dis
onne
ted graph, trivially it is enough to 
olour

ea
h 
onne
ted 
omponent separately. Therefore we give a pro
edure for 3-
olouring


onne
ted planar graphs without 
y
les of size in f4; : : : ; 10g.
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Ea
h iteration of the pro
edure 
onsists of either �nding a � 2-vertex and removing

it to obtain a smaller graph, or �nding a 
ut-vertex and breaking the graph into smaller

subgraphs. Then we 
olour the new smaller graph(s) re
ursively, and extend the 
olour-

ing(s) to the whole graph. We keep doing this as long as there is at least one vertex in

the given graph. Here are the steps of the pro
edure:

� Apply the initial 
harges and the dis
harging rule.

� Sin
e the total 
harge is negative, there is some vertex with negative 
harge (note

that by the proof of Example 2.2.4 all fa
es will have non-negative 
harge).

� If v 2 V has negative 
harge, then either d(v) � 2 or v is a 
ut-vertex. We 
an 
he
k

whether d(v) � 2 or not in 
onstant time. If d(v) � 2 then we �nd a 3-
olouring

for ea
h 
onne
ted 
omponent of G� v, re
ursively. These 
olourings 
an be easily

extended to G, sin
e v has at most two 
oloured neighbours.

If v is a 
ut-vertex and the 
onne
ted 
omponents of G� v are C

1

; : : : ; C

k

, then we

�nd a 3-
olouring for ea
h G

i

= C

i

[fvg, re
ursively. The union of these 
olourings,

possibly permuting the 
olours in ea
h, yields a 3-
olouring of G.

Now we analyze the running time of this pro
edure. Sin
e in a planar graph the

number of edges and fa
es is linear in the number of verti
es, we 
onsider the size of a

planar graph to be the number of verti
es in it. Let T (n) be the worst 
ase running time

of the pro
edure on an input graph of size n. In ea
h iteration we apply the initial 
harges

and the dis
harging rule. For ea
h fa
e f it takes O(jf j) time to apply the dis
harging

rule to it. Sin
e only fa
es send 
harges in the dis
harging phase, this step takes at most

O(

P

f2F

jf j) time whi
h is in O(n). Then we �nd a vertex with negative 
harge whi
h


an be done in O(n) time. Extending the 
olourings of the smaller subgraphs (that are

obtained re
ursively) to G takes 
onstant time for the 
ase that the vertex with negative


harge was a �2-vertex, and takes at most O(n) time for the 
ase that it was a 
ut-vertex

(sin
e we may have to permute the 
olours in some of the subgraphs).
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We prove by indu
tion that for some 
onstant C > 0 and all values of n � 1:

T (n) � Cn

2

. The inequality is trivial for small values of n. So let's assume that for all

values of 1 � i < n: T (i) � Ci

2

. Consider the pro
edure 
all in whi
h the input graph has

size n. If a �2-vertex is found we make re
ursive 
alls on at most two smaller graphs of

sizes n

1

and n

2

, respe
tively, with n

1

+n

2

= n�1. Therefore: T (n) � �n+T (n

1

)+T (n

2

),

for some 
onstant � > 0. Thus:

T (n) � �n+ T (n

1

) + T (n

2

) � �n+ Cn

2

1

+ Cn

2

2

� �n+ C(n

1

+ n

2

)

2

� Cn

2

;

where the last inequality holds if C is large enough with respe
t to �.

If a 
ut-vertex is found we make re
ursive 
alls on k smaller graphs G

1

; : : : ; G

k

, with

2 � k � n� 1. Let n

i

= jV (G

i

)j, 1 � i � k. Note that 2 � n

i

� n � 1 (for 1 � i � k)

and

P

k

i=1

(n

i

� 1) = n� 1. Therefore, for some 
onstant � > 0:

T (n) � �n+

k

X

i=1

T (n

i

) � �n+ C

k

X

i=1

n

2

i

:

The last summation is is maximized when k = 2 and one of n

1

or n

2

is n� 1 and the

other is 2. At this maximum, the sum is easily seen to be less than Cn

2

, as wanted.

2.3.1 An Extended Algorithm for Example 2.2.4

In Chapter 4 we will need to use a stronger version of the algorithm given above. Here we

des
ribe this new algorithm. The input to this algorithm is an embedded planar graph

G without 
y
les of size in f4; : : : ; 7g. The algorithm either 
omes up with a 3-
olouring

of G or �nds a 
y
le of size in f4; : : : ; 10g. Again, we assume that the input graph is


onne
ted, as for dis
onne
ted graphs it is enough to run the algorithm on ea
h 
onne
ted


omponent, independently.

At ea
h iteration of the algorithm, we apply the initial 
harges and then the dis
harg-

ing rule as des
ribed in the proof of Example 2.2.4. Sin
e the total 
harge is negative
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there must be some element with negative 
harge after the dis
harging phase. If there

is no fa
e of size in f8; 9; 10g, then the only elements with negative 
harge will be 2-

verti
es and 
ut-verti
es. If we �nd su
h a vertex with negative 
harge we pro
eed as in

the previous algorithm. The other possibility is to have a fa
e f with negative 
harge.

Su
h a fa
e must be a fa
e with size in f8; 9; 10g. Sin
e the input at ea
h iteration of

the algorithm is a subgraph of the original graph, this fa
e f that has negative 
harge


orresponds to a 
y
le of G. Therefore, at ea
h iteration of the new algorithm, either we

�nd a 
y
le of size in f8; 9; 10g and the algorithm terminates and returns it, or we �nd

a � 2-vertex or a 
ut-vertex and we pro
eed as in the previous algorithm. It is easy to

see that this slight modi�
ation does not 
hange the running time of the algorithm, and

therefore, this new algorithm runs in O(n

2

) time, too.



Chapter 3

The Three Colour Problem

Remark 3.0.1 The results in this 
hapter are based on paper [48℄.

3.1 Steinberg's Conje
ture

In 1959, almost two de
ades before the Four Colour Theorem was proved, Gr�ots
h [33℄

showed that every planar graph without 3-
y
les is 3-
olourable. In 1976, Steinberg

[4, 52℄ 
onje
tured that every planar graph without 4- and 5-
y
les is 3-
olourable. Both

4- and 5-
y
les must be ex
luded. In fa
t there is an in�nite family of 4-
riti
al planar

graphs that have only four 4-
y
les and no 5-
y
les, and there is an in�nite family of 4-


riti
al planar graphs that have no 4-
y
les and have only six 5-
y
les [1℄. An equivalent

formulation of this 
onje
ture is that every 4-
hromati
 planar graph has a 4- or 5-
y
le.

This problem is also dis
ussed in the monograph by Jensen and Toft [38℄ (Problem 2.9).

In 1990, Erd�os relaxed the 
onje
ture of Steinberg by asking if there exists an integer

k � 5, su
h that every planar graph without 
y
les of size in f4; : : : ; kg is 3-
olourable.

An aÆrmative answer to the question of Erd�os (and therefore a partial answer to the


onje
ture of Steinberg) was obtained by Abbott and Zhou [1℄, who showed that k = 11

is suitable, i.e. any planar graph without 
y
les of size in f4; : : : ; 11g is 3-
olourable.

This is in fa
t our Example 2.2.3 in Chapter 2. Borodin [15℄ improved this result to

21
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k = 10 (Example 2.2.4). To the date we started working on the problem, the best known

answer, whi
h states that k = 9 is suitable, was due to Borodin [14℄ and independently

to Sanders and Zhao [49℄ (An erroneous proof for the 
ase k = 8 was 
laimed by B. Xu

[61℄, but it was later withdrawn).

Let G

8

be the 
lass of planar graphs without 
y
les of size in f4; : : : ; 8g. The main

result of this 
hapter is:

Theorem 3.1.1 Every graph in G

8

is 3-
olourable.

The proof of this theorem is 
onstru
tive and yields an O(n

2

) time algorithm for

�nding a 3-
olouring of su
h graphs.

One key idea in the proof of this theorem, that distinguishes it from the previously

known results, is the following. To prove the redu
ibility of (some of) the 
on�gurations,

we modify the 
on�guration by removing some verti
es and edges and by adding a smaller

number of verti
es and edges, whi
h will be 
alled the \gadget". This modi�
ation

is designed 
arefully so that it enfor
es some properties that we require to prove the

redu
ibility, while preserving planarity and the key property of not having any 
y
les of

size in f4; : : : ; 8g. Therefore, the new graph is in G

8

, and sin
e the graph we started with

was a minimum 
ounter-example, there must be a 3-
olouring of this new graph. Then

using the properties of the gadget we have added, we show how this 3-
olouring 
an be

extended to a 3-
olouring of the original graph.

The total number of redu
ible 
on�gurations used in the proof of this theorem is mu
h

larger than in the previous results; it is about

1

77, 
ompared to 3 
on�gurations needed

to prove the previous best known bound. To simplify the presentation of the proof, we

have divided these 
on�gurations into several groups based on their stru
tures. We have


he
ked the redu
ibility of these 77 
on�gurations by hand, but writing a hand-
he
kable

proof for ea
h 
on�guration and also going through these proofs and 
he
king every single

1

The a
tual number of redu
ible 
on�gurations is 69, sin
e redu
ibility of some of them follows from

the others. However, the presentation of the proof will be signi�
antly easier if based on 77 
on�gurations.
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on�guration by hand is a lengthy and tedious task. Instead, we give the hand-
he
kable

proofs of some of the 
on�gurations in ea
h group. These proofs have a very similar stru
-

ture and, after seeing a few of them, 
he
king the redu
ibility of the other ones be
omes

straightforward (although tedious and time 
onsuming). But that's not all! We have veri-

�ed the redu
ibility of all of these 
on�gurations using a short and simple C program. So,

we also have a 
omputer-aided proof. The program and the list of all the redu
ible 
on-

�gurations appear in Appendi
es B and C, where we also explain how the 
on�gurations

have been generated. In Se
tion 3.5 we explain how this program works. The program

and the �le 
ontaining the redu
ible 
on�gurations and the des
ription of the program

is also available at ftp://ftp.
s.toronto.edu/
srg-te
hni
al-reports/458/.

The organization of this 
hapter is as follows. Instead of proving Theorem 3.1.1

right away, in the next se
tion we �rst try to improve on Example 2.2.4. We do this by

looking ba
k at the proof of that example. This will lead us to prove a weaker version of

Theorem 3.1.1, whi
h is basi
ally the result of Borodin [14℄ and Sanders and Zhao [49℄.

The proof of Theorem 3.1.1 is provided in Se
tion 3.3. We present some more notation

and de�nitions in Subse
tion 3.3.1. Subse
tion 3.3.2 
ontains the des
ription of all the

redu
ible 
on�gurations and the hand-
he
kable proofs of some of them. We explain the

dis
harging rules in Subse
tion 3.3.3, whi
h also 
ompletes the proof of Theorem 3.1.1.

Appendix A 
ontains more hand-
he
kable proofs of redu
ible 
on�gurations. In Se
tion

3.4 we show how the proof of Theorem 3.1.1 yields a quadrati
 time algorithm for 3-


olouring of graphs in G

8

. Finally, in Se
tion 3.5 we talk about the automated proof of

redu
ibility and the program written for this purpose.

3.2 A Weaker Version of the Main Theorem

Let G

9

be the 
lass of planar graphs without any 
y
le of size in f4; : : : ; 9g. Our goal is

to prove:
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Theorem 3.2.1 Every graph in G

9

is 3-
olourable.

This is the previously best known result on this problem, proved by Borodin [14℄

and by Sanders and Zhao [49℄. To prove Theorem 3.2.1, we look ba
k at the proofs of

Examples 2.2.3 and 2.2.4, and try to �nd a weakness in the arguments and improve it.

Re
all the proof of Example 2.2.4. We showed that a minimum 
ounter-example


annot have a 
ut-vertex or a � 2-vertex, i.e. these two are redu
ible 
on�gurations.

Then to show that any arbitrary planar graph G without 
y
les of size in f4; : : : ; 10g

has one of these two redu
ible 
on�gurations we assigned d(v) � 6 units of 
harge to

every vertex v and 2jf j � 6 units to every fa
e f of G. In the dis
harging phase, every

non-triangle fa
e f sent

3

2

to ea
h of its bad verti
es and 1 to ea
h of its other verti
es.

This argument fails to work for graphs in G

9

sin
e for fa
es of size 10, the total 
harge

sent out might be more than their initial 
harges, and therefore, a 10-fa
e may have

negative 
harge after the dis
harging phase. That happens, for example, to every non-

triangle fa
e of the graph in Figure 2.2. The main problem here is that this graph does

not have any of the two redu
ible 
on�gurations (a � 2-vertex and a 
ut-vertex). Note

that every 10-fa
e in this graph has 10 bad verti
es. This inspires us to try to prove that

if f is a 10-fa
e in a minimum 
ounter-example to Theorem 3.2.1, then there are some

non-bad verti
es in the boundary of f . At least two non-bad verti
es will be enough

sin
e then in the dis
harging part of our proof, a non-redu
ible fa
e f of size 10 would

send out at most 8�

3

2

= 12 (to the bad verti
es) and 2� 1 = 2 (to the non-bad verti
es)

for a total of 14 = 2jf j � 6, and so would have non-negative 
harge after the dis
harging

phase.

Note that every minimum 
ounter-example to Theorem 3.2.1 is 4-
riti
al as if G 2 G

9

then G� e 2 G

9

for every e 2 E(G).

Claim 3.2.2 No 4-
riti
al planar graph (and therefore no minimum 
ounter-example to

Theorem 3.2.1) has a 2k-fa
e f (k � 2) with at least 2k � 1 bad verti
es.
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v
2k

v1
v
2

v
3f

Figure 3.1: A 2k-fa
e in
ident with at least 2k � 1 bad verti
es

Proof: Let G be a 4-
riti
al planar graph and let f be a 2k-fa
e of G whose verti
es

in 
lo
kwise order are v

1

; : : : ; v

2k

. By way of 
ontradi
tion assume that v

1

; : : : ; v

2k�1

are

all bad verti
es. This implies that ea
h has degree 3 and is in
ident with exa
tly one

triangle. Without loss of generality, we 
an assume that v

2i�1

and v

2i

are in
ident with

the same triangle, 1 � i � k. Thus, v

2k

either is also bad or has degree at least four. (see

Figure 3.1). Sin
e G is 4-
riti
al, there is a 3-
olouring of G � v

1

v

2k

, 
alled �. Be
ause

G is not 3-
olourable, �(v

1

) = �(v

2k

); without loss of generality, we 
an assume both

are 1. We 
laim �(v

3

) = 1, otherwise we 
ould ex
hange �(v

1

) with �(v

2

) and obtain a

3-
olouring of G. Using a similar argument, we 
an show that �(v

5

) = 1, and in general

by indu
tion, one 
an easily prove that �(v

2i+1

) = 1, for 0 � i � k � 1. But �(v

2k�1

)


annot be equal to 1, as it is adja
ent to v

2k

and �(v

2k

) = 1. This 
ontradi
tion 
ompletes

the proof.

Remark 3.2.3 Note that the proof of this 
laim a
tually shows that any 3-
olouring of

G � v

1

v

2k


an be extended to a 3-
olouring of G in 
onstant time (for 
onstant k), by

only ex
hanging the 
olours of some of the verti
es of f .

Now we have a new set of redu
ible 
on�gurations (the �rst two were proved to be

redu
ible in Example 2.2.3 and those proofs 
learly extend to this setting):

� a vertex of degree at most 2,
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� a 
ut-vertex, and

� a 2k-fa
e with at least 2k � 1 bad verti
es.

We will use the Dis
harging Method to prove that every planar graph G 2 G

9

must


ontain at least one of these 
on�gurations.

Proof of Theorem 3.2.1: The set of initial 
harges and the dis
harging rules are

the same as in Example 2.2.4. Re
all that by Euler's formula the total initial 
harge is

�12. By the arguments of the proof of Example 2.2.4, either we have a � 2-vertex or

a 
ut-vertex, or every vertex and every fa
e of size at least 11 has non-negative 
harge.

If G has a � 2-vertex or a 
ut-vertex we are done. Otherwise, be
ause the total 
harge

must remain negative after the dis
harging phase, there must be a fa
e of size 10 with

negative 
harge. Suppose f is su
h a fa
e. As we dis
ussed before Claim 3.2.2, f must

be in
ident with at least 9 bad verti
es to have negative 
harge. But su
h a stru
ture is

redu
ible by Claim 3.2.2. Therefore, G 
ontains one of the redu
ible 
on�gurations and

this 
ompletes the proof of Theorem 3.2.1.

Note that, as does the proof of Example 2.2.4, this proof yields a simple quadrati


time 3-
olouring algorithm. Here we give a pro
edure that given a 
onne
ted embedded

graph G 2 G

9

as input, produ
es a 3-
olouring of G. Obviously if we have a dis
onne
ted

graph G 2 G

9

, it is enough to apply this pro
edure to ea
h of its 
onne
ted 
omponents.

At ea
h iteration of the pro
edure, we apply the initial 
harges and then the dis
harging

rule. Sin
e the total 
harge is negative, there is either a vertex or a fa
e with negative


harge:

1. If there is a vertex v with negative 
harge, then either v is a � 2-vertex or a 
ut-

vertex. As in the algorithm of Example 2.2.4, for the 
ase that v is a � 2-vertex

we 
an 
olour ea
h 
onne
ted 
omponent of G�fvg, re
ursively, and extend these


olourings to v. For the 
ase that v is a 
ut-vertex and C

1

; : : : ; C

t

(t � 2) are the


onne
ted 
omponents of G � fvg, we 
an 
olour ea
h G

i

= C

i

[ fvg, 1 � i � t,
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re
ursively, and then 
ombine these 
olourings (possibly permuting some 
olours in

some of the 
olourings) to obtain a 3-
olouring of G.

2. If there is a fa
e f with negative 
harge, then this fa
e must be a 10-fa
e with at

least 9 bad verti
es. We remove one of the edges as in the proof of Claim 3.2.2 and


olour the new graph re
ursively. By Remark 3.2.3, this 
olouring 
an be extended

to G in 
onstant time.

This pro
edure iterates as long as there is at least one vertex in the graph. Let the

size of the input graph G be n = jV j+ jEj and denote the worst 
ase running time of the

algorithm on an input of size n by T (n). As in the algorithm of Se
tion 2.3, sin
e fa
es

are the only elements that send 
harges in the dis
harging phase, applying the initial


harges and the dis
harging rule takes O(

P

f2F

jf j) time, whi
h is in O(n). After that,

�nding an element (vertex or fa
e) with negative 
harge takes O(n) time. If the element

with negative 
harge is a vertex then (as we had in the algorithm of Example 2.2.4) it

takes at most linear time to extend the 
olouring of the smaller graphs to G. If the

element with negative 
harge is a fa
e, by Remark 3.2.3, it takes 
onstant time to extend

the 
olouring to G. So we 
an assume that all these steps take at most �n time, for some


onstant � > 0.

By indu
tion on n, we prove that for all values of n � 1 and for a suitable 
onstant

C > 0: T (n) � Cn

2

. For small values of n the inequality trivially holds, if C is large

enough. Suppose that T (i) � Ci

2

for all values of 1 � i < n, and 
onsider the iteration

in whi
h the input graph has size n. After the dis
harging phase:

� For the 
ase that the element with negative 
harge is a 2-vertex or a 
ut-vertex then

an analysis very similar to that of algorithm of Se
tion 2.3 shows that T (n) � Cn

2

.

� For the 
ase that the element with negative 
harge is a fa
e then we make a re
ursive


all on a graph obtained by removing a single edge of G, i.e. a graph with size n�1.

Therefore: T (n) � �n+ T (n� 1) � �n+ C(n� 1)

2

� Cn

2

, for large enough C.
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(b) (c)(a)

v v v

Figure 3.2: (a) A type 0 vertex, (b) a type 1 vertex, and (
) a type 2 vertex

So the running time of the algorithm is O(n

2

).

3.3 Proof of the Main Theorem

In this se
tion, we strengthen our arguments from the previous se
tion to prove Theorem

3.1.1. First we need to state a few more de�nitions used in the des
ription of redu
ible


on�gurations. We will also use the de�nitions from Chapter 2 for bad and simple

verti
es.

3.3.1 Preliminaries

Re
all that a 3-vertex is bad if it is in
ident with exa
tly one triangle, and simple oth-

erwise. Let v be a vertex with degree 4. Then v is 
alled a type 0 vertex if it is not

in
ident with any triangles. If it is in
ident with exa
tly one or exa
tly two triangles,

then it is 
alled a type 1 or type 2 vertex, respe
tively. Note that by absen
e of 4-
y
les,

every 4-vertex is one of these three types (See Figure 3.2).

In the proof of Theorem 3.2.1 we saw how to deal with fa
es of size at least 10.

Dealing with 9-fa
es will require some 
are. We begin by de�ning some stru
tures that

involve 9-fa
es. Let f be a 9-fa
e in
ident with 8 bad verti
es. Then f is 
alled a simple,

a type 0, a type 1, a type 2, or a type 5 fa
e, if the ninth vertex of f is a simple, a type

0, a type 1, a type 2, or a 5-vertex, respe
tively (See Figure 3.3).

Now suppose that f is a 9-fa
e whi
h has exa
tly 7 bad verti
es (and therefore is
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Figure 3.3: (a) A simple fa
e, (b) a type 0 fa
e, (
) a type 1 fa
e, (d) a type 2 fa
e, and

(e) a type 5 fa
e.

adja
ent to exa
tly four triangles), and has a type 1 vertex whi
h is in
ident with one

of these four triangles. This a

ounts for 8 of the verti
es. If the ninth vertex of f is a

simple vertex then f is 
alled a semi-simple fa
e. Similarly, if the ninth vertex of f is

a type 0 vertex, or a type 1 vertex, or a type 2 vertex, then it is 
alled a semi-type 0,

semi-type 1, or semi-type 2 fa
e, respe
tively (see Figure 3.4). We have not given a name

to every 9-fa
e. We named only 9-fa
es with 8 bad verti
es and a � 5-vertex, or with 7

bad verti
es and two 4-verti
es.

As you will see later, some redu
ible 
on�gurations are made from an intera
tion of

three fa
es of size 9. For this reason we have to de�ne a few more stru
tures. Let f

1

be a

semi-type 0 fa
e whose verti
es (in 
ounter-
lo
kwise order) are v

1

; v

2

; : : : ; v

9

, where v

1

is

the type 0 vertex, and let f

2

be a type 0 fa
e whose type 0 vertex is v

1

. If v

i

is the type

1 vertex of f

1

, for some 3 � i � 8, and f

3

is a semi-simple fa
e whose type 1 vertex is v

i

,

then we 
all this 
on�guration a \simple triple stru
ture" (See Figure 3.5(a)). Similarly,
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Figure 3.4: (a) A semi-simple fa
e, (b) a semi-type 0 fa
e, (
) a semi-type 1 fa
e, (d) a

semi-type 2 fa
e

f1

f2
2v v9

v7

v5
v6

v3

v1

f3
v4

v8 f1

f2
2v v9
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Figure 3.5: (a) A simple triple stru
ture with v

i

= v

4

, (b) a triple stru
ture of kind 1

with v

i

= v

3

, (
) a triple stru
ture of kind 2 with v

i

= v

3

if f

3

is a type 1 fa
e whose type 1 vertex is v

i

, then we 
all this 
on�guration a \triple

stru
ture of kind 1". Finally, if f

3

is a semi-type 2 fa
e whose type 1 vertex is v

i

, then

we 
all this 
on�guration a \triple stru
ture of kind 2". (See Figure 3.5)

3.3.2 Redu
ible Con�gurations

Suppose we were to follow the same steps as in the proof of Theorem 3.2.1. That is, in

the dis
harging part assign an initial 
harge of d(v) � 6 to every vertex v and 2jf j � 6

to every fa
e f . For the moment, let's assume that we used the same dis
harging rule,

i.e. every non-triangle fa
e f sends

3

2

to every bad vertex and 1 to every other vertex
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in its boundary. Then, as in the proof of Theorem 3.2.1, we 
ould show that either we

have one of the redu
ible 
on�gurations of the proof of Theorem 3.2.1, or every vertex

and every fa
e of size at least 10 has non-negative 
harge. But how about fa
es of size

9? Suppose that f is a 9-fa
e and has 8 bad verti
es v

1

; : : : ; v

8

. Therefore, f is sending

out all its 2jf j � 6 = 12 units of 
harge to these bad verti
es and has nothing left to

send to its ninth vertex. In parti
ular, if v

9

, the ninth vertex of f , is a simple vertex, i.e.

f is a simple fa
e as in Figure 3.3(a), then f must send 1 unit of 
harge to v

9

and will

have �1 
harge. This inspires us to try to show that a simple fa
e is in fa
t a redu
ible


on�guration.

In the next �ve lemmas, by a minimum-
ounter example we mean a graph G 2 G

8

whi
h is is a 
ounter-example to Theorem 3.1.1 with the minimum number of verti
es,

and that among those 
ounter-examples whi
h have the same number of verti
es as G,

G has the minimum number of edges.

Lemma 3.3.1 A minimum 
ounter-example 
annot have a simple fa
e.

Proof: Let G be a minimum 
ounter-example and suppose that f is a simple fa
e in

G. Let's denote the verti
es of f by v

1

; v

2

; : : : ; v

9

, in 
lo
kwise order, where v

1

; : : : ; v

8

are bad and v

9

is simple. We denote the vertex adja
ent to both v

2i�1

and v

2i

by w

i

,

1 � i � 4. The neighbour of v

9

not in the boundary of f is 
alled w

5

. (see Figure 3.6(a)).

We modify G in the following way: remove v

1

; v

2

; : : : ; v

9

and their in
ident edges from

G and add 6 new verti
es u

1

; u

2

; : : : ; u

6

. Make u

1

; u

2

; u

3

and u

4

; u

5

; u

6

two triangles and

add the following edges: u

1

w

1

, u

2

w

2

, u

4

w

3

, u

5

w

4

, u

3

u

6

. (see Figure 3.6(b)).

Call this new graph G

0

and the new verti
es and edges the gadget. Clearly G

0

is planar

and it is straightforward to verify that the pairwise distan
es of w

1

; : : : ; w

5

in G

0

using

only the verti
es and the edges of the gadget is not less than their 
orresponding distan
es

in G using only the verti
es and the edges that are removed. Thus G

0

2 G

8

. The number

of verti
es of G

0

is smaller than in G. So by minimality of G, there is a 3-
olouring of
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Figure 3.6: A simple fa
e and the gadget added

G

0

, 
alled C. A very useful property of the gadget is that w

1

; : : : ; w

4


annot have all the

same 
olour in C. We 
an easily prove this by 
ontradi
tion. Assume that they all have

got the same 
olour, say 1. Therefore, the 
olours of u

1

; u

2

; u

4

; and u

5

are all di�erent

from 1. Sin
e u

1

; u

2

; u

3

and u

4

; u

5

; u

6

are triangles and we are using only three 
olours in

C, both u

3

and u

6

(whi
h are adja
ent) should have been 
oloured 1, whi
h is impossible.

Consider 
olouring C indu
ed on G � fv

1

; : : : ; v

9

g. The only 
oloured neighbour of

v

9

is w

5

. So we 
an extend C to v

9

by assigning a 
olour to it di�erent from C(w

5

). Now

the only two 
oloured neighbours of v

8

are w

4

and v

9

, so there is a 
olour available for

v

8

. Using the same argument we 
an extend C by 
olouring v

7

; v

6

; : : : ; v

2

, greedily. By

the time we get to v

1

this greedy algorithm will assign a 
olour to v

1

di�erent from C(v

2

)

and C(w

1

). But sin
e G is not 3-
olourable, C(v

1

) must be equal to C(v

9

). Without

loss of generality assume that C(v

1

) = C(v

9

) = 1. We 
ould ex
hange C(v

1

) and C(v

2

)

to resolve the 
on
i
t between C(v

1

) and C(v

9

), unless C(v

3

) = 1. So assume that

C(v

3

) = 1. Similarly, we 
ould ex
hange C(v

3

) and C(v

4

) to make C(v

3

) 6= 1, unless

C(v

5

) = 1. So we must have C(v

5

) = 1. By the same argument we 
an show that

C(v

7

) = 1.

Note: This te
hnique is used by Sanders and Zhao [49℄. We have already seen it in

the proof of Claim 3.2.2 and will use it frequently in the proofs of other lemmas. We 
all
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this argument the \
haining argument".

On the other hand, without loss of generality, we 
an assume that C(w

5

) = 2. Now if

C(v

8

) = 2 then we 
ould simply assign C(v

9

) = 3 and resolve the 
on
i
t between C(v

9

)

and C(v

1

). We apply the 
haining argument again. Therefore C(v

8

) = 3 and C(w

4

) = 2.

If C(v

6

) 6= 3 then we 
ould simply ex
hange C(v

7

) with C(v

8

) and set C(v

9

) = 3.

Therefore C(v

6

) = 3 and C(w

3

) = 2. Using the same argument C(v

4

) = C(v

2

) = 3 and

C(w

2

) = C(w

1

) = 2. But this means that all w

1

; : : : ; w

4

have the same 
olour in C, a


ontradi
tion.

2

Remark 3.3.2 By this lemma, any 3-
olouring of G � fv

1

; : : : ; v

9

g in whi
h not all

w

1

; : : : ; w

4

have the same 
olour 
an be extended to a 3-
olouring of G in 
onstant time.

One way of doing this is using exhaustive sear
h, 
onsidering all possible 3-
olourings of

v

1

; : : : ; v

9

.

Continuing the dis
ussions we had before Lemma 3.3.1, one other possibility for a 9-

fa
e f to have negative 
harge is that it has 8 bad verti
es v

1

; : : : ; v

8

and the ninth vertex

of it, v

9

, is a 4-vertex. In this 
ase too, f sends 1 unit of 
harge to v

9

, and therefore,

has �1 
harge. One might argue that if v

9

is a type 0 vertex it is in
ident with four

non-triangular fa
es, and therefore, we might be able to 
hange the dis
harging rules so

that v

9

re
eives 
harge from the other fa
es and f does not have to send any 
harge to

v

9

. This saves 1 unit of 
harge for f and it will not have negative 
harge. This is a valid

argument and in fa
t we do exa
tly that (see rule R5 in Se
tion 3.3.3). But if v

9

is a

type 2 vertex, i.e. if f is a type 2 fa
e (as in Figure 3.7(a)), then there are only two

non-triangular fa
es in
ident with v

9

, one of them is f and let's 
all the other one f

0

.

These are the only two non-triangle fa
es in
ident with v

9

and they should send 
harge to

v

9

. If f

0

too is a type 2 fa
e, then ea
h of f and f

0

must send 1 unit of 
harge to v

9

, but

2

The reader might have observed that this argument 
an be simpli�ed by using the well-known fa
t

that an odd 
y
le 
an be 2-list 
oloured as long as the lists are not all the same. But we prefer to use the

above argument as we will generalize it to prove redu
ibility of some more 
ompli
ated 
on�gurations.
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Figure 3.7: A type 2 fa
e and the gadget added

they 
annot a�ord to do so, as ea
h of them is sending all of its 
harge to its bad verti
es.

So this is a situation in whi
h we should be looking for a redu
ible 
on�guration. In the

following lemma we show that in fa
t a type 2 fa
e (like f) is redu
ible.

Lemma 3.3.3 A minimum 
ounter-example 
annot have a type 2 fa
e.

Proof: Let G be a minimum 
ounter-example and suppose that f is a type 2 fa
e of G

whose bad verti
es are v

1

; v

2

; : : : ; v

8

and whose type 2 vertex is v

9

(see Figure 3.7(a)). We

modify G in a way similar to that of Lemma 3.3.1: remove v

1

; : : : ; v

9

and add a gadget

as in Figure 3.7(b).

It is straightforward to verify that the new graph G

0

is in G

8

, and by de�nition of

G, there exists a 3-
olouring of G

0

, say C. Note that by the same argument as we had

in Lemma 3.3.1, we 
annot have all w

5

; w

1

; w

2

; w

3


oloured with the same 
olour in C.

Consider C indu
ed on G. Sin
e the only 
oloured neighbours of v

9

are w

4

and w

5

, we


an extend C to v

9

. Assign a 
olour di�erent from C(v

9

) and C(w

5

) to v

1

. Also, starting

from v

8

and moving around f toward v

2

in 
ounter-
lo
kwise order, we 
an extend C

by 
olouring v

8

; : : : ; v

3

greedily. We assign a 
olour di�erent from C(v

3

) and C(w

1

) to

v

2

. Sin
e G is 4-
hromati
, v

2

will get the same 
olour as v

1

, say 1. By the 
haining

argument C(v

4

) = C(v

6

) = C(v

8

) = 1. Without loss of generality we assume C(v

9

) = 2
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whi
h yields C(w

4

) = C(w

5

) = 3. If C(v

7

) 6= 2 then we 
ould set C(v

8

) = 2, C(v

9

) = 1,

and C(v

1

) = 2 and get a 3-
olouring of G. So C(v

7

) = 2 and C(w

3

) = 3. By the 
haining

argument C(v

5

) = C(v

3

) = 2. This means that C(w

1

) = C(w

2

) = C(w

3

) = C(w

5

) = 3,

whi
h is a 
ontradi
tion.

Remark 3.3.4 As in Remark 3.3.2, the proof of this lemma implies that any 3-
olouring

of G�fv

1

; : : : ; v

9

g, in whi
h not all w

1

; w

2

; w

3

; w

5

have the same 
olour, 
an be extended

to a 3-
olouring of G in 
onstant time using exhaustive sear
h.

The previous two 
on�gurations are our only redu
ible 
on�gurations that involve

only one 9-fa
e. By extending the arguments pre
eding these two lemmas, we see that

there are more 
ompli
ated stru
tures that we must prove are redu
ible. The general

idea of the proof of all of the other 
on�gurations is basi
ally the same as above. In

most of them, we need to forbid some of the verti
es from all having the same 
olour. To

do this, we remove some verti
es and edges of the minimum 
ounter-example and add

a gadget whose stru
ture is similar to the one in the previous lemmas. In all the 
ases,

the new graph is smaller and is in G

8

, hen
e is 3-
olourable. Then we show that this

3-
olouring indu
ed on the original graph (whi
h will be a partial 3-
olouring), 
an be

extended to a 3-
olouring of the whole graph, 
ontradi
ting an assumption that it is a

minimum 
ounter-example. This establishes the redu
ibility of the 
on�guration.

The following lemma proves the redu
ibility of a 
on�guration that involves two 9-

fa
es, ea
h of whi
h is a type 0 fa
e.

Lemma 3.3.5 A minimum 
ounter-example 
annot have two type 0 fa
es sharing their

type 0 vertex.

Proof: Let G be a minimum 
ounter-example and suppose that f

1

and f

2

are two type

0 fa
es in G sharing their type 0 vertex. There are two possible 
on�gurations of this

kind (shown in Figures 3.8(a) and 3.9(a)). We 
onsider ea
h 
ase separately:



Chapter 3. The Three Colour Problem 36

v9

v3
v4

v5
v6

v7

v8

u3
u4

u5

u7

u6
u2

1
w 2w

3w

4
w

v

f1

f2

1
w 2w

3w

4
w

u8

5
w

6
w

u1

1 v2

5
w

6
w

u1

(a) (b)

Figure 3.8: Two type 0 fa
es sharing a type 0 vertex

Con�guration of Figure 3.8(a): First we remove v

1

; : : : ; v

9

and u

2

; : : : ; u

8

and all the

in
ident edges. Then add four new triangles and 
onne
t them together and to the rest

of the verti
es of G as in Figure 3.8(b). Call this new graph G

0

. It is straightforward to

verify that: (i) G

0

2 G

8

(ii) be
ause of minimality of G there is a 3-
olouring of G

0

, say

C, and (iii) w

1

; : : : ; w

6


annot all have the same 
olour in C.

Now 
onsider this 3-
olouring indu
ed on G. We 
an easily extend C to v

1

, sin
e only

one neighbour of v

1

, whi
h is u

1

, is 
oloured. Similarly, we 
an extend C by 
olouring

v

9

; : : : ; v

3

greedily. Also, starting from u

2

and moving around f

2

in 
lo
kwise order, we


an 
olour u

3

; : : : ; u

8

, greedily. Now assign a 
olour di�erent from C(v

3

) and C(u

8

) to v

2

,

whi
h will be equal to C(v

1

). Without loss of generality, assume that C(v

1

) = C(v

2

) = 1.

By the 
haining argument starting from v

2

and going around f

1

: C(v

4

) = C(v

6

) =

C(v

8

) = 1. Similarly, by the same argument for the verti
es around f

2

: C(u

7

) = C(u

5

) =

C(u

3

) = 1.

Without loss of generality assume C(u

1

) = 3. Suppose that C(u

2

) = 3. First ex
hange

C(v

3

) with C(u

8

) (if needed) so that C(v

3

) 6= C(v

5

). Now ex
hange C(v

9

) with C(v

8

),

C(v

7

) with C(v

6

), and C(v

5

) with C(v

4

), and set C(v

1

) = 2. This gives a 3-
olouring

of G whi
h is a 
ontradi
tion. Thus C(u

2

) = 2 and by the 
haining argument C(u

4

) =
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Figure 3.9: Two type 0 fa
es sharing a type 0 vertex

C(u

6

) = C(u

8

) = 2. Using exa
tly the same argument we 
an show that C(v

9

) = 2 and

by the 
haining argument C(v

7

) = C(v

5

) = 2. But this means that w

1

; : : : ; w

6

all have


olour 3 in C, 
ontradi
ting property (iii) mentioned for C.

Con�guration of Figure 3.9(a): First remove v

1

; : : : ; v

9

and u

1

; : : : ; u

8

and all the

in
ident edges. Then add four new triangles and 
onne
t them together and to the rest of

the verti
es of G as in Figure 3.9(b). Call this new graph G

0

. Again, it is straightforward

to verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is a 3-
olouring of G

0

,

say C, (iii) w

1

; : : : ; w

4


annot all have the same 
olour in C. Similarly, t

1

; : : : ; t

4


annot

all have the same 
olour in C.

Now 
onsider this 3-
olouring indu
ed onG. We extend C by 
olouring the un
oloured

verti
es of G greedily in the following order: u

8

; u

7

; : : : ; u

1

; v

1

; v

9

; v

8

; : : : ; v

3

, sin
e at ea
h

step there are at most two 
olours in the neighbourhood of the vertex we want to 
olour.

We 
an also assign a 
olour di�erent from C(w

1

) and C(v

3

) to v

2

. By de�nition of

G, C(v

1

) = C(v

2

), whi
h we 
an assume is equal to 1. By the 
haining argument
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C(v

4

) = C(v

6

) = C(v

8

) = 1.

Without loss of generality, assume that C(v

9

) = 3. We ex
hange C(v

9

) with C(v

8

). If

C(v

7

) = 3 ex
hange C(v

7

) with C(v

6

) and then if C(v

5

) = 3 ex
hange C(v

5

) with C(v

4

).

In this 
ase C(v

3

) 
annot be 3, otherwise all w

1

; : : : ; w

4

have 
olour 2, 
ontradi
ting (iii).

Note that now C(v

9

) = C(v

1

) = C(v

2

) = 1. We 
laim that fC(u

1

); C(u

8

)g 6= f2; 3g.

By way of 
ontradi
tion, assume that C(u

1

) = 2 and C(u

8

) = 3. If we 
ould ex
hange

C(u

1

) with C(u

2

), or C(u

8

) with C(u

7

), then there would be at most two 
olours in the

neighbourhood of v

9

, and therefore, we 
ould assign a new 
olour to v

9

di�erent from its

neighbours, and get a 3-
olouring of G. So, C(u

3

) = 2 and by the 
haining argument,

C(u

3

) = C(u

5

) = C(u

7

) = 2. Similarly, C(u

8

) = C(u

6

) = C(u

4

) = C(u

2

) = 3. But this

implies that all t

1

; : : : ; t

4

have 
olour 1 in C, 
ontradi
ting property (iii) of C.

So in Lemma 3.3.5 we a
tually proved the redu
ibility of two sub
on�gurations. The

same will be true for the next lemma. Our most 
ompli
ated redu
ible 
on�gurations

involve an intera
tion of three 9-fa
es. Next we prove the redu
ibility of one of them.

Lemma 3.3.6 A minimum 
ounter-example 
annot have three type 5 fa
es sharing their

5-vertex.

Proof: Let G be a minimum 
ounter-example with three type 5 fa
es sharing their

5-vertex. There are two possible non-symmetri
 
on�gurations of this kind, whi
h are

shown in Figures 3.10(a) and 3.11(a). We 
onsider ea
h 
ase separately:

Con�guration of Figure 3.10(a): First we remove u

1

; : : : ; u

7

, v

2

; : : : ; v

9

, t

1

; : : : ; t

7

, and

all the in
ident edges. Then add 6 new triangles and 
onne
t them together and to

the rest of the verti
es of G as in Figure 3.10(b). Call this new graph G

0

. Again, it is

straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is a

3-
olouring of G

0

, say C, and (iii) w

1

; : : : ; w

8


annot all have the same 
olour in C.

Consider this 3-
olouring indu
ed on G. We extend C by 
olouring the un
oloured

verti
es ofG greedily in the following order: t

1

; t

2

; : : : ; t

7

; v

9

; v

8

; : : : ; v

2

; u

7

; u

6

; : : : ; u

2

, sin
e
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Figure 3.10: Three type 5 fa
es sharing a 5-vertex

at ea
h step there are at most two 
olours in the neighbourhood of the vertex we want

to 
olour. We also assign a 
olour di�erent from C(u

2

) and C(w

1

) to u

1

. Sin
e G is

not 3-
olourable, C(u

1

) = C(v

1

), whi
h we 
an assume is equal to 1. By the 
haining

argument, C(u

3

) = 1, and also all u

5

; u

7

; v

4

; v

6

; v

8

; t

6

; t

4

; and t

2

must have been 
oloured

1. First we show that C(t

1

) 6= C(u

8

). Assume that they are both equal, say 2. We


an ex
hange C(t

7

) with C(v

9

) (if needed) so that C(v

9

) = 2, too. Similarly, we 
an

ex
hange C(v

2

) with C(v

3

) if needed to set C(v

2

) = 2. Then we 
an set C(v

1

) = 3 and

get a 3-
olouring of G.

So we 
an assume that C(t

1

) = 3 and C(u

8

) = 2. If we 
ould ex
hange C(t

1

) with

C(t

2

), by an argument similar to the previous 
ase, we 
an set C(v

9

) = C(v

2

) = 2 and set

C(v

1

) = 3. This shows that we 
annot ex
hange C(t

1

) with C(t

2

), be
ause C(t

3

) = 3. By

the 
haining argument C(t

5

) = 3, too. Now, if C(v

7

) = 2 then we 
ould set C(v

8

) = 3,

C(v

9

) = 1, C(t

7

) = 2, and ex
hange C(t

6

) with C(t

5

), C(t

4

) with C(t

3

), and C(t

2

)

with C(t

1

), and set C(v

1

) = 3. This shows that C(v

7

) = 3. By the 
haining argument

C(v

5

) = 3, and by a similar argument we 
an show that C(u

6

) = C(u

4

) = C(u

2

) = 3.

All these show that w

1

; : : : ; w

8

are all 
oloured with 2 whi
h 
ontradi
ts property (iii)

mentioned above for C.

Con�guration of Figure 3.11(a): First remove v

1

; : : : ; v

9

; t

1

; : : : ; t

8

; u

1

; : : : ; u

7

and all
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Figure 3.11: Three type 5 fa
es sharing a 5-vertex

the in
ident edges. Then add 6 new triangles and 
onne
t them together and to the rest

of the verti
es of G as in Figure 3.11(b). Call this new graph G

0

. It is straightforward to

verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is a 3-
olouring of G

0

, say

C, and (iii) w

1

; : : : ; w

6


annot all have the same 
olour in C. Also, w

7

; : : : ; w

10


annot

all have the same 
olour in C.

Consider this 3-
olouring indu
ed on G. We extend C by 
olouring the un
oloured

verti
es of G greedily in the following order: t

8

; t

7

; : : : ; t

1

; v

1

; v

9

; v

8

; : : : ; v

2

; u

7

; u

6

; : : : ; u

2

,

sin
e at ea
h step there are at most two 
olours in the neighbourhood of the vertex we

want to 
olour. We also assign a 
olour di�erent from C(u

2

) and C(w

1

) to u

1

. Sin
e G

is not 3-
olourable, C(u

1

) = C(v

1

), whi
h we 
an assume is equal to 1. By the 
haining

argument, C(u

3

) = 1 = C(u

5

) = C(u

7

) = C(v

4

) = C(v

6

) = C(v

8

).

First we show that C(t

1

) 6= C(t

8

). By 
ontradi
tion assume that they are equal to 2.

So C(v

9

) = 3, otherwise we 
ould simply set C(v

1

) = 3 and ex
hange C(v

2

) with C(v

3

)

if needed. By the 
haining argument C(v

7

) = C(v

5

) = 3. By the 
haining argument,

C(u

6

) = 3 = C(u

4

) = C(u

2

). But this requires that all w

1

; : : : ; w

6

be 
oloured 2, whi
h


ontradi
ts property (iii) mentioned above.

So we 
an assume that C(t

1

) = 2 and C(t

8

) = 3. If we 
ould ex
hange C(t

8

) with
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C(t

7

) then we 
ould use the same argument as in the previous paragraph to modify C

so that there are only 
olours 1 and 2 in the neighbourhood of v

1

and set C(v

1

) = 3 to

get a 3-
olouring of G. This 
ontradi
tion shows that C(t

6

) = 3, and by the 
haining

argument C(t

4

) = C(t

2

) = 3. We 
an do a very similar argument to show that C(t

3

) = 2

and by the 
haining argument C(t

5

) = C(t

7

) = 2. But then we have to have C(w

7

) =

C(w

8

) = C(w

9

) = C(w

10

) = 1 whi
h 
ontradi
ts property (iii) we mentioned.

In addition to the redu
ible 
on�gurations we used in the proof of Theorem 3.2.1,

we have seen four new 
on�gurations des
ribed in Lemmas 3.3.1 to 3.3.6, some of whi
h

have two sub
on�gurations. There are 8 other 
on�gurations. Below we list all these

�fteen 
on�gurations, in
luding the four we proved above and the three used in the proof

of Theorem 3.2.1 (see Figure 3.12):

Redu
ible Con�gurations:

1. A �2-vertex.

2. A 
ut-vertex.

3. A 2k-fa
e with at least 2k � 1 bad verti
es.

4. A simple fa
e.

5. A type 2 fa
e.

6. Two type 0 fa
es sharing their type 0 vertex.

7. Three type 5 fa
es sharing their type 5 vertex.

8. Two semi-simple fa
es sharing a type 1 vertex.

9. Two semi-type 2 fa
es sharing a type 1 vertex.

10. A semi-type 2 fa
e sharing its type 1 vertex with a type 1 fa
e.

11. A semi-type 2 fa
e sharing its type 1 vertex with a semi-simple fa
e.
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f1
f3

f2

f1

f2

f1

f2

f2
f1f1

f2f3

f1

f2

f1

f2

f1

f2

f1

f2

f3

f1

f2

f3

f f

7: Three type 5 faces

14: A triple structure of kind 113: A simple triple structure

4: A simple face 5: A type 2 face 6: Two type 0 faces

11: A semi−type 2 and a semi−simple face

8: Two semi−simple faces 9: Two semi−type 2 faces

10: A semi−type 2 and a type 1 faces 12: A semi−simple and a type 1 face

15: A triple structure of kind 2

Figure 3.12: Redu
ible 
on�gurations 4-15
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12. A semi-simple fa
e sharing its type 1 vertex with a type 1 fa
e.

13. A simple triple stru
ture.

14. A triple stru
ture of kind 1.

15. A triple stru
ture of kind 2.

While this list has only 15 
on�gurations, some of them (like 
on�gurations 6 and 7)

have two sub
on�gurations, and some of them (like 
on�gurations 14 and 15) have many

more sub
on�gurations, so many so that the total number of 
on�gurations (
onsidering

all sub
on�gurations) is 77.

Lemma 3.3.7 A minimum 
ounter-example to Theorem 3.1.1 
annot have any of the


on�gurations given above.

We have seen the hand-
he
kable proofs for 
on�gurations 1-7 (in the proofs of Ex-

ample 2.2.3, Theorem 3.2.1, and Lemmas 3.3.1 to 3.3.6). We defer the proof of other


on�gurations until Se
tion 3.5 and Appendi
es A, B, and C, where we des
ribe the

hand-
he
kable proofs of 
on�gurations 8-12 and we dis
uss the 
omputer-aided proof of

all 
on�gurations.

Remark 3.3.8 As in Remarks 3.2.3, 3.3.2, and 3.3.4, for ea
h of the 
on�gurations

given above, the proof of redu
ibility yields a 
onstant time algorithm for extending a

3-
olouring of the graph obtained by removing the verti
es of the 
on�guration (and pos-

sibly adding a gadget to it) to a 3-
olouring of the original graph. One way of doing

this is exhaustive sear
h, i.e. 
onsidering all possible 3-
olourings of the verti
es of the


on�guration. Sin
e ea
h 
on�guration has 
onstant size this takes O(1) time.

We 
omplete the proof of Theorem 3.1.1 by proving the unavoidability of these 
on-

�gurations (using the Dis
harging Method) in the next se
tion.
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3.3.3 Dis
harging Rules

Let G be an arbitrary graph in G

8

. As in the proofs of Theorem 3.2.1 and Example 2.2.4,

we give an initial 
harge of d(v)� 6 units to ea
h vertex v and 2jf j � 6 units to ea
h fa
e

f . By Euler's formula, the total 
harge is �12. In the dis
harging rules, we move some


harges from fa
es to verti
es. So the verti
es do not lose any 
harge in the dis
harging

phase.

Let's try the dis
harging rule we had in the proof of Theorem 3.2.1. That is, assume

every non-triangle fa
e f sends

3

2

to ea
h of its bad verti
es and 1 unit to every other

vertex. By this rule, as we proved in Example 2.2.4, every � 11-fa
e will have non-

negative 
harge or else we have redu
ible 
on�guration 1 or 2. Also, the only 10-fa
es

with negative 
harge are those that have at least 9 bad verti
es. But these fa
es are

redu
ible (
on�guration 3). Therefore, we 
an keep this rule for �10-fa
es:

R1: Every � 10-fa
e sends

3

2

to ea
h of its bad verti
es and 1 to ea
h of its

non-bad verti
es.

If we use the same rule for 9-fa
es, there are several possible 9-fa
es that will have

negative 
harge. For example, if a 9-fa
e f is in
ident with 8 bad verti
es and a type 0

vertex (i.e. f is a type 0 fa
e), then f sends

3

2

� 8 = 2jf j � 6 units of 
harge to the bad

verti
es and it 
annot a�ord to send another 1 unit of 
harge to its non-bad vertex. Some

but not all su
h situations are dealt with using new redu
ible 
on�gurations introdu
ed

in the previous subse
tion. For others, we need to modify the dis
harging rule.

If a 9-fa
e is in
ident with at most 6 bad verti
es, then it has to send at most

3

2

�6 = 9

units to them, and 
an a�ord to send 1 unit of 
harge to every other vertex in its boundary.

So we 
an keep our standard rule for su
h a 9-fa
e. Also, re
all from the proof of Example

2.2.3 that, sin
e there are no 4-
y
les, every �5-vertex is in
ident with at least two non-

triangle fa
es. If v is a 5-vertex (the largest degree with negative initial 
harge), it has

initially �1 
harge and it only needs to get at most

1

2

unit from ea
h of the at least two
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non-triangle fa
es that are in
ident with it. Therefore, if a 9-fa
e is in
ident with 7 bad

verti
es and at least one � 5-vertex, then it 
an send

3

2

� 7 = 10:5 to the bad verti
es,

1

2

to the 5-vertex (if there is one), and 1 to the other vertex. We 
ombine these into the

following rule:

R2: If f is a 9-fa
e with at most 6 bad verti
es, or with exa
tly 7 bad verti
es

and at least one � 5-vertex, then f sends

3

2

to ea
h of its bad verti
es, 1 to

ea
h of its 4-verti
es, and

1

2

to ea
h of its 5-verti
es.

Now we prove that by these two rules, every �5-vertex either has non-negative 
harge

after the dis
harging phase or lies in a redu
ible 
on�guration.

Lemma 3.3.9 Every �5-vertex will either have non-negative 
harge, after the dis
harg-

ing phase, or lie in a redu
ible 
on�guration

Proof: If d(v) � 6 then its initial 
harge is non-negative and it doesn't lose any 
harges

in the dis
harging phase. Assume that d(v) = 5 and the fa
es in
ident with v in 
lo
kwise

order are f

1

; f

2

; f

3

; f

4

; f

5

. Note that either all these fa
es are distin
t or v is a 
ut-vertex

(redu
ible 
on�guration 2). Re
all that a type 5 fa
e is a 9-fa
e in
ident with 8 bad

verti
es and a 5-vertex. If none of f

1

; : : : ; f

5

is a triangle then at least three of them are

type 5 fa
es or at least three of them are not type 5 fa
es. In the former 
ase, G has

redu
ible 
on�guration 7. In the latter 
ase by rules R1 or R2 ea
h of the three sends at

least

1

2

to v and so v will have non-negative 
harge.

Assume that exa
tly one of f

1

; : : : ; f

5

, say f

1

, is a triangle. Then f

2

and f

5

are not

type 5 and so ea
h one is either a �10-fa
e or a 9-fa
e with at most 7 bad verti
es. Thus,

ea
h sends

1

2

to v, by rules R1 or R2.

Finally, assume that exa
tly two of f

1

; : : : ; f

5

are triangles (if more than two of them

are triangles then G will have a 4-
y
le). Note that these triangles 
annot be adja
ent

be
ause G 
annot have a 4-
y
le. Without loss of generality, assume that f

1

and f

3

are
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v v

u
3/2

3/2

(a) (b)

Figure 3.13: (a) A simple vertex v in
ident with a simple fa
e f (b) a simple vertex v

in
ident with a semi-simple fa
e f

triangles. Thus, f

4

and f

5


annot be of type 5, and as in the previous 
ase, ea
h of them

sends at least

1

2

to v by rules R1 or R2.

So the only verti
es that remain to be dealt with are 3- and 4-verti
es. Remember

that 3-verti
es (with initial 
harge of �3) are the most desperate verti
es for 
harge. As

we have argued before, every bad vertex should get

3

2

from the non-triangular fa
es that

are in
ident with it. Thus, in all our rules we insist that every 9-fa
e sends

3

2

to ea
h of

its bad verti
es. Also, if v is a simple vertex, it needs to get 3 units of 
harge from the

three fa
es it is in
ident with. Ea
h of these fa
es sends 1 unit of 
harge to v by the rules

given so far, if it is a �10-fa
e or a 9-fa
e with at most 6 bad verti
es, or a 9-fa
e in
ident

with 7 bad verti
es and a � 5-vertex. What if some of these three fa
es are 9-fa
es to

whi
h rule R2 does not apply? For example, if f is a 9-fa
e in
ident with simple vertex

v and 8 bad verti
es (see Figure 3.13(a)), then f must send

3

2

� 8 = 2jf j � 6 to its bad

verti
es and it has nothing left to send to v. This is why we proved in Lemma 3.3.1 that

a fa
e like f (a simple fa
e) is redu
ible. Thus, if G has su
h a 
on�guration we are done.

To 
omplete our analysis of the 3-verti
es, the only other possibility we have to


onsider is when f is a 9-fa
e with 7 bad verti
es, one simple vertex (whi
h is v) and

the other vertex u is a �4-vertex (sin
e otherwise rule R2 applies to f). This is possible

only if u is a type 1 vertex, i.e. f is a semi-simple fa
e (see Figure 3.13(b)). In this 
ase,
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f must send

3

2

� 7 = 10:5 to its bad verti
es and, as we dis
ussed above, it has to send 1

unit to its simple vertex, v. Therefore, it has only

1

2

unit of 
harge left to be sent to its

type 1 vertex, u. We hope that sin
e u is in
ident with two other non-triangle fa
es, it


an re
eive enough 
harge from them to have non-negative 
harge. So, for the moment,

let's assume that u will be �ne. We will deal with it later. Thus, every 9-fa
e that has a

simple vertex (other than a simple fa
e whi
h is redu
ible 
on�guration 4) 
an a�ord to

send 1 unit of 
harge to it. This way, we are sure that every 3-vertex, whether it is bad or

simple, gets 3 units of 
harge from the fa
es in
ident with it and will have non-negative


harge. So we introdu
e the following rule:

R3: Every 9-fa
e sends

3

2

to ea
h of its bad verti
es and 1 unit of 
harge to

ea
h of its simple verti
es.

Note that if f is semi-simple (as in Figure 3.13(b)), by the above rule it sends out

3

2

� 7 + 1 = 11:5 units, and still has

1

2

units of 
harge. Later, we will give a rule to make

use of this 
harge by moving it from f to its type 1 vertex, u.

Sin
e in R3 we say every 9-fa
e sends

3

2

units to ea
h of its bad verti
es, it is redundant

to say in R2 that every 9-fa
e with at most 6 bad verti
es, or with 7 bad verti
es and at

least one �5-vertex sends

3

2

to its bad verti
es. So we 
an modify R2 as follows:

New R2: If f is a 9-fa
e in
ident with at most 6 bad verti
es, or with

exa
tly 7 bad verti
es and at least one �5-vertex, then f sends 1 to ea
h of

its 4-verti
es, and

1

2

to ea
h of its 5-verti
es.

Therefore, these three rules ensure that every 3-vertex has non-negative 
harge, or it

is a 
ut-vertex (redu
ible 
on�guration 1) or in a simple fa
e (redu
ible 
on�guration 4).

Thus, we have proved:

Lemma 3.3.10 Ea
h 3-vertex will either have non-negative 
harge after the dis
harging

phase or lie in a redu
ible 
on�guration.
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f
1

f2

v

Figure 3.14: A type 2 vertex v

By these three rules, we also know that, so far, all�9-fa
es that do not lie in redu
ible


on�gurations have non-negative 
harge and in many 
ases they have positive 
harge. So

the only elements with negative 
harge that we have to deal with are 4-verti
es. By the

�rst rule we know that 4-verti
es are getting 1 unit of 
harge from every �10-fa
e that

they are in
ident with. So the remaining 
ases we have to 
onsider are in
iden
es of

4-verti
es with 9-fa
es. The rest of the rules we introdu
e here are for dealing with these


ases, by moving the remaining positive 
harge on 9-fa
es to degree 4 verti
es.

If every non-triangle fa
e (in
luding every 9-fa
e) 
ould send 1 unit of 
harge to its

�4-verti
es, then by the arguments of the proof of Theorem 3.2.1, all �4-verti
es would

have non-negative 
harge, too. But the problem is that 9-fa
es 
annot ne
essarily a�ord

to do this. For example, if a 9-fa
e has 7 bad verti
es and two 4-verti
es, it sends

3

2

� 7 = 10:5 units to its bad verti
es by the third rule above, and it has only

3

2

units of


harge left for its two 4-verti
es. Therefore, some 9-fa
es 
an only a�ord to send 1 unit

of 
harge to one of their 4-verti
es and at most

1

2

unit of 
harge to the other one.

Re
all that there are only three kinds of 4-verti
es: type 0, type 1, and type 2. Assume

that v is a type 2 vertex, in
ident with two triangles and two non-triangle fa
es f

1

and

f

2

(See Figure 3.14). Note that f

1

6= f

2

, or else v is a 
ut-vertex (redu
ible 
on�guration

2) and we are done. Sin
e f

1

and f

2

are the only non-triangle fa
es in
ident with v, they

should provide the 2 units of 
harge that v needs. If ea
h of f

1

and f

2

is a �10-fa
e, or a

9-fa
e that has at most 6 bad verti
es, or a 9-fa
e with 7 bad verti
es and a �5-vertex,

then ea
h sends 1 unit of 
harge to v by R1 or R2 and v will have non-negative 
harge.
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f
1

f

v

2

u
f
1

f

v

2

(b)(a)

Figure 3.15: (a) f

1

is in
ident with 8 bad verti
es and a type 2 vertex, (b) f

1

is a semi-type

2 fa
e in
ident with v

Problems may arise when none of R1 or R2 applies to f

1

, or none of R1 or R2 applies

to f

2

. Without loss of generality, let's assume that none of R1 or R2 applies to f

1

. This

implies that f

1

is a 9-fa
e with at least 7 bad verti
es.

If f

1

is a 9-fa
e with 8 bad verti
es and a type 2 vertex, v (see Figure 3.15(a)), then f

1

sends

3

2

� 8 = 2jf j � 6 units to its bad verti
es by R3 and 
annot a�ord to send anything

to v. This is why we proved in Lemma 3.3.3 that this 
on�guration, i.e. a type 2 fa
e, is

redu
ible (
on�guration 5).

If f

1


ontains 7 bad verti
es and R2 does not apply to it, then f

1


ontains two 4-

verti
es, one of whi
h is v (a type 2 vertex), and the other is a type 1 vertex, say u.

In other words, f

1

is a semi-type 2 fa
e (See Figure 3.15(b)). In this 
ase, f

1

sends

3

2

� 7 = 10:5 to its bad verti
es by R3 and must send 1 unit to v. So it will be left

with only

1

2

unit to be sent to u (its type 1 vertex). As before, we hope that sin
e u is

in
ident with three non-triangle fa
es, it will re
eive enough 
harge from the other fa
es

it is in
ident with, so mu
h so that it too will have non-negative 
harge. So we introdu
e

the following rule:

R4: If f is a semi-type 2 fa
e then it sends 1 unit of 
harge to its type 2
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1f

2f

3f

4fv

Figure 3.16: (a) A type 0 vertex v and the four fa
es around it

vertex and

1

2

unit of 
harge to its type 1 vertex.

By this rule, we ensure that all type 2 verti
es have non-negative 
harge, and that no

9-fa
e has negative 
harge, unless it 
ontains or lies in one of redu
ible 
on�gurations 1,

2, 4, 5, or 7. So, the only 4-verti
es whi
h still 
on
ern us are type 0 and type 1 verti
es.

Consider a type 0 vertex v, i.e. one that is in
ident with four fa
es f

1

; f

2

; f

3

; and f

4

(see Figure 3.16), where none of these fa
es is a triangle. These fa
es are all distin
t,

otherwise v is a 
ut-vertex (redu
ible 
on�guration 2) and we are done. If we 
an prove

that v re
eives at least

1

2

unit of 
harge from ea
h of f

1

; : : : ; f

4

then it will have non-

negative 
harge. This de�nitely happens if ea
h of f

1

; : : : ; f

4

is a � 10-fa
e, or a 9-fa
e

with at most 6 bad verti
es, or a 9-fa
e with 7 bad verti
es and at least one �5-vertex,

as ea
h of f

1

; f

2

; f

3

; f

4

sends 1 unit of 
harge to v by R1 or R2. Even if some (or all) of

f

1

; f

2

; f

3

and f

4

are 9-fa
es with 7 bad verti
es and two �4-verti
es (one of whi
h is v),

then they send

3

2

� 7 = 10:5 to their bad verti
es and 
an a�ord to send

1

2

to v and 1 to

their other 4-vertex. In this 
ase too v gets at least 4�

1

2

units and will have non-negative


harge.

The only possible problem is when at least one of f

1

; f

2

; f

3

; f

4

, say f

1

, 
annot a�ord

to send even

1

2

to v. This happens only if f

1

is a 9-fa
e with 8 bad verti
es, i.e. it is

a type 0 fa
e. In this 
ase f

1

sends

3

2

� 8 = 2jf

1

j � 6 units to its bad verti
es and has
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nothing to 
ontribute to v. But if f

1

is type 0 then none of f

2

; f

3

; f

4


an be a type 0 fa
e,

or else G has redu
ible 
on�guration 6 and we are done. So ea
h of f

2

; f

3

; f

4


an a�ord

to send at least

1

2

unit of 
harge to v. If at least one of them sends at least 1 unit of


harge to v (by R1 or R2) then v has non-negative 
harge. This does not happen only

if ea
h of f

2

; f

3

; and f

4

is a 9-fa
e with 7 bad verti
es and a 4-vertex (other than v),

whi
h is a type 1 vertex, i.e. it is a semi-type 0 fa
e. In this 
ase, ea
h of them 
an only

a�ord to send

3

4

units of 
harge to ea
h of its 4-verti
es. Again, we hope that for ea
h

fa
e f

2

; f

3

; f

4

the other 4-vertex, whi
h is a type 1 vertex, re
eives enough 
harge from

the other fa
es to have non-negative 
harge. Therefore, we add the following to our bag

of dis
harging rules:

R5: If f is a semi-type 0 fa
e with a type 0 vertex v whi
h is not in
ident

with a type 0 fa
e, then f sends

1

2

to v and 1 unit to its type 1 vertex. If v is

in
ident with a type 0 fa
e (like f

1

above), then f sends

3

4

to v and

3

4

to its

type 1 vertex.

This ensures that every type 0 vertex not lying in a redu
ible 
on�guration will have

non-negative 
harge. Also, no fa
e will end up with negative 
harge unless it is in a

redu
ible 
on�guration. Thus, with the dis
harging rules we have given so far:

Lemma 3.3.11 Every type 0 or type 2 vertex will either have non-negative 
harge after

the dis
harging phase, or lie in a redu
ible 
on�guration.

So the only 4-verti
es with possible negative 
harge are type 1 verti
es. By following

similar arguments we develop two other dis
harging rules (rules R6 and R7 below), whi
h

ensure that if a type 1 vertex has negative 
harge then it is in a redu
ible 
on�guration.

We design these two new rules to make sure that 9-fa
es that are not in a redu
ible


on�guration have non-negative 
harge too. We 
an summarize the dis
harging rules as:

R1: Every � 10-fa
e sends

3

2

to ea
h of its bad verti
es and 1 to ea
h of its non-bad

verti
es.
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R2: If f is a 9-fa
e in
ident with at most 6 bad verti
es, or with exa
tly 7 bad verti
es

and at least one �5-vertex, then f sends 1 to ea
h of its 4-verti
es, and

1

2

to ea
h

of its 5-verti
es.

R3: Every 9-fa
e sends

3

2

to ea
h of its bad verti
es and 1 unit of 
harge to ea
h of its

simple verti
es.

R4: If f is a semi-type 2 fa
e then it sends 1 unit of 
harge to its type 2 vertex and

1

2

unit of 
harge to its type 1 vertex.

R5: If f is a semi-type 0 fa
e with a type 0 vertex v whi
h is not in
ident with a type

0 fa
e, then f sends

1

2

to v and 1 unit to its type 1 vertex. If v is in
ident with a

type 0 fa
e (like f

1

above), then f sends

3

4

to v and

3

4

to its type 1 vertex.

R6: If f is semi-simple then it sends

1

2

units to its type 1 vertex.

R7: If f is semi-type 1 then it sends 1 unit to its type 1 vertex whi
h is in
ident to a

triangle that shares an edge with f , and sends

1

2

to its other type 1 vertex.

An important observation, that will be helpful in the rest of the proof, is:

Observation 3.3.12 Every non-triangle fa
e sends at most 1 to ea
h of its �4-verti
es.

We have already established that any 9-fa
e to whi
h only R2-R5 apply has non-

negative 
harge, unless it is in or 
ontains a redu
ible 
on�guration. The only remaining

9-fa
es to 
onsider are those to whi
h R6 or R7 apply.

If R6 applies to a fa
e f then f is semi-simple. So, it has 7 bad verti
es and sends

7�

3

2

= 10:5 to them by R3 and 1+

1

2

to its 4-verti
es by R6, for a total of 12, and no other

rule applies to f . If R7 applies to fa
e f then f is semi-type 1 and sends 7�

3

2

= 10:5 to

its 7 bad verti
es by R3 and sends 1 +

1

2

to its 4-verti
es by R7, for a total of 12, and no

other rule applies to f . Thus, we have:
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f1

f
2

f3v

Figure 3.17: A type 1 vertex v

Lemma 3.3.13 Ea
h 9-fa
e f will either have non-negative 
harge after the dis
harging

phase, or lie in or 
ontain a redu
ible 
on�guration.

The only remaining elements to 
onsider are type 1 verti
es. We prove that ea
h type

1 vertex either lies in a redu
ible 
on�gurations listed in the previous subse
tion, or has

non-negative 
harge after the dis
harging phase.

Lemma 3.3.14 Every type 1 vertex v will either have non-negative 
harge after the

dis
harging phase, or lie in a redu
ible 
on�guration.

Proof: Sin
e the initial 
harge of v is �2 it is enough to show that during the dis
harging

phase v gets at least 2 units of 
harge. Label the non-triangle fa
es in
ident with v: f

1

; f

2

;

and f

3

. (see Figure 3.17).

Note that f

1

and f

3


annot be 9-fa
es with 8 bad verti
es, be
ause v is a type 1 vertex

for ea
h of them that is in
ident with a triangle that shares an edge with ea
h of them.

Therefore, f

1

and f

3


annot be simple, type 0, type 1, or type 2. So ea
h of f

1

and f

3


an only be a �10-fa
e or a 9-fa
e with at most 7 bad verti
es.

If at least two of f

1

; f

2

; f

3

send 1 unit to v, then v has non-negative 
harge. So

let's assume that at least two of them ea
h send less than 1 unit of 
harge to v. This

implies that at least one of f

1

or f

3

is sending less than 1 unit of 
harge. Without loss of

generality, assume it is f

1

(by symmetry, the same arguments work for f

3

). Thus rules

R1 and R2 do not apply to f

1

. Thus, sin
e we said f

1


annot have 8 bad verti
es, f

1

has exa
tly 7 bad verti
es and has no �5-vertex. Also, f

1


annot be semi-type 1, by the

assumption that it is sending less than 1 unit of 
harge to v and by rule R7.
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Therefore, f

1

is either (1) semi-simple, (2) semi-type 0, or (3) semi-type 2. f

3


an

be either of the following: (1) a � 10-fa
e, (2) a 9-fa
e with at most 6 bad verti
es, (3)

semi-simple, (4) semi-type 0, (5) semi-type 1, or (6) semi-type 2. We 
onsider di�erent


ases based on the types of f

1

and f

3

:

� f

1

is semi-simple: So f

1

sends

1

2

to v by R6. Sin
e f

1

is semi-simple, if f

2

is of type

1, then G has redu
ible 
on�guration 12. Otherwise f

2

sends at least

1

2

to v, by

rules R1, R2, or R7. It is enough to show that either f

3

sends at least 1 unit to v

or G has a redu
ible 
on�guration. We 
onsider di�erent possible 
ases for f

3

:

- �10-fa
e: Sends 1 unit to v by R1.

- 9-fa
e with at most 6 bad verti
es: Sends 1 unit to v by R2.

- semi-simple: Sin
e f

1

is semi-simple then G has redu
ible 
on�guration 8.

- semi-type 0: It sends 1 unit of 
harge by rule R5, unless its type 0 vertex is

in
ident with a type 0 fa
e, say f

4

, in whi
h 
ase it only sends

3

4

to v by R5.

But, in that 
ase f

3

, f

4

, and f

1

form a simple triple stru
ture (see Figure

3.18(a)), whi
h is redu
ible 
on�guration 13.

- semi-type 1: It sends 1 unit to v by R7.

- semi-type 2: Sin
e f

1

is semi-simple then G has redu
ible 
on�guration 11.

� f

1

is semi-type 0: So f

1

sends

3

4

to v by R5 (sin
e we assumed it sends less than 1

unit to v). This implies that it is adja
ent to a type 0 fa
e, say f

4

. If f

2

is a type

1 fa
e then f

1

, f

2

, and f

4

form a triple stru
ture of kind 1 (see Figure 3.18(b)),

whi
h is redu
ible 
on�guration 14. Otherwise, f

2

sends at least

1

2

to v by R1, R2,

or R7. So v re
eives a total of at least

3

4

+

1

2

from f

1

and f

2

. It is enough to show

that it re
eives at least

3

4

from f

3

or G has a redu
ible 
on�guration. We 
onsider

di�erent possible 
ases for f

3

.
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Figure 3.18: (a) f

1

is semi-simple, f

3

semi-type 0, and f

4

type 0 (b) f

1

is semi-type 0, f

2

type 1, and f

4

type 0

- �10-fa
e: Sends at least 1 unit to v by R1.

- 9-fa
e with at most 6 bad verti
es: Sends at least 1 unit to v by R2.

- semi-simple: Then f

1

, f

4

and f

3

form a simple triple stru
ture (redu
ible 
on�g-

uration 13).

- semi-type 0: Then f

3

sends at least

3

4

to v by R5.

- semi-type 1: It sends 1 unit of 
harge to v by rule R7.

- semi-type 2: Then f

1

, f

4

, and f

3

form a triple stru
ture of kind 2 (redu
ible


on�guration 15).

� f

1

is semi-type 2: Thus f

1

sends

1

2

to v by R4. Sin
e f

1

is semi-type 2, if f

2

is of

type 1, then G has redu
ible 
on�guration 10. Therefore, f

2

sends at least

1

2

to v

by R1, R2, or R7. So v gets a total of at least 1 unit from f

1

and f

2

. It is enough

to show that f

3

sends at least 1 unit to v or G has a redu
ible 
on�guration. We


onsider di�erent 
ases based on the type of f

3

:

- �10-fa
e: Sends 1 unit to v by R1.

- 9-fa
e with at most 6 bad verti
es: Sends 1 unit to v by R2.
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- semi-simple: Be
ause f

1

is semi-type 2, if f

3

is semi-simple then they form

redu
ible 
on�guration 11.

- semi-type 0: If it is of a kind that sends

3

4

to v by rule R5, then f

3

with its

adja
ent type 0 fa
e (that is sharing the type 0 vertex of f

3

), together with

f

1

form a triple stru
ture of kind 2 (redu
ible 
on�guration 15). Otherwise it

sends 1 unit to v.

- semi-type 1: Then it sends 1 unit to v by rule R7.

- semi-type 2: If f

3

is semi-type 2 then G has redu
ible 
on�guration 9.

Proof of Theorem 3.1.1: By Lemmas 3.3.9, 3.3.10, 3.3.11, 3.3.13, and 3.3.14 either

G has a redu
ible 
on�guration listed in the previous subse
tion, or all the elements of G

have non-negative 
harge, after applying the dis
harging rules. The latter is impossible,

sin
e the total initial 
harge is �12. So every graph G 2 G

8

has one of the redu
ible 
on-

�gurations, whi
h proves the non-existen
e of a minimal 
ounter-example to the theorem.

3.4 A 3-Colouring Algorithm for Planar GraphsWith-

out 4- to 8-Cy
les

As for the proofs of Example 2.2.4 and Theorem 3.2.1, the proof of Theorem 3.1.1 yields

a quadrati
 time algorithm that given an embedded graphs in G

8

produ
es a 3-
olouring

of G. At ea
h iteration of the algorithm, we �nd a redu
ible 
on�guration, break the

graph into smaller subgraphs or redu
e the number of verti
es or edges of the graph by

at least one, �nd a 
olouring of the smaller graphs, and extend these 
olourings to the

original graph. We keep doing this as long as the graph is non-empty. We assume that

the input graph to our 
olouring pro
edure is 
onne
ted, as for a dis
onne
ted graph it
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is enough to �nd a 3-
olouring for ea
h of its 
onne
ted 
omponents.

More spe
i�
ally, at ea
h iteration we apply the initial 
harges and the dis
harging

rules, as des
ribed in Se
tion 3.3.3. Sin
e the total 
harge is negative, there must be

some element (fa
e or vertex) with negative 
harge. If it is a fa
e it must be a 10-fa
e

with at least 9 bad verti
es, or a simple, or a type 2 fa
e. If the element is a vertex, 
all

it v, then by Lemmas 3.3.9, 3.3.10, 3.3.11, and 3.3.14, v must be a �2-vertex, or a 
ut-

vertex, or a vertex of one of 
on�gurations 6-15. Therefore, in any of these two 
ases (a

fa
e with negative 
harge or a vertex with negative 
harge), we �nd one of the redu
ible


on�gurations from our list. If the 
on�guration is one of the �rst three 
on�gurations,

we do as in the algorithm of Theorem 3.2.1. Otherwise, we 
onstru
t a smaller graph

G

0

2 G

8

, whi
h is obtained by removing some verti
es and edges, and possibly adding a

gadget, a

ording to the proof of that redu
ible 
on�guration. Then we �nd a 3-
olouring

of G

0

, re
ursively. By Remark 3.3.8 we 
an extend this 3-
olouring to a 3-
olouring of G,

in 
onstant time.

Applying the initial 
harges takes at most O(jV j + jF j) time. For ea
h fa
e f , it

takes 
onstant time to �nd the rules that apply to fa
e f and it takes O(jf j) to apply

them to f . So applying the dis
harging rules takes at most O(

P

f2F

jf j) time, whi
h is

in O(jEj), and on
e we have done that, we 
an �nd an element with negative 
harge in

O(jV j + jF j) time. Finding a redu
ible 
on�guration around an element with negative


harge and 
onstru
ting the graph G

0

from G (i.e. removing the verti
es and edges and

adding the gadget) takes at most 
onstant time. Thus if we de�ne the size of the graph,

n, to be jV j + jEj, we 
an say all these steps take at most �n time, for some 
onstant

� > 0.

Let's denote the worst 
ase running time of the pro
edure for an input of size n by

T (n). As in the analysis of the algorithms of Example 2.2.4 and Theorem 3.2.1, we 
an use

indu
tion to prove that for all values of n � 1 and for some 
onstant C > 0: T (n) � Cn

2

.

The inequality is trivial for small values of n. So let's assume that T (i) � Ci

2

for all
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Figure 3.19: (a) A simple fa
e and (b) the gadget

values of 1 � i < n and 
onsider the pro
edure 
all when the input has size n.

If a 2-vertex or a 
ut-vertex or a fa
e with negative 
harge is found, by an argument

identi
al to that of the analysis of algorithm of Theorem 3.2.1 we 
an show that T (n) �

Cn

2

. If a vertex with negative 
harge is found and this vertex belongs to one of the


on�gurations 6-15 then the algorithm makes a re
ursive 
all on the modi�ed graph

G

0

, obtained a

ording to the proof of that redu
ible 
on�guration. Sin
e G

0

has fewer

verti
es and/or edges with respe
t to G, the size of G

0

, n

0

, is smaller than n. Therefore

T (n) � �n+ T (n

0

) � �n+ Cn

02

� �n+ C(n� 1)

2

� Cn

2

, for large enough C.

3.5 Automated Proof of the Redu
ible Con�gura-

tions

Appendix A gives hand-
he
kable proofs for 
on�gurations 8-12, but it does not 
ontain

proofs for the last three 
on�gurations. Instead, we have an automated proof for all the


on�gurations (See Appendix B). Here we des
ribe how that proof works.

Consider the simple fa
e of Figure 3.19(a). To prove that this is a redu
ible 
on�g-

uration, it is enough to 
he
k that every 3-
olouring of the verti
es w

1

; : : : ; w

5

, in whi
h

not all w

1

; : : : ; w

4

have the same 
olour, 
an be extended to a 3-
olouring of v

1

; : : : ; v

9

.
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Figure 3.20: Con�guration 6 whi
h has two 
onstrained groups

This easy task 
an be done by a simple program. The program generates all 3-
olourings

of w

1

; : : : ; w

5

in whi
h not all w

1

; : : : ; w

4

have the same 
olour. For ea
h su
h 
olouring

C, sin
e every vertex in fv

1

; : : : ; v

9

g is adja
ent to exa
tly one 
oloured vertex, there is

a list of two 
olours available for every vertex in fv

1

; : : : ; v

9

g. Then the program uses

exhaustive sear
h to see if C 
an be extended to v

1

; : : : ; v

9

using these lists. We have to

do a similar job for ea
h of the other 
on�gurations.

For any redu
ible 
on�guration R, a vertex v whi
h is not in R but has a neighbour in

R is 
alled a boundary neighbour. For example w

1

; : : : ; w

5

in Figure 3.19(a) are boundary

neighbours. For some 
on�gurations, su
h as a simple fa
e, we have to forbid some

of the boundary neighbours from all having the same 
olour. We do this by adding a

gadget. We 
all this set of boundary neighbours a 
onstrained group. For some redu
ible


on�gurations (su
h as the 
on�guration of Figure 3.20) we have two 
onstrained groups.

A 3-
olouring of the boundary neighbours of a redu
ible 
on�guration is 
alled valid if it

satis�es the requirements of its 
onstrained groups. That is, not all the verti
es in the
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same 
onstrained group have the same 
olour.

To prove the redu
ibility of the 
on�gurations, we need to 
he
k (1) that every valid

3-
olouring of the boundary neighbours 
an be extended to a 3-
olouring of the verti
es of

the 
on�guration, and (2) that the modi�ed graph (obtained by adding the 
orresponding

gadget) does not have any i-
y
les, 4 � i � 8. Condition (2) 
an be hand-
he
ked easily

by looking at ea
h 
on�guration and the 
orresponding modi�ed version, and making

sure that for every pair of verti
es in the original graph that parti
ipate in a gadget,

the shortest path between them using only the edges of the gadget is not shorter than

the shortest su
h path in the original graph using only the edges that were deleted to


onstru
t G

0

. Condition (1) is 
he
ked with a C program.

As we said, the total number of redu
ible 
on�gurations (
onsidering all possible

sub
ases for 
on�gurations 4-15 listed in Se
tion 3.3.2) is 77. The �rst three of these


on�gurations are the ones used in Theorem 3.2.1. Ea
h of the new 74 
on�gurations is

listed in Appendix C. Ea
h �gure in this list is drawn by hand using a program 
alled

graphwin, whi
h is one of the standard demo programs in
luded in the pa
kage LEDA

(Library for EÆ
ient Data types and Algorithms) version 4.1, distributed by Algorithmi


Solutions Software GmbH (available at http://www.algorithmi
-solutions.
om). Us-

ing this program we 
an store the adja
en
y list of the drawn graph in a �le and also save

the graph as a Posts
ript �gure. Therefore, for ea
h 
on�guration shown in Appendix

C, the adja
en
y list, whi
h is used as input to the program, is generated automati
ally

with the �gure. The adja
en
y lists of all 74 
on�gurations and the information about

the 
onstrained group(s) of verti
es are put into a single �le, with ea
h 
on�guration

separated by a blank line. For more detailed information about the format of input see

ftp://ftp.
s.toronto.edu/
srg-te
hni
al-reports/458/.

The program reads the 
on�gurations one by one and the 
orresponding 
onstrained

group(s) of verti
es. For ea
h 
on�guration the program generates all the possible valid

3-
olourings of its boundary neighbours and then 
he
ks whether or not ea
h 3-
olouring
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is extendible to a 3-
olouring of the un
oloured verti
es of the 
on�guration. This 
he
k

is done using exhaustive sear
h plus a bit of intelligen
e; the program 
olours the verti
es

one at a time and for ea
h un
oloured vertex, the program only 
onsiders all possible


olours that have not appeared in its neighbourhood. For example, if a vertex already

has 
olours 1 and 2 in its neighbourhood, there is only one 
olour (i.e. 
olour 3) that


an be assigned to this vertex, and the program does not try 
olours 1 or 2. If all the

valid 3-
olourings of the boundary neighbours are extendible, then the 
on�guration is

redu
ible. We didn't attempt to make any other optimizations in the program, sin
e

this simple straightforward implementation 
he
ks all the redu
ible 
on�gurations very

qui
kly, on a desktop 
omputer, and further optimizations would be at the 
ost of losing

its readability.



Chapter 4

One Further Step on Steinberg's

Conje
ture

Remark 4.0.1 The results of this 
hapter are based on paper [18℄.

In this 
hapter, we tighten the gap between Steinberg's 
onje
ture and the best known

result on this problem by improving Theorem 3.1.1. Let G

7

be the 
lass of planar graphs

without 
y
les of size in f4; : : : ; 7g.

Theorem 4.0.2 Every graph in G

7

is 3-
olourable.

So, we are only two steps away from the 
onje
ture of Steinberg. The proof of Theorem

4.0.2 is more elegant and shorter than that of Theorem 3.1.1. There are just a handful

of redu
ible 
on�gurations and the proof is 
ompletely hand-
he
kable.

One important feature of this proof is that it does not rely on Theorem 3.1.1. It

only uses Example 2.2.4, as the basis of an indu
tion, and the overall proof is mu
h

shorter than the proof of Theorem 3.1.1. Consequently, the 3-
olouring algorithm that

we provide uses only the 3-
olouring algorithm of Subse
tion 2.3 for the base 
ase of a

re
ursion, and therefore, it does not need to 
he
k all the 
on�gurations des
ribed in the

previous 
hapter.

62
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The organization of this 
hapter is as follows. In the next se
tion, we point out a

very simple stru
ture that appears in most of the redu
ible 
on�gurations of the pre-

vious 
hapter. We investigate the required 
onditions under whi
h we 
an prove the

redu
ibility of this simple stru
ture. Proving the redu
ibility of this stru
ture helps us

to bring down the total number of redu
ible 
on�gurations, signi�
antly. In Se
tion 4.2

we present the proof of Theorem 4.0.2. This is done by proving a stronger statement,

namely Theorem 4.2.1, whi
h in turn implies Theorem 4.0.2. Again, the proof uses the

Dis
harging Method. The redu
ible 
on�gurations are presented and their redu
ibility

is proved in Subse
tion 4.2.1. Then, in Subse
tion 4.2.2, we show the unavoidability of

these 
on�gurations by applying a suitable set of initial 
harges and dis
harging rules.

Finally, in Se
tion 4.3 we present a 3-
olouring algorithm for graphs in G

7

, based on the

proof of Theorem 4.0.2.

4.1 Some New Ideas

A 
areful look at the redu
ible 
on�gurations used in the proof of Theorem 3.1.1 suggests

that there are very similar patterns that repeat in most of them. So, before trying to

prove Theorem 4.0.2, let's see if we 
an re�ne our proof ideas, to show the redu
ibility

of most of the 
on�gurations 
onsidered in the previous 
hapter, all at on
e.

A path v

1

v

2

v

3

v

4

is 
alled a tetrad if d(v

i

) = 3, 1 � i � 4, : : : xv

1

v

2

v

3

v

4

x

0

: : : is on the

boundary of some fa
e f , and there are triangles tv

1

v

2

and t

0

v

3

v

4

, su
h that t and t

0

do

not belong to the boundary of f (See Figure 4.1). By this de�nition, it is easy to see that

at least one tetrad appears in most of the 
on�gurations used in the previous 
hapter. So,

if we 
an prove that a tetrad is redu
ible, that will redu
e the number of 
on�gurations

signi�
antly, and might even help in �nding some new redu
ible 
on�gurations.

To do this, let's assume that G 2 G

7

is a 
ounter-example with the minimum number

of verti
es and 
onsider a tetrad in G. Delete v

1

; v

2

; v

3

; and v

4

, along with all in
ident
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v v v vx 1 2 3 4

t t’

x’

Figure 4.1: A tetrad

edges. Consider a 3-
olouring C of this new smaller graph G

0

. If we 
ould assume that

C(x) = C(t

0

) then we 
ould easily extend C to a 3-
olouring of G: we �rst 
olour v

4

and

v

3

(in this order); then sin
e x and v

3

have di�erent 
olours, it is easy to 
olour v

1

and

v

2

. This will show the redu
ibility of a tetrad. But the assumption that C(x) = C(t

0

) is

a 
ru
ial point. Can we make this assumption?

One way to make sure that C(x) = C(t

0

) is to identify x with t

0

in G

0

before 
olouring

C. But this 
auses some new problems: this identi�
ation may 
reate small 
y
les (
y
les

of size in f4; : : : ; 7g), and therefore we 
annot 
laim that G

0

is 3-
olourable anymore.

Can we show that su
h a 
y
le 
annot exist? If su
h a small 
y
le exists in G

0

, then the

sequen
e of verti
es of this 
y
le starting from x, plus v

1

v

2

v

3

forms a 
y
le in G whi
h

separates t from x

0

, i.e. one of t and x

0

is inside the 
y
le and the other one outside of it.

Now, we have to argue that G 
annot have su
h a 
y
le, whi
h will be 
alled a separating


y
le.

Fortunately there is a way to prove something along these lines. Under some assump-

tions (to be 
leared soon), if there exists a separating 
y
le in G then we 
an 
olour the

subgraphs of G inside and outside the separating 
y
le independently, and ensure that

their 
olourings mat
h on this 
y
le. This shows that su
h a 
y
le will be redu
ible in

G. These arguments suggest that if we strengthen our statement (i.e. have a stronger

indu
tion hypothesis) we may be able to prove that separating 
y
les are redu
ible and

from that show that tetrads are redu
ible, too. This will help us to bring down the

number of redu
ible 
on�gurations dramati
ally.
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4.2 Proof of the Main Theorem

Following the arguments of the previous se
tion, in order to prove Theorem 4.0.2, we

prove the following stronger theorem:

Theorem 4.2.1 Consider any 
onne
ted graph G 2 G

7

and let f be any fa
e of G with

size in f8; : : : ; 11g. Every proper 3-
olouring of the subgraph indu
ed by the verti
es of f


an be extended to a proper 3-
olouring of G.

Assuming Theorem 4.2.1, we 
an easily prove Theorem 4.0.2. Before doing so, we

state a 
ouple of de�nitions. Let C be a 
y
le of length k whose sequen
e of verti
es is

v

0

v

1

: : : v

k�1

. An edge between two non-
onse
utive verti
es of this 
y
le is 
alled a 
hord

for C. If a 
hord is between v

i

and v

i+2

, for some 0 � i � k� 1, where the addition is in

mod k, then we say this 
hord 
uts triangle v

i

v

i+1

v

i+2

from C, or it is a triangular 
hord.

Proof of Theorem 4.0.2: Suppose that G is a 
ounter-example to Theorem 4.0.2

with the smallest number of verti
es. Clearly, G is 
onne
ted and by Example 2.2.4 it

has a 
y
le C of length in f8; 9; 10g. By the absen
e of 
y
les of length in f4; : : : ; 7g in

G, C 
an only have triangular 
hords, if it has 
hords at all. Let e = uv be a triangular


hord of C, whi
h 
uts triangle uwv from C. We 
all w a triangular vertex of C. w


annot be the end-point of any 
hord of C, otherwise if wx is a 
hord (whi
h must be a

triangular 
hord) then fu; v; w; xg forms a 4-
y
le in G (See Figure 4.2). If we remove

all the triangular verti
es of C, the remaining verti
es of C indu
e a 
y
le C

0

, whi
h is

formed by the 
hords of C and some of the edges of C. We 
an �nd a 3-
olouring '

0

of C

0

. Sin
e ea
h triangular vertex of C is adja
ent to exa
tly two 
oloured verti
es of

C

0

, we 
an extend '

0

to a 3-
olouring ' of all the verti
es of C. Now delete the possible


hords of C. If we remove the verti
es inside C this 
y
le be
omes a fa
e with size in

f8; 9; 10g, and by Theorem 4.2.1, ' 
an be extended to the verti
es of G outside C. Also,

if we remove the verti
es outside of C from G, by Theorem 4.2.1, ' 
an be extended to

the verti
es of G inside C. The union of these two 
olourings is a 3-
olouring of G.
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w

u
v

x

C

Figure 4.2: A 
y
le C with triangular 
hords

In the rest of this se
tion we will give the proof of Theorem 4.2.1. Before starting the

proof, we state more notation used in the proof.

Throughout this se
tion, we denote the outside fa
e of an embedded planar graph

G 2 G

7

by f

0

. Any fa
e other than f

0

is internal. Also, the verti
es of G that do not

belong to f

0

are internal. We rede�ne a bad vertex to be an internal 3-vertex whi
h is

in
ident with a 3-fa
e. Note that this de�nition is slightly di�erent from that of Chapter

3, as we impose the 
ondition of being an internal vertex. Any vertex that is not bad

is 
alled a good vertex. The set of verti
es of G lying inside and outside of a 
y
le S

are denoted by In(S) and Out(S), respe
tively. If In(S) 6= ; and Out(S) 6= ;, then S is


alled a separating 
y
le.

4.2.1 Redu
ible Con�gurations

In this subse
tion only, by a minimum 
ounter-example we mean a graph G 2 G

7

and a

3-
olouring ' of the verti
es of a fa
e f of G that form a 
ounter-example to Theorem

4.2.1 with the minimum number of verti
es. Without loss of generality, we assume that

f is the outside fa
e, f

0

.

The �rst two redu
ible 
on�gurations we had in the proofs of Examples 2.2.3 and

2.2.4, and Theorems 3.2.1 and 3.1.1 were � 2-verti
es and 
ut-verti
es. First we prove

that 
ut-verti
es are redu
ible for G:
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Lemma 4.2.2 Every minimum 
ounter-example is 2-
onne
ted; in parti
ular, it 
annot

have 1-verti
es.

Proof: Assume that G is a minimum 
ounter-example. If there is a 
ut-vertex v 2 f

0

,

then be
ause 8 � jf

0

j � 11 and G 2 G

7

, there is a blo
k B of G 
ontaining v whi
h is a

single edge or a triangle. In ea
h 
ase it is easy to see that G � (B � fvg) is a smaller


ounter-example, 
ontradi
ting the de�nition of G.

Now assume that B is a pendant blo
k with 
ut-vertex v 62 f

0

. We �rst extend ' to

G� (B�fvg), then 3-
olour B (using the minimality of G), and �nally get an extension

of ' to G.

For 2-verti
es, we 
annot prove that they don't exist in a minimum 
ounter-example,

but we 
an show if they exist then they must belong to fa
e f

0

. Before proving this, we

prove the following lemma whi
h, as we dis
ussed in the previous se
tion, will also be

used in the proof of redu
ibility of tetrads.

Lemma 4.2.3 A minimum 
ounter-example has no separating 
y
le of length at most

11.

Proof: By way of 
ontradi
tion, assume that G is a minimum 
ounter-example and S

is a separating 
y
le of length at most 11 in G. Be
ause of the minimality of G, we


an extend ' to G � In(S). Let '

S

be the 
olouring of S in this extension. Then we

delete the (possible) 
hords of S. Thus S be
omes a fa
e in G�Out(S). If jSj 6= 3 then

8 � jSj � 11, and therefore by the minimality of G, we 
an extend '

S

to G � Out(S),

thus obtaining a 3-
olouring of G.

If jSj = 3, either there exists a 3-
olouring '

0

of G � Out(S) by Example 2.2.3, or

G�Out(S) has a 
y
le C of length between 8 and 11. In the latter 
ase, by an argument

similar to that of proof of Theorem 4.0.2, we 
an �nd a 3-
olouring of C and then extend

this 
olouring to a 3-
olouring '

0

of G � Out(S), using the minimality of G. Sin
e S is
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a 
lique, we 
an permute the 
olours in '

0

su
h that '

0

on S be
omes equal to '

S

. Thus

we have 3-
olouring of G.

Lemma 4.2.4 In every minimum 
ounter-example, ea
h 2-vertex belongs to f

0

and no

2-vertex is in
ident with a 3-fa
e.

Proof: Let G be a minimum 
ounter-example. If v is an internal 2-vertex of G then we


an extend ' to G� v by minimality of G and then 
olour v.

If v is a 2-vertex in f

0

that belongs to a triangle T then, by Lemma 4.2.3, T is not

a separating 
y
le; so T is a fa
e. Therefore if we remove v from f

0

, the size of the

boundary of the outer fa
e de
reases by exa
tly one, and all its verti
es have a 
olour

in '. Sin
e G 2 G

7

, this new fa
e has size in f8; 9; 10g. Consider this new graph G

0

obtained by removing v from G. By minimality of G, ' indu
ed on G

0


an be extended

to a 3-
olouring of G

0

. This 
olouring is also an extension of ' to G, a 
ontradi
tion.

Using the previous two lemmas we 
an show that every relatively small 
y
le in a

minimum 
ounter-example has no non-triangular 
hords.

Lemma 4.2.5 In a minimum 
ounter-example, no 
y
le of length at most 13 has a non-

triangular 
hord, and f

0

has no 
hords at all.

Proof: Let G be a minimum 
ounter-example. If a 
y
le C in G has a non-triangular


hord it must be divided by this 
hord into two 
y
les of length at least 8 ea
h. This

implies that jCj � 14.

For the se
ond part, assume that a 
hord uv 
uts a triangle T = fu; v; wg from f

0

in

G. Then by Lemma 4.2.3, T is a 3-fa
e, i.e. there are no verti
es inside T . This implies

that d(w) = 2, whi
h 
ontradi
ts Lemma 4.2.4.

We said in the previous se
tion that one key stru
ture in our proof, that helps to

bring down the number of redu
ible 
on�gurations signi�
antly, is a tetrad. Now we are

ready to prove that a minimum 
ounter-example 
annot have this stru
ture. We 
all a

tetrad T = v

1

v

2

v

3

v

4

(as in Figure 4.3(a)) internal if v

1

; v

2

; v

3

; and v

4

are internal verti
es.
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Lemma 4.2.6 A minimum 
ounter-example 
annot have an internal tetrad.

Proof: By way of 
ontradi
tion, let G be a minimum 
ounter-example and take an

internal tetrad in G (as in Figure 4.3(a)). Note that sin
e G has no 
ut-verti
es, all fa
es

f

1

; f

2

; f

3

; and f

4

are distin
t. First delete edges tv

1

and tv

2

from G. Then delete vertex

v

4

and 
ontra
t the following edges: xv

1

, v

1

v

2

, v

2

v

3

, and v

3

t

0

. Let's 
all this new graph

G

�

. Clearly G

�

is an embedded planar graph sin
e we removed some verti
es and edges

from G and then 
ontra
ted an indu
ed path. In fa
t, this is a planar embedding of the

graph obtained by deleting v

1

; v

2

; v

3

; v

4

and identifying x with t

0

in G. We will explain

later how this might a�e
t the 
olouring ' if one or both of x or t

0

are in f

0

.

We 
laim that G

�

has no fa
es of size in f4; : : : ; 7g: one of the new fa
es is 
reated

from the verti
es in f

1

� fv

1

; v

2

; v

3

; v

4

g and f

4

� fv

4

g, and therefore has size at least

jf

1

j � 5+ jf

4

j � 2 � 9. The other new fa
e in G

�

is 
reated from the verti
es in f

2

�fv

1

g

and f

3

� fv

2

; v

3

g (note that x and t

0

are the same in G

�

), and therefore has size at least

jf

2

j � 2 + jf

3

j � 3 � 11. Hen
e, if G

�

has any 
y
le of size in f4; : : : ; 7g, that 
y
le

must be a separating 
y
le (be
ause it 
annot be a fa
e). We now prove that G

�


annot

have a separating 
y
le of size in f4; : : : ; 7g, either. The only way for G

�

to have su
h a


y
le, is to have a path of length in f4; : : : ; 7g from x to t in G whi
h does not use any

of v

1

; v

2

; v

3

; and v

4

. That will 
reate a 
y
le S

�

= xz

1

: : : z

k

t, where 3 � k � 6. Then

S = xz

1

: : : z

k

tv

3

v

2

v

1

separates t from v

4

in G (see Figure 4.3(b)). Indeed, t 
annot lie

on S by Lemma 4.2.5. But this means that S is a separating 
y
le in G with size in

f8; : : : ; 11g, whi
h 
ontradi
ts Lemma 4.2.3.

A loop in G

�


orresponds to an edge between x and t

0

in G. But su
h an edge,

together with xv

1

v

2

v

3

t would 
reate a 
y
le of size 5 in G. So G

�

has no loops. If there

are multiple edges in G

�

they must be between the uni�ed vertex in G

�

(
orresponding to

x and t) and some other vertex. This means that x and t have some 
ommon neighbours

in G. But this neighbour, together with xv

1

v

2

v

3

t would form a 
y
le of size 6 in G. So

G

�

has no multiple edges, either. Thus G

�

2 G

7

.
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v1 v2 v3 v4

f1

f2
f3 f4

t t’

x x’ v v v v

z
z

z

1 2 3 4

1

2
k

t t’

x’x

(a) (b)

Figure 4.3: (a) A tetrad and (b) the separating 
y
le

Next re
all that any 3-
olouring  of G

�


an be extended to a 3-
olouring of G: x

and t

0

ea
h get the 
olour of the uni�ed vertex. We �rst 
olour v

4

and v

3

(in this order);

then, sin
e x and v

3

have di�erent 
olours, it is easy to 
olour v

1

and v

2

. If the 
olouring

' of f

0

is not damaged by identifying x with t

0

, then by minimality of G, G

�

has a 3-


olouring that extends '. This 3-
olouring 
an be extended to a 3-
olouring of G whi
h

is a 
ontradi
tion. It follows that while identifying x with t we damaged ', i.e. we either

(a) identi�ed two verti
es of f

0


oloured di�erently, or (b) inserted an edge between two

verti
es of f

0


oloured the same. For at least one of these two situations to happen, the

total of the distan
es from x to f

0

and from t

0

to f

0

must be at most 1.

Let d

1

: : : d

jf

0

j

be the sequen
e of verti
es of f

0

, with the subs
ripts in
reasing in the


lo
kwise order. Suppose d

1

is a vertex of f

0

nearest to x (and possibly equal to x), while

d

j

is 
losest to t

0

(possibly equal to t

0

). Sin
e jf

0

j � 11, it follows that the boundary

of f

0

is split by d

1

and d

j

into paths P

1

, P

2

one of whi
h, say P

1

= d

1

: : : d

j

, 
onsists

of at most 5 edges. This path, 
ombined with the path d

j

t

0

v

3

v

2

v

1

d

1

(for the 
ase that

x = d

1

and t

0

6= d

j

), or with d

j

v

3

v

2

v

1

xd

1

(for the 
ase that x 6= d

1

and t

0

= d

j

), or with

d

j

v

3

v

2

v

1

d

1

(for the 
ase that x = d

1

and t

0

= d

j

) yields a 
y
le C of length at most 10

in G. By Lemma 4.2.5, sin
e tv

2

is an edge and v

2

2 C, it follows that t 
annot belong

to C. Re
all that by de�nition of an internal tetrad, xv

1

v

2

v

3

v

4

x

0

is on the boundary of
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some internal fa
e. Therefore, C separates t from v

4

. But this 
ontradi
ts Lemma 4.2.3.

Remark 4.2.7 By the proof of this lemma, if T is a tetrad as in Figure 4.3(a) in a graph

G 2 G

7

(whi
h is not ne
essarily a 
ounter-example) and  is a 3-
olouring of the verti
es

of G

�

(
onstru
ted as in the proof of the lemma), then  indu
ed on G (in whi
h x and

t

0

have the same 
olour as the uni�ed vertex of G

�

) 
an be extended to a 3-
olouring of

G in 
onstant time.

Now that we have proved tetrads are redu
ible, it is not hard to see that most of

the redu
ible 
on�gurations we had in the previous 
hapter are redu
ible as they have

a tetrad. If we were to try to do a proof similar to that of Chapter 3 then many of the

redu
ible 
on�gurations that involve 8-fa
es would have tetrads. So Lemma 4.2.6 
an be

used to eliminate most of them. As a result we only have to introdu
e two new redu
ible


on�gurations. We de�ne them below and show that they are redu
ible.

Let f be an 8-fa
e with boundary v

1

; : : : ; v

8

(in 
ounter-
lo
kwise order), where

v

1

; v

2

; v

3

; v

5

; v

6

; v

7

are bad, while v

4

and v

8

are internal good verti
es. Assume that

v

2

v

3

t

23

, v

5

v

6

t

56

, v

1

v

8

t

18

, and v

7

v

8

t

78

are 3-fa
es adja
ent to f (see Figure 4.4(a)). So

d(v

8

) = 4 and d(v

4

) � 3. Then f is 
alled an M-fa
e.

Lemma 4.2.8 A minimum 
ounter-example 
annot have an M-fa
e.

Proof: Assume that G is a minimum 
ounter-example with an M -fa
e f as in Figure

4.4(a). We obtain G

�

from G by deleting all the bad verti
es of f and identifying v

4

with

v

8

. As in the proof of Lemma 4.2.6, it is easy to 
he
k that G

�

does not have a fa
e of

size in f4; : : : ; 7g, and it 
annot have a separating 
y
le of size in f4; : : : ; 7g, or else G

has a separating 
y
le of size in f8; : : : ; 11g 
ontaining t

18

v

1

v

2

v

3

v

4

(separating t

23

from

v

8

), or a 
y
le of size in f8; : : : ; 11g 
ontaining t

78

v

7

v

6

v

5

v

4

(separating t

56

from v

8

), thus


ontradi
ting Lemma 4.2.3 (see Figure 4.4(b)). Also, G

�

has neither loops nor multiple
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v2

v1

v3
v5

v6

v7

v8

t18

t23 t56

t78

v2

v1

v4
v3

v5

v6

v7

v8

t18

t23 t56

t78

v4

(a) (b)

f f

Figure 4.4: (a)An M -fa
e f , (b) a possible separating 
y
le

edges, or else G would have a 
y
le of size in f4; 5; 6g 
ontaining v

5

; v

6

; v

7

. Therefore, G

�

has no 
y
les of size in f4; : : : ; 7g, i.e. G

�

2 G

7

.

The same arguments as in the last two paragraphs of the proof of Lemma 4.2.6 show

that the 
olouring ' of f

0

is not damaged by identifying v

4

with v

8

, as otherwise G would

have a 
y
le of size at most 11 through v

4

v

5

v

6

v

7

t

78

(or v

4

v

3

v

2

v

1

t

18

) whi
h separates t

56

from v

8

(or t

23

from v

8

), thus 
ontradi
ting Lemma 4.2.3.

Sin
e G

�

is smaller than G, ' 
an be extended to a 3-
olouring  of G

�

. We will

show that  
an be extended to a 3-
olouring of G. Consider  indu
ed on G and give

v

4

and v

8

the same 
olour as the uni�ed vertex in G

�

. First 
olour v

1

and v

7

. Sin
e

 (v

4

) 6=  (v

1

) and  (v

4

) 6=  (v

7

), we 
an easily extend this 
olouring to v

2

, v

3

, v

5

, and

v

6

.

Remark 4.2.9 By the proof of this lemma, if f is an M-fa
e as in Figure 4.4(a) in

a graph G 2 G

7

(whi
h is not ne
essarily a 
ounter-example) and  is a 3-
olouring of

the verti
es of G

�

(
onstru
ted as in the proof), then this 
olouring indu
ed on G 
an be

extended to a 3-
olouring of G in 
onstant time.

The other stru
ture we de�ne is very similar to the previous one. Let f be an 8-fa
e

with boundary verti
es v

1

; : : : ; v

8

(in 
ounter-
lo
kwise order), where v

1

; : : : ; v

4

and v

6

; v

7
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v2

v1

v3
v5

v6

v7

v8

t18

t23 t56

t78

v4
t45

v2

v1

v3
v5

v6

v7

v8

t18

t23 t56

t78

v4
t45

(a) (b)

Figure 4.5: (a) An MM -fa
e, (b)a possible separating 
y
le

are bad verti
es, while v

5

and v

8

are internal 4-verti
es. Assume that v

2

v

3

t

23

, v

4

v

5

t

45

,

v

5

v

6

t

56

, v

7

v

8

t

78

, and v

8

v

1

t

18

are 3-fa
es adja
ent to f (see Figure 4.5(a)). Then f is 
alled

an MM-fa
e.

Lemma 4.2.10 A minimum 
ounter-example 
annot have an MM-fa
e.

Proof: By way of 
ontradi
tion, let G be a minimum 
ounter-example and f an MM -

fa
e of G as in Figure 4.5(a). We obtain G

�

from G by deleting v

1

; : : : ; v

8

and identifying

t

18

with t

56

. As in the previous two lemmas, it is easy to 
he
k that G

�

2 G

7

. Otherwise

there is a 
y
le of size at most 11 in G through t

56

v

6

v

7

v

8

t

18

(see Figure 4.5(b)), whi
h

separates t

78

from v

5

, 
ontradi
ting Lemma 4.2.3. Also, as in the previous two lemmas,

the 
olouring ' of f

0

is not damaged by this identi�
ation, or else there is a 
y
le of size

at most 11 through t

56

v

6

v

7

v

8

t

18

separating v

5

and t

78

, whi
h 
ontradi
ts Lemma 4.2.3.

Now we show that every 3-
olouring  of G

�


an be extended to a 3-
olouring of

G. Let  be an arbitrary 3-
olouring of G

�

and 
onsider  indu
ed on G, with t

18

and t

56

having the same 
olour as the uni�ed vertex of G

�

. Without loss of generality,

assume that  (t

18

) =  (t

56

) = 1. If  (t

45

) 6= 1, we �rst 
olour v

5

, v

4

, and v

6

, (in

this order); then, using an argument as in the proof of Lemma 4.2.6, we 
an 
olour v

8
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and v

7

, then v

1

, and �nally v

2

and v

3

, as  (v

4

) = 1 6=  (v

1

). If  (t

45

) = 1, we set

1 6=  (v

8

) =  (v

6

) =  (v

4

) 6=  (t

78

), then 
olour v

1

, v

5

, v

7

(in this order), and �nally v

2

and v

3

.

Remark 4.2.11 By the proof of this lemma, if f is an MM-fa
e as in Figure 4.5(a) in

a graph G 2 G

7

(whi
h is not ne
essarily a 
ounter-example) and  is a 3-
olouring of

the verti
es of G

�

(
onstru
ted as in the proof), then this 
olouring indu
ed on G 
an be

extended to a 3-
olouring of G in 
onstant time.

In summary, here is the list of 
on�gurations that are proved to be redu
ible in

Lemmas 4.2.2-4.2.10:

1. A 
ut-vertex

2. A separating 
y
le of length at most 11

3. An internal 2-vertex

4. A 2-vertex in f

0

in
ident with a 3-fa
e

5. A 
hord in f

0

6. An internal tetrad

7. An M -fa
e

8. An MM -fa
e

In the next subse
tion we prove that this set of redu
ible 
on�gurations is unavoidable,

using the Dis
harging Method.

4.2.2 Dis
harging Rules

Let G be an arbitrary 
onne
ted graph in G

7

given with a proper 3-
olouring of the

verti
es of one of its fa
es f

0

, with 8 � jf

0

j � 11. Consider an embedding of G in whi
h
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f

0

is the outside fa
e. We use the Dis
harging Method to show that G must have one of

the redu
ible 
on�gurations listed in the previous subse
tion.

The initial 
harges we apply are very similar to the ones we have seen in Chapters 2

and 3. To ea
h vertex v we assign d(v) � 6 units of 
harge and to ea
h fa
e f 6= f

0

we

assign 2jf j � 6 units. The only di�eren
e is that we assign 2jf

0

j+ 5:5 units of 
harge to

f

0

. We need to do this be
ause of the possible presen
e of 2-verti
es on f

0

. Using Euler's

formula, the total 
harge is

X

v2V

(d(v)� 6) +

X

f 6=f

0

(2jf j � 6) + 2jf

0

j+ 5:5 = �

1

2

:

In the dis
harging phase we move 
harges from fa
es to verti
es and show that after

this phase every vertex and fa
e has non-negative 
harge (and therefore the total 
harge

is non-negative), unless G has one of the redu
ible 
on�gurations listed in the previous

subse
tion. Of 
ourse, if G has a redu
ible 
on�guration then G 
annot be a minimum


ounter-example. This shows that there is no minimum 
ounter-example to Theorem

4.2.1.

It is easy to see that by this set of initial 
harges, the only elements with negative

initial 
harge are 2- to 5-verti
es. First assume that v is a 2-vertex in
ident with two fa
es

f and f

0

. These two fa
es must be distin
t or else v is a 
ut-vertex, whi
h is redu
ible


on�guration 1. Sin
e the initial 
harge of v is �4, f and f

0

must send 4 units of 
harge

in total to v. One of these two fa
es, say f , is the outside fa
e, i.e. f = f

0

, or else we

have redu
ible 
on�guration 3. Be
ause f

0

has larger 
harge/size ratio with respe
t to

the other fa
es, it seems better to send more 
harge from f

0

to v than from the internal

fa
e f

0

. So, instead of sending 2 units of 
harge from ea
h of f

0

and f

0

to v, we send

5

2

units of 
harge from f

0

and

3

2

from f

0

to v. In fa
t it is not hard to see that f

0


an a�ord

to send

5

2

units of 
harge to every vertex v 2 f

0

: the initial 
harge of f

0

is 2jf

0

j + 5:5

and if it sends

5

2

jf

0

j it is left with 5:5�

jf

0

j

2

units of 
harge. Sin
e 8 � jf

0

j � 11, the �nal


harge of f

0

will be non-negative. So we introdu
e the following rules:
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1
2

3
2

f f

f0 f’=f0

Figure 4.6: Dis
harging rule R3

R1: f

0

sends

5

2

to ea
h of its verti
es.

R2: Every internal non-triangular fa
e sends

3

2

units to its 2-verti
es.

If a 2-vertex v does not belong to f

0

, then G has redu
ible 
on�guration 3 and we

are done. Otherwise, every 2-vertex v belongs to f

0

and re
eives

5

2

from f

0

by R1. Also,

the other fa
e in
ident with v is a non-triangular fa
e and sends

3

2

to v by R2, or else G

has a 2-vertex in f

0

in
ident with a triangular fa
e, whi
h is redu
ible 
on�guration 4.

Therefore, these two rules ensure that either every 2-vertex v has non-negative 
harge,

or G has redu
ible 
on�guration 3 or 4.

The �rst dis
harging rule in the proofs of Theorems 3.2.1 and 3.1.1 was to send

3

2

from \large" non-triangular fa
es to ea
h of their bad verti
es. Here we keep this rule,

with slight modi�
ations. If v 2 f

0

is a 3-vertex in
ident with a triangle, it re
eives

5

2

from f

0

by R1, and it only requires

1

2

from the internal non-triangular fa
e. Note that

by the de�nition of bad in this 
hapter, v is not bad (be
ause it is not internal). Here is

the new rule:

R3: Every internal non-triangular fa
e f sends

3

2

units to ea
h of its bad

verti
es and

1

2

to every 3-vertex in its boundary that also belongs to f

0

and

is in
ident with one 3-fa
e (see Figure 4.6).

Re
all the de�nition of a simple vertex from the previous 
hapter: a 3-vertex not

in
ident with any triangles. These verti
es have initial 
harge �3 and so require 3 units
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1
4

0f’=f

f f

f0

1

f’’=f
0

Figure 4.7: Dis
harging rule R4

of 
harge. If su
h a vertex is in f

0

it gets

5

2

of 
harge from f

0

and it only needs

1

4

units

from ea
h of the other (internal) fa
es it is in
ident with. Otherwise, ea
h of the fa
es

must send 1 unit to it. So:

R4: Every internal non-triangular fa
e f sends 1 unit to ea
h of its internal

simple verti
es and

1

4

to ea
h of its simple verti
es that also belongs to f

0

.

(see Figure 4.7)

Rules R1-R4 ensure that every 3-vertex whi
h is not a 
ut-vertex (redu
ible 
on�gu-

ration 1) has non-negative �nal 
harge: if v is a 3-vertex and is in f

0

it re
eives

5

2

from

f

0

by R1 and

1

2

by rules R3 or R4 from the other non-triangular fa
e in
ident with it,

depending on whether it is in
ident with a triangle or is simple. If v 62 f

0

then if it is

bad it re
eives 2�

3

2

by R3 and if it is simple it re
eives 3� 1 by R4.

The only remaining verti
es are 4- and 5-verti
es. If a � 4-vertex v belongs to f

0

it

re
eives

5

2

from f

0

and so has positive 
harge. Thus we only need to deal with internal

4- and 5-verti
es.

Re
all from Chapter 3 that a type 0, type 1, or a type 2 vertex is a 4-vertex in
ident

with 0, 1, or 2 triangles, respe
tively. Every 4-vertex is one of these types. Every 4-

vertex v is in
ident with 4 distin
t fa
es, otherwise v is a 
ut-vertex whi
h is redu
ible


on�guration 1. If v is an internal type 0 vertex it is enough to send

1

2

units to it from ea
h

of its fa
es. If v is a type 2 vertex, it needs to get 1 unit from ea
h of its non-triangular

fa
es to have non-negative 
harge. Finally, if v is a type 1 vertex, we 
an send

1

2

from
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1
2

1
2

1
2

1 1

(a) (b) (c)

Figure 4.8: Dis
harging rule R5

ea
h of the non-triangular fa
es in
ident with v that share an edge with the triangular

fa
e, and 1 unit from the other fa
e to v. We 
ombine these in the following rule (see

Figure 4.8):

R5: Every internal non-triangular fa
e f sends:

(a)

1

2

to ea
h of its internal type 0 verti
es,

(b) 1 to ea
h of its internal type 2 verti
es,

(
)

1

2

to every internal type 1 vertex v in its boundary if the triangle in
ident

with v shares an edge with f ,

(d) 1 to every internal type 1 vertex v in its boundary if the triangle in
ident

with v does not share an edge with f .

Let's assume v is an internal 4-vertex. If it is type 0, type 2, or type 1 it re
eives

4 �

1

2

, or 2 � 1, or 2 �

1

2

+ 1 by R5 parts (a), or (b), or (
) and (d), respe
tively. So

by rules R1 and R5 every 4-vertex either has non-negative 
harge after the dis
harging

phase, or is a 
ut-vertex (redu
ible 
on�guration 1).

The only remaining verti
es are internal 5-verti
es. Let v be an internal 5-vertex

in
ident with 5 fa
es. All these fa
es are distin
t, otherwise v is a 
ut-vertex whi
h is

redu
ible 
on�guration 1. By absen
e of 4-
y
les, v is in
ident with at least three non-

triangular fa
es and it is enough to send

1

2

from two of them to v. So we add the following

dis
harging rule to our set:
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1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(a) (c)(b)

Figure 4.9: Dis
harging rule R6

R6: Every internal non-triangular fa
e f sends

1

2

to ea
h internal 5-vertex v

in its boundary if v is not in
ident with two edges of f that ea
h belong to a

triangular fa
e adja
ent to f (see Figure 4.9).

If v is an internal 5-vertex then it is in
ident with at least three non-triangular fa
es.

If it is in
ident with at least 4 non-triangular fa
es then ea
h of them sends

1

2

to v by R6,

for a total of at least 2. If v is in
ident with two triangles then two of the non-triangular

fa
es send

1

2

ea
h by R6, for a total of 1.

Therefore, by these dis
harging rules:

Lemma 4.2.12 Every vertex v has non-negative 
harge, unless it is redu
ible 
on�gura-

tion 1, 3 or 4.

Now we prove that every fa
e has non-negative 
harge, or else G has a redu
ible


on�guration. Sin
e R1 is the only rule by whi
h f

0

sends 
harge, by the arguments

given before R1:

Lemma 4.2.13 f

0

has non-negative 
harge after the dis
harging phase.

Finally, we show that every internal fa
e f either has non-negative 
harge, or has a

redu
ible 
on�guration.

Lemma 4.2.14 Every fa
e f 6= f

0

has non-negative �nal 
harge, unless it has redu
ible


on�guration 3, 6, 7 or 8.
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Proof: If jf j = 3 then its initial 
harge is 0 and it does not lose any 
harge in the

dis
harging phase.

Suppose jf j � 12. As f sends to ea
h in
ident vertex at most

3

2

by R2-R6, its �nal


harge is 2jf j � 6�

3

2

jf j � 0.

The only remaining 
ases are when 8 � jf j � 11. Assume that f is an internal

fa
e with jf j � 8, whi
h is in
ident with a 2-vertex v. If v 62 f

0

then G has redu
ible


on�guration 3. Otherwise f is in
ident with two �3-verti
es of f

0

, namely the ends of a

maximal path of 2-verti
es on the boundary of f . These verti
es get at most

1

2

from f by

R3 and R4, and therefore, the �nal 
harge of f is at least 2jf j�6� (jf j�2)�

3

2

�2�

1

2

�

jf j

2

�4 � 0. Thus, from now on, we may assume that f is not in
ident with any 2-verti
es.

Also, observe that f sends

3

2

to ea
h of its bad verti
es by R3 and at most 1 to

its good verti
es by rules R4 to R6 (note that sin
e we have assumed that f has no

2-verti
es, R3-R6 are the only rules that apply to f). We will use this fa
t frequently in

our arguments without referring to it expli
itly.

Suppose jf j = 11. By parity, f 
an have at most 10 bad verti
es and sends at most

10�

3

2

to them by R3, plus at most 1 to its good vertex by R4, R5, or R6. So, its �nal


harge is at least 22� 6� 10�

3

2

� 1 = 0

Now suppose jf j = 10. If f sends to at least two in
ident verti
es at most 1 ea
h, it

sends at most 8 �

3

2

to its other verti
es and we are done, as its �nal 
harge is at least

20 � 6 � 8 �

3

2

� 2 = 0. The only danger 
omes from f being in
ident with at least 9

bad verti
es. But 
learly every 5 
onse
utive bad verti
es on the boundary of f in
lude

a tetrad, whi
h is redu
ible 
on�guration 6.

Next suppose jf j = 9. If f sends to at least three in
ident verti
es at most 1 ea
h, or

sends at most

1

2

to one vertex and 1 to another vertex, we are done, as its �nal 
harge is

at least 18 � 6 � 6 �

3

2

� 3 = 0 or 18 � 6 � 7 �

3

2

� 1 �

1

2

= 0, respe
tively. If f has 8

bad verti
es it will 
ertainly form a tetrad, whi
h is redu
ible 
on�guration 6. So, there

are at most 7 bad verti
es and the other two must be internal verti
es and take 1 from
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v1

v2

v3

v4

v5v6

v7

v8

v9

Figure 4.10: A 9-fa
e as in the proof of Lemma 4.2.14

f , ea
h. So, the good verti
es are � 4-verti
es. Clearly those 7 bad verti
es must be

split by the two good verti
es as 4+3, otherwise they form a tetrad, whi
h is redu
ible


on�guration 6. Furthermore, the quadruple should fail to be a tetrad, or else we are

done. It is not diÆ
ult to 
he
k that the only stru
ture that f may have is as in Figure

4.10. But in this 
ase, one of the good verti
es (v

1

in the �gure) takes

1

2

from f by R5(
)

and the other good vertex, v

5

, gets only 1 by R5(b). Therefore the �nal 
harge of f is at

least 18� 6� 7�

3

2

� 1�

1

2

= 0.

Finally, assume jf j = 8. This 
ase is more 
ompli
ated and requires some 
are to

analyze. If there are at most 4 bad verti
es in f , or if f sends at most

1

2

to at least

two verti
es, then we are done, as its �nal 
harge is at least 16 � 6 � 4 �

3

2

� 4 = 0 or

16 � 6 � 6 �

3

2

� 2 �

1

2

= 0, respe
tively. So we may assume that f has at least 5 bad

verti
es (whi
h by de�nition are all internal). We prove that the other three verti
es of

f are also internal.

First suppose that exa
tly one vertex v of f belongs to f

0

. Then f 
annot share an

edge with f

0

(or else it will share at least two verti
es with f

0

). Thus d(v) � 4 and so f

sends nothing to v by any rules (rules R2 and R3 only apply to 3-verti
es and rules R4,

R5 and R6 only apply to the internal �4-verti
es). If the other 7 verti
es of f are all bad,

G has a tetrad whi
h is redu
ible 
on�guration 6. Otherwise, f has at most 6 bad verti
es
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and sends at most 1 to its other good vertex. So f has at least 16� 6� 6�

3

2

� 1 = 0

�nal 
harge. Now suppose that at least two verti
es of f belong to f

0

. Then, sin
e f

sends at most

1

2

to ea
h of them by R3 or R4, f has non-negative 
harge as dis
ussed in

the previous paragraph. So all the verti
es of f must be internal.

If f is in
ident with at least 7 bad verti
es (and so with at most one good vertex),

G has a tetrad and we are done. The only other 
ase we have to 
onsider is when f is

in
ident with exa
tly 6 or exa
tly 5 bad verti
es. Let v

1

: : : v

8

be the sequen
e of verti
es

of f in 
lo
kwise order.

Case 1. f has pre
isely 5 bad verti
es.

If at least one good vertex of f gets at most

1

2

from f , sin
e the other two good

verti
es get at most 1 from f ea
h, we are done, as the �nal 
harge of f is at least

16� 6� 5�

3

2

� 2� 1�

1

2

= 0. So suppose that ea
h of these three good verti
es takes 1

unit of 
harge from f . It follows by R4 and R5 that all of them are internal �4-verti
es,

and ea
h is either (i) simple, (ii) type 2, or (iii) a type 1 vertex whi
h is is in
ident with

a triangle that does not share any edges with f . However, this is impossible by parity:

the number of bad verti
es should be even or else f should 
ontain a type 1 vertex whi
h

is in
ident with a 3-fa
e that shares an edge with f (i.e. is adja
ent to f).

Case 2. f has pre
isely 6 bad verti
es.

These 6 bad verti
es must be split by the two good verti
es as 4+2 or 3+3, sin
e ea
h

path of 5 bad verti
es 
ontains a tetrad, and tetrads are redu
ible. We 
onsider ea
h of

these two sub
ases separately:

Sub
ase 2.1: 4+2

Assume that the group of 4 bad verti
es is v

1

; : : : ; v

4

and the other two bad verti
es

are v

6

; v

7

, with v

5

and v

8

being good. In order to not form a tetrad, v

1

and v

4

should

form triangles with the good verti
es v

8

and v

5

, respe
tively. Let's 
all an edge in
ident

with a 3-fa
e a triangular edge. If the edge v

6

v

7

is triangular, then both v

5

and v

8

get at most

1

2

from f by R5(
) or R6, and we are done, as the 
harge of f is at least
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16� 6� 6�

3

2

� 2�

1

2

= 0.

The only alternative is that both v

5

v

6

and v

7

v

8

are triangular. Observe that d(v

5

) � 4

and d(v

8

) � 4. If d(v

5

) � 5 then sin
e it is in
ident with two triangular edges (v

5

v

6

and

v

4

v

5

) rule R6 does not apply and f sends nothing to v

5

. By a similar argument, if

d(v

8

) � 5 then f sends nothing to v

8

. Therefore, if d(v

5

) � 5 or d(v

8

) � 5 then we are

done as the �nal 
harge of f is at least 16� 6� 6�

3

2

� 1 = 0. Thus, the only remaining


ase to 
onsider is when both v

5

and v

8

are internal 4-verti
es and furthermore, we have

3-fa
es v

1

v

8

t

18

, v

2

v

3

t

23

, v

4

v

5

t

45

, v

5

v

6

t

56

, and v

7

v

8

t

78

as in Figure 4.5(a). But this is an

MM -fa
e, i.e. redu
ible 
on�guration 8.

Sub
ase 2.2: 3+3

Let v

1

; : : : ; v

8

be the sequen
e of verti
es of f in 
lo
kwise order, with v

4

and v

8

being

the good verti
es. Without loss of generality assume that v

1

v

2

is a triangular edge. So

v

3

v

4

is also triangular.

If v

5

v

6

is triangular then v

7

v

8

must be triangular and therefore, v

4

and v

8

take at

most

1

2

from f by R5(
) or R6 and the 
harge of f is at least 16� 6� 6�

3

2

� 2�

1

2

= 0.

If v

5

v

6

is not triangular then v

5

v

4

and v

6

v

7

are triangular. If d(v

4

) � 5 then f sends

nothing to v

4

and therefore its �nal 
harge is at least 16� 6� 6�

3

2

� 1 = 0. If d(v

4

) = 4

then then f is an M -fa
e (as in Figure 4.4(a)), i.e. redu
ible 
on�guration 7. So we are

done.

So by Lemmas 4.2.12 and 4.2.14 all the verti
es and fa
es have non-negative �nal


harge, or else G has a redu
ible 
on�guration. Thus there is no minimum 
ounter-

example and so no 
ounter-example at all to Theorem 4.2.1.
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4.3 A 3-Colouring Algorithm for Planar GraphsWith-

out 4- to 7-Cy
les

In this se
tion we provide an algorithm for Theorem 4.0.2 that given an embedded graph

G 2 G

7

as input, produ
es a 3-
olouring of G. We assume that the input to the algorithm

is 
onne
ted. For dis
onne
ted graphs it is enough to 
olour ea
h 
onne
ted 
omponent

independently. The algorithm 
onsist of two main pro
edures.

Pro
edure 1: This pro
edure takes as input an embedded 
onne
ted graph G 2 G

7

and produ
es a 3-
olouring ofG. In the �rst part of this pro
edure we apply the algorithm

des
ribed in Subse
tion 2.3.1 to G. This will either produ
e a 3-
olouring of G or give a


y
le C of size in f8; 9; 10g in G. If we �nd a 3-
olouring of G then the pro
edure returns

this 3-
olouring and terminates.

Otherwise, let C be the 
y
le of G that the pro
edure has found. The same arguments

as in the proof of Theorem 4.0.2 show that C 
an only have triangular 
hords (be
ause

G 2 G

7

) and that we 
an �nd a 3-
olouring ' of C. Remove the (possible) 
hords from C

and 
onsider ' on C and the graphs G

1

= G� In(C) and G

2

= G�Out(C). Therefore,

ea
h of G

1

and G

2

is a 
onne
ted graph in G

7

along with a 3-
olouring of one of its fa
es

(the one whose boundary is C), whi
h has size in f8; 9; 10g. Then we 
all Pro
edure 2

on ea
h of these graphs along with 
olouring ', independently. This will produ
e a 3-


olouring for ea
h of G

1

and G

2

that are extensions of '. The union of these 3-
olourings

is a 3-
olouring of G.

Pro
edure 2: This pro
edure takes as input an embedded 
onne
ted graph G 2 G

7

together with a 3-
olouring ' of a fa
e f

0

of size in f8; : : : ; 11g of G and produ
es a

3-
olouring of G. In fa
t, this pro
edure 
orresponds to Theorem 4.2.1.

We assume that f

0

is the outside fa
e of G. At ea
h iteration of this pro
edure, we

apply the initial 
harges and the dis
harging rules, as des
ribed in Subse
tion 4.2.2. Sin
e

the total 
harge is negative, after the dis
harging phase there must be either a vertex v
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or a fa
e f 6= f

0

with negative 
harge (note that by Lemma 4.2.13 f

0

has non-negative


harge):

1. A vertex v with negative 
harge: By Lemma 4.2.12, v must be one of 
on�gurations

1, 3, or 4. We 
onsider ea
h 
ase separately.

(a) First assume that v is a 
ut-vertex. If v 2 f

0

then, be
ause G 2 G

7

, there is a

blo
k B of G 
ontaining v whi
h is a single edge or a triangle. In ea
h 
ase we

get an extension of ' toG�(B�fvg), by 
alling Pro
edure 2 re
ursively. If v is

an internal 
ut-vertex with a pendant blo
k B then we get an extension of ' to

G�(B�fvg), by 
alling Pro
edure 2 re
ursively. Then we run Pro
edure 1 on

B to obtain a 3-
olouring of B. This 3-
olouring, after possibly permuting the


olours, together with the extension of ' to G� (B�fvg) yield a 3-
olouring

of G.

(b) Next assume that v is an internal 2-vertex. We 
all Pro
edure 2 or Pro
edure

1 on ea
h of the at most two 
onne
ted 
omponents of G � v, depending on

whether the 
omponent 
ontains f

0

(and the 
olouring ') or not. If Pro
edure

2 is 
alled on a 
onne
ted 
omponent, say G

2

, it returns a 3-
olouring of G

2

,

whi
h is an extension of '. If Pro
edure 1 is 
alled on a 
onne
ted 
omponent,

say G

1

, then it returns a 3-
olouring ofG

1

. The union of these two 3-
olourings

yields a 3-
olouring of G� v. We 
an extend this 3-
olouring to v in 
onstant

time.

(
) Finally, assume that v is a 2-vertex of f

0

in
ident with a triangle T . If T

is a fa
e then we 
all Pro
edure 2 on G � v and the 
olouring ' indu
ed on

f

0

� v, to obtain a 3-
olouring of G. This 
olouring, together with the 
olour

of v indu
ed by ', yields a 3-
olouring of G. If T is a separating 
y
le, then

we 
all Pro
edure 2 with G � In(T ) and 
olouring ', to obtain a 3-
olouring

of G � In(T ). Then we 
all Pro
edure 1 on graph G � Out(T ). This will
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produ
e a 3-
olouring of G�Out(T ). The union of 3-
olourings of G� In(T )

and G � Out(T ), after possibly permuting the 
olours in the 
olouring of

G�Out(T), yields a 3-
olouring of G.

2. A fa
e f 6= f

0

with negative 
harge: By Lemma 4.2.14 f must have one of 
on�gu-

rations 3, 6, 7, or 8. We 
onsider ea
h 
ase separately.

(a) If f has an internal 2-vertex we do as explained in 
ase 1(b).

(b) Suppose f has a tetrad as in Figure 4.3. By a Breadth First Sear
h (BFS)

starting at vertex x, we 
an easily 
he
k whether there exists a path x; z

1

; : : : ; z

k

; t,

3 � k � 6, with all z

i

's di�erent from v

1

; v

2

; v

3

; v

4

.

i. If su
h a path exists, we have a separating 
y
le C of size in f8; : : : ; 11g in

G. In this 
ase we 
all Pro
edure 2 on G� In(C) to obtain a 3-
olouring

of it. Let '

C

be the 
olouring of C in this 3-
olouring. Then we delete

the possible 
hords from C and 
all Pro
edure 2 with G � Out(C) and

'

C

. We obtain a 3-
olouring of G � Out(C). The union of these two

3-
olourings yields a 3-
olouring of G

ii. If su
h a path does not exist then we remove v

1

; v

2

; v

3

; v

4

and identify x

with t

0

as in the proof of Lemma 4.2.6. Let this new graph be G

�

. We


all Pro
edure 2 on G

�

together with '. This gives a 3-
olouring of G

�

.

By Remark 4.2.7 we 
an extend this 
olouring to a 3-
olouring of G in


onstant time.

(
) Next, suppose that f is anM -fa
e as in Figure 4.4. By a BFS starting from v

4

we 
he
k whether there exists a path of length in f4; : : : ; 7g in G 
onne
ting

v

4

to t

78

(or v

4

to t

18

) whi
h does not use any edge of f .

i. If the path exists then this path, together with v

4

v

5

v

6

v

7

t

78

(or with v

4

v

3

v

2

v

1

t

18

)

forms a separating 
y
le C of length in f8; : : : ; 11g in G. We 
ontinue as

in 
ase 2(b)i explained above.
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ii. If the path does not exist then we remove all the bad verti
es of f and

identify v

4

with v

8

to obtain graph G

�

. We 
all Pro
edure 2 onG

�

together

with ' to get a 3-
olouring of G

�

. By Remark 4.2.9 this 3-
olouring 
an

be extended to G in 
onstant time.

(d) Finally, assume that f is an MM -fa
e as in Figure 4.5. By a BFS starting

from t

18

we 
he
k whether there exists a path of length in f4; : : : ; 7g between

t

18

and t

56

that does not use any edge of f .

i. If su
h a path exists then this path, together with t

18

v

8

v

7

v

6

t

56

forms a

separating 
y
le C of length in f8; : : : ; 11g. We 
ontinue as in 
ase 2(b)i

explained above.

ii. If the path does not exist then we remove all v

1

; : : : ; v

8

from f and identify

t

18

with t

56

to obtain graph G

�

. We 
all Pro
edure 2 on G

�

together with

' to get a 3-
olouring of G

�

. By Remark 4.2.11 this 3-
olouring 
an be

extended to G in 
onstant time.

The main pro
edure of the algorithm starts by 
alling Pro
edure 1. In ea
h pro
edure

if the graph has only one vertex then the pro
edure immediately returns the trivial


olouring of the input graph.

4.3.1 Analysis of the Algorithm

For a graph G, let n = jV j + jEj denote the size of G. Let T

1

(n) and T

2

(n) be the

worst 
ase running time of Pro
edure 1 and Pro
edure 2 on an input graph of size n,

respe
tively. Our goal is to show that T

1

(n); T

2

(n) 2 O(n

3

). We do this by proving that

there are 
onstants �; �

1

; �

2

> 0, su
h that for all values of n � 1: T

1

(n) � �n

3

+ �

1

n

2

and T

2

(n) � �n

3

+�

2

n

2

. Both of the inequalities are trivial for small values of n. Assume

that T

1

(i) � �i

3

+ �

1

i

2

and T

2

(i) � �i

3

+ �

2

i

2

for 1 � i < n and suppose that the input

graph has size n.
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First 
onsider Pro
edure 1. The part where we run the algorithm of Subse
tion

2.3.1 takes O(n

2

) time. If a 3-
olouring is found the pro
edure terminates. Otherwise,

the pro
edure has found a 
y
le C. Removing the triangular verti
es of C (as in the

proof of Theorem 4.0.2) and �nding a 3-
olouring of 
y
le C 
an be done in linear time.

Then we should remove the possible 
hords of C, whi
h again 
an be done in linear

time. If we remove this 
y
le from the graph we 
an easily �nd G

1

= G � In(C) and

G

2

= G � Out(C) in linear time. Then we make re
ursive 
alls to Pro
edure 2 on G

1

and G

2

, whi
h take T

2

(n

1

) and T

2

(n

2

) time, if n

1

and n

2

are the sizes of G

1

and G

2

,

respe
tively. Note that n

1

; n

2

� 8 and n

1

+ n

2

� n + 11, sin
e the size of C is in

f8; : : : ; 11g. Thus T

1

(n) � 
n

2

+ T

2

(n

1

) + T

2

(n

2

) � 
n

2

+ �(n

3

1

+ n

3

2

) + �

2

(n

2

1

+ n

2

2

),

for some 
onstant 
 > 0. This is maximized when n

1

= n and n

2

= 11. So T

1

(n) �


n

2

+ �(n

3

+ 11

3

) + �

2

(n

2

+ 11

2

) � �n

3

+ �

1

n

2

, if �

1

> �

2

+ 
.

Now 
onsider Pro
edure 2. Applying the initial 
harges takes O(n). Sin
e only fa
es

send 
harge during the dis
harging phase and for ea
h fa
e f it takes at most O(jf j) time

to do the dis
harging, it takes at most O(

P

f2F

jf j) time, whi
h is in O(n), to apply the

dis
harging rules. Finding an element with negative 
harge also takes linear time. Now

we analyze ea
h step of this pro
edure:

1. A vertex v with negative 
harge:

(a) Che
king if a vertex is a 
ut-vertex 
an be done in linear time. If v is a 
ut-

vertex and in f

0

then we only make a re
ursive 
all to Pro
edure 2 on a graph

with size n

0

� n � 1. So for some 
onstant 
 > 0: T

2

(n) � 
n + T

2

(n

0

) �


n + �n

03

+ �

2

n

02

� �n

3

+ �

2

n

2

.

If v is an internal 
ut-vertex we make a 
all to Pro
edure 2 on a graph of size

n

2

and a 
all to Pro
edure 1 on a graph of size n

1

, with n

1

+ n

2

= n+ 1 and

n

1

; n

2

� 2. This takes at most T

2

(n

2

)+T

1

(n

1

) � �(n

3

2

+n

3

1

)+�

1

n

2

1

+�

2

n

2

2

time,

whi
h is maximized when n

1

= n�1 and n

2

= 2, sin
e �

1

> �

2

. After this step
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we may have to permute the 
olours in one of the 
olourings obtained, whi
h

takes linear time. Therefore, T

2

(n) � 
n+�((n�1)

3

+2

3

)+�

1

(n�1)

2

+�

2

2

2

,

for some 
onstant 
 > 0. This implies that T

2

(n) � �n

3

+ �

2

n

2

, if � is large

enough with respe
t to �

1

and �

2

.

(b) Che
king if v is a 2-vertex takes 
onstant time. If v is an internal 2-vertex

then we 
all Pro
edure 1 or Pro
edure 2 on ea
h of the at most two 
onne
ted


omponents of G � v. Suppose that Pro
edure 2 is 
alled on a 
onne
ted


omponent of size n

2

and Pro
edure 1 is 
alled on a 
onne
ted 
omponent

of size n

1

, with n

1

+ n

2

= n � 1 and n

1

; n

2

� 0. Then we take the union

of these two 
olourings and extend it to v in 
onstant time. So T

2

(n) �

T

1

(n

1

) + T

2

(n

2

) + 
n � �(n

3

1

+ n

3

2

) + �

1

n

2

1

+ �

2

n

2

2

+ 
n, for some 
onstant


. This is maximized when n

1

= n � 1 and n

2

= 0. This implies that

T

2

(n) � �n

3

+ �

2

n

2

. For the 
ase that v 2 f

0

almost the same analysis works.

2. A fa
e f 6= f

0

with negative 
harge: On
e we �nd a fa
e f with negative 
harge we


an �nd out whether it has a 2-vertex, a tetrad, or it is an M -fa
e, or an MM -fa
e

in O(jf j) time.

(a) If f has a 2-vertex the same analysis as in 
ase 1(b) works.

(b) If f has a tetrad we do a BFS whi
h takes O(n) time.

If we �nd a separating 
y
le C with size in f8; : : : ; 11g, we 
an 
onstru
t

graphs G

1

= G� In(C) and G

2

= G�Out(C) in linear time. Assume that n

1

and n

2

are the sizes of G

1

and G

2

, respe
tively. Note that n

1

+ n

2

� n + 11

(be
ause of the size of C) and 9 � n

1

; n

2

� n � 1 (be
ause C is a separating


y
le). Making re
ursive 
alls to Pro
edure 2 on graphs G

1

and G

2

takes

T

2

(n

1

) + T

2

(n

2

) � �(n

3

1

+ n

3

2

) + �

2

(n

2

1

+ n

2

2

) time. This is maximized when

one of n

1

or n

2

is equal to n � 1 and the other one is 12. Therefore T

2

(n) �

�[(n � 1)

3

+ 12

3

℄ + �

2

[(n � 1)

2

+ 12

2

℄ + 
n for some 
onstant 
 > 0. This
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implies that T

2

(n) � �n

3

+ �

2

n

2

, for large enough �.

If we don't �nd a separating 
y
le, then we 
onstru
t graph G

�

whi
h takes

at most linear time. Calling Pro
edure 2 on this graph with size n� 4 takes

T

2

(n � 4). Then the 3-
olouring of G

�


an be extended to a 3-
olouring of

G in 
onstant time by Remark 4.2.7. Therefore, for some 
onstant 
 > 0:

T

2

(n) � 
n+ T

2

(n� 4) � �n

3

+ �

2

n

2

. .

(
) If f is an M -fa
e then we do a BFS whi
h takes linear time. If we �nd

a separating 
y
le, an analysis almost identi
al to that of the previous 
ase

implies that T

2

(n) � �n

3

+ �

2

n

2

. Otherwise we 
onstru
t the graph G

�

with

size n�6, whi
h takes linear time. Finding a 3-
olouring of G

�

takes T

2

(n�6)

time and extending this 
olouring to G takes 
onstant time by Remark 4.2.9.

Therefore, for some 
onstant 
 > 0: T

2

(n) � 
n + T

2

(n� 6) � �n

3

+ �

2

n

2

.

(d) If f is anMM -fa
e, again we spend linear time to do the BFS. If a separating


y
le is found as in the analysis of the previous two 
ases: T

2

(n) � �n

3

+�

2

n

2

.

Otherwise, we 
onstru
t the graph G

�

with size n� 8 in linear time. Finding

a 3-
olouring of G

�

takes T

2

(n � 8) time and extending this 
olouring to G

takes 
onstant time by Remark 4.2.11. So for some 
onstant 
 > 0: T

2

(n) �


n + T

2

(n� 8) � �n

3

+ �

2

n

2

, as wanted.



Chapter 5

Colouring the Square of a Planar

Graph

Remark 5.0.1 The results of this 
hapter are based on papers [41, 42℄.

5.1 The Problem and Previous Works

A natural generalization of the 4CP is the following: for a given planar graph G, �nd

the minimum number of 
olours required in a 
olouring of the verti
es of G su
h that

every two verti
es at distan
e at most two of ea
h other get di�erent 
olours. This kind

of 
olouring is also referred to in the literature as distan
e-2-
olouring. Note that this

problem is equivalent to the standard vertex 
olouring of G

2

, the square of graph G.

The question of �nding the best possible upper bound for the 
hromati
 number of

the square of a planar graph seems to have �rst been asked by Wegner [58℄ in 1977. He

posed the following 
onje
ture:

Conje
ture 5.1.1 [58℄ For a planar graph G:

�(G

2

) �

8

>

>

<

>

>

:

�+ 5 if 4 � � � 7;

b

3

2

�
 + 1 if � � 8:

91
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u w

v

k+1

k
k

vertices

vertices
vertices

Figure 5.1: A planar graph with �(G

2

) =

3

2

�+ 1

He gave examples illustrating that these bounds are best possible. Figure 5.1 shows su
h

an example for large values of �. In this graph, there are k paths of length 2 between

u; v and v; w, and k + 1 paths of length 2 between u; w. So � = 2k + 2 and all verti
es

should get di�erent 
olours. Therefore, �(G

2

) = 3k+4 = b

3

2

�
+1. He also showed that

if � = 3 then G

2


an be 8-
oloured and 
onje
tured that 7 
olours would be enough.

Very re
ently, Thomassen [54℄ has solved this 
onje
ture for � = 3, by showing that the

square of every 
ubi
 planar graph is 7-
olourable, but the 
onje
ture for general planar

graphs remains open. This 
onje
ture is mentioned in Jensen and Toft [38℄, Se
tion 2.18,

followed by a brief history of it.

One might think that the straightforward greedy algorithm will give a linear upper

bound of approximately 5� on �(G

2

), be
ause every planar graph has a vertex of degree

at most 5. But with being more 
areful in the analysis, one 
an �nd out why this

argument does not work that easily. For instan
e, we 
an argue that sin
e every planar

graph G has a vertex with degree at most 5, there is an ordering v

1

; v

2

; : : : ; v

n

of the

verti
es of G, su
h that ea
h v

i

has at most 5 neighbours in fv

1

; : : : ; v

i�1

g. This implies a

greedy 
olouring algorithm whi
h uses at most 6 
olours to 
olour G (but not G

2

). One
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may try to extend this argument by saying that, sin
e vertex v

i

has at most 5 neighbours

in fv

1

; : : : ; v

i�1

g, it has at most 5(� � 1) verti
es at distan
e two in fv

1

; : : : ; v

i�1

g, and

therefore the same algorithm will 
olour G

2

with at most 5� + 1 
olours. However, the

verti
es at distan
e two from v

i

in fv

1

; : : : ; v

i�1

g are not ne
essarily adja
ent to a vertex

in fv

1

; : : : ; v

i�1

g. So, the number of verti
es in fv

1

; : : : ; v

i�1

g at distan
e two from v

i

might be mu
h larger than 5(�� 1).

Another naive (and failed) argument for showing that �(G

2

) � 5�+1 is the following:

in any planar graph G there is a vertex v of degree at most 5; by indu
tion there is a


olouring C of the square of G� v, with at most 5�+1 
olours. Sin
e there are at most

5� verti
es at distan
e at most 2 of v we 
an assign a 
olour to v. What's the 
aw?

Some neighbours of v might have the same 
olour in C, but they are at distan
e 2 of

ea
h other in G (be
ause of v). So we 
annot leave them with their old 
olours.

The �rst non-trivial upper bound on �(G

2

) for ea
h planar graph G was given by

Jonas [39℄ in his Ph.D. thesis, who proved something 
lose to the 5� that these failed

arguments tried to obtain:

Theorem 5.1.2 [39℄ For every planar graph G: �(G

2

) � 8�� 22.

This bound was later improved by Wong in his M.S
. thesis [60℄:

Theorem 5.1.3 [60℄ For every planar graph G: �(G

2

) � 3� + 5.

Wong also 
onsidered the problem of 
olouring larger powers of planar graphs and, using

the above theorem as the base 
ase of an indu
tion, proved that for every planar graph

G and integer k � 1: �(G

k

) 2 O(�

b

k

2




). Note that a rooted tree of height b

k

2


 in whi
h

every internal node has degree � requires 
(�

b

k

2




) 
olours in any 
olouring of its kth

power. Therefore the above bound is asymptoti
ally best possible.

Van den Heuvel and M
Guinness [57℄ gave the following result:

Theorem 5.1.4 [57℄ For every planar G: �(G

2

) � 2� + 25.
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They also applied the same proof te
hnique to a more generalized setting of 
olouring,

whi
h we will dis
uss soon. For large values of �, Agnarsson and Halld�orsson [2℄ found

a better asymptoti
 bound:

Theorem 5.1.5 [2℄ If G is a planar graph with � � 749, then �(G

2

) � b

9

5

�
+ 2.

Re
ently, Borodin et al. [16, 17℄ have been able to extend these results further:

Theorem 5.1.6 [16, 17℄ For a planar graph G with � � 47: �(G

2

) � d

9

5

�e + 1.

In this 
hapter we give some upper bounds for the 
hromati
 number of the square of

a planar graph in terms of the maximum degree, whi
h are asymptoti
ally better than

all the previously known bounds. More spe
i�
ally, we redu
e the 
oeÆ
ient of � from

9

5

to

5

3

and obtain �(G

2

)d

5

3

�e+O(1). The main theorem of this 
hapter is:

Theorem 5.1.7 For a planar graph G: �(G

2

) � d

5

3

�e+ 78.

For larger values of �, we 
an redu
e the additive 
onstant somewhat:

Theorem 5.1.8 For a planar graph G, if � � 241, then: �(G

2

) � d

5

3

�e + 25.

Remark 5.1.9 The proof of Theorem 5.1.7 is more 
ompli
ated than the main results

of the previous two 
hapters. That is why we kept this theorem for the last 
hapter, even

though this result was obtained earlier than the previous ones.

Sin
e the standard vertex 
olouring for planar graphs [28℄ and distan
e-2-
olouring for

general graphs [32℄ are both NP-
omplete, one might expe
t 
omputing �(G

2

) for planar

G to be NP-
omplete. Indeed this is true, as proved by Ramanathan and Loyd [46℄ that

the distan
e-2-
olouring problem (and therefore 
omputing �(G

2

)) is NP-
omplete for

planar graphs.

A generalization of standard vertex 
olouring is L(p; q)-labeling. For verti
es u; v 2 V

let dist(u; v) denote the distan
e between u and v. For integers p; q � 0, an L(p; q)-

labeling of a graph G is a mapping L : V (G) �! f0; : : : ; kg su
h that
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� jL(u)� L(v)j � p if dist(u; v) = 1, and

� jL(u)� L(v)j � q if dist(u; v) = 2.

The p; q-span of G, denoted by �

p

q

(G), is the minimum k for whi
h an L(p; q)-labeling

exists. It is easy to see that for any graph G: �(G

2

) = �

1

1

(G) + 1. The problem of

determining �

p

q

(G) has been studied for some spe
i�
 
lasses of graphs, su
h as paths,


y
les, wheels, and 
omplete k-partite graphs [32℄, trees [23, 32℄, 
ographs [23℄, k-almost

trees [26℄, and uni
y
les and bi
y
les [39℄ (See also [9, 27, 29, 30, 31, 46, 45, 56, 59℄).

The motivation for this problem 
omes from the 
hannel assignment problem in radio

and 
ellular phone systems, where ea
h vertex of the graph 
orresponds to a transmitter

lo
ation, with the label assigned to it determining the frequen
y 
hannel on whi
h it

transmits. In appli
ations, be
ause of possible interferen
e between neighbouring trans-

mitters, the 
hannels assigned to them must have a 
ertain distan
e from ea
h other. A

similar requirement arises from transmitters that are not neighbours but are 
lose, i.e at

distan
e 2. This problem is also known as the Frequen
y Assignment Problem.

Not surprisingly, 
omputing �

p

q

(G) is an NP-hard problem, as the simplest non-trivial


ase, i.e. L(1; 0)-labeling, is the standard vertex 
olouring of G. The L(p; q)-labeling

problem, and spe
ially the 
ase p = 2 and q = 1, has been studied extensively on several


lasses of graphs (see for example [9, 23, 26, 27, 29, 30, 31, 32℄). The L(2; 1)-labeling

problem is NP-
omplete for planar, split, 
hordal, and bipartite graphs [9℄, and for graphs

of diameter 2 [32℄, and it is polynomially solvable for paths and 
y
les [32℄, and trees

[23℄. However, the 
omplexity of L(p; q)-labeling in general is still open for trees.

Be
ause of the motivating appli
ation for this problem, it is quite natural to 
onsider

it on planar graphs. Sin
e the 
ase q = 0 
orresponds to labeling the verti
es of a graph

with integers su
h that adja
ent verti
es re
eive labels at least p apart, the upper bound

3p for �

p

0

of planar graphs is easily seen to follow from the Four Colour Theorem. So,

let's assume that q � 1. For any planar graph G, a straightforward argument shows that

�

p

q

(G) � q�+ p � q + 1. There are planar graphs G (su
h as the one in Figure 5.1) for
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whi
h �

p

q

(G) �

3

2

q� + O(p + q). The best known upper bound for �

p

q

(G), for a planar

graph G, is (4q � 2)� +O(p+ q) proved in [57℄:

Theorem 5.1.10 [57℄ For any planar graph G and positive integers p and q, su
h that

p � q:

�

p

q

(G) � (4q � 2)� + 10p+ 38q � 24:

We sharpen the gap between this result and the best possible bound asymptoti
ally, by

obtaining the upper bound qd

5

3

�e+O(p+ q).

Theorem 5.1.11 For any planar graph G and positive integers p and q:

�

p

q

(G) � qd

5

3

�e + 18p+ 77q � 18:

In [9℄ Bodlaender et al. give approximation algorithms to 
ompute �

2

1

for some 
lasses

of graphs and noted that the result of Jonas [39℄ yields an 8-approximation algorithm

for planar graphs. Fotakis et al. [27℄ point out that the result of [57℄ yields a (2 + o(1))-

approximation algorithm for 
omputing �

1

1

on planar graphs. Agnarsson and Halld�orsson

[2℄ also give a 2-approximation algorithm. Fotakis et al. [27℄ asks if one 
an obtain a

polynomial time approximation algorithm of approximation ratio < 2. Theorem 5.1.11

answers this question as explained below.

Consider Theorem 5.1.7. It is easy to see that this Theorem yields a (

5

3

+ �)-

approximation algorithm for 
omputing �(G

2

) for any planar graph G, where � is a


onstant that goes to zero when � goes to in�nity. Note that this is a trivial approxima-

tion algorithm as all we need to do is to 
ompute

5

3

�+78 and return it. But we a
tually

obtain something more interesting. The proofs of Theorems 5.1.7, 5.1.8, and 5.1.11 are


onstru
tive and yield eÆ
ient algorithms for �nding the 
orresponding 
olourings. For

example, for Theorem 5.1.7, we obtain an algorithm that produ
es a distan
e-2-
olouring

of any given planar graph G with at most

5

3

�+ 78 
olours.

The organization of this 
hapter is as follows. The next se
tion 
ontains the proof of

the main Theorem, i.e. Theorem 5.1.7. We start by explaining some of the ideas behind
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the proof. We formalize these ideas in Subse
tion 5.2.2 by stating some notation and

de�nitions that will be used throughout the proof, and then des
ribing the redu
ible 
on-

�gurations. Subse
tion 5.2.3 explains the set of dis
harging rules. Finally in Subse
tion

5.2.4 we 
omplete the proof of the theorem by proving unavoidability of the redu
ible


on�gurations, using the Dis
harging Method. In Se
tion 5.3 we show how some simple

modi�
ations in the arguments of Se
tion 5.2 yield the proof of Theorem 5.1.8. Then we

show in Se
tion 5.4 how to adapt the arguments to prove Theorem 5.1.11. The approxi-

mation algorithms obtained based on the proofs of Theorems 5.1.7, 5.1.8, and 5.1.11 are

explained in Se
tion 5.5. Finally we talk about the asymptoti
 tightness of the results of

this 
hapter, if the same set of redu
ible 
on�gurations is used.

5.2 Proof of the Main Theorem

In this se
tion, we give the proof of Theorem 5.1.7 whi
h uses the Dis
harging Method.

Before going into the details of the proof, we explain, very roughly, some of the basi
 and

simple ideas behind this proof and the previously known results.

5.2.1 Going from

9

5

� to

5

3

�

Let G be an arbitrary planar graph, and assume that G has a very large maximum degree,

�. Also, assume that we have d

9

5

�e+C 
olours to use, for some large 
onstant C (as we

said, this is the previously best known upper bound for �(G

2

) and Borodin et al. [16, 17℄

proved it for C = 1).

The main redu
ible 
on�guration to prove the bound �(G

2

) � d

9

5

�e + C is a vertex

v with d

G

2

(v) � d

9

5

�e + C � 1, whi
h is adja
ent to a vertex u with small degree (say

at most 4). Suppose that G has su
h a vertex v. Then we 
an 
ontra
t v on edge uv,

i.e. remove uv and identify v with u and remove the multiple edges. Call this new graph

G

0

. Sin
e d(u) � 4, it is easy to see that �(G

0

) � �(G), and therefore, we 
an 
olour G

0
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u v

a
1

a
2

ax

Figure 5.2: Two verti
es with many 
ommon neighbours

with d

9

5

�e + C 
olours. This 
olouring indu
ed on G 
an be easily extended to v, sin
e

there are at most d

9

5

�e + C � 1 
oloured verti
es in N

G

2

(v). We 
all a vertex like v, a

light vertex.

So it is enough to show that G has a light vertex. In order to do this, we de�ne

two other 
on�gurations, ea
h of whi
h 
ontains a light vertex and then prove (using the

Dis
harging Method) that G has at least one of these two 
on�gurations.

The �rst of these two 
on�gurations is a � 5-vertex t, all but at most one of whose

neighbours have very small degree (say at most 4). In this 
ase, the number of verti
es

at distan
e at most two of t is at most 4� 4 + �, whi
h is smaller than d

9

5

�e + C, if �

is large enough. Therefore t is a light vertex.

For the se
ond 
on�guration, suppose that G is a triangulation. Consider two verti
es

u and v with large degrees, say �, that have x 
ommon neighbours. For example,

assume that a

1

; : : : ; a

x

are 
onse
utive (in 
lo
kwise order) neighbours of u whi
h are also

neighbours of v. Sin
e G is a triangulation, ea
h a

i

, 2 � i � x� 1, has degree exa
tly 4

and is adja
ent to u; v; a

i�1

; and a

i+1

(See Figure 5.2). Fix one of these verti
es, say a

2

,

and let's 
ount the number of verti
es at distan
e at most two from it. It is easy to see

that d

G

2

(a

2

) � d

G

(u) + d

G

(v) + d

G

(a

1

) + d

G

(a

3

)� x, sin
e a

1

; : : : ; a

x

are 
ounted twi
e,

on
e in d

G

(u), and on
e in d

G

(v). Therefore, if x �

�

5

, then d

G

2

(a

2

) � d

9

5

�e. So a

2

is a

light vertex.

If we assume that G is a triangulation then using the Dis
harging Method one 
an
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show that G indeed has a � 5-vertex like t or a 4-vertex like a

2

, whose number of

neighbours at distan
e at most two is at most d

9

5

�e + C � 1. Of 
ourse, dealing with

non-triangulations adds some 
ompli
ations.

As we will see in Se
tion 5.6, there are planar graphs G in whi
h for every vertex

v: d

G

2

(v) � d

9

5

�e. Thus, using the idea explained above, we 
annot hope for a bound

better than d

9

5

�e+1 and we need to 
ome up with another redu
ible 
on�guration. This

redu
ible 
on�guration is explained in the next se
tion (Lemma 5.2.14).

5.2.2 Preliminaries and Redu
ible Con�gurations

A vertex v is 
alled big if d

G

(v) � 47, otherwise we 
all it a small vertex. For this

subse
tion only, we assume that G is a 
ounter-example to Theorem 5.1.7 with the

minimum number of verti
es. By a 
olouring we impli
itly mean a 
olouring in whi
h

verti
es at distan
e at most two from ea
h other get di�erent 
olours. Trivially G is


onne
ted. The next lemma formalizes the �rst stru
ture we talked about in the previous

subse
tion.

Lemma 5.2.1 For every vertex v of G, if there exists a vertex u 2 N(v), su
h that

d

G

(v) + d

G

(u) � �+ 2 then d

G

2

(v) � d

5

3

�e+ 78.

Proof: Assume that v is su
h a vertex. Contra
t v on edge uv. The resulting graph has

maximum degree at most � and be
ause G was a minimum 
ounter-example, the new

graph 
an be 
oloured with d

5

3

�e + 78 
olours. Now 
onsider this 
olouring indu
ed on

G, in whi
h every vertex other than v is 
oloured. If d

G

2

(v) < d

5

3

�e + 78 then we 
an

assign a 
olour to v to extend the 
olouring to v, whi
h 
ontradi
ts the de�nition of G.

Re
all that by [57℄: �(G

2

) � 2� + 25. Therefore:

Observation 5.2.2 We 
an assume that � � 160, otherwise 2� + 25 � d

5

3

�e+ 78.

Lemma 5.2.3 Every �5-vertex in G must be adja
ent to at least two big verti
es.
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Proof: By way of 
ontradi
tion assume that this is not true. Then there is a �5-vertex v

whi
h is adja
ent to at most one big vertex and all its other neighbours are �46-verti
es.

Then, using Observation 5.2.2, v along with one of these small verti
es will 
ontradi
t

Lemma 5.2.1.

Corollary 5.2.4 Every vertex of G is a �2-vertex.

Lemma 5.2.5 G is 2-
onne
ted.

Proof: By 
ontradi
tion, let v be a 
ut-vertex of G and let C

1

; : : : ; C

t

(t � 2) be the


onne
ted 
omponents of G � fvg. By the de�nition of G, for ea
h 1 � i � t, there is

a 
olouring '

i

of G

i

= C

i

[ fvg with d

5

3

�e + 78 
olours. We 
an permute the 
olours

in ea
h '

i

(if needed) su
h that v has the same 
olour in all '

i

's and the sets of 
olours

appearing in N

G

i

(v), 1 � i � t, are all disjoint. Now the union of these 
olourings will

be a 
olouring of G, a 
ontradi
tion.

As mentioned in Subse
tion 5.2.1, our proof be
omes signi�
antly simpler if we 
an

assume that the underlying graph is a triangulation, i.e. all fa
es are triangles. It will

also simplify things to assume that it has minimum degree at least 4. To be able to make

these assumptions, we begin by modifying graph G in two phases.

Phase 1: In this phase we transform G into a (simple) triangulated graph G

0

, by

adding edges to every non-triangle fa
e of G. Let G

0

be initially equal to G. Consider

any non-triangle fa
e f = v

1

; v

2

; : : : ; v

k

of G

0

. Be
ause G is 2-
onne
ted, we 
annot have

both v

1

v

3

2 E(G

0

) and v

2

v

4

2 E(G

0

) at the same time sin
e they both have to be outside

of f . So we 
an add at least one of these edges to E(G

0

) inside f , without 
reating any

multiple edges. We follow this pro
edure to redu
e the fa
es' sizes as long as we have

any non-triangle fa
e in G

0

. At the end we have a triangulated graph G

0

whi
h 
ontains

G as a subgraph.

Observation 5.2.6 For every vertex v, N

G

(v) � N

G

0

(v).
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y

t

x

z

v

Figure 5.3: The swit
hing operation

Lemma 5.2.7 All verti
es of G

0

are �3-verti
es.

Proof: By Corollary 5.2.4 and Observation 5.2.6 all the verti
es of G

0

are �2-verti
es.

Suppose that we have a 2-vertex v in G

0

having neighbours x and y. Sin
e G

0

is trian-

gulated, the fa
es on ea
h side of edge vx must be triangles, 
all them f

1

and f

2

. So we

must have xy 2 f

1

and also xy 2 f

2

. Sin
e G

0

has at least 4 verti
es, f

1

6= f

2

and so we

have a multiple edge. But G

0

is simple.

Lemma 5.2.8 Ea
h �4-vertex v in G

0


an have at most

d(v)

2

neighbours whi
h are 3-

verti
es.

Proof: Let x

0

; x

1

; : : : ; x

d

G

0

(v)�1

be the sequen
e of neighbours of v in G

0

, in 
lo
kwise

order. We show that we 
annot have two 
onse
utive 3-verti
es in this sequen
e. If there

are two 
onse
utive 3-verti
es, say d(x

i

) = d(x

i+1

) = 3, where addition is in mod d

G

0

(v),

then there is a fa
e 
ontaining x

i�1

; x

i

; x

i+1

; x

i+2

. But G

0

is a triangulated graph.

Phase 2: In this phase we transform graph G

0

into another triangulated graph G

00

,

whose minimum degree is at least 4. Initially G

00

is equal to G

0

. As long as there is any

3-vertex v we do the following swit
hing operation: let x; y; z be the three neighbours of

v. At least two of them, say x and y, are big in G

0

by Lemma 5.2.3 and Observation 5.2.6.

Remove edge xy. Sin
e G

0

(and also G

00

) is triangulated this leaves a fa
e of size 4, say

x; v; y; t. Add edge vt to G

00

(see Figure 5.3). This way, the graph is still triangulated.

Observation 5.2.9 If v is not a big vertex in G then N

G

(v) � N

G

00

(v).



Chapter 5. Colouring the Square of a Planar Graph 102

Lemma 5.2.10 If v is a big vertex in G then d

G

00

(v) � 24.

Proof: Follows easily from Lemma 5.2.8 and the de�nition of the swit
hing operation.

So a big vertex v in G will not be a �23-vertex in G

00

. Let v be a big vertex in G and

x

0

; x

2

; : : : ; x

d

G

00

(v)�1

be the neighbours of v in G

00

in 
lo
kwise order. We 
all x

a

; : : : ; x

a+b

(where addition is in mod d

G

00

(v)) a sparse segment in G

00

i�:

� b � 2,

� Ea
h x

i

is a 4-vertex.

In the next two lemmas, let's assume that x

a

; : : : ; x

a+b

is a maximal sparse segment of

v in G

00

, whi
h is not equal to the whole neighbourhood of v. Also assume that x

a�1

and x

a+b+1

are the neighbours of v immediately before x

a

and immediately after x

a+b

,

respe
tively.

Lemma 5.2.11 There is a big vertex in G other than v, that is 
onne
ted to all the

verti
es of x

a+1

; : : : ; x

a+b�1

, in G

00

(and in G).

Proof: Follows easily from Observation 5.2.9, Lemma 5.2.3, and the de�nition of a sparse

segment.

We use u to denote the big vertex, other than v, that is 
onne
ted to all x

a+1

; : : : ; x

a+b�1

.

Lemma 5.2.12 All the verti
es x

a+1

; : : : ; x

a+b�1

are 
onne
ted to both u and v in G. If

x

a�1

is not big in G then x

a

is 
onne
ted to both u and v in G. Otherwise it is 
onne
ted

to at least one of them. Similarly if x

a+b+1

is not big in G, x

b

is 
onne
ted to both u and

v in G, and otherwise it is 
onne
ted to at least one of them.

Proof: Sin
e the only big neighbours of x

a+1

; : : : ; x

a+b�1

in G

00

are v and u, by Lemma

5.2.3 they must be 
onne
ted to both of them in G as well. For the same reason x

a

and

x

a+b

will be 
onne
ted to u and v in G, if x

a�1

and x

a+b�1

are not big.
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qi,2

ui

iQ

v

Figure 5.4: The 
on�guration of Lemma 5.2.13

We 
all x

a+1

; : : : ; x

a+b�1

the inner verti
es of the sparse segment, and x

a

and x

a+b

the end verti
es of the sparse segment. Consider a vertex v and let us denote the

maximal sparse segments of N(v) by Q

1

; Q

2

; : : : ; Q

m

in 
lo
kwise order, where Q

i

=

q

i;1

; q

i;2

; q

i;3

; : : :. The next two lemmas des
ribe the key two redu
ible 
on�gurations for a

graph that is a minimum 
ounter-example to the theorem. We have already talked about

the �rst one in Subse
tion 5.2.1. Here we formalize it.

Lemma 5.2.13 jQ

i

j � d

G

(v)� d

2

3

�e � 73, for 1 � i � m.

Proof: We prove this by 
ontradi
tion. Assume that for some i, jQ

i

j > d

G

(v)�d

2

3

�e�73.

Let u

i

be the big vertex that is adja
ent to all the inner verti
es of Q

i

(in both G and

G

00

). See Figure 5.4. For an inner vertex of Q

i

, say q

i;2

, we have:

d

G

2

(q

i;2

) � d

G

(u

i

) + d

G

(v) + 2� (jQ

i

j � 3)

� �+ d

G

(v)� jQ

i

j+ 5

< d

5

3

�e + 78:

If q

i;2

is adja
ent to q

i;1

or q

i;3

in G then it 
ontradi
ts Lemma 5.2.1. Otherwise it is only

adja
ent to v and u

i

in G, therefore has degree 2, and so along with v or u

i


ontradi
ts

Lemma 5.2.1.

Lemma 5.2.14 Consider G and suppose that u

i

and u

i+1

are the big verti
es adja
ent

to all the inner verti
es of Q

i

and Q

i+1

, respe
tively. Furthermore assume that t is a
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v

ui+1

t

qi,2

ui

qi+1,2

iQ Qi+1

w

Figure 5.5: Con�guration of Lemma 5.2.14

vertex adja
ent to both u

i

and u

i+1

but not adja
ent to v (see Figure 5.5) and there is a

vertex w 2 N

G

(t) su
h that d

G

(t) + d

G

(w) � � + 2. Let X(t) be the set of verti
es at

distan
e at most 2 of t that are not in N

G

[u

i

℄ [N

G

[u

i+1

℄. If jX(t)j � 6 then:

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 67:

Proof: Again we use 
ontradi
tion. Assume that jQ

i

j + jQ

i+1

j � b

1

3

�
 � 66. Using

the argument of the proof of Lemma 5.2.1 we 
an 
olour every vertex of G other than t.

Note that d

G

2

(t) � d

G

(u

i

) + d

G

(u

i+1

) + jX(t)j � 2� + 6. If all the 
olours of the inner

verti
es of Q

i

have appeared on the verti
es of N

G

[u

i+1

℄[X(t)�Q

i+1

and all the 
olours

of inner verti
es of Q

i+1

have appeared on the verti
es of N

G

[u

i

℄ [X(t)�Q

i

then there

are at least jQ

i

j � 2+ jQ

i+1

j � 2 repeated 
olours at N

G

2

(t). So the number of 
olours at

N

G

2

(t) is at most 2�+ 6� jQ

i

j � jQ

i+1

j+ 4 � d

5

3

�e+ 76 and so there is still one 
olour

available for t, whi
h is a 
ontradi
tion.

Therefore, without loss of generality, there exists an inner vertex of Q

i+1

, say q

i+1;2

,

whose 
olour is not in N

G

[u

i

℄ [ X(t) � Q

i

. If there are less than d

5

3

�e + 77 
olours at

N

G

2

(q

i+1;2

) then we 
ould assign a new 
olour to q

i+1;2

and assign the old 
olour of it to

t and get a 
olouring for G. So there must be d

5

3

�e + 77 or more di�erent 
olours at

N

G

2

(q

i+1;2

).



Chapter 5. Colouring the Square of a Planar Graph 105

From the de�nition of a sparse segment N

G

(q

i+1;2

) � fv; u

i+1

; q

i+1;1

; q

i+1;3

g. There are

at most d

G

(u

i+1

)+7 
olours, 
alled the smaller 
olours, at N

G

[u

i+1

℄[X(t)[N

G

[q

i+1;1

℄[

N

G

[q

i+1;3

℄�fvg�fq

i+1;2

g (note that t is not 
oloured). So there must be at least d

2

3

�e+70

di�erent 
olours, 
alled the larger 
olours, at N

G

[v℄�Q

i+1

. Sin
e jN

G

[v℄j�jQ

i

j�jQ

i+1

j �

�+ 1� b

1

3

�
+ 66 � d

2

3

�e+ 67, one of the larger 
olours must be on an inner vertex of

Q

i

, whi
h without loss of generality, we 
an assume is q

i;2

. Be
ause t is not 
oloured, we

must have all the d

5

3

�e+ 78 
olours at N

G

2

(t). Otherwise we 
ould assign a 
olour to t.

As there are at most �+6 
olours, all from the smaller 
olours, at N

G

[u

i+1

℄[X(t), all the

larger 
olours must be in N

G

[u

i

℄, too. Let L be the number of larger 
olours. Therefore,

the number of forbidden 
olours for q

i;2

that are not from the larger 
olours, is at most

d(u

i

)� L + d(u

i+1

)� L � 2�� 2L. By 
onsidering the verti
es at distan
e exa
tly two

of q

i;2

that have a larger 
olour and noting that q

i;2

has a larger 
olour too, the total

number of forbidden 
olours for q

i;2

is at most 2��L � b

4

3

�
�70, and so we 
an assign

a new 
olour to q

i;2

and assign the old 
olour of q

i;2

, whi
h is one of the larger 
olours

and is not in N

G

2

(t)� fq

i+1;2

g, to t and extend the 
olouring to G, a 
ontradi
tion.

In summary here is the list of redu
ible 
on�gurations we proved in this subse
tion:

Redu
ible Con�gurations:

1. A 
ut-vertex.

2. A vertex violating Lemma 5.2.1. Su
h a vertex exists if (but not only if) there exists:

2(a). a �5-vertex violating Lemma 5.2.3, or

2(b). a maximal sparse segment Q

i

of a big vertex violating Lemma 5.2.13.

3. Two maximal sparse segments Q

i

and Q

i+1

whi
h 
ontradi
t Lemma 5.2.14.

In the next two subse
tions, we prove the unavoidability of this set of 
on�gurations.

As before, this is done using the Dis
harging Method. The dis
harging rules used in this

proof are more 
ompli
ated than the ones we have seen in the previous 
hapters.
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5.2.3 Dis
harging Rules

Assume that G is an arbitrary planar graph with � � 160 as the theorem holds for

smaller values of � by the result of [57℄. Our goal is to show that G has at least one of

the redu
ible 
on�gurations listed above. If G has redu
ible 
on�gurations 1 or 2(a), we

are done. Otherwise, we 
onstru
t graphs G

0

and G

00

from G as des
ribed in the previous

subse
tion. We give an initial 
harge of d

G

00

(v)� 6 units to ea
h vertex v. Using Euler's

formula, jV j � jEj+ jF j = 2, and noting that 3jF (G

00

)j = 2jE(G

00

)j, it is straightforward

to 
he
k that:

X

v2V

(d

G

00

(v)� 6) = 2jE(G

00

)j � 6jV j+ 4jE(G

00

)j � 6jF (G

00

)j = �12: (5.1)

By these initial 
harges, the only verti
es that have negative 
harges are 4- and 5-verti
es,

whi
h have 
harges �2 and �1, respe
tively. The goal is to show that, either G has a

redu
ible 
on�guration listed in the previous subse
tion or we 
an send 
harges from

other verti
es to �5-verti
es su
h that all the verti
es have non-negative 
harge, whi
h

is of 
ourse a 
ontradi
tion sin
e the total 
harge must be negative by Equation (5.1).

We 
all a vertex v pseudo-big (in G

00

) if v is big (in G) and d

G

00

(v) � d

G

(v)�11. Note

that a pseudo-big vertex is also a big vertex, but a big vertex might or might not be a

pseudo-big vertex. Before explaining the dis
harging rules, we more notation.

Suppose that v; x

1

; x

2

; : : : ; x

k

; u is a sequen
e of verti
es su
h that v is adja
ent to x

1

,

x

i

is adja
ent to x

i+1

, 1 � i < k, and x

k

is adja
ent to u.

De�nition: By \v sends 
 units of 
harge through x

1

; : : : ; x

k

to u" we mean v sends


 units of 
harge to x

1

, it passes the 
harge to x

2

... et
, and �nally x

k

passes the 
harge

to u. In this 
ase, we also say \v sends 
 units of 
harge through x

1

" and \u gets 
 units

of 
harge through x

k

".

In order to simplify the 
al
ulations of the total 
harges on vertex x

i

, 1 � i � k, we

do not take into a

ount the 
harges that only pass through x

i

. We say v saves k units of


harge on a set of size h of its neighbours if the net 
harge loss of v on these neighbours
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is smaller than h by at least k. More formally, v saves k units of 
harge on this set if

the total 
harge sent from v to (or through) them minus the total 
harge sent from (or

through) them to v is at most h� k units. For example, if v is sending nothing to u and

is getting

1

2

through u then h = jfugj = 1 and the net loss is 0�

1

2

= �

1

2

. Setting h� k

to be equal to the net loss, we get k =

3

2

and so v saves

3

2

on u.

In the dis
harging phase, a big vertex v of G:

1) Sends 1 unit of 
harge to ea
h 4-vertex u in N

G

00

(v).

2) Sends

1

2

unit of 
harge to ea
h 5-vertex u in N

G

00

(v).

In addition, if v is a big vertex and u

0

; u

1

; u

2

; u

3

; u

4

are 
onse
utive neighbours of v in


lo
kwise or 
ounter-
lo
kwise order, where d

G

00

(u

0

) = 4 (see Figure 5.6), then:

3) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) = 4, d

G

00

(u

4

) � 5, and the neighbours of u

1

in 
lo
kwise or 
ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

2

; u

1

.

4) If d

G

00

(u

1

) = 5, 5 � d

G

00

(u

2

) � 6, d

G

00

(u

3

) � 7, and the neighbours of u

1

in 
lo
kwise or


ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

3

; u

2

; u

1

.

5) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) � 5, and the neighbours of u

1

in 
lo
kwise or


ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

4

to x

1

through u

2

; u

1

.

6) If d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 5, d

G

00

(u

3

) � 7, and the neighbours of u

1

in 
lo
kwise or


ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

2

to x

1

through u

1

.

7) If d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 6, and the neighbours of u

1

in 
lo
kwise or 
ounter-


lo
kwise order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

4

to x

1

through u

1

.

If 7 � d

G

00

(v) < 12 then:

8) If u is a big vertex and u

0

; u

1

; u

2

; v; u

3

; u

4

; u

5

are 
onse
utive neighbours of u where

all u

0

; u

1

; u

2

; u

3

; u

4

; u

5

are 4-verti
es then v sends

1

2

to u.



Chapter 5. Colouring the Square of a Planar Graph 108
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v
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Figure 5.6: Dis
harging rules
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9) If u

0

; u

1

; u

2

; u

3

are 
onse
utive neighbours of v, su
h that d

G

00

(u

1

) = d

G

00

(u

2

) = 5, u

0

and u

3

are big, and t is the other 
ommon neighbour of u

1

and u

2

(other than v),

then v sends

1

2

to t.

Every �12-vertex v of G

00

that was not big in G:

10) Sends

1

2

to ea
h of its neighbours.

A �5-vertex v sends 
harges as follows:

11) If d

G

00

(v) = 4 and its neighbours in 
lo
kwise order are u

0

; u

1

; u

2

; u

3

, su
h that

u

0

; u

1

; u

2

are big in G and u

3

is small, then v sends

1

2

to ea
h of u

0

and u

2

through

u

1

.

12) If d

G

00

(v) = 5 and its neighbours in 
lo
kwise order are u

0

; u

1

; u

2

; u

3

; u

4

, su
h that

d

G

00

(u

0

) � 11, d

G

00

(u

1

) � 12, d

G

00

(u

2

) � 12, d

G

00

(u

3

) � 11, and u

4

is big, then v

sends

1

2

to u

4

.

From now on, by \the total 
harge sent from v to one of its neighbours u", we mean

the total 
harge sent from v to u or through u. Similarly, by \the total 
harge v re
eived

from u", we mean the total 
harge sent from or through u to v.

5.2.4 Details of the Proof

Here we show the unavoidability of the redu
ible 
on�gurations des
ribed before. As

usual, this is done by establishing a 
ontradi
tion by 
al
ulating the total 
harge after

the dis
harging phase.

Lemma 5.2.15 Every big vertex v sends at most

1

2

to every 5� or 6-vertex in N

G

00

(v).

Proof: For any 5� or 6-vertex u, v sends 
harges to u by at most one rule.

Lemma 5.2.16 If v is big and u

0

; u

1

; u

2

; u

3

; u

4

are 
onse
utive neighbours of v in 
ounter-


lo
kwise order, su
h that d

G

00

(u

2

) � 7 then v sends at most

1

2

through u

2

, or sends 1

through u

2

and d

G

00

(u

0

) = d

G

00

(u

4

) = 5 and u

1

and u

3

are 5� or 6-verti
es.
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Proof: If u

2

is big and one of rules 3 or 5 applies then it is easy to verify that it is the

only rule by whi
h u

2

gets 
harge from v. If u

1

and u

3

are both 5-verti
es then rule 5

may apply twi
e, one for sending 
harge to a neighbour of u

1

and one for sending 
harge

to a neighbour of u

3

, so overall u

2

gets at most

1

2

from v. It is straightforward to 
he
k

that there is no 
on�guration in whi
h we 
an apply rule 3 twi
e.

The only other way for v to send 
harge to u

2

is by rule 4. Note that if this rule applies

then none of the other rules apply. Also, v 
an send 
harge to u

2

twi
e by rule 4 sin
e it

might apply under 
lo
kwise and 
ounter-
lo
kwise orientations of neighbours of v. This

happens if d

G

00

(u

0

) = 5, 5 � d

G

00

(u

1

) � 6, 5 � d

G

00

(u

3

) � 6, d

G

00

(u

4

) = 5, v; u

1

; x

2

; x

1

; x

0

are neighbours of u

0

in 
lo
kwise order where d

G

00

(x

0

) = 4, and y

0

; y

1

; y

2

; u

3

; v are neigh-

bours of u

4

in 
lo
kwise order where d

G

00

(y

0

) = 4. In this 
ase v sends

1

2

to x

1

through

u

2

; u

1

; u

0

and sends

1

2

to y

1

through u

2

; u

3

; u

4

, and this is the only 
on�guration in whi
h

v sends 
harge to u

2

twi
e. This proves the lemma.

Lemma 5.2.17 If a vertex v saves a total of at least 6 units of 
harge on its neighbour-

hood it will have non-negative 
harge.

Proof: If it saves at least 6 units of 
harge on its neighbourhood, the total net 
harge

sent out from v is at most d

G

00

(v)� 6 units of 
harge, and sin
e the initial 
harge of v is

d

G

00

(v)� 6, it will have non-negative 
harge.

Lemma 5.2.18 Every vertex v that is not big in G will either have non-negative 
harge

after the dis
harging phase or is redu
ible 
on�guration 2(a).

Proof: If v is a 4-vertex it gets a total of at least 2 units of 
harge by rule 1 and if it

is a 5-vertex it gets a total of at least 1 unit of 
harge by rule 2, unless v is redu
ible


on�guration 2(a). Also, the � 5-verti
es that send 
harges by rules 11 and 12 will

have non-negative 
harges, sin
e they are adja
ent to at least three � 12-verti
es. If

d

G

00

(v) � 12 then it sends

1

2

d

G

00

(v) � d

G

00

(v)� 6 by rule 10 and so will have non-negative


harge. It is straightforward to verify that there is no 
on�guration in whi
h a 7-vertex
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Figure 5.7: Con�guration of Lemma 5.2.19

v sends more than 1 unit of 
harge in rules 8 or 9. Finally, it is not diÆ
ult to see that

by rules 8 and 9, a vertex sends at most

1

2

for every two neighbours that it has. So if

8 � d

G

00

(v) < 12 it sends at most

d

G

00

(v)

4

� d

G

00

(v) � 6, and therefore it will have non-

negative 
harge in any of these 
ases. Finally, rules 3 to 7 do not apply to the verti
es

that are not big in G.

Lemma 5.2.19 Every big vertex v that is not pseudo-big will have non-negative 
harge.

Proof: Suppose that v is su
h a vertex. So d

G

00

(v) � d

G

(v) � 12 and therefore v was

involved in at least 12 swit
hing operations, in ea
h of whi
h the edge between v and

another big vertex of G was removed. Sin
e G

0

is simple, these big verti
es are distin
t.

Call them y

1

; y

2

; : : : ; y

k

, where k � 12, in 
lo
kwise order. Let x

i

z

i

be the edge that

was added during the swit
hing operation that removed vy

i

, and the order of x

i

's and

z

i

's is su
h that x

i


omes before z

i

in 
lo
kwise order. Note that all x

i

's and all z

i

's are

neighbours of v in G

00

(see Figure 5.7).

Let us 
all the verti
es between z

i

and x

i+1

, u

i;1

; u

i;2

; : : : ; u

i;l

i

, starting from z

i

. For


onsisten
y, let us relabel temporarily z

i

and x

i+1

to u

i;0

and u

i;l

i

+1

, respe
tively. To show

that v saves at least 6 in total, it is enough to show that either v saves at least

1

2

on a

vertex from z

i

to x

i+1

, or v saves at least 1 on the verti
es from z

i+1

to x

i+2

, for 1 � i � k.

First we show that there is at least one �5-vertex in u

i;0

; : : : ; u

i;l

i

+1

, for ea
h 1 � i � k.

If u

i;0

is a 4-vertex we must have y

i

u

i;1

2 G

00

, be
ause G

00

is a triangulation. Assuming

that u

i;1

is a 4-vertex we must have y

i

u

i;2

2 G

00

and so on, until we have y

i+1

u

i;l

i

+1

2 G

00



Chapter 5. Colouring the Square of a Planar Graph 112

and so u

i;l

i

+1

will be a �5-vertex. So for every 1 � i � k, there is a �5-vertex between z

i

and x

i+1

. Take any su
h vertex and 
all it u

i;j

i

. By Lemmas 5.2.15 and 5.2.16 and rule

10, it 
an be seen that v saves at least

1

2

on u

i;j

i

, unless 7 � d

G

00

(u

i;j

i

) � 11.

So assume that 7 � d

G

00

(u

i;j

i

) � 11 and v sends 1 through u

i;j

i

. By Lemma 5.2.16

both of the neighbours of v before and after u

i;j

i

are 5� or 6-verti
es and so v saves

1

2

on

them. If z

i

6= x

i+1

then at least one of these lies between z

i

and x

i+1

and therefore v saves

1

2

on the verti
es from z

i

to x

i+1

. If z

i

= x

i+1

then u

i;j

i

= z

i

= x

i+1

, so 5 � d

G

00

(z

i+1

) � 6

and, d

G

00

(u

i+1;1

) = 5 if z

i+1

6= x

i+2

, or d

G

00

(z

i+2

) = 5 otherwise.

First assume that z

i+1

= x

i+2

. Now if d

G

00

(z

i+1

) = 5 then v gets ba
k

1

2

from z

i+1

by

rule 12 and so saves 1 on that. If d

G

00

(z

i+1

) = 6 then it is easy to verify that v sends

nothing to z

i+1

by any rule and so saves 1 on that.

Otherwise if z

i+1

6= x

i+2

then there are at least two verti
es between z

i+1

; : : : ; x

i+2

,

that are 5� or 6-verti
es and so v saves at least

1

2

on ea
h of them, and therefore saves

a total of 1 on the verti
es z

i+1

; : : : ; x

i+2

.

So the only verti
es that may have negative 
harges are pseudo-big verti
es in G

00

.

Assume that v is a pseudo-big vertex of G

00

whose neighbourhood sequen
e in 
lo
kwise

order is x

1

; : : : ; x

k

. Let m be the number of maximal sparse segments of the neighbour-

hood of v and 
all these segments Q

1

; Q

2

; : : : ; Q

m

in 
lo
kwise order. Also, let R

i

be the

sequen
e of neighbours of v between the last vertex of Q

i

and the �rst vertex of Q

i+1

,

where Q

m+1

= Q

1

. If m = 0 then we de�ne R

1

to be equal to N

G

00

(v).

Lemma 5.2.20 Let R = x

a

; : : : ; x

b

, where R is one of R

1

; : : : ; R

m

. Then v saves at least

b

jRj

6


 on the verti
es of R.

Proof: Sin
e R does not overlap with any maximal sparse segment, from every three


onse
utive verti
es x

i

; x

i+1

; x

i+2

in R (where we 
onsider the neighbours 
y
li
ly if R =

N

G

00

(v)), at least one of them is a �5-vertex. Either v sends at most

1

2

to this vertex, or

sends 1 and by Lemma 5.2.16 the two verti
es before that and the two verti
es after that
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Figure 5.8: The �rst stru
ture in Lemma 5.2.21

are 5� or 6-verti
es and v saves at least

1

2

on ea
h of them. Thus in either 
ase v saves at

least

1

2

on every three 
onse
utive verti
es of R and so saves at least b

1

6

(b�a+1)
 = b

jRj

6


.

Lemma 5.2.21 Suppose that m � 4. Then for every 1 � i � m either v saves at least

3

2

on R

i

, or v saves at least 1 on R

i

and

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 67; (5.2)

or G has redu
ible 
on�guration 2(a) or 3.

Proof: We 
onsider di�erent 
ases based on jR

i

j:

jR

i

j = 1: Assume that R

i

= u. Sin
e u is the only vertex between two maximal sparse

segments, d

G

00

(u) � 5. First let d

G

00

(u) = 5. Sin
e Q

i

and Q

i+1

are sparse segments,

there must be two big verti
es u

i

and u

i+1

that are 
onne
ted to all the verti
es of

Q

i

and Q

i+1

, respe
tively. Also, u must be 
onne
ted to these two verti
es, be
ause

G

00

is a triangulation (see Figure 5.8).

Note that by rule 12, v gets ba
k the

1

2


harge it had sent to u. So v is saving at

least 1, so far. Let t be the other vertex that makes a triangle with edge u

i

u

i+1

.
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Assume that d

G

00

(t) = 4, and w

1

; w

2

are the two neighbours of t other than u

i

and

u

i+1

. If d

G

00

(w

1

) � 4 and d

G

00

(w

2

) � 4 then sin
e Q

i

and Q

i+1

are sparse segments

and u

i

and u

i+1

are big verti
es in G, either Equation (5.2) holds, or G has redu
ible


on�guration 3. Next assume that d

G

00

(w

1

) � 5. Then by rule 3 u

i

will be sending

extra

1

2

to v through u. So overall, v saves

3

2

on u. If d

G

00

(t) � 5 then ea
h of u

i

and u

i+1

will send an extra

1

4

to v through u by rule 5 and therefore v saves

3

2

on

u.

Now let d

G

00

(u) = 6, whose neighbours will be v; u

i

; u

i+1

; t, and the end verti
es

of Q

i

and Q

i+1

. Note that in this 
ase v will send nothing to u and so is saving

at least 1. Assume that d

G

00

(t) = 4 and its other neighbour is w. If d

G

00

(w) � 6

then either Equation (5.2) holds, or G has redu
ible 
on�guration 3. Otherwise,

d

G

00

(w) � 7 and so ea
h of u

i

and u

i+1

sends an extra

1

2

to v through u by rule 6

and so v saves 2 on u. Next assume d

G

00

(t) = 5 and its other neighbours are w

1

and w

2

. If d

G

00

(w

1

) � 6 and d

G

00

(w

2

) � 6 then either Equation (5.2) holds, or G

has redu
ible 
on�guration 3. Otherwise at least one of w

1

and w

2

has degree � 7

and so one of u

i

or u

i+1

will send an extra

1

2

unit of 
harge to v through u by rule

6 and so v saves

3

2

. If d

G

00

(t) � 6 then both u

i

and u

i+1

send an extra

1

4


harge to

v through u by rule 7. So v saves

3

2

on u.

If 7 � d

G

00

(u) � 11, or 12 � d

G

00

(u) and u was not big in G, then u sends

1

2

to v by

rules 8 or 10 and so v saves

3

2

on u.

If u was big in G then by rule 11 v gets ba
k

1

2

through u for ea
h of the end verti
es

of Q

i

and Q

i+1

that are adja
ent to u, and so v saves at least 2 on u.

jR

i

j = 2: Assume that R

i

= v

1

; v

2

. If d

G

00

(v

1

) � 6 or d

G

00

(v

2

) � 6 then it is easy

to 
he
k that v sends nothing to one of v

1

; v

2

and sends at most

1

2

to the other

one, or sends

1

4

to ea
h, and so saves at least

3

2

on R

i

. So let us assume that

d

G

00

(v

1

) = d

G

00

(v

2

) = 5 and let t be the other vertex whi
h makes a triangle with
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Figure 5.9: Two other stru
tures for Lemma 5.2.21

v

1

; v

2

. Note that v sends only

1

2

to ea
h of v

1

and v

2

and so is saving 1 on R

i

, so

far.

If d

G

00

(t) = 4 then either Equation (5.2) holds, or G has redu
ible 
on�guration 3.

Let d

G

00

(t) = 5 and 
all the other neighbour of t (other than u

i

; v

1

; v

2

; u

i+1

), w (see

Figure 5.9(a)). If d

G

00

(w) � 6 then either Equation (5.2) holds, or G has redu
ible


on�guration 3. Otherwise d

G

00

(w) � 7 and by rule 4 u

i

and u

i+1

ea
h send an

extra

1

2

to v (through v

1

and v

2

respe
tively) and therefore v saves 2 on R

i

. Now

let d

G

00

(t) = 6 whose neighbours are w

1

; w

2

; u

i

; u

i+1

; v

1

; v

2

(see Figure 5.9(b)). If

d

G

00

(w

1

) � 6 and d

G

00

(w

2

) � 6 then either Equation (5.2) holds, or G has redu
ible


on�guration 3. Otherwise, at least one of w

1

or w

2

is a �7-vertex and so one of u

i

or u

i+1

sends an extra

1

2

to v (through v

1

or v

2

) by rule 4 and therefore v saves

3

2

on R

i

. If 7 � d

G

00

(t) < 12 then t sends

1

2

to v by rule 9 and so v saves

3

2

on R

i

. If

12 � d

G

00

(t) then v gets ba
k the

1

2

it had sent to ea
h of v

1

and v

2

by rule 12 and

so saves at least 2 on R

i

.

jR

i

j � 3: If there is no 4-vertex in R

i

then they are all �5-verti
es and by Lemmas

5.2.15 and 5.2.16 v saves at least

3

2

on R

i

. If jR

i

j � 5, sin
e R

i


annot have three
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onse
utive 4-verti
es, we must have at least three�5-verti
es and again by Lemmas

5.2.15 and 5.2.16 v saves at least

3

2

. So 
onsider the 
ase that R

i

= v

1

; v

2

; v

3

; v

4

,

d

G

00

(v

1

) � 5, d

G

00

(v

4

) � 5, and d

G

00

(v

2

) = d

G

00

(v

3

) = 4 (exa
tly the same argument

works for the 
ase that jR

i

j = 3 and v

2

= v

3

). There must be a big vertex w, other

than v, 
onne
ted to all the verti
es of R

i

, or else G has redu
ible 
on�guration

2(a). If d

G

00

(v

1

) = 5 then v gets ba
k

1

2

from v

1

by rule 12 and so saves 1 on v

1

. If

d

G

00

(v

1

) � 6 it 
an be veri�ed that v sends nothing to v

1

by any rule and so saves

1 on v

1

. Sin
e v saves at least

1

2

on v

2

, it saves at least

3

2

on R

i

.

Lemma 5.2.22 Every pseudo-big vertex v either has non-negative 
harge or lies in re-

du
ible 
on�guration 2(b) or 3.

Proof: Note that the initial 
harge of v was d

G

00

(v)� 6. So it is enough to show that v

saves at least 6 units of 
harge somewhere in its neighbourhood. We 
onsider di�erent


ases based on the value of m, the number of maximal sparse segments of v. Re
all that

we assume � � 160.

m = 0: Sin
e v is pseudo-big d

G

00

(v) � d

G

(v) � 11 � 36. Using Lemma 5.2.20 v will

save at least b

1

6

d

G

00

(v)
 � 6 and therefore will have non-negative 
harge.

1 � m � 3: Either G has redu
ible 
on�guration 2(b), or Lemma 5.2.13 holds for G.

Then by de�nition of a pseudo-big vertex, if:

� m = 1: Then:

jR

1

j = d

G

00

(v)�Q

1

� d

G

00

(v)� d

G

(v) + d

2

3

�e + 73

� d

2

3

� 160e+ 62

� 36:
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So by Lemma 5.2.20 v saves at least 6 units of 
harge on R

1

.

� m = 2: Then:

X

1�i�2

jR

i

j= d

G

00

(v)�

X

1�i�2

jQ

i

j

� d

G

00

(v)� 2d

G

(v) + 2� d

2

3

�e+ 146

�d

1

3

�e + 135

� 36:

So by Lemma 5.2.20 v saves at least 6 units of 
harge on R

1

[ R

2

.

� m = 3: Then:

X

1�i�3

jR

i

j= d

G

00

(v)�

X

1�i�3

jQ

i

j

� d

G

00

(v)� 3d

G

(v) + 3� d

2

3

�e+ 219

� 208:

Therefore by Lemma 5.2.20 v saves at least 6 units of 
harge on R

1

[R

2

[R

3

.

m = 4: If v lies in redu
ible 
on�guration 2(b) or 3 then we are done. So assume that

G satis�es Lemmas 5.2.13 and 5.2.14 for v. If v saves

3

2

on ea
h of R

1

; : : : ; R

4

then

it saves 6, and we are done. Otherwise, without loss of generality assume that v

saves 1 on R

1

and Equation (5.2) holds for Q

1

and Q

2

. Therefore using Lemma

5.2.13:

jR

2

j+ jR

3

j+ jR

4

j � d

G

00

(v)� (jQ

1

j+ jQ

2

j)� jQ

3

j � jQ

4

j

� d

G

00

(v)� b

1

3

�
 + 67� 2(d

G

(v)� d

2

3

�e � 73)

� �� 2d

G

(v) + d

G

00

(v) + 213

� 202:

Thus, by Lemma 5.2.20 v saves at least 6 units on R

2

[R

3

[ R

4

.
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m = 5: If G has redu
ible 
on�guration 2(b) or 3 we are done. Otherwise, G satis�es

Lemmas 5.2.13 and 5.2.14 for v. So v saves at least 1 on every R

i

, by Lemma 5.2.21.

If there are at least two of R

i

's su
h that v saves

3

2

or more on them then v saves

at least 6. Otherwise there is at most one R

i

, say R

5

, on whi
h v saves at least

3

2

.

Therefore Equation (5.2) must hold for jQ

1

j+ jQ

2

j and jQ

3

j+ jQ

4

j, i.e:

jQ

1

j+ jQ

2

j+ jQ

3

j+ jQ

4

j � 2� b

1

3

�
 � 134:

Then using Lemma 5.2.13:

X

1�i�5

jR

i

j � d

G

00

(v)� d

G

(v) + d

2

3

�e + 73� 2� b

1

3

�
+ 134

� 196:

Therefore v saves at least 6 units of 
harge on R

1

[R

2

[R

3

[R

4

[R

5

, by Lemma

5.2.20.

m � 6: v saves at least 1 on every R

i

, by Lemma 5.2.21. So v saves at least 6 and

therefore will have non-negative 
harge.

Proof of Theorem 5.1.7: By Lemmas 5.2.18, 5.2.19, and 5.2.22 every vertex of

G

00

will either have non-negative 
harge, after applying the dis
harging rules, or lie in

redu
ible 
on�guration 2(a), 2(b) or 3. If G has a redu
ible 
on�guration then we are

done. Otherwise the total 
harge over all the verti
es of G

00

will be non-negative, but this


ontradi
ts Equation (5.1). Therefore G must have one of the redu
ible 
on�gurations

listed in Subse
tion 5.2.2. This disproves the existen
e of a minimum 
ounter-example

to the theorem.

Remark 5.2.23 Using a more 
areful analysis one 
an prove the bound d

1

4

(b � a + 1)e

in Lemma 5.2.20, whi
h in turn 
an be used to prove �(G

2

) � d

5

3

�e+61. By being even

more 
areful throughout the analysis one 
an probably prove the bound �(G

2

) � d

5

3

�e+51

or even maybe with 30 or 20 instead of 51.
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5.3 A Better Bound for Large Values of �

In this se
tion we des
ribe the modi�
ations required to be made to the proof of Theorem

5.1.7 to obtain Theorem 5.1.8. The main steps of the proof of Theorem 5.1.8 are very

similar to those of Theorem 5.1.7, and we only have to modify a few lemmas and redo the


al
ulations. For these lemmas, sin
e the proofs are almost identi
al and do not need any

new ideas, we only state the lemmas without giving further proofs. Let G be a minimum


ounter-example to Theorem 5.1.8 su
h that � � 241.

Lemma 5.3.1 For every vertex v of G, if there exists a vertex u 2 N(v), su
h that

d

G

(v) + d

G

(u) � �+ 2 then d

G

2

(v) � b

5

3

�
+ 25.

We 
onstru
t the triangulated graphs G

0

and then G

00

exa
tly in the same way. Lemmas

5.2.3 to 5.2.12 are still valid. The analogues of Lemmas 5.2.13 and 5.2.14 will be as

follows.

Lemma 5.3.2 jQ

i

j � d

G

(v)� d

2

3

�e � 20, for 1 � i � m.

Lemma 5.3.3 Under the same assumption as in Lemma 5.2.14, we have:

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 14:

We apply the same initial 
harges and dis
harging rules. Again, all Lemmas 5.2.15 to

5.2.20 hold. The analogue of Lemma 5.2.21 will be:

Lemma 5.3.4 Suppose that m � 4. Then for every 1 � i � m either v saves at least

3

2

on R

i

, or v saves at least 1 on R

i

and

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 14;

or G has redu
ible 
on�guration 3.

Now it is straightforward to do the 
al
ulations of Lemma 5.2.22 with the above values

to see that it holds in this 
ase too. This will 
omplete the proof of Theorem 5.1.8.
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5.4 Generalization to Frequen
y Channel Assignment

In this se
tion we prove Theorem 5.1.11. As we said in Se
tion 5.1, the upper bound 3p

for �

p

0

of planar graphs follows from the Four Colour Theorem (if we use 
olours from

f0; p; 2p; 3pg). So let's assume that q � 1. We prove the following theorem:

Theorem 5.4.1 For any planar graph G and positive integer p:

�

p

1

(G) � d

5

3

�e + 18p+ 59:

Assuming Theorem 5.4.1, we 
an prove Theorem 5.1.11 as follows:

Proof of Theorem 5.1.11: Let 
 = d

5

3

�e + 18d

p

q

e + 60. By Theorem 5.4.1, there

is an L(d

p

q

e; 1)-labeling of G with 
olours in f0; : : : ; 
 � 1g. Consider su
h a labeling

and multiply every 
olour by q. This yields an L(p; q)-labeling of G with 
olours in

f0; : : : ; q(
� 1)g. Noting that q(
� 1) � qd

5

3

�e+ 18p+ 77q� 18 
ompletes the proof.

In the rest of this se
tion we give the proof of Theorem 5.4.1. The steps of the proof

are very similar to those of proof of Theorem 5.1.7. Let G be a planar graph whi
h is a


ounter-example to Theorem 5.4.1 with the minimum number of verti
es. We set

C = d

5

3

�e+ 18p+ 60

and throughout this se
tion we use 
olours from f0; : : : ; C � 1g. Re
all that a vertex is

said to be big if d

G

(v) � 47.

Lemma 5.4.2 Suppose that v is a �5-vertex in G. If there exists a vertex u 2 N(v),

su
h that d

G

(v) + d

G

(u) � �+ 2 then d

G

2

(v) � d

G

(v) + d

5

3

�e + 73.

Proof: Assume that v is su
h a vertex and assume that d

G

2

(v) < d

G

(v) + d

5

3

�e + 73.

Contra
t v on edge vu. The resulting graph has maximum degree at most � and be
ause

G was a minimum 
ounter-example, the new graph has an L(p; 1)-labeling with at most


 
olours. Now 
onsider su
h a labeling indu
ed on G, in whi
h every vertex other than
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v is 
oloured. Every vertex at distan
e (exa
tly) two of v in G forbids 1 
olour for v,

and every vertex in N(v) forbids at most 2p � 1 
olours for v. So the total number of

forbidden 
olours for v, i.e. the 
olours that we 
annot assign to v, is at most:

d

G

(v)(2p� 1) + d

G

2

(v)� d

G

(v) < 10p� 5 + d

5

3

�e + 73

= d

5

3

�e + 10p+ 68

� C:

The last inequality follows from the assumption that p � 1. Therefore, there is still at

least one 
olour available for v whose absolute di�eren
e from its neighbours in G

2

is

large enough and so we 
an extend the 
olouring to G.

Observation 5.4.3 By Theorem 5.1.10 we 
an assume that � � 162, otherwise 2(2q �

1)� + 10p+ 38q � 23 � C.

Lemma 5.4.4 Every �5-vertex must be adja
ent to at least 2 big verti
es.

Proof: By way of 
ontradi
tion assume that there is a �5-vertex v whi
h is adja
ent

to at most one big vertex and so all its other neighbours are �46-verti
es. Then, using

Observation 5.4.3, v along with one of these small verti
es will 
ontradi
t Lemma 5.4.2.

Now 
onstru
t graph G

0

from G and then G

00

from G

0

in the same way we did in the

proof of Theorem 5.1.7. Also, we de�ne the sparse segments in the same way. Consider

vertex v and let's 
all the maximal sparse segments of it Q

1

; Q

2

; : : : ; Q

m

in 
lo
kwise

order, where Q

i

= q

i;1

; q

i;2

; q

i;3

; : : :.

Lemma 5.4.5 jQ

i

j � d

G

(v)� d

2

3

�e � 69.

Proof: Analogous to the proof of Lemma 5.2.13.

The next lemma is analogous to Lemma 5.2.14. The key di�eren
e is that we require

a bound on the degree of t. This is be
ause ea
h vertex adja
ent to t 
an forbid for t up

to 2p� 1 
olours. Thus we have to be more 
areful about 
ontrolling the number of su
h

verti
es.



Chapter 5. Colouring the Square of a Planar Graph 122

Lemma 5.4.6 Suppose that u

i

and u

i+1

are the big verti
es adja
ent to all the verti
es

of Q

i

and Q

i+1

, respe
tively. Furthermore assume that t is a �6-vertex adja
ent to both

u

i

and u

i+1

but not adja
ent to v (see Figure 5.5) and there is a vertex w 2 N(t) su
h

that d

G

(t) + d

G

(w) � �+ 2. Let X(t) be the set of verti
es at distan
e at most two of t

that are not in N [u

i

℄ [N [u

i+1

℄. If jX(t)j � 6 then:

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 60: (5.3)

Proof: Again, by way of 
ontradi
tion, assume that jQ

i

j + jQ

i+1

j � b

1

3

�
 � 59. Using

the same argument as at the beginning of the proof of Lemma 5.4.2, we 
an 
olour every

vertex of G other than t using 
olours in f0; : : : ; C � 1g su
h that the verti
es that are

adja
ent re
eive 
olours that are at least p apart and the verti
es at distan
e two re
eive

distin
t 
olours. Consider su
h a 
olouring.

Remark: We often fo
us on the inner verti
es of Q

i

. So re
all that there are exa
tly

jQ

i

j � 2 su
h verti
es (similarly for Q

i+1

).

Claim 1: There are at least d

5

3

�e + 78 
olours in N

G

2

(t) and they forbid all the C


olours for t.

Proof: Trivially, if there is a non-forbidden 
olour for t then we 
an extend the


olouring to t, whi
h 
ontradi
ts the minimality of G.

If there are at most d

5

3

�e+ 77 
olours in N

G

2

(t) then (be
ause t is not 
oloured and

has degree at most 6) they forbid at most d

5

3

�e+71+6(2p� 1) = d

5

3

�e+12p+65 < C


olours for t, whi
h 
ontradi
ts what we proved in the previous paragraph.

Claim 2: There exists an inner vertex of Q

i

or Q

i+1

whose 
olour is distin
t from

the 
olour of every other vertex in N

G

2

(t) and di�ers from the 
olour of every vertex in

N(t) by at least p.

Proof: By way of 
ontradi
tion assume the above statement is false. Let us 
ount

the number of forbidden 
olours for t. The neighbours of t forbid at most d

G

(t)� (2p�1)


olours for t. Let's denote this set of forbidden 
olours by R. The verti
es at distan
e
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exa
tly two of t are in N(u

i

) [N(u

i+1

) [X(t)�N(t), and ea
h of them forbids its own


olour for t. However, at least jQ

i

j � 2 + jQ

i+1

j � 2 of these forbidden 
olours (for t)

are 
ounted twi
e. This is be
ause we assumed the 
laim is false; i.e. for every 
olour

� that appears on an inner vertex of Q

i

or Q

i+1

there is a neighbour of t whose 
olour

di�ers from � by less than p (and so � 2 R) or there is another vertex in N

G

2

(t) with


olour �. Sin
e d

G

2

(t) � d

G

(u

i

) + d

G

(u

i+1

) + jX(t)j � 2� + 6, the total number of

forbidden 
olours for t is at most d

G

(t)� (2p� 1) + 2�+6� d

G

(t)� jQ

i

j � jQ

i+1

j+4 �

d

5

3

�e + 6(2p� 1) + 63 � d

5

3

�e + 12p+ 57 < C. This 
ontradi
ts Claim 1.

Without loss of generality, assume there exists an inner vertex of Q

i+1

, say q

i+1;2

,

whose 
olour is di�erent from the 
olour of every vertex in N

G

2

(t) and di�ers from the


olour of every vertex in N(t) by at least p.

Claim 3: There are at least d

5

3

�e + 77 
olours in N

G

2

(q

i+1;2

) and they forbid for

q

i+1;2

, C � 1 
olours (all the 
olours ex
ept the one that appears on q

i+1;2

).

Proof: First we show that the verti
es in N

G

2

(q

i+1;2

) must forbid all the 
olours

(ex
ept the one that appears on q

i+1;2

) for q

i+1;2

. Otherwise, we 
an remove the 
olour

of q

i+1;2

and assign it without any 
on
i
t to t (be
ause Claim 2 holds), and assign a

new 
olour (from the 
olours that are not forbidden) to q

i+1;2

. Hen
e, the number of

forbidden 
olors for q

i+1;2

is C � 1.

If there are fewer than d

5

3

�e+77 di�erent 
olours inN

G

2

(q

i+1;2

) then, sin
e d

G

(q

i+1;2

) �

4, the verti
es in N

G

2

(q

i+1;2

) forbid fewer than 4(2p�1)+ d

5

3

�e+73 = d

5

3

�e+8p+69 �

C � 1 
olours for q

i+1;2

. This 
ontradi
ts what we proved in the previous paragraph.

From the de�nition of a sparse segment N(q

i+1;2

) � fv; u

i+1

; q

i+1;1

; q

i+1;3

g. Let's

denote the set of 
olours on the verti
es in N [u

i+1

℄ [ N(t) [X(t) [N [q

i+1;1

℄ [ N [q

i+1;3

℄

by S and 
all it the set of smaller 
olours.

Claim 4: jSj � d

G

(u

i+1

) + 14.

Proof: Follows from the de�nition of S.
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Let us 
all the set of 
olours that are forbidden for t or q

i+1;2

by the smaller 
olours

the smaller forbidden 
olours, and denote them by SF . Sin
e d(t) � 6 and d(q

i+1;2

) � 4

and u

i+1

is a 
ommon neighbour of t and q

i+1;2

,

jSF j � 9(2p� 1) + jSj � 9 = jSj+ 18p� 18: (5.4)

So, SF 
ontains S along with at most 18(p� 1) 
olours whi
h di�er from the 
olour of

some neighbour of t or some neighbour of q

i+1;2

by at most p� 1.

Claim 5: Every 
olour that is not in SF di�ers from every 
olour in N(t)[N(q

i+1;2

)

by at least p.

Proof: By the de�nition of SF , every 
olour whi
h di�ers from the 
olour of a vertex

in N(t) [N(q

i+1;2

) by less than p is in SF .

We will use Claim 5 at the end of the proof of this Lemma. By Claim 3, there are at

least C � 1� jSF j 
olours, di�erent from the smaller forbidden 
olours, in N(v)�Q

i+1

.

We 
all this set the larger 
olours and denote it by L.

Claim 6: jLj � d

5

3

�e � jSj+ 77 � d

5

3

�e � d

G

(u

i+1

) + 63.

Proof: Follows from the de�nition of L, Claim 4, and the bound on jSF j (Inequality

5.4).

Sin
e jN(v)j � (jQ

i

j � 2) � jQ

i+1

j � � � b

1

3

�
 + 61 < jLj, one of the larger 
olours

must be on an inner vertex of Q

i

, whi
h without loss of generality, we 
an assume is q

i;2

.

Claim 7: The verti
es in N(v) � Q

i+1

� fq

i;2

g forbid for q

i;2

all the 
olours in L,

ex
ept the one that appears on q

i;2

.

Proof: All the larger 
olors appear in N(v) � Q

i+1

and so they are at distan
e at

most two of q

i;2

.

Claim 8: The number of forbidden 
olours for q

i;2

is at most b

4

3

�
 + 8p� 68 < C.

Proof: By noting that d(q

i;2

) � 4, neighbours of q

i;2

forbid at most 4(2p� 1) 
olours

for q

i;2

. Now let's 
ount the number of forbidden 
olours for q

i;2

by the verti
es at distan
e

exa
tly two of it.
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Sin
e the 
olours in N [u

i+1

℄ [ N(t) [ X(t) are smaller 
olours and forbid for t only


olours that are in SF , by Claim 1, all the larger 
olours must appear in N [u

i

℄� N(t).

Remember that the larger 
olours appear in N(v)�Q

i+1

, too. Therefore, the number of


olours that are not in L and are forbidden for q

i;2

by the verti
es at distan
e exa
tly 2

of q

i;2

is at most: d(u

i

)� 1� (jLj � 1)+ d(v)� 1� (jLj � 1) � 2�� 2jLj. By 
onsidering

the verti
es at distan
e exa
tly two of q

i;2

that have a larger 
olour and noting that q

i;2

has a larger 
olour too, and using Claim 6, the total number of forbidden 
olours for q

i;2

is at most:

4(2p� 1) + (2�� 2jLj) + (jLj � 1) � b

1

3

�
+ d

G

(u

i+1

) + 8p� 68

� b

4

3

�
+ 8p� 68:

By Claim 8, we 
an assign the 
olour of q

i;2

to t (be
ause it is a larger 
olour and so

it is di�erent from the 
olours in X(t) and, by Claim 5, di�ers from all the 
olours in

N(t) by at least p) and �nd a new 
olour for q

i;2

that is not forbidden for it.

The rest of the proof is almost identi
al to that of Theorem 5.1.7. We use Lemmas

5.4.4, 5.4.5, and 5.4.6, instead of Lemmas 5.2.3, 5.2.13, and 5.2.14, respe
tively. The

initial 
harges and the dis
harging rules are the same. Without any modi�
ations, Lem-

mas 5.2.15 to 5.2.20 hold in this 
ase, too. In Lemma 5.2.21 we should repla
e Equation

(5.2) with Equation (5.3) and use Lemma 5.4.6 instead of Lemma 5.2.14. To do so, it is

important to note that whenever we used Lemma 5.2.14 in the proof of Lemma 5.2.21,

the degree of t was at most 6; thus, we 
an use Lemma 5.4.6, instead. After doing these

modi�
ations, the 
al
ulations for the proof of this revised version of Lemma 5.2.21 are

fairly straightforward.
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5.5 The Colouring Algorithms

In this se
tion we show how to transform the proof of Theorem 5.1.7 into an algorithm.

that 
olours the verti
es of a given embedded planar graph G with

5

3

�+78 
olours su
h

that every pair of verti
es at distan
e at most two from ea
h other get di�erent 
olours.

Sin
e in any proper 
olouring of G

2

we need at least �+1 
olours this will be a (

5

3

+o(1))-

approximation algorithm, for large enough values of �. With some minor modi�
ations

in the algorithm, we 
an obtain 
olouring algorithms for Theorems 5.1.8 and 5.1.11.

Consider a planar graph G. We may assume that � � 160 sin
e for smaller values of

� it is straightforward to obtain an algorithm based on the result of [57℄ that uses at most

d

5

3

�e + 78 
olours. Also, we assume that the input to our algorithm is 
onne
ted, sin
e

for a dis
onne
ted graph it is enough to 
olour ea
h 
onne
ted 
omponent, separately.

One iteration of the algorithm either �nds a 
ut-vertex and breaks the graph into smaller

subgraphs, or redu
es the size of the problem by 
ontra
ting a suitable edge of G. Then

it 
olours the new smaller graph(s) re
ursively, and then extends the 
olouring(s) to G.

More spe
i�
ally, we do the following steps, as long as the graph has at least one vertex:

1. Che
k to see whether G has a 
ut-vertex. If v is a 
ut-vertex and C

1

; : : : ; C

k

are


onne
ted 
omponents of G � v then 
olour ea
h G

i

= C

i

[ fvg, independently.

The union of these 
olourings, after permuting the 
olours in some of them will be

a 
olouring of G.

2. Else, 
he
k to see whether there is a �5-vertex adja
ent to at most one big vertex.

If su
h a vertex exists, then that vertex along with one of its small neighbours will

be the suitable edge to be 
ontra
ted.

3. Else, 
onstru
t the triangulated graph G

00

.

4. Apply the initial 
harges and the dis
harging rules.
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5. As the total 
harge is negative, we 
an �nd a vertex v with negative 
harge. This

vertex must have or lie in one of redu
ible 
on�gurations 2(a), 2(b) or 3.

If v is redu
ible 
on�guration 2(a) then we 
ontinue as explained in the se
ond

step. If we �nd redu
ible 
on�guration 2(b) around v then one of the inner verti
es

of the sparse segment along with one of its two big neighbours will be the suitable

edge to 
ontra
t. Finally, if we �nd redu
ible 
on�guration 3 around v then we 
an


ontra
t edge tw (re
all the spe
i�
ation of t and w from Lemma 5.2.14).

6. Colour the new graph (after 
ontra
ting the suitable edge), re
ursively.

7. This 
olouring 
an be easily extended to G by the arguments of proofs of Lemmas

5.2.3, 5.2.5, 5.2.13 or 5.2.14.

For a given graph G let n = jV j be the size of G, and denote the worst 
ase running

time of the algorithm for an input of size n by T (n). We prove by indu
tion that for all

values of n and for some 
onstant C > 0: T (n) � Cn

2

. The inequality is trivial for small

values of n. So let's assume that T (i) � Ci

2

for 1 � i < n and 
onsider the 
ase that the

input graph has size n.

Finding a 
ut-vertex in a graph takes linear time. On
e we have done that we make

re
ursive 
alls on k smaller graphs G

1

; : : : ; G

k

, with 2 � k � n � 1. Let n

i

= jV (G

i

)j,

1 � i � k. Note that 2 � n

i

� n�1 (for 1 � i � k) and

P

k

i=1

(n

i

�1) = n�1. Therefore,

for some 
onstant � > 0: T (n) � �n+

P

k

i=1

T (n

i

) � �n+C

P

k

i=1

n

2

i

: The last summation

is maximized when k = 2 and one of n

1

or n

2

is equal to n� 1. This easily implies that

T (n) � Cn

2

.

To do the se
ond step we go through all � 5-verti
es and 
he
k the degree of their

neighbours. This 
an be easily done in O(n).

To 
onstru
t graph G

0

we spend at most O(jf j) time on every fa
e f . So it takes

O(

P

f2F

jf j) time to make G

0

, whi
h is in O(n). To 
onstru
t G

00

we should do at most

O(n) swit
hing operations, ea
h of whi
h takes 
onstant time.
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Applying the initial 
harges 
an be done in linear time, too. For ea
h vertex v, it

takes at most O(d

G

00

(v)) to apply the dis
harging rules to it. So, applying the dis
harging

rules takes O(

P

v2V

d

G

00

(v)) time, whi
h is linear in n. Finding a vertex v with negative


harge 
an be done in O(n) time. Finding a suitable edge to 
ontra
t around v takes at

most O(n) time.

On
e the suitable edge is found (in step 2 or 5) it takes at most O(n) time to 
ontra
t

it. After �nding the 
olouring of the new graph, it takes at most O(n) time to extend

this 
olouring to G using the arguments of the proofs of Lemmas 5.2.3, 5.2.13 or 5.2.14.

Therefore, for some 
onstant � > 0: T (n) � �n+ T (n� 1) � �n+C(n� 1)

2

� Cn

2

, as

wanted.

The algorithms for Theorems 5.1.8 and 5.1.11 work almost identi
ally.

5.6 On Possible Asymptoti
 Improvements of the

Main Theorem

In this se
tion, we only fo
us on the asymptoti
 order of the bounds, i.e. the 
oeÆ
ient

of �. As we said in Subse
tion 5.2.1, the main redu
ible 
on�guration to prove the

bound �(G

2

) �

9

5

�+ O(1) for planar G, is a vertex v with at most

9

5

�+ O(1) verti
es

in N

G

2

(v). The results of [2℄ and [16, 14℄ are essentially based on showing that every

planar graph has su
h a vertex. However, as pointed out in [2℄ and [16, 14℄, this is the

best possible bound on the minimum degree of G

2

. That is, there are 2-
onne
ted planar

graphs in whi
h every vertex v satis�es d

G

2

(v) � d

9

5

�e. One of these extremal graphs


an be obtained from the i
osahedron, by taking a perfe
t mat
hing, adding k� 1 paths

of length two parallel to ea
h edge of the perfe
t mat
hing, and repla
ing every other

edge of the i
osahedron by k parallel paths of length two (see Figure 5.10).

Therefore, by only bounding the minimum degree of G

2

we 
annot improve the bound

9

5

� + O(1), asymptoti
ally. This is the reason we introdu
ed redu
ible 
on�guration 3.



Chapter 5. Colouring the Square of a Planar Graph 129

Figure 5.10: The i
osahedron and the modi�ed graph

We proved that any planar graph G either has a 
ut-vertex, or a vertex v su
h that

d

G

2

(v) �

5

3

�+O(1), or has 
on�guration 3.

But there are graphs that are extremal for this new set of redu
ible 
on�gurations

in the following sense: these graphs do not have a 
ut-vertex, do not have a vertex v

with d

G

2

(v) �

5

3

�, and do not have 
on�guration 3. For an odd value of k, one of these

graphs, whi
h is obtained from a tetrahedron, is shown in Figure 5.11. To interpret

this �gure, we have to join the three 
opies of v

8

and remove the multiple edges (we

draw the graph in this way for 
larity). Also, the dashed lines represent sequen
es of


onse
utive 4-verti
es. Around ea
h of v

1

; : : : ; v

4

there are 3k � 6 su
h verti
es. So,

d(v

1

) = d(v

2

) = d(v

3

) = d(v

4

) = 3k, d(v

5

) = d(v

6

) = d(v

7

) = d(v

8

) = 3k+ 3, � = 3k + 3,

and for any vertex v 2 G: d

G

2

(v) � 5k + 3 (with equality holding for v 2 fv

1

; : : : ; v

4

g).

The minimum degree of G

2

is

5

3

� + O(1) and it is easy to see that G does not have


on�guration 3. Therefore, using redu
ible 
on�gurations similar to those of Subse
tion

5.2.2 the best asymptoti
 bound that we 
an a
hieve is

5

3

�+O(1). So we need another

redu
ible 
on�guration to improve the multipli
ative 
onstant

5

3

.
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v
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8
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v
3

v
4

v
1

xk

x1

v
7

v
8

v
5

v
2

Figure 5.11: The extremal graph for redu
ible 
on�gurations 2 and 3



Chapter 6

Con
luding Remarks

In this thesis we studied two 
olouring problems on planar graphs and used the Dis-


harging Method to improve the previously best known result on ea
h of them. The �rst

problem is Steinberg's 
onje
ture, whi
h states that every planar graph without 
y
les

of size 4 and 5 is 3-
olourable. We proved that planar graphs without 
y
les of size in

f4; : : : ; 7g are three 
olourable. The se
ond problem is a 
onje
ture by Wegner, whi
h

states that the square of any planar graph G 
an be 
oloured with at most b

3

2

�
 + 1


olours. We improved the previously best known bound on the 
hromati
 number of the

square of a planar graph G by showing that �(G

2

) � d

5

3

�e+ O(1).

However, both of these 
onje
tures (by Steinberg and Wegner) remain open. In this


hapter, along with these two major 
onje
tures, we talk about several open problems.

Some of these problems are on possible improvements on the results we have obtained

in this thesis, with the hope of proving these two 
onje
tures. These problems are the

more diÆ
ult problems we present. We also dis
uss some open problems related to these

two 
onje
tures whose study might shed some light on paths toward resolving these


onje
tures. Some of these problems seem to be easier than the former ones and have

not been studied seriously either in the literature or by the author.

131
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6.1 On 3-Colouring Planar Graphs and Steinberg's

Conje
ture

The next step toward the 
onje
ture of Steinberg is to prove that planar graphs without


y
les of size in f4; 5; 6g are 3-
olourable. We believe that by 
ombining the ideas of

Chapters 3 and 4 and 
onsidering some more 
ompli
ated redu
ible 
on�gurations (sim-

ilar to those in Chapter 3), whi
h involve intera
tions of two or more fa
es, we might be

able to do this step. The main diÆ
ulty in this line of atta
k would be, of 
ourse, in

dealing with fa
es of size 7. Therefore, most of the new redu
ible 
on�gurations would

probably involve 7-fa
es. To prove Steinberg's full 
onje
ture using this approa
h we

would probably have to 
onsider many more redu
ible 
on�gurations, so many so that a


omputer-aided proof seems unavoidable.

Another, perhaps easier, step to 
onsider is Steinberg's 
onje
ture under the extra


ondition that every two triangles in the graph are far from ea
h other. More spe
i�
ally,

for a planar graph G, let d(G) denote the minimum distan
e between two triangles

in G, given by the number of edges in a shortest path joining two triangles in G. If

d(G) > 0 (say at least 1 or 2) and G does not have 4- and 5-
y
les, is it true that

G is 3-
olourable? This weaker version of Steinberg's 
onje
ture seems easier to prove

sin
e many of the redu
ible 
on�gurations we may need to 
onsider to prove Steinberg's

full 
onje
ture involve adja
ent triangles (two triangles sharing a vertex) or triangles

that are 
lose to ea
h other. For instan
e, if we assume d(G) is large enough, then we


an bound from above the number of bad verti
es (3-verti
es in
ident with a triangle)

in
ident with � 12-fa
es. This will be quite helpful in the dis
harging phase (re
all the

proofs of Example 2.2.4 and Theorem 3.2.1). Therefore, if we put a lower bound on the

distan
e between triangles, that will bring down the number of redu
ible 
on�gurations

signi�
antly.

The problem suggested above is also a weaker version of an open problem dis
ussed
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in Jensen and Toft [38℄ (Problem 2.10): If G is a planar graph with �nite, but suÆ
iently

large (say 4 or 5) d(G), is G then 3-
olourable? Note that here we do not have the

restri
tion of not having 4- and 5-
y
les. If d(G) =1 then there is at most one triangle in

ea
h 
omponent of G and by the theorem of Gr�ots
h [33℄ and an extension by Gr�unbaum

[34℄ and by Aksinov [3℄, G is indeed 3-
olourable. It is known that d(G) � 3 is not

suÆ
ient, as there are planar graphs with d(G) = 3 that are not 3-
olourable.

6.2 On Distan
e-2-Colouring and Related Problems

As we mentioned in Remark 5.2.23, the additive 
onstant in the bound �(G

2

) � d

5

3

�e+

O(1) 
an be redu
ed somewhat by doing a more 
areful analysis of the total 
harges after

the dis
harging phase. But it is not 
lear how to bring this 
onstant down 
lose to 1 (say

below 10). However, redu
ing the additive 
onstant does not seem as interesting nor as

important as improving this bound asymptoti
ally.

As dis
ussed in Se
tion 5.6, to improve this bound (and the other two theorems of

Chapter 5) asymptoti
ally and possibly prove Wegner's 
onje
ture (using the Dis
harging

Method), we have to �nd a new redu
ible 
on�guration, di�erent from 
on�gurations 1-3

listed in Subse
tion 5.2.2. We do not know exa
tly what the stru
ture of a new redu
ible


on�guration should look like, but one thing that we know is that this new 
on�guration

must exist in the graph of Figure 5.11. The reason is that this graph is 2-
onne
ted (so

does not have 
on�guration 1) and neither has a vertex v with d

G

2

(v) �

5

3

� nor has


on�guration 3. Therefore, the best way to �nd a new redu
ible 
on�guration is to look

at the extremal graph of Figure 5.11, sin
e if it exists at all this graph must have it.

There seems to be a 
lose relation between distan
e-2-
olouring and another type

of 
olouring, 
alled 
y
li
 
olouring (dis
ussed below). As we explain soon, studying

the 
y
li
 
olouring problem might help to �nd a new redu
ible 
on�guration for the

distan
e-2-
olouring problem and improve the results of Chapter 5, asymptoti
ally.
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Figure 6.1: A wheel graph

6.2.1 Cy
li
 Colourings of Planar Graphs

Consider an embedded planar graph G(V;E) with fa
e set F . De�ne a new set of verti
es

V

�

by putting a vertex v

f

in V

�

for every fa
e f 2 F . Also, 
reate a new edge set E

�

as

follows: for every edge uv 2 E 
onsider the two (not ne
essarily distin
t) fa
es f and f

0

that are on the two sides of uv. Let v

f

; v

f

0

2 V

�

be the verti
es 
orresponding to these

fa
es. Put the edge v

f

v

f

0

into E

�

. The new graph G

�

(V

�

; E

�

) is 
alled the dual graph

of G. Note that G

�

is not ne
essarily simple as it may have loops (if G has bridges) or

multiple edges (if two fa
es in G share more than one edge). It is easy to see that the

dual graph is also a planar graph, and the dual graph of G

�

is G.

The 4CP was originally stated as follows: the number of 
olours required to 
olour

the fa
es of an arbitrary planar graph in su
h a way that, two distin
t fa
es whi
h are

in
ident with the same edge re
eive di�erent 
olours, is at most 4. Note that this is

equivalent to 
olouring the verti
es of the dual graph.

In 1969, Ore and Plummer [43℄ de�ned a new type of fa
e 
olouring of planar graphs,

more restri
tive than the one in 4CP. A fa
e 
olouring is angular if two distin
t fa
es whi
h

are in
ident with the same vertex re
eive distin
t 
olours. Equivalently, we want to 
olour

a map of 
ountries, su
h that two 
ountries that share even a point on their borders (and

not ne
essarily a line segment) re
eive di�erent 
olours. The angular 
hromati
 number

of G is the minimum number of 
olours required in any angular 
olouring of G. Clearly,
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u w

v

k
k

k+1

edges

edges

edges

Figure 6.2: A graph with angular 
hromati
 number b

3

2

�


there is no 
onstant bound on the number of 
olours required in angular 
olourings of

planar graphs, as the wheel graph on n verti
es for instan
e (see Figure 6.1), requires n


olours in any angular fa
e 
olouring.

It is easy to see that for a graph with maximum degree �, we need at least � 
olours

in any angular 
olouring. In fa
t there are planar graphs that require b

3

2

�
 
olours

in any angular 
olouring. One of these graphs with � = 2k + 1 is shown in Figure

6.2 (
ompare this graph with the graph of Figure 5.1). On the other hand, Ore and

Plummer [43℄ proved that no planar graph requires more than 2� 
olours in any angular


olouring. Thus, it is interesting to determine the best possible upper bound on the

angular 
hromati
 number of a planar graph with maximum degree �.

Angular 
olouring is equivalent to a vertex 
olouring problem, known as 
y
li
 
olour-

ing. Consider a planar graph G and its dual G

�

. An angular 
olouring of G is equivalent

to a vertex 
olouring of G

�

, su
h that two verti
es re
eive di�erent 
olours if they are

in
ident with the same fa
e; we 
all su
h a vertex 
olouring a 
y
li
 
olouring. The key

parameter in G

�

, whi
h 
orresponds to �(G), is the maximum fa
e size, denoted by �

�

.

The minimum number of 
olours required in any 
y
li
 
olouring of a planar graph G,

denoted by �




(G), is the 
y
li
 
hromati
 number of G. It is easy to see that in any 
y
li
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vu

Figure 6.3: A graph with 
y
li
 
hromati
 number b

3

2

�

�





olouring of the graph of Figure 6.3 all verti
es should get di�erent 
olours. Therefore,

the 
y
li
 
hromati
 number of this graph is b

3

2

�

�


. In fa
t, this graph is the dual graph

of the graph of Figure 6.2, with ea
h path between u and v in Figure 6.3 
orresponding

to a set of parallel edges in the graph of Figure 6.2.

In the 
y
li
 
olouring of the dual graph G

�

of a graph G, sin
e we are 
olouring the

verti
es, we 
an ignore loops and multiple edges, or simply remove them to make G

�

simple. A

ording to [38℄ the following 
onje
ture is impli
itly stated by Borodin [11℄:

Conje
ture 6.2.1 For every planar graph G with maximum fa
e size �

�

:

�




(G) � b

3

2

�

�


:

It is not hard to see that this 
onje
ture looks very similar to Wegner's 
onje
ture on

the 
hromati
 number of the square of a planar graph. Not only do these two 
onje
tures

look similar, but also the known results on them are quite similar. The result of Ore

and Plummer [43℄ provided a 2�

�

upper bound for �




(G). Borodin [12℄ improved this

result to 2�

�

� 3 for �

�

� 8. Then Borodin et al. [21℄ proved �




(G) � b

9

5

�

�


, and very

re
ently, Sanders and Zhao [50℄ showed �




(G) � d

5

3

�

�

e. The redu
ible 
on�gurations

used in the proofs of the last two results are very similar to the redu
ible 
on�gurations

used to prove the 
orresponding bounds for the 
hromati
 number of the square of a

planar graph, in [17, 16℄ and in Chapter 5. In fa
t our proofs in Chapter 5 were inspired

by Sanders and Zhao [50℄.

Here we give a brief outline of the proof that �




(G) � b

9

5

�

�


. Consider an arbitrary

planar graph G. Remember that the basi
 idea to prove �(G

2

) � d

9

5

�e + 1 was to
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show that there is a vertex v with d

G

2

(v) � d

9

5

�e. We have a similar approa
h here.

Let us de�ne the 
y
li
 degree of a vertex v, denoted by 
d(v), to be the number of

verti
es, other than v, that are in the boundaries of the union of the fa
es 
ontaining

v. The key redu
ible 
on�guration in this proof is a vertex v with 
d(v) � b

9

5

�

�


 � 1.

The redu
ibility of this 
on�guration follows from the fa
t that we 
an 
ontra
t v on

one of its neighbours to get a smaller planar graph G

0

with �

�

(G

0

) � �

�

(G), 
olour G

0

with b

9

5

�

�

(G)
 
olours, and extend the 
olouring to v. We 
an prove the existen
e of

this 
on�guration in every planar graph using the Dis
harging Method. The following

stru
ture is the key in this proof: two fa
es f

1

and f

2

, with a path v

1

v

2

: : : v

x

of 2-verti
es

that belongs to the boundaries of both f

1

and f

2

, i.e. f

1

and f

2

share this segment,

and x �

�

�

5

. If G has su
h a 
on�guration then 
d(v

2

) � jf

1

j + jf

2

j � x � 1 < b

9

5

�

�


,

as wanted. We suggest that the reader takes a 
areful look ba
k at the 
on�guration

des
ribed in Subse
tion 5.2.1 or the 
on�guration in Figure 5.4, and 
ompare it with the


on�guration des
ribed above to see their similar stru
ture.

To prove �




(G) � d

5

3

�

�

e two main redu
ible 
on�gurations are required. One of them

is a vertex v with 
h(v) � d

5

3

�

�

e � 1. We 
all this redu
ible 
on�guration, 
on�guration

2

0

(as it 
orresponds to 
on�guration 2 in Subse
tion 5.2.2). The other redu
ible 
on�g-

uration has a stru
ture similar to that of 
on�guration 3 in Subse
tion 5.2.2; so we 
all

it 
on�guration 3

0

(See [50℄ for a formal des
ription of this 
on�guration). These two


on�gurations are the key 
on�gurations to prove �




(G) � d

5

3

�

�

e. However, to improve

this result asymptoti
ally, we need to �nd a new redu
ible 
on�guration, sin
e there are

planar graphs that are extremal for both 
on�gurations 2

0

and 3

0

in the following sense:

every vertex v in these graphs has 
d(v) �

5

3

�

�

� 
 (for some 
onstant 
) and they do

not have 
on�guration 3

0

. One of these graphs in shown in Figure 6.4. In this �gure,

every dashed line is a path of length k � 2, and therefore, �

�

= 3k + 2. Note that the

stru
ture of this graph is very similar to that of graph of Figure 5.11 (pla
e a vertex in

the 
enter of ea
h fa
e of this graph and 
onne
t it to all the verti
es on the boundary of
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Figure 6.4: The extremal graph for 
on�gurations 2

0

and 3

0

that fa
e). Similar to the dis
ussion we had in the se
ond paragraph of this se
tion, to

improve the bound �




(G) � d

5

3

�

�

e asymptoti
ally (using the Dis
harging Method) we

have to �nd a new redu
ible 
on�guration (di�erent from 
on�gurations 2

0

and 3

0

), and

if su
h a 
on�guration exists, the graph of Figure 6.4 must have it. Therefore, the best

way to �nd a new redu
ible 
on�guration may be to look for it in the graph of Figure

6.4.

We think there is a 
orrelation between these two problems in the following sense:

any asymptoti
 improvement on the best known result on either of Conje
tures 5.1.1

or 6.2.1 using the Dis
harging Method will require the introdu
tion of a new redu
ible


on�guration. The stru
ture of this new redu
ible 
on�guration will probably help to

�nd a new redu
ible 
on�guration for the other problem and 
onsequently to prove a

similar asymptoti
 improvement. The reason ba
king this belief is a transformation from


y
li
 
olouring to 
olouring the square of a planar graph, sket
hed below: Given a graph

G, 
reate G

0

by adding a new vertex v

f

to ea
h fa
e f of G and 
onne
ting it to all the

verti
es in the boundary of f . Now the verti
es in f have distan
e at most 2 from ea
h

other in G

0

. Therefore, any distan
e-2-
olouring of G

0

yields a 
y
li
 
olouring of G.

At �rst glan
e this transformation might seem as a 
orre
t redu
tion sin
e the degree
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of every vertex v

f

2 G

0

is the same as the size of the 
orresponding fa
e f 2 G, and

therefore, one might expe
t �

�

in G to be the same as � in G. However, this is not

ne
essarily true sin
e there might be a vertex v 2 G with degree d > �

�

and that vertex

will have mu
h larger degree than �

�

in G

0

.

Although the transformation explained above is not a 
orre
t redu
tion from the


y
li
 
olouring problem to the distan
e-2-
olouring problem, it suggests that the former

problem is easier than the latter. The following fa
ts about the most re
ent results

on these two problems support this guess: the most re
ent results for the distan
e-2-


olouring problem on planar graphs were obtained using the ideas behind the redu
ible


on�gurations used in the proofs of the 
orresponding results for the 
y
li
 
olouring

problem (for example, as we said, the results of Chapter 5 were inspired by the work of

Sanders and Zhao [50℄). Furthermore, the stru
ture of the redu
ible 
on�gurations used

in the bounds for the distan
e-2-
olouring problem, although similar to their 
ounter-

parts for the 
y
li
 
olouring problem, are more 
ompli
ated. Consequently, there are

more dis
harging rules used in the proofs for the distan
e-2-
olouring problem and these

rules are more 
ompli
ated. For example, the number of dis
harging rules in the results

�




(G) � d

9

5

�

�

e (in [21℄) and �




(G) � d

5

3

�

�

e (in [50℄) are 7 and 7, whereas the number of

dis
harging rules in the results �(G

2

) � d

9

5

�e+1 (in [16, 17℄) and �(G

2

) � d

5

3

�e+O(1)

(in Chapter 5) are 10 and 12, respe
tively.

Therefore, it might be better to �rst atta
k the 
y
li
 
oloring problem and improve

the bound on the 
y
li
 
hromati
 number of planar graphs asymptoti
ally, and then

possibly use the ideas of that proof to improve the bound on the 
hromati
 number of

the square of planar graphs.
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u v

2k vertices

Figure 6.5: A graph with minimum degree 3 and high 
y
li
 
hromati
 number

6.2.2 Distan
e-2-Colouring in Planar Graphs With High Con-

ne
tivity

Consider the 
y
li
 
olouring problem. In the previous subse
tion we saw that there

are planar graphs, su
h as the one in Figure 6.3, whose 
y
li
 
hromati
 number has

asymptoti
 order of

3

2

�

�

. But this graph is not 3-
onne
ted and has many verti
es of

degree 2. What if we assume that the graph is 3-
onne
ted? For this 
ase, i.e. for 3-


onne
ted planar graphs, Plummer and Toft [44℄ 
onje
tured that the number of 
olours

required in a 
y
li
 
olouring is at most �

�

+ 2:

Conje
ture 6.2.2 [44℄ For every 3-
onne
ted planar graph G with maximum fa
e size

�

�

: �




(G) � �

�

+ 2:

Note that having only minimum degree at least 3 instead of 3-
onne
tivity is not suÆ
ient

to prove the upper bound �




(G) � �

�

+ O(1). For instan
e, in the graph of Figure 6.5

(whi
h is a modi�
ation of graph of Figure 6.3), Æ = 3, �

�

= 5k+2, and �




(G) � 6k+2.

However, neither this graph nor the graph of Figure 6.3 is 3-
onne
ted.

Plummer and Toft [44℄ proved that for 3-
onne
ted planar graphs �




(G) � �

�

+9 and

that �




(G) � �

�

+4 if �

�

� 42. Borodin and Woodall [10℄ and Hor�n�ak and Jendrol' [37℄

proved Conje
ture 6.2.2 when �

�

� 61 and �

�

� 24, respe
tively. Furthermore, Borodin

and Woodall [10℄ and Enomoto et al. [25℄ showed that the 
y
li
 
hromati
 number of

3-
onne
ted planar graphs is at most �

�

+ 1 if �

�

� 122 and �

�

� 60, respe
tively.
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u w

v

k gadgets

a gadget

Figure 6.6: Graph G with minimum degree 5 and �(G

2

) �

3

2

�

Under some similar restri
tions, 
an we have a similar upper bound (in whi
h the


oeÆ
ient of � is 1) for the distan
e-2-
olouring problem? It is natural to ask:

Question: If G is a planar graph with high 
onne
tivity (say at least 4- or

5-
onne
ted) then 
an we prove �(G

2

) � �+O(1)?

Note that having only high minimum degree instead of high 
onne
tivity is not suf-

�
ient to prove the upper bound �(G

2

) � � + O(1) or even to bring the multipli
ative


onstant below

3

2

. For instan
e, we 
an modify the graph of Figure 5.1 (in a similar man-

ner to the way we modi�ed the graph of Figure 6.3) and obtain the graph of Figure 6.6.

In this graph, v is adja
ent to both u and w, ea
h of u; v; w is 
onne
ted to 2k gadgets as

shown on the left side of the �gure, d(u) = d(w) = 4k+1, d(v) = � = 4k+2, and Æ = 5.

Sin
e u; v; w; and all their neighbours are at distan
e at most two from ea
h other, all of

them must get di�erent 
olours in any distan
e-2-
olouring. Thus �(G

2

) � 6k+3 =

3

2

�.

So for this graph, whi
h has minimum degree 5, not only is �(G

2

) not � + O(1), it

a
tually has the same asymptoti
 order as that of the extremal graph of Figure 5.1. In

fa
t, if we modify the graph of Figure 5.1 slightly so that all u; v; w have degree 2k, then
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u

v

k vertices

k+1 vertices

k vertices

w

Figure 6.7: A 3-
onne
ted graph G with �(G

2

) =

3

2

�+ 1

we obtain a graph, whi
h is a subgraph of G (in Figure 6.6) and has the same maximum

degree as G.

The assumption that the given planar graph is 3-
onne
ted is not suÆ
ient either sin
e

we 
an modify the graph of Figure 5.1 su
h that it be
omes 3-
onne
ted without 
hanging

�, by adding an edge between every two 
onse
utive neighbours of u in 
lo
kwise order,

and similarly between every two 
onse
utive neighbours of v and w (See Figure 6.7).

The suitable assumption for this problem might be 4-
onne
tivity. This assumption

immediately rules out the extremal graphs of Figure 6.6 and 6.7. But we don't know

if it a
tually helps to redu
e the 
oeÆ
ient of � down to 1 (or even below

3

2

). This

problem does not seem to be studied in the literature. It would be very interesting if

with this extra 
ondition we 
ould mat
h the results of 
y
li
 
olouring of 3-
onne
ted

planar graphs.
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Appendix A

More Hand-
he
kable Proofs For

Theorem 3.1.1

In Se
tion 3.3.2 we listed 15 redu
ible 
on�gurations required in the proof of Theorem

3.1.1 and provided hand-
he
kable proofs of the �rst 7 ones. In this appendix, we explain

the hand-
he
kable proofs of 
on�gurations 8 to 12. All these proofs have a very similar

pattern; similar to the proofs of 
on�gurations 4-7 that we saw in Se
tion 3.3.2. The

author has also proved, by hand, that the 49 sub
on�gurations for 
on�gurations 13-15

are redu
ible, but in
luding the proofs here would make this se
tion too long and too

repetitive (even more so than it is now!). These missing proofs follow the same patterns

as the in
luded proofs, and armed with this plethora of examples, it will be very easy

(and time-
onsuming) for the reader to generate any of the missing proofs that he/she

desires.

Proof of 
on�guration 8: Instead, we prove that the four 
on�gurations shown in

Figures A.1(a), (b), (
), and (d), are redu
ible. Ea
h of these 
on�gurations 
ontains

a semi-simple fa
e f

1

, in whi
h the both neighbours of its type 1 vertex, whi
h are not

in
ident with f

1

, are 3-verti
es. Note that any 
on�guration that 
ontains two semi-

simple fa
es that share a type 1 vertex must have one of the 
on�gurations in Figure

149



Appendix A. More Hand-
he
kable Proofs For Theorem 3.1.1 150

f2

f2

f2
f1

3w 2w

1
w

v4

v3

v2
v1

v5v6

v8

v7

0
w

u1

u2

u8

f

f

1

2

v9

(a) (b)

f1f1

(d)(c)

Figure A.1: Two semi-simple fa
es sharing their type 1 vertex

A.1. We �rst give the proof for the 
on�guration of Figure A.1(a): By minimality of

G, there is a 3-
olouring of G

0

= G � v

1

v

2

, 
alled C. So C(v

1

) = C(v

2

), whi
h we 
an

assume is equal to 1. Consider this 
olouring indu
ed on G. By the 
haining argument

C(v

4

) = C(v

6

) = C(v

8

) = C(u

2

) = 1, otherwise we 
ould 3-
olour G. Without loss of

generality, assume C(w

0

) = 2. So C(v

9

) = 3 and C(u

1

) = 2, otherwise we 
ould set

C(v

1

) = 3. If C(u

8

) = 1 then we 
ould ex
hange C(u

1

) with C(v

9

) and set C(v

1

) = 3.

Therefore C(u

8

) = 2. Now set C(v

1

) = 3, C(v

9

) = 1 and assign a 
olour di�erent from 1

and C(v

7

) (whi
h is either 2 or 3) to v

8

and give a 
olour di�erent from C(v

9

) (whi
h is

1) and C(v

8

) to u

1

(we 
an do this be
ause C(v

9

) = C(u

2

) = 1). This gives a 3-
olouring

of G, whi
h is a 
ontradi
tion.

Using very similar arguments, we 
an show that the 
on�gurations of Figures A.1(b),

(
), and (d) are redu
ible.

Proof of 
on�guration 9: Suppose that f

1

and f

2

are two semi-type 2 fa
es sharing

a type 1 vertex. There are eight possible 
on�gurations of this type up to isomorphism,

we 
onsider ea
h one separately. Assume that v

1

; : : : ; v

9

are the verti
es of f

1

, where v

9

is the type 2 vertex. In the �rst two 
ases we assume that v

1

is the type 1 vertex of f

1

(Figures A.2(a) and A.3(a)). The other 
ases are based on v

2

, v

3

, or v

4

being the type 1

vertex of f

1

, shown in Figure A.4.
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v9

v2

v3
v4 v5

v6

v7

v8

1
w

w2

3w

4
w

v1

1u

u23
u

4u

u5

u
6 u

7 u
8

t4

t3

t2

t1

1
w

w2

3w

4
w

t4

t3

t2

t1

(a) (b)

Figure A.2: Two semi-type 2 fa
es sharing their type 1 vertex

Con�guration of Figure A.2(a): In this 
ase u

1

is the type 2 vertex of f

2

. First we

remove some verti
es and edges and add two gadgets ea
h similar to the one in lemma

4. The verti
es to be removed are v

1

; : : : ; v

9

and u

1

; : : : ; u

8

, and the new graph G

0

after

adding the gadgets is shown in Figure A.2(b). It is straightforward to verify that: (i)

G

0

2 G

8

, (ii) be
ause of minimality of G there is a 3-
olouring of G

0

, say C, and (iii)

w

1

; : : : ; w

4


annot all have the same 
olour in C. Also, t

1

; : : : ; t

4


annot all have the same


olour in C.

Consider this 3-
olouring indu
ed on G. First we show that C(w

1

) 6= C(t

1

). By


ontradi
tion, assume that C(w

1

) = C(t

1

) = 3. Now we 
an extend C to a new 
olouring

C

0

in this way: for all 
ommon verti
es of G and G

0

, C

0

and C are equal. Then assign

C

0

(v

1

) = 3, and 
olour u

8

; u

7

; : : : ; u

1

greedily. Note that by the time we rea
h to u

1

it has three 
oloured neighbours but two of them (v

1

and t

1

) have the same 
olour.

Assume that C

0

(u

1

) = 2. Set C

0

(v

9

) = 1, C

0

(v

8

) = 2, and 
olour v

2

; v

3

; : : : ; v

6

greedily.

Finally, assign a 
olour di�erent from C

0

(v

6

) and C

0

(w

2

) to v

7

. By minimality of G,

both v

7

and v

8

have the same 
olour, whi
h is 2. By the 
haining argument we must

have C

0

(v

5

) = C

0

(v

3

) = C

0

(v

1

) = 2, but C

0

(v

1

) = 3. This 
ontradi
tion shows that
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C(w

1

) 6= C(t

1

).

Now we extend C to 
olour the un
oloured verti
es of G in a di�erent way. Assume

that C(w

1

) = 3. Sin
e C(t

1

) 6= C(w

1

) we 
an assign C(u

1

) = 3 and 
olour the un
oloured

verti
es of G greedily in the following order: u

2

; : : : ; u

8

, v

1

; v

9

; v

8

; v

2

; v

3

; : : : ; v

6

. Note that

by the time we want to 
olour v

9

there are two neighbours of it (u

1

and w

1

) that have

the same 
olour and so we 
an �nd a 
olour for v

9

. We also assign a 
olour di�erent from

C(v

6

) and C(w

2

) to v

7

. By de�nition of G, C(v

8

) = C(v

7

), whi
h we 
an assume is equal

to 1, By the 
haining argument C(v

5

) = C(v

3

) = C(v

1

) = 1, and so C(v

9

) = 2.

Suppose that C(u

8

) 6= 2. We 
an set C(v

1

) = 2, C(v

9

) = 1, and C(v

8

) = 2, unless

C(v

2

) = 2 and by the 
haining argument C(v

2

) = C(v

4

) = C(v

6

) = 2. But this means

that all w

1

; : : : ; w

4

have 
olour 3, whi
h 
ontradi
ts property (iii).

Now assume that C(u

8

) = 2. If we 
ould ex
hange C(u

8

) and C(u

7

) then C(u

8

)

be
omes di�erent from 2 and we 
an use the argument of the previous paragraph. This

shows that C(u

6

) = 2 and by the 
haining argument C(u

4

) = C(u

2

) = 2. If C(u

3

) 6= 3

then we 
an modify C in the following way: set C(u

2

) = 3, C(u

1

) = 2, C(v

1

) = 3,

C(v

9

) = 1, C(v

8

) = 2, ex
hange C(v

2

) with C(v

3

) if C(v

2

) = 3, ex
hange C(v

4

) with

C(v

5

) if C(v

4

) = 3, and �nally ex
hange C(v

6

) with C(v

7

) if C(v

6

) = 3, whi
h yields a 3-


olouring of G. Therefore, C(u

3

) = 3 and by the 
haining argument C(u

5

) = C(u

7

) = 3.

But this means that all t

1

; : : : ; t

4

have 
olour 1, again 
ontradi
ting (iii).

Con�guration of Figure A.3(a): In this 
ase u

1

is a 3-vertex in f

2

. First we remove

v

2

; : : : ; v

8

and add a gadget similar to that of Lemma 4. The new graph G

0

is shown in

Figure A.3(b). It 
an be easily shown that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G

there is a 3-
olouring of G

0

, say C, and (iii) w

1

; : : : ; w

4


annot all have the same 
olour

in C.

Consider this 3-
olouring indu
ed on G. We extend C by 
olouring the un
oloured

verti
es of G greedily in the following order: v

8

; v

2

; : : : ; v

6

. Then assign a 
olour di�erent

from C(v

6

) and C(w

2

) to v

7

. By minimality of G, C(v

7

) = C(v

8

) whi
h we 
an assume
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Figure A.3: Two semi-type 2 fa
es sharing their type 1 vertex

both are 1. By the 
haining argument C(v

5

) = C(v

3

) = C(v

1

) = 1. Without loss of

generality, assume that C(v

9

) = 2 and so C(u

1

) = C(w

1

) = 3.

If C(u

3

) = 3 then we 
ould set C(v

8

) = 2, C(v

9

) = 1, C(v

1

) = 2, then ex
hange C(v

2

)

with C(v

3

) if C(v

2

) = 2, and then ex
hange C(v

5

) with C(v

4

) if C(v

4

) = 2. In this 
ase

C(v

6

) 6= 2, otherwise w

1

; : : : ; w

4

all are 
oloured 3, a 
ontradi
tion.

So assume that C(u

3

) = 2. If C(u

2

) = 2 then we 
an ex
hange C(v

1

) with C(u

1

),

C(v

2

) with C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whi
h gives a 3-
olouring

of G. If C(u

2

) = 1 then we set C(u

1

) = 2, C(v

1

) = 3, C(v

9

) = 1, and C(v

8

) = 2.

Then we 
an ex
hange C(v

2

) with C(v

3

) if C(v

2

) = 3, then ex
hange C(v

4

) with C(v

5

) if

C(v

4

) = 3, and �nally ex
hange C(v

6

) with C(v

7

) if C(v

6

) = 3. So we get a 3-
olouring

of G, whi
h again is a 
ontradi
tion.

Con�gurations of Figure A.4: The other possibilities, up to isomorphism, for two

semi-type 2 fa
es to share their type 1 vertex are shown in Figure A.4. Here we only

give the proof for 
on�guration of Figure A.4(A). The proof for the other 
on�gurations

is almost the same.

By minimality of G, there is a 3-
olouring of G � (v

7

; v

8

), 
alled C. Consider this


olouring indu
ed on G in whi
h both v

7

and v

8

have the same 
olour. Without loss of
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Figure A.4: Two semi-type 2 fa
es sharing their type 1 vertex

generality, assume that C(v

7

) = C(v

8

) = 1. By the 
haining argument C(v

5

) = C(v

3

) =

C(u

7

) = C(u

5

) = C(u

3

) = 1. So C(v

2

) 6= 1.

First assume that both u

1

and v

1

have the same 
olour di�erent from 1, say 2. Then

we 
an ex
hange C(v

2

) with C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whi
h yields

a 3-
olouring of G, a 
ontradi
tion. Also, fC(v

1

); C(u

1

)g 6= f2; 3g, sin
e C(v

2

) 6= 1. So

at least one of C(v

1

) or C(u

1

) is 1.

Assume that C(v

1

) = 1 and C(u

1

) = 2. So C(v

2

) = 3. If C(v

9

) = 2 we 
an set

C(v

1

) = C(v

8

) = 2 and C(v

9

) = 1 whi
h gives a 3-
olouring of G. On the other hand, if

C(v

9

) = 3 we 
an modify C in this way: set C(v

2

) = 1, C(v

1

) = 3, C(v

9

) = 1, C(v

8

) = 3,

assign a 
olour di�erent from C(v

4

) and 1 to v

3

. Now sin
e C(v

2

) = C(u

7

) = 1, we 
an

assign a 
olour di�erent from 1 and C(v

3

) to u

8

. This gives a 3-
olouring of G, an obvious


ontradi
tion.

Now, let's assume that C(u

1

) = 1 and C(v

1

) = 2. So C(v

2

) = 3 and C(u

8

) = 2. If

C(u

2

) = 2 then set C(u

1

) = 2, C(u

2

) = 1, C(u

3

) = 2, ex
hange C(u

4

) with C(u

5

), C(u

6

)
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Figure A.5: A semi-type 2 fa
e sharing a type 1 vertex with a type 1 fa
e

with C(u

7

), C(u

8

) with C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whi
h yields a

3-
olouring of G. If C(u

2

) = 3 then set C(u

1

) = C(u

3

) = 3, C(u

2

) = 1, C(v

2

) = 1,

ex
hange C(u

4

) with C(u

5

), and C(u

6

) with C(u

7

). Assign a 
olour di�erent from C(v

2

)

(whi
h is 1) and C(u

7

) to u

8

. Then assign a 
olour di�erent from 1 and C(u

8

) to v

3

.

Now ex
hange C(v

4

) with C(v

5

) and C(v

6

) with C(v

7

). This again is a 3-
olouring of G.

Finally, assume that C(v

1

) = C(u

1

) = 1. Without loss of generality, assume that

C(v

9

) = 2. If C(v

2

) = 2 we ex
hange it with C(u

8

) so that C(v

2

) 6= C(v

9

). Now

set C(v

1

) = 2, C(v

9

) = 1, and C(v

8

) = 2. This yields a 3-
olouring of G, whi
h is a


ontradi
tion.

Proof of 
on�guration 10: There are four possible 
on�gurations of this type up

to isomorphism, shown in Figures A.5(a), A.6(A1), A.6(B1), and A.6(C1). We 
onsider

ea
h one separately:

Con�guration of Figure A.5(a): First remove v

2

; v

3

; : : : ; v

8

and all the in
ident edges

and 
reate the graph G

0

as in Figure A.5(b) by adding a gadget. It is straightforward to

verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is a 3-
olouring of G

0

, say

C, and (iii) w

1

; : : : ; w

4


annot all have the same 
olour in C.

Consider this 3-
olouring indu
ed on G. We extend C by 
olouring the un
oloured
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verti
es of G greedily in the following order: v

2

; v

8

; v

7

; : : : ; v

4

. We also assign a 
olour

di�erent from C(v

2

) and C(w

4

) to v

3

. By de�nition of G, C(v

3

) = C(v

4

), whi
h we 
an

assume is equal to 1, and by the 
haining argument C(v

6

) = C(v

8

) = 1 and at least one

of C(v

1

) or C(u

7

) must be 1.

First assume that C(u

7

) = 1 and C(v

1

) 6= 1. By the 
haining argument C(u

5

) =

C(u

3

) = C(u

1

) = 1. Without loss of generality assume that C(v

9

) = 2 and so C(w

1

) = 3.

Now set C(v

9

) = 1 and C(u

1

) = C(v

8

) = 2, ex
hange C(u

2

) with C(u

3

), C(u

4

) with

C(u

5

), C(u

6

) with C(u

7

), and C(v

3

) with C(v

2

). The only 
on
i
t we may have is between

C(v

8

) and C(v

7

), whi
h happens if C(v

7

) = 2. We 
an ex
hange C(v

7

) with C(v

6

), unless

C(v

5

) = 2. In this 
ase we 
an ex
hange C(v

5

) with C(v

4

), unless C(v

3

) = 2. But this

means that all w

1

; : : : ; w

4

have been 
oloured 3, whi
h 
ontradi
ts (iii).

Now assume that C(v

1

) = 1 and C(u

7

) 6= 1. By the 
haining argument C(u

2

) =

C(u

4

) = C(u

6

) = 1. Assume that C(v

9

) = 2. Set C(v

9

) = 1, C(v

1

) = C(v

8

) = 2,

and ex
hange C(v

2

) with C(v

3

). Similar to the previous 
ase we 
an solve the possible


on
i
t between C(v

8

) and C(v

7

), unless all w

1

; : : : ; w

4

have 
olour 3, whi
h is impossible,

a

ording to (iii).

Finally, assume that C(v

1

) = C(u

7

) = 1. If we 
ould modify C(v

1

) or C(u

7

) then we

would redu
e to the one of the two 
ases we just 
onsidered. Therefore, by the 
haining

argument and starting from u

7

: C(u

5

) = C(u

3

) = C(u

1

) = 1, whi
h is impossible, sin
e

C(v

1

) = 1. This 
ompletes the proof of this 
on�guration.

The other three possible 
on�guration of this kind, up to isomorphism, are shown in

Figure A.6(A1), (B1), and (C1). First 
onsider the 
on�guration of Figure A.6(A1).

Remove v

1

; v

2

; : : : ; v

9

and u

1

; : : : ; u

7

and all the in
ident edges and 
reate the graph

G

0

as in Figure A.6(A2). It is straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of

minimality of G there is a 3-
olouring of G

0

, say C, and (iii) w

1

; : : : ; w

6


annot all have

the same 
olour in C.

Consider this 3-
olouring indu
ed on G. We extend C by 
olouring the un
oloured
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Figure A.6: A semi-type 2 fa
e sharing a type 1 vertex with a type 1 fa
e

verti
es of G greedily in the following order: v

9

; v

1

; v

8

; v

7

; : : : ; v

3

; u

1

; u

2

; : : : ; u

7

. We also

assign a 
olour di�erent from C(v

3

) and C(u

7

) to v

2

. By de�nition of G, C(v

1

) = C(v

2

),

whi
h we 
an assume is equal to 1, and by the 
haining argument C(v

4

) = C(v

6

) =

C(v

8

) = C(u

6

) = C(u

4

) = C(u

2

) = 1. Without loss of generality assume that C(v

9

) = 2.

If C(u

1

) = 3 then we 
an set C(v

1

) = C(v

8

) = 2, C(v

9

) = 1, then ex
hange C(v

7

) with

C(v

6

) if C(v

7

) = 2, then ex
hange C(v

5

) with C(v

4

) if C(v

5

) = 2, and �nally ex
hange

C(v

3

) with C(u

7

) if C(v

3

) = 2. This yields a 3-
olouring of G.

So we 
an assume that C(u

1

) = 2. If we 
ould ex
hange C(u

1

) with C(u

2

) we 
ould

use the argument of the previous paragraph. So by the 
haining argument C(u

3

) =

C(u

5

) = 2. We 
ould assign C(v

1

) = C(v

8

) = 2, C(v

9

) = 1, ex
hange C(u

1

) with C(u

2

),

C(u

3

) with C(u

4

), C(u

5

) with C(u

6

), and ex
hange C(v

7

) with C(v

6

) if C(v

7

) = 2, unless

C(v

5

) = 2. This means that all w

1

; : : : ; w

6

have been 
oloured 3 in C, 
ontradi
ting

property (iii) we just mentioned. This 
ompletes the proof of this 
on�guration.
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Figure A.7: A semi-simple fa
e sharing a type 1 vertex with a type 1 fa
e

Using a very similar argument, we 
an prove the redu
ibility of 
on�gurations of

Figure A.6(B1) and (C1). The gadget we have to add in ea
h 
ase is shown in Figures

A.6(B2) and (C2), respe
tively.

Proof of 
on�guration 11: It is straightforward to 
he
k that there are �ve pos-

sible 
on�gurations of this type up to isomorphism. One of them is the same as the


on�guration of Figure A.3(a), and the other four ones are equivalent to the 
on�gura-

tions of Figures A.1(A1), A.1(B1), A.1(C1), and A.1(D1). Ea
h of these 
on�gurations

are already proved to be redu
ible.

Proof of 
on�guration 12: There are three possible 
on�guration up to isomor-

phism, shown in Figure A.7(A1), (B1), and (C1). Let's 
onsider (A1).

First remove v

1

; : : : ; v

9

and u

1

; : : : ; u

7

, and all the in
ident edges and 
reate the graph

G

0

as in Figure A.7(A2). It is straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of
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minimality of G there is a 3-
olouring of G

0

, say C, and (iii) w

1

; : : : ; w

6


annot all have

the same 
olour in C.

Consider this 
olouring indu
ed on G and extend it by 
olouring the un
oloured

verti
es of G in the following order: v

1

; v

9

; v

8

; u

1

; : : : ; u

7

; v

7

; v

6

; : : : ; v

3

Also, assign a 
olour

di�erent from C(v

3

) and C(w

1

) to C(v

2

). By minimality of G, C(v

1

) = C(v

2

), whi
h we


an assume is 1. By the 
haining argument C(v

4

) = C(v

6

) = C(u

6

) = C(u

4

) = C(u

2

) =

C(v

8

) = 1. Without loss of generality assume that C(w

0

) = 2. So C(v

9

) = 3, otherwise

we 
ould set C(v

1

) = 3. Note that we 
an safely ex
hange C(v

7

) with C(u

7

). If C(u

1

) 6= 3

we 
an ex
hange C(v

9

) with C(v

8

) and set C(v

1

) = 3. So C(u

1

) = 3 and by the 
haining

argument C(u

3

) = C(u

5

) = C(v

5

) = C(v

3

) = 3. But this means that all w

1

; : : : ; w

6

have


olour 3, 
ontradi
ting property (iii).

Using a very similar argument, we 
an prove the redu
ibility of 
on�gurations of

Figures A.7(B1) and (C1). The gadget we have to add in ea
h 
ase is shown in parts

(B2) and (C2), respe
tively.

The proofs of redu
ibility of 
on�gurations 13, 14, and 15 follow very similar steps.

We omit the hand-
he
kable proofs of them.
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The C Program used in Chapter 3

This program and the �le 
ontaining the redu
ible 
on�gurations and the des
ription of

the program is also available at ftp://ftp.
s.toronto.edu/
srg-te
hni
al-reports/458/.

/* Version 1.1, July 2002 */

#in
lude <stdio.h>

#in
lude <stdlib.h>

#in
lude <string.h>

#in
lude <time.h>

#define Max_No_of_verti
es 50

#define Error_filename "UnColorable_Config.txt"

int Nverti
es, Nedges, /* No. of verti
es and edges of the 
onfiguration */

Nbound, /* No. of boundary neighbors */

NConstrained_groups, /* No. of Constrained groups */

N
olored, /* No. of 
olored verti
es so far */

160
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Nof_
olorings, /* No. of differenet 
olorings found for a 
onfig. */

is_in_bound [Max_No_of_verti
es℄,

/* is_in_bound [v℄ = 1 if v is a boundary

neighbor, 0 otherwise */

adj_list[Max_No_of_verti
es℄[Max_No_of_verti
es℄,

/* The adja
an
y list; for vertex v adj_list[v℄[0℄

spe
ifies the degree of v */

bound[Max_No_of_verti
es℄, /* The list of boundary neighbors */

non_bound[Max_No_of_verti
es℄, /* The list of non-boundary verti
es */


onstrained_groups[10℄[Max_No_of_verti
es℄,

/* The list of 
onstrained groups; the verti
es in a group are those

boundary neighbors whi
h must not all have the same 
olor,

enfor
ed by a gadget. For group i 
onstrained_groups[i℄[0℄

spe
ifies the number of verti
es in that group */


olor[Max_No_of_verti
es℄, /* Color of vertex v is 
olor[v℄, 0 if

it is not 
olored */

Nof_
onfigurations, /* No. of 
onfiguration in the file */


urrent_
onf; /* index of the 
urrent 
onfiguration being tested */

FILE *fErrors; /* The file to write in any non-redu
ible 
onfiguration */

/*************************************************************************/

/* Fun
tion Prototypes */

int Che
k_Boundary_Colorings (int NColored_bound);

void Read_Data (
har *filename);
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void UnColorable (void);

int Che
k_Extendable (int vertex);

int Valid_Boundary_Coloring (void);

int Che
k_Boundary_Colorings (int NColored_bound);

/*************************************************************************/

/* Read the 
onfigurations from a file whose name is "filename",

one by one, and 
he
k redu
ibility of ea
h */

void Read_Data (
har *filename){

FILE *fin;

int i, j, v1, v2, tempvertex;


har tmpStr[100℄;

/* Openning the input file */

if ((fin = fopen (filename, "r")) == NULL) {

printf ("Cannot open the input file! \n");

exit (1);

}

/* Openning the output (i.e. error) file */

if ((fErrors = fopen (Error_filename, "w")) == NULL) {

printf ("Cannot open the output file! \n");

f
lose(fin);

exit (1);

}

fs
anf (fin, "%d \n", &Nof_
onfigurations);
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/* Reading the information of 
onfigurations one by one and


he
king the redu
ibility of them */


urrent_
onf = 1;

for (
urrent_
onf = 1; 
urrent_
onf <= Nof_
onfigurations; 
urrent_
onf++){

fgets (tmpStr, sizeof (tmpStr), fin);

fs
anf (fin, "%d %d \n", &Nverti
es, &Nedges);

printf ("%d %d \n", Nverti
es, Nedges);

N
olored = 0;

Nbound = 0;

Nof_
olorings = 0;

for (i = 1; i <= Nverti
es; i++){

adj_list[i℄[0℄ = 0;


olor[i℄ = 0;

is_in_bound[i℄ = 0;

}

/* Reading the adja
an
y lists of the 
urrent 
onfiguration */

for (i = 1; i <= Nedges; i++){

fs
anf (fin, "%d %d \n", &v1, &v2);

adj_list[v1℄[++adj_list[v1℄[0℄℄ = v2;

adj_list[v2℄[++adj_list[v2℄[0℄℄ = v1;

}

/* Setting up the boundary neighbors */

j = 0;

for (i = 1; i <= Nverti
es; i++){

if (adj_list[i℄[0℄ <= 2){
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bound[++Nbound℄ = i;

is_in_bound[i℄ = 1;

}

else non_bound[++j℄ = i;

}

i=1;

while (is_in_bound[adj_list[non_bound[1℄℄[i℄℄) i++;

tempvertex = adj_list[non_bound[1℄℄[i℄;

adj_list[non_bound[1℄℄[i℄=adj_list[non_bound[1℄℄[adj_list[non_bound[1℄℄[0℄℄;

adj_list[non_bound[1℄℄[adj_list[non_bound[1℄℄[0℄℄=tempvertex;

j=1;

while (adj_list[tempvertex℄[j℄!=non_bound[1℄) j++;

adj_list[tempvertex℄[j℄=adj_list[tempvertex℄[adj_list[tempvertex℄[0℄℄;

adj_list[tempvertex℄[adj_list[tempvertex℄[0℄℄=non_bound[1℄;

/* Reading (just passing on) the information about the


oordinates of verti
es */

for (i = 1; i <= Nverti
es; i++)

fs
anf (fin, "%d %d \n", &v1, &v2);

/* Reading the number of groups of the 
onstrained verti
es

and then the verti
es of ea
h group */

fs
anf (fin, "%d\n", &NConstrained_groups);

for (i = 1; i <= NConstrained_groups; i++){


onstrained_groups[i℄[0℄ = 0;

while (fs
anf (fin, "%d\n", &v1) == 1) {
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onstrained_groups[i℄[++
onstrained_groups[i℄[0℄℄ = v1;

}

fs
anf (fin, "%s\n", tmpStr);

}

/* Che
k to see if the 
urrent 
onfiguration is redu
ible */

printf("Started!\n");

if (!Che
k_Boundary_Colorings (0)) {

printf ("Configuration No. %d is redu
ible! No of Colorings

Che
ked = %d\n", 
urrent_
onf, Nof_
olorings);

}

}

f
lose (fin);

f
lose (fErrors);

}

/**********************************************************************/

/* If the 
urrent 
onfiguration is not redu
ible this pro
edure writes

the index of the 
onfiguration as well as the 
oloring of the boundary

neighbors into a file. */

void UnColorable (void){

int i;

printf ("Configuration No. %d is *NOT* redu
ible \n", 
urrent_
onf);

fprintf (fErrors, "Configurtion No %d\n", 
urrent_
onf);

fprintf (fErrors, "The 
oloring of the boundary neighbors that


annot be extended is :\n");



Appendix B. The C Program used in Chapter 3 166

for (i = 1; i <= Nbound; i++)

fprintf (fErrors, "Color of vertex %d = %d\n", bound[i℄, 
olor[bound[i℄℄);

fprintf(fErrors, "\n");

}

/**********************************************************************/

/* Che
ks whether the 
urrent 3-
oloring of the boundary neighbors 
an

be extended to a 3-
oloring of the whole 
onfiguration. Returns 1 when

it 
an NOT be extended, 0 otherwise */

int Che
k_Extendable (int vertex){

int i, j, Next_vertex, Equal, k;


har tmp;

Next_vertex = 0;

/* Find the "Next vertex" to be 
olored after 
oloring the 
urrent

"vertex", by finding an un
olored neighbor of it, if exists any */

for (i = 1; i <= adj_list[vertex℄[0℄; i++)

if (!
olor[adj_list[vertex℄[i℄℄) {

Next_vertex = adj_list[vertex℄[i℄;

i = adj_list[vertex℄[0℄;

}

/* If all the neighbors of the 
urrent "vertex" are 
olored, find

the next (available) un
olored vertex */

if (Next_vertex == 0){

for (i = 1; i <= Nverti
es-Nbound; i++)

if (non_bound[i℄ != vertex && !
olor[non_bound[i℄℄){

Next_vertex = non_bound[i℄;
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i = Nverti
es-Nbound;

}

}

/* Che
k all possible 
olorings of the 
urrent "vertex" and 
ontinue

by 
oloring the "Next_vertex" */

for (i = 1; i <= 3; i++){

Equal = 0;

for (j = 1; j <= adj_list[vertex℄[0℄; j++)

if (
olor[adj_list[vertex℄[j℄℄ == i) Equal = 1;

if (!Equal){


olor[vertex℄ = i;

N
olored++;

if (N
olored == Nverti
es || !Che
k_Extendable (Next_vertex)){

N
olored--;


olor[vertex℄ = 0;

return 0;

}

N
olored--;


olor[vertex℄ = 0;

}

}

return 1;

}

/********************************************************************/

/* Che
ks whether the 
urrent boundary 
oloring satisfies the

requirments by the 
onstrained groups. That is, not all the verti
es
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in the same group have the same 
olor. Returns 1 if it does NOT

satisfy this 
ondition, 0 otherwise. */

int Valid_Boundary_Coloring (void){

int i, j;

for (i = 1; i <= NConstrained_groups; i++){

int All_Equal=1;

for (j = 2; j <= 
onstrained_groups[i℄[0℄; j++){

if (
olor[
onstrained_groups[i℄[1℄℄ != 
olor[
onstrained_groups[i℄[j℄℄) {

All_Equal = 0;

j = 
onstrained_groups[i℄[0℄;

}

}

if (All_Equal) return 1;

}

return 0;

}

/*********************************************************************/

/* For all possible (valid) 
olorings of the boundary neighbors 
he
ks if

it is extendable to a 
oloring of the whole 
onfiguration. Returns 1

if it is NOT, 0 otherwise */

int Che
k_Boundary_Colorings (int NColored_bound){

int v1, v2, Equal;

/* If all boundary neighbors are 
olored */

if (NColored_bound == Nbound) {

/* 
he
k if this 
oloring of the boundary neighbors satisfies the
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requirements by the 
onstrained groups */

if (NConstrained_groups > 0 && Valid_Boundary_Coloring ()) return 0;

v1 = non_bound[1℄;

v2 = adj_list[non_bound[1℄℄[adj_list[non_bound[1℄℄[0℄℄;

/* remove one edge, 
all e, from the 
onfiguration */

adj_list[v1℄[0℄--;

adj_list[v2℄[0℄--;

/* first 
he
k if the 
urrent 
oloring of boundary neighbors 
an

be extended to a 
oloring of G-e */

if (!Che
k_Extendable (non_bound[1℄)){

/* if so then put e ba
k to G and 
he
k if this 
oloring 
an be

extended to a 
oloring of the non-boundary verti
es of G */

adj_list[v1℄[0℄++;

adj_list[v2℄[0℄++;

if (!Che
k_Extendable (non_bound[1℄)) {

Nof_
olorings++;

return 0;

}

else {

UnColorable ();

return 1;

}

}

else {

/* if the 
urrent boundary 
oloring 
annot be extended even to a

3-
oloring of G-e put e ba
k to G */
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adj_list[v1℄[0℄++;

adj_list[v2℄[0℄++;

return 0;

}

}

else {

int i, j, MaxColor;

/* if this is the first boundary neighbor we want to 
olor try

only 
olor 1 */

if (NColored_bound == 0) {

Nof_
olorings = 0;

MaxColor = 1;

}

/* if this is the se
ond boundary neighbor we want to 
olor try

only 
olors 1 and 2 */

else if (NColored_bound == 1) MaxColor = 2;

/* Otherwise, try all possbile 3 
olors */

else MaxColor = 3;

NColored_bound++;

for (i = 1; i <= MaxColor; i++){

Equal = 0;

for (j=1; j <= adj_list[bound[NColored_bound℄℄[0℄; j++)

if (
olor[adj_list[bound[NColored_bound℄℄[j℄℄ == i)

Equal = 1;

if (!Equal){


olor[bound[NColored_bound℄℄ = i;

N
olored++;
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if (Che
k_Boundary_Colorings (NColored_bound)) {


olor[bound[NColored_bound℄℄ = 0;

N
olored--;

return 1;

}


olor[bound[NColored_bound℄℄ = 0;

N
olored--;

}

}

return 0;

}

}

/*******************************************************************/

int main (int arg
, 
har *argv[℄){

time_t start_time = time(NULL);

if (arg
 >= 2)

Read_Data (argv[1℄);

else Read_Data ("
onf.dat");

printf ("All done in %g se
onds!\n", difftime(time(NULL), start_time));

return 0;

}



Appendix C

List of Redu
ible Con�gurations for

Theorem 3.1.1

The �rst three redu
ible 
on�gurations in the proof of Theorem 3.1.1 are the ones that

were also used in the proof of Theorem 3.2.1; a � 2-vertex, a 
ut-vertex, and a 2k-fa
e

with at least 2k�1 bad verti
es. Here is the list of the other 74 redu
ible 
on�gurations,

in
luding all sub
on�gurations of the 
on�gurations listed in Se
tion 3.3.2. We have

listed them in twelve groups, ea
h 
orresponding to a 
on�guration listed in Se
tion

3.3.2. For ea
h group that 
ontains at least two sub
on�gurations, we explain how the

list is generated. Ea
h graph that has white verti
es and dotted edges is the \modi�ed"

version (by removing some verti
es and edges and adding a gadget) of the graph to its

left. The verti
es and the edges that have been removed are the white verti
es and the

dotted edges, respe
tively.

1- Simple fa
e: There is only one possible 
ase:

2- Type 2 fa
e: There is only one possible 
ase:

172
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3- Two type 0 fa
es sharing their type 0 vertex: It is easy to see that there

are two possible 
on�gurations:

4- Three type 5 fa
es sharing a 5-vertex: There are only two possible 
on�gu-

rations of this type:

5- Two semi-simple fa
es sharing a type 1 vertex: Instead, we 
onsider the

following 
on�gurations. It is easy to see that if we �x one of the semi-simple fa
es, based

on the lo
ation of its type 1 vertex we obtain one of the following stru
tures:

6- Two semi-type 2 fa
es sharing a type 1 vertex: Fix one of the semi-type 2

fa
es, and 
onsider di�erent lo
ations for its type 1 vertex, moving it around the boundary

of the fa
e in 
ounter-
lo
kwise order. For ea
h su
h 
ase, by moving the position of the

type 2 vertex in the other fa
e (in 
ounter-
lo
kwise order) we obtain the following eight
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on�gurations.

7- A semi-type 2 fa
e sharing its type 1 vertex with a type 1 fa
e: Again,

�x the semi-type 2 fa
e, and 
onsider di�erent positions of its type 1 vertex, moving it

around the fa
e in 
ounter-
lo
kwise order. There are four possible 
on�gurations of this

kind.

8- A semi-type 2 fa
e sharing its type 1 vertex with a semi-simple fa
e: It

is straightforward to 
he
k that there are �ve possible 
on�gurations of this kind. Four

of them are the same as the ones in item 5 above, and the other 
ontains the se
ond


on�guration of item 6 above.

9- A semi-simple fa
e sharing its type 1 vertex with a type 1 fa
e: Fix

the semi-simple fa
e and 
onsider di�erent lo
ations of its type 1 vertex, moving it
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around the fa
e in 
ounter-
lo
kwise order. There are three 
on�gurations of this kind.

10- Simple triple stru
ture: It is easy to see that the semi-simple fa
e of a simple

triple stru
ture has one of the four possible stru
tures given in item 5 above. Thus, the

redu
ibility of any simple triple stru
ture follows from part 8 of Lemma 3.3.7 and we

don't need to 
onsider di�erent possibilities for a simple triple stru
ture.

11- Triple stru
ture of kind 1: There are nine 
on�gurations of this kind. First

assume that the semi-type 0 and the type 0 fa
e are sharing an edge. Then based on the

lo
ation of the type 1 vertex of the semi-type 0 fa
e and moving it around the fa
e in


ounter-
lo
kwise order, we obtain the �rst six 
on�gurations listed below. In the next

three 
on�gurations the semi-type 0 fa
e and the type 0 fa
e do not share any edges. It

is easy to see that there are only three 
on�gurations of this kind (listed below) up to

isomorphism.
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12- Triple stru
ture of kind 2: First assume that the semi-type 0 and the type

0 fa
e are sharing an edge. We 
onsider all possible lo
ations for the type 1 vertex of

the semi-type 0 fa
e, moving it around the fa
e in 
ounter-
lo
kwise order. The �rst


on�guration below is when the type 1 vertex is adja
ent to the type 0 vertex. If the

type 2 vertex of the semi-type 2 fa
e is any vertex other than the one in the �gure, then

the 
on�guration will 
ontain the se
ond 
on�guration we gave for group 6.

The rest of the 
on�gurations are obtained by 
onsidering all possible lo
ations for

the type 2 vertex of the semi-type 2 fa
e (again moving it around in 
ounter-
lo
kwise
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order). We do a similar thing for the 
ase that the semi-type 0 fa
e and the type 0 fa
e

are not sharing an edge.
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