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Abstract

Given a metric (V, d) and an integer k, we consider the problem of partitioning the points
of V into at most k clusters so as to minimize the sum of radii or the sum of diameters of these
clusters. The former problem is called the Minimum Sum of Radii (MSR) problem and the
latter is the Minimum Sum of Diameters (MSD) problem. The current best polynomial time
algorithms for these problems have approximation ratios 3.504 and 7.008, respectively [4]. We
call a cluster containing a single point, a singleton cluster. For the MSR problem when singleton
clusters are not allowed, we give an exact algorithm for metrics induced by unweighted graphs.
In addition, we show that in this case, a solution consisting of the best single cluster for each
connected component of the graph is a 3

2 -approximation algorithm. For the MSD problem
on the plane with Euclidean distances, we present a polynomial time approximation scheme.
In addition, we settle the open problem of complexity of the MSD problem with constant k by
giving a polynomial time exact algorithm in this case. The previously best known approximation
algorithms for MSD on the plane or for MSD with constant k have both ratio 2.

1 Introduction

Clustering is one of the fundamental techniques in information technology, which has been used in
a wide variety of application areas such as data mining, bioinformatics, and information retrieval.
The main goal of this technique is to partition a set of objects into a number of homogeneous
subsets, called clusters. In any clustering method, we need to define a distance measure between
each pair of objects to determine how similar those objects are. In most clustering algorithms, we
try to find a clustering that optimizes an objective function based on these distances. The well
known k-center problem is the clustering problem with the objective of minimizing the maximum
cluster radius (see [12] for a tight approximation algorithm).

Unfortunately, in some applications, using k-center objective function produces a dissection
effect. This effect causes objects that should be placed in the same cluster to be assigned to
different clusters [11]. To avoid this effect, it is proposed to minimize the sum of cluster radii or
diameters. This leads to the Minimum Sum of Radii (MSR) and the Minimum Sum of Diameters
(MSD) problems, respectively. In each of these problems, one is given a set of points V in a metric
space d and the goal is to partition V into k clusters so as to minimize the sum of radii of clusters
(in MSR) or the sum of diameters of the clusters (in MSD). We can consider these points as the
vertices of a graph with a metric cost function on the edges. More formally, we are given a graph
G = (V,E) with edge costs (or distances) d : E → R+ that satisfy triangle inequality. The goal is
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to partition V into k sets V1, V2, . . . , Vk. In the MSR problem, we want to minimize
∑k

i=1 rad(Vi),
where rad(Vi) is equal to minu∈Vi maxv∈Vi d(u, v). In the MSD problem, we want to minimize∑k

i=1 diam(Vi), where diam(Vi) is equal to maxu,v∈Vi d(u, v).

1.1 Related Work

The MSR and MSD problems are well studied in general metrics. When the cost function is
symmetric, a simple observation is that for any graph (or cluster) G: rad(G) ≤ diam(G) ≤ 2 rad(G).
Therefore, an α-approximation algorithm for MSD yields a 2α-approximation algorithm for MSR
and vice versa. Doddi et al. [5] considered the MSD problem and showed that unless P= NP,
for any ε > 0, there is no (2 − ε)-approximation algorithm for the MSD problem even when the
graph is unweighted (i.e. the metric is the shortest-path metric of an unweighted graph). Note
that this result does not imply NP-hardness of MSR. They also presented a bicriteria algorithm
that returns a solution with O(k) clusters whose cost is within O(log(n/k)) factor of the optimum.
Charikar and Panigrahy [4] significantly improved this result by giving a (3.504 + ε)-approximation
algorithm for MSR, and consequently a (7.008 + ε)-approximation algorithm for MSD, that runs in

time nO( 1
ε
). These are the current best ratios for the MSR and MSD problems on general metrics.

In an interesting result, Gibson et al. [9] designed an exact algorithm for the MSR problem which
runs in time nO(logn log ∆) where ∆ is the ratio of the largest distance over the smallest distance.
They translate this result to a quasi-polynomial time approximation scheme (QPTAS) for general
metrics. In contrast, they showed that the MSR problem is NP-hard even in metrics induced by
weighted planar graphs and in metrics of constant doubling dimension [9].

There are also several results for the special cases of these problems. When k = 2, the MSD
problem is solvable in polynomial time by a reduction to the 2-SAT problem [11]. When k is fixed
and the metric is Euclidean, Capoyleas et al. [2] present an exact algorithm for MSD. When k
is fixed, for general metrics, there is a 2-approximation for MSD [5]. This result can be obtained
from a simple polynomial time exact algorithm for MSR [5], which uses the observation that the
number of distinct maximal clusters is polynomially bounded. For Euclidean MSR, there is an
exact polynomial time algorithm [10]. This result also extends to L1 and L∞ metrics. This also
implies a 2-approximation for MSD on Euclidean plane, which is the current best ratio.

1.2 Our Results

For graphs with polynomially bounded ∆ (for instance for unweighted graphs), the exact algorithm

of Gibson et al. for the MSR problem [8] runs in time nO(log2 n). This gives us strong evidence
that the MSR problem for these metrics is not NP-hard and one should be able to design an
exact algorithm for the MSR problem when restricted to these metrics. In contrast, the best
known polynomial time algorithm even for this case is the (3.504 + ε)-approximation algorithm of
Charikar and Panigrahy [3]. We make some progress in this direction and give a polynomial time
exact algorithm for metrics of unweighted graphs in the case that no singleton clusters are allowed.

Theorem 1 There is a polynomial time exact algorithm for the unweighted MSR problem when no
singletons are allowed.

This result reduces the unweighted MSR problem to the problem of finding the singleton clusters.
In other words, it shows the difficult core of the problem is to determine which points should be a
cluster by themselves.

Moreover, we show that there is a simple 3
2 -approximation algorithm for unweighted graphs in

the case that no singleton clusters are allowed. This algorithm has a better running time than
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the above exact algorithm. We contrast this simple algorithm with an integrality gap of at least
essentially 3

2 for a natural LP relaxation of the problem [1].

Theorem 2 Finding the best single cluster of each connected component is a 3
2 -approximation

algorithm for the unweighted MSR problem without singletons.

For Euclidean MSD (i.e., points in R2 and Euclidean metric), the exact algorithm of Capoyleas
et al. for fixed k raises a question about the complexity of this problem for variable k. This is first
asked by Doddi et al. as an open problem (see Section 6 in [5]). Recall that the exact algorithm
of [10] gives a 2-approximation for Euclidean MSD. In contrast, there is a ratio 2 hardness for the
general case [5]. Thus, it is not obvious if we can beat this factor of 2. We present a polynomial
time approximation scheme (PTAS) for the Euclidean MSD.

Theorem 3 For any given ε > 0, there is an algorithm such that given a set of n points in R2 and
integer k, finds a (1 + ε)-approximate solution for the MSD problem in time nO(1/ε).

Recall that Hansen and Jaumard [11] gave an exact algorithm for the MSD problem when
k = 2. The best known approximation algorithm for the MSD problem with constant k > 2 is the
2-approximation algorithm that comes from the exact algorithm of the MSR problem in this case.
Doddi et al. raised an open question (see Section 1.3 in [5]) about the complexity of this problem
in this case. We answer this question by giving an exact algorithm for the MSD problem with
constant k.

Theorem 4 There is a polynomial time exact algorithm for the MSD problem when k is constant.

Here is a short overview of the proofs’ ideas. The results of Theorems 1 and 4 are based on the
following simple question: assuming we are working with an optimal solution with minimum number
of clusters, what prevents two clusters from being merged into a single cluster? For MSR without
singletons (Theorem 1) the answer to this question reveals an interesting structural property of
the solution, specifically the clusters either form a path or a cycle. This allows one to obtain
a polynomial time algorithm using dynamic programming. For MSD with fixed k (Theorem 4),
the answer is that two points (one in each cluster) are sufficiently far apart. If we know this
information for every pair of clusters then we can identify the clusters. The algorithm for Theorem
3 is an extension of the results of [10], however we need some new ideas to obtain polynomial
running time.

The rest of this paper is organized as follows. We discuss some preliminaries in Section 2. In
Section 3, we present the exact algorithm for the unweighted MSR problem when no singleton
clusters are allowed. We also present the simple 3/2-approximation algorithm under the same
assumptions. In Section 4, we present a PTAS for the Euclidean MSD problem. Next, we give the
exact algorithm for the MSD problem with constant k in Section 5. Our concluding remarks come
in Section 6.

2 Preliminaries

First notice that when we have k sets covering V , i.e., each vertex of V is in at least one of these
sets, we can easily obtain a partition of V from these sets without increasing their total radii or
diameters. As a consequence, from now on we only try to find feasible solutions that form a covering
of V (instead of a partition).

There is a strong connection between the MSR and MSD problems. This connection comes
from the similarity of their objective functions and the relationship between radius and diameter
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of a graph with metric weights: rad(G) ≤ diam(G) ≤ 2 rad(G). Doddi et al. [6] noticed that the
above connection has an important implication:

Proposition 1 [6] An α-approximate solution for the MSR (MSD) problem is a 2α-approximate
solution for the MSD (MSR, respectively) problem.

While we have the above interesting connection between MSR and MSD, these problems have
a very important difference. We call a cluster maximal for the MSR (MSD) problem if one cannot
add any vertex to it without increasing its radius (diameter, respectively). Any solution can be
turned into one having only maximal clusters without increasing the cost. Therefore, we can ignore
non-maximal clusters and only consider maximal clusters in the solutions for the MSR and MSD
problems.

Consider a maximal cluster of radius r for the MSR problem and let v be an arbitrary center of
this cluster. By definition, this cluster must contain all the vertices in the graph having distance
at most r from v. We call the set of such vertices the ball of radius r around v and denote it by
B(v, r). As it is stated in the following proposition, the number of distinct maximal clusters for the
MSR problem is at most n2, while the number of distinct maximal clusters for the MSD problem
can be exponential.

Proposition 2 [6] In the MSR problem, the number of distinct maximal clusters is at most n2.

This yields a very important advantage when we deal with the MSR problem. We can enumerate
all subsets of the maximal clusters having size at most l in time O(n2l). This enumeration is an
important part of many related results. From now on, when we discuss the clusters in the MSR
problem, we mean the clusters from the above set of distinct maximal clusters, which has size at
most n2.

3 MSR Restricted to Unweighted Graphs

In this section, we focus on the MSR problem when the metric is the shortest path metric of an
unweighted graph. First, note that if one can optimally solve the MSR problem for some arbitrary
metric in polynomial time for connected graphs, then using a standard dynamic programming
approach, one can optimally solve the problem for that metric for all graphs:

Proposition 3 The MSR problem reduces in polynomial time to the MSR problem for connected
graphs.

Proof. Assume we know how to solve the problem for connected graphs. First, for each κ ≤ k,
we find an optimal solution of κ clusters for each connected component. Let H1, H2, . . . ,Hl be
the connected components. We present how we can find the solution by adding one connected
component at a time. For 1 ≤ i < l, we show how we can find an optimal solution of κ clusters
for the graph ∪i+1

j=1Hj given the optimal solutions for the graph ∪ij=1Hj for all κ1 ≤ k. For all

κ1, κ2 > 0 such that κ1 + κ2 = κ, we combine the optimal solution of ∪ij=1Hj with κ1 clusters with
the optimal solution of Hi+1 with κ2 clusters and store the best of these κ− 1 combined solutions
as the optimal solution.

As a consequence, we are going to assume that the input graph is connected in the rest of this
section. We start with some definitions.
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Definition 1 We call a ball of positive radius a non-zero ball. We say two balls intersect if they
share at least one common vertex. We say two balls are adjacent if they do not intersect but there
is an edge that connects two vertices of these balls. Among the optimal solutions for covering a
graph with at most k clusters, a canonical optimal solution is a solution with the minimum possible
number of balls.

We have the following lemmas about the structure of a canonical optimal solution in an un-
weighted graph. Note that the next two lemmas hold even in presence of zero balls and we do not
assume the input graph does not have singleton clusters here.

Lemma 1 A canonical optimal solution does not have any intersecting balls.

Proof. We show that two intersecting balls can be merged into one ball without increasing the
total cost. Assume the intersecting balls are B(v1, r1) and B(v2, r2), where r1 ≥ r2, and vertex u
belongs to both of them (see Figure 1). Consider the shortest path between v1 and u. Let v be the
vertex on this path that has distance min(d(v1, u), r2) from v1.

v1

v2r1 ≤ r2

≤ r1

r2

u

B(v1, r1)

B(v2, r2)

v

Figure 1: The intersecting balls B(v1, r1) and B(v2, r2). The ball B(v, r1 +r2) covers all the vertices
in these two balls.

The distance of v to all the vertices in B(v1, r1) is at most r1 + r2, because the distance of v to
v1 is at most r2 and the distance v1 to the vertices in B(v1, r1) is at most r1. Also, the distance of
v to all the vertices in B(v2, r2) is at most r1 + r2, because the distance of v to u is at most r1− r2,
the distance of u to v2 is at most r2, and the distance of v2 to the vertices in B(v2, r2) is at most
r2. Therefore, B(v, r1 + r2) contains all the vertices in B(v1, r1) and B(v2, r2) and in a solution,
we can replace these two balls with B(v, r1 + r2) without increasing the cost.

Remark 1 With a similar proof, one can show that we can cover two adjacent balls with radii r1

and r2 with a ball of radius r1 + r2 + 1. This shows that for the case of unweighted graphs, if we
increase the number of clusters by one, the optimum value decreases by at most one.

Lemma 2 In a canonical optimal solution, each ball is adjacent to at most two non-zero balls.

Proof. Let B(v, r) be a ball in a canonical optimal solution and let B(v1, r1), B(v2, r2), . . . B(vl, rl)
be its adjacent balls such that r1 ≥ r2 ≥ · · · ≥ rl and assume that l ≥ 3. We show that we can find
a ball with radius r+ r1 + r2 + 1 that covers B(v, r) and all its adjacent balls. As a result, if r3 > 0,
we can decrease the number of balls in the canonical optimal solution without increasing the cost,
which is a contradiction. Consider the shortest path between v and v1. Let u be the vertex on

5



this path that has distance min(d(v, v1), r1− r2) from v (see Figure 2). Since the shortest path has
length at most r + 1 + r1, the distance of u to v1 is at most r + r1 + 1 − (r1 − r2) = r + r2 + 1.
Clearly, the distance of u to v is at most r1 − r2.

B(v1, r1) B(v2, r2)

B(v3, r3)

B(v, r)

≤ r1 − r2

v

v1

u≤ r + r2 + 1

r

r2

r2

r1

. . .

Figure 2: The ball B(v, r) and its adjacent balls. The ball B(u, r+ r1 + r2 + 1) covers B(v, r) and
all its adjacent balls.

We claim that the ball B(u, r+r1 +r2 +1) covers B(v, r) and all its adjacent balls. The distance
of u to all the vertices in B(v1, r1) is at most r + r1 + r2 + 1, because the distance of u to v1 is
at most r + r2 + 1 and the distance of v1 to the vertices in the ball B(v1, r1) is at most r1. The
distance of u to all the vertices in B(vi, ri) for i ≥ 2 is at most r+ r1 + r2 + 1, because the distance
of u to v is at most r1− r2, the distance v to vi is at most r+ 1 + ri ≤ r+ r2 + 1, and the distance
of vi to the vertices in the ball B(vi, ri) is at most ri ≤ r2. Similarly, the distance of u to all the
vertices in B(v, r) is at most r1 − r2 + r ≤ r + r1 + r2 + 1.

Suppose (G, k) is an instance of the (unweighted) MSR problem where no zero balls are allowed.
Consider a canonical optimal solution S∗ and suppose that we have k∗ ≤ k balls in S∗. Since we can
run the algorithm for all values q ≤ k and take the best solution of all, for simplicity of exposition
we assume k∗ = k. By Lemmas 1 and 2 and because no zero balls are allowed, the balls in S∗
are disjoint and each has at most two adjacent balls. Therefore, the balls in S∗ form a path or
cycle. Assume that these balls form a path, say B∗1 , B

∗
2 , . . . , B

∗
k, where each B∗i is adjacent to B∗i+1,

1 ≤ i < k (the case of a cycle reduces to the case of a path as we show shortly). We give an
exact algorithm for this case. Let B be the set of all distinct maximal clusters. By Proposition 2:
|B| ≤ n2.

The general idea of our algorithm is as follows. For every V ′ ⊆ V , let G[V ′] denote the induced
subgraph of G on V ′. Let Gi = G[∪il=1B

∗
l ] (i.e. the subgraph of G induced by the vertices in the

first i balls of the path). It is easy to see that for all 1 ≤ i ≤ k, the solution B∗1 , B
∗
2 , ..., B

∗
i is an

optimal solution for covering Gi with i balls. We present a recursive algorithm, called BestCover,
that given a graph H and the number of clusters j, returns a feasible solution, and this feasible
solution is optimal when H = Gi and j = i, for any 1 ≤ i ≤ k. For the moment suppose that the
algorithm works as described for values of j < l (for some l ≤ k). When j = l, we guess the ball B∗l
(by enumerating over all possible balls in B) and remove this ball to get a new graph H ′. Then, run
BestCover with parameters H ′ and l−1 and return the union of the guessed ball and the solution
of the recursive call. Note that regardless of whether H = Gl or not, assuming that the recursive
call returns a feasible solution for H ′, we have a feasible solution for H. Furthermore, if H = Gl
then for the guessed ball (namely B∗l ), H ′ = Gl−1 and the solution returned by the recursive call
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is optimal and has the same cost as the solution {B∗1 , B∗2 , ..., B∗l−1}. Adding the guessed ball B∗l to
the returned solution, we get an optimal solution for Gl.

The difficulty with the above general idea is that even if we use a dynamic programming
approach and save the solution of each distinct input of BestCover that we encounter, there
may still be exponentially many different inputs corresponding to exponentially many subsets of
V (G). We fix this problem with the crucial observation that we are interested to solve only the
sub-problems corresponding to graphs Gi. Of course, we do not know S∗ and the subsets ∪il=1B

∗
l in

advance, but we show that we can find a polynomial size family of subsets of V (G), called candidate
family F , that contains subsets ∪il=1B

∗
l for 1 ≤ i ≤ k. Then we only solve the problem for graphs

induced by subsets in F , which gives the solution for graph G as well, because V (G) = ∪kl=1B
∗
l is

in F .

Definition 2 A candidate family F , is a set of subsets of V (G) which consists of the following
sets: a subset S ⊆ V (G) is in F if S = V (G) or if there exists a ball B such that G \B has at most
two connected components and the set of vertices in one of those components is S.

Lemma 3 A candidate family can be computed in polynomial time, has at most 2n2 + 1 members
and contains subsets ∪il=1B

∗
l for all 1 ≤ i ≤ k.

Proof. Recall that |B| ≤ n2. We remove each of these |B| balls from G. If the number of connected
components is at most two, we add the set of vertices in each component to F . We add V (G) to F
as well. This can be done in polynomial time and we must have considered all members of F after
checking all the balls. The number of subsets obtained this way can be at most 2|B|+ 1 ≤ 2n2 + 1.
When in this process, we remove B∗i for some 1 < i ≤ k, we get at most two connected components.
Therefore, we add the set of vertices ∪i−1

l=1B
∗
l to F for all 1 < i ≤ k. Also, we added V (G) = ∪kl=1B

∗
l

to F as well. Thus, F contains subsets ∪il=1B
∗
l for all 1 ≤ i ≤ k.

The procedure BestCover is presented below.

Algorithm 1 BestCover(H, l)

Input: A graph H and an integer l > 0
Output: A subset of at most l balls covering H, which is optimal when H = Gi and l = i for some

1 ≤ i ≤ k
1: If Table[V (H), l] 6= ∅, return Table[V (H), l].
2: If V (H) = ∅, return ∅.
3: If l = 0 then return “infeasible”.
4: Find v the center of H and r = rad(H).
5: If l = 1, return B(v, r).
6: for all choices of a ball B ∈ B do
7: if V (H) \B ∈ F then
8: Store the union of B and the result of BestCover(H \B, l− 1) in the set of solutions C.
9: If C is empty, store B(v, r) in Table[V (H), l] and return it.

10: Choose a solution in C having the minimum cost, store it in Table[V (H), l] and return it.

We prove the following which is a re-statement of Theorem 1. In this theorem, a canonical
optimal solution can form a path or cycle of balls.

Theorem 5 Algorithm 2 is a polynomial time exact algorithm for the unweighted MSR problem
when no singletons are allowed.
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Algorithm 2

Input: A graph G and an integer k > 0
Output: A subset S∗ of at most k balls covering G having optimal cost
1: for all choices of a ball B ∈ B do
2: if H = G \B is connected then
3: Compute a candidate family F for H as in Lemma 3.
4: Define an array Table. For all S ∈ F and for all 1 ≤ l < k, set Table[S, l] = ∅.
5: for all 1 ≤ q ≤ k − 1 do
6: Store the union of B and the result of BestCover(H, q) in the set of solutions C.
7: Let u be a center of G. Add the ball B(u, rad(G)) as a solution to C. Return the minimum

cost solution in C.

Proof. First, we show that Algorithm 2 runs in polynomial time. By Lemma 3, we can compute F
in polynomial time and the number of table entries is polynomial. Thus, we just need to prove that
the call BestCover(H, q) runs in polynomial time. We only call BestCover(., .) (including in
recursive calls) for graphs H with V (H) ∈ F . Since by Lemma 3, |F| ≤ 2n2 + 1 and l ≤ k ≤ n, the
number of distinct instances that are given as parameter to BestCover(., .) is polynomial. Also,
for a fixed H and l, BestCover(H, l) makes a total of at most |B| ≤ n2 calls to other instances of
BestCover(., .). As a result, the overall number of calls of BestCover(., .) is polynomial.

Now, we prove the correctness of Algorithm 2. By Lemmas 1 and 2 and because no zero balls
are allowed, the balls in a canonical optimal solution form a path or a cycle. Suppose that the set
of balls in a canonical optimal solution are B∗1 , . . . , B

∗
k∗ (for some k∗ ≤ k) where each B∗i is adjacent

to B∗i+1, 1 ≤ i < k∗ and when the balls form a cycle, B∗k∗ and B∗1 are also adjacent. If k∗ = 1,
since we consider the best single cluster in Step 7 of the algorithm, we find the optimum solution.
Assume k∗ > 1. Consider the iteration in the main loop that B = B∗k∗ . Then, there is a canonical
optimal solution in H = G \ B, which forms the path B∗1 , . . . , B

∗
k∗−1. Consider the iteration in

Step 5 where q = k∗ − 1. We need to prove that BestCover(H, q) returns an optimal solution in
this case.

We prove that BestCover(H, l) returns a subset of at most l balls covering H, and the cost
of this solution is optimal when H = Gi and l = i for all 1 ≤ i ≤ q = k∗ − 1 (recall that
Gi = G[∪il=1B

∗
l ]). It is easy to see that BestCover(., .) always returns a feasible solution. We

prove the rest by induction on l. When l = 1, the function returns the ball with minimum radius
that covers all the vertices in V (H), which is trivially optimal. In particular, when H = G1 this is a
ball with the same radius as B∗1 , and is the optimum solution for H. Assume that when H = Gj−1

and l = j − 1, the function returns an optimal solution and consider the case H = Gj and l = j.

In Step 6 of Algorithm 1, when B is equal to B∗j , V (H) \ B will be equal to ∪j−1
l=1B

∗
l = V (Gj−1).

By Lemma 3, the set ∪j−1
l=1B

∗
l is in F . Thus, in Step 8 of Algorithm 1, BestCover(Gj−1, j − 1)

will be called and by the induction hypothesis, an optimal solution will be returned having cost the
same as cost of ∪j−1

l=1B
∗
l . Therefore, the union of this solution and B∗j has the same cost as cost of

∪jl=1B
∗
l and is optimal. Hence, an optimal cover will be returned in Step 10 of Algorithm 1.

Corollary 1 Given the location of singleton balls, there exists an exact algorithm for the unweighted
MSR problem.

The above corollary shows that we essentially reduced the unweighted MSR problem to the problem
of finding the singleton clusters in an optimal solution.

Here, we show that the simple algorithm that returns the best single cluster is a 3
2 -approximation

for the unweighted MSR without singletons; this is Theorem 2.
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Proof of Theorem 2. By Lemmas 1 and 2 and because no zero balls are allowed, the balls in
a canonical optimal solution form a path or a cycle. Suppose that the set of balls in a canonical
optimal solution are B∗1 , . . . , B

∗
k∗ (for some k∗ ≤ k) where each B∗i is adjacent to B∗i+1, for all

1 ≤ i < k∗ and when the balls form a cycle, B∗k∗ and B∗1 are also adjacent. Color all the balls with
odd indices with red and all the balls with even indices with blue. Let OPT = OPTr+OPTb where
OPTr and OPTb are the total radii of red and blue balls, respectively. Let nr and nb be the number
of red and blue balls, respectively. Consider the following two modifications: first increase the radius
of red balls by one to get a solution with value at most OPTr + nr + OPTb ≤ 2OPTr + OPTb.
Now, every two adjacent balls intersect and we can merge all the balls into a single ball without
increasing the cost (similar to what we did in Lemma 1). By doing the same thing for the blue
balls, we can get a single ball with cost at most OPTr + 2OPTb. Therefore, the solution of our
algorithm is less than or equal to min(2OPTr + OPTb,OPTr + 2OPTb) ≤ 3

2OPT.

Remark 2 It is interesting that we cannot beat this simple algorithm by using the natural LP
relaxation for this problem as one can show it has an integrality gap of at least essentially 3

2 [1]

We conclude this section with a simple observation. If we are given the centers of balls in a
canonical optimal solution, but we do not know the radius corresponding to each center then there
is a simple 2-approximation algorithm for unweighted MSR. Note that this may be useful for a
local search heuristic that given a set of centers swaps each center with another vertex in hope of
getting a better solution.

Proposition 4 There exists a 2-approximation algorithm for the unweighted MSR problem when
the centers of balls in a canonical optimal solution is given.

Proof. Let S be the set of centers which are adjacent to another center. Find the best single ball
in each component of G \ S and return these balls and zero balls centered around the vertices in
S as our solution. This algorithm is a 2-approximation. Notice that if two centers are adjacent
in a canonical solution, both of them must be centers of zero balls. Consider an optimal solution
and increase the size of all its non-zero balls by one. This at most doubles the cost of solution
and makes all non-zero balls intersect their adjacent balls. This also covers all zeros ball not in S,
because they must be adjacent to some non-zero ball. After merging all the intersecting balls, we
obtain a solution with cost at most twice of the optimum and a single ball in each component of
G \ S. Clearly, the cost of our solution is not more than the cost of this solution, which completes
the proof.

4 PTAS for Euclidean MSD

In this section, we present a PTAS for the MSD problem in R2. Throughout this section, we
assume that ε > 0 is a given fixed constant. We build upon the framework of Gibson et al. [10]
and introduce some new ideas to make it work for the MSD problem. Recall that Gibson et al.
present an exact algorithm (that we call GKKPV) for the MSR problem restricted to Euclidean
plane. Since our algorithm follows similar steps as the GKKPV algorithm for MSR, we first give a
brief overview of that algorithm along with the necessary lemmas for its proof of correctness.

4.1 The GKKPV Algorithm for Euclidean MSR

Consider an instance of the Euclidean MSR problem which consists of a set of points V on the plane
along with an integer k. Here, the distance between any pair of points is the Euclidean distance of
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these points in the plane. Let D be the set of distinct maximal clusters, more sepecifically the set
of discs with a center p ∈ V and radius ‖p − q‖ for some q ∈ V . Note that by Proposition 2, we
have |D| ≤ n2.

The high level description of the algorithm is as follows. An axis parallel rectangle is called
balanced if the ratio of its width to length is at least 1/3. A balanced rectangle containing a set R
of points is minimal if at least three of its sides contain a point of R. The GKKPV algorithm is
a dynamic programming algorithm which uses balanced rectangles to define the sub-problems (i.e.
the set of points enclosed in a balanced rectangle to be covered with a given number of discs). A
separator for a (balanced) rectangle is any line which is perpendicular to its longer side and cuts
it in the middle third of its longer side. The algorithm starts with a rectangle containing all the
points, denoted by R0, and cuts it into two smaller rectangles by selecting a separator line and
solves the sub-problems corresponding to smaller rectangles recursively.

A vertical or horizontal line is called critical if it either goes through a point p ∈ V or if it is
tangent to some disk in D. It is not hard to see that all vertical lines between two consecutive
critical vertical lines intersect the same set of discs. Thus, it is enough to fix an arbitrary vertical
line between any two consecutive critical vertical lines, one to the left of the leftmost critical
vertical line and one to the right of the rightmost critical vertical line and only consider these lines
as potential vertical separators. We can also do the same for the horizontal lines to reduce the
number of horizontal separators. Thus, there are only Θ(n2) vertical or horizontal lines to consider
as separators. Let L(R) denote the separators of a rectangle R from these fixed set of lines and the
leftmost and rightmost separators of it.

The algorithm has a recursive procedure DC(R, κ, T ) shown below, which takes as input a
rectangle R, an integer κ ≥ 0 and a subset T ⊆ D and computes an optimum MSR solution using
at most κ discs for the set of points in Q = {q : q ∈ V ∩ R, q is not covered by T}. The idea
is that T is the set of discs in the optimal solution that intersect R and are chosen in the higher
levels of recursion. The algorithm calls DC(R0, k, ∅) to find the best cover for V . The value of
the sub-problem for a recursive call is stored in a dynamic programming table Table[V ∩R, κ, T ].
They prove that we only need to consider |T | ≤ β = 424 to get an optimal solution (we explain
this below); this combined with the fact that the number of distinct V ∩R is O(n4) and κ ∈ O(n),
implies that the size of the dynamic programming table (and hence sub-problems to compute)
is O(n2β+5), which is polynomially bounded. In the following algorithm, we assume that I is a
dummy disc of radius ∞.

For the proof of correctness of GKKPV, the authors of [10] prove the following lemmas. The
first one is used to show that in Step 8, it is sufficient to only consider subsets of size at most 12.

Lemma 4 (Lemma 2.1 in [10]) If R is a rectangle containing a set of points P ⊆ V and O is
an optimum solution for P , then there is a separator for R that intersects at most 12 discs in O.

The next lemma essentially bounds the number of large discs of optimum intersecting a rectangle
and is used to show that it is sufficient to only consider the choices of T1 and T2 as in Step 11. The
proof of this lemma is based on the fact that the centers of discs of an optimum solution cannot
contain the centers of other discs; so you cannot pack too many of them close to each other.

Lemma 5 (Lemma 2.2 in [10]) If O is an optimum solution for a set of points P ⊆ R2 and R
is an arbitrary rectangle of length a > 0, then the number of discs in O of radius at least a that
intersect R is at most 40.

The following lemma puts a lower bound on the distance of separator lines of nested rectangles.
Its proof follows from the definition of separator lines.
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Algorithm 3 [GKKPV] Recursive Clustering : DC(R, κ, T )

Input: Balanced rectangle R, integer κ, and constant size subset T ⊂ D of optimum intersecting
R selected so far.

Output: Find best cover for points in R not covered by those in T using at most κ clusters.
1: If Table[V ∩R, κ, T ] is created then return its value; otherwise create it.
2: Let Q = {q : q ∈ V ∩ R, q is not covered by T}. If Q = ∅ then Table[V ∩ R, κ, T ] ← ∅ and

return ∅.
3: If κ = 0, let Table[V ∩R, κ, T ]← {I} (infeasible) and return {I}.
4: If |Q| = 1, let Table[V ∩R, κ, T ] be the solution with a singleton cluster and return its value.
5: Let R′ be a minimal balanced rectangle containing V ∩ R (this rectangle always can be found

in polynomial time).
6: Initialize D′ ← {I}.
7: for all choices ` ∈ L(R′) do
8: for all choices of a set D0 ⊆ D of size at most 12 that intersect ` do
9: for all choices of κ1, κ2 ≥ 0 with κ1 + κ2 + |D0| ≤ κ do

10: Let R1 and R2 be the two rectangles obtained from cutting R′ by `. Let T1 = {D ∈
T ∪ D0 : D intersects R1} and T2 = {D ∈ T ∪ D0 : D intersects R2}.

11: if |T1| ≤ β and |T2| ≤ β then
12: Recursively call DC(R1, κ1, T1) and DC(R2, κ2, T2).
13: if cost(D0 ∪Table[V ∩R1, κ1, T1] ∪Table[V ∩R2, κ2, T2]) < cost(D′) then
14: Update D′ ← D0 ∪Table[V ∩R1, κ1, T1] ∪Table[V ∩R2, κ2, T2].
15: Assign Table[V ∩R, κ, T ]← D′ and return its value.

Lemma 6 (Lemma 3.1 in [10]) Let DC(Ri, ·, ·) be an ancestor of DC(Rj , ·, ·) in the recursion
tree. Let a be the length of Rj. Let `i be the separator that resulted in the recursion subtree that
contains DC(Rj , ·, ·) and let `j be an arbitrary separator for Rj. If both of these separators are
vertical or horizontal, then the distance between them is at least a/3.

The main part of the proof of correctness is Lemma 3.2 in [10] which inductively proves the
correctness of procedure DC(R, κ, T ). Let OPT be an optimal solution. The heart of this proof is
the induction step. For that, suppose that T ⊆ OPT contains every cluster of OPT that contains
a point in V ∩ R as well as a point in V \ R, OPT′ is the set of clusters of optimum that have a
point in Q = {q : q ∈ V ∩R, q is not covered by T}, and κ ≥ |OPT′|. Note that the sole purpose
of OPT′ is to cover Q and hence, OPT′ is an optimum cover for Q. From Lemma 4, R′ has a
separator `′ that intersects a set D̃0 ⊆ D of at most 12 clusters of OPT′. Without loss of generality,
assume `′ is vertical. We can move `′ (to left or right) to become a line ` ∈ L(R′) that intersects
the same set D̃0. Consider the choice of D0 = D̃0. Let OPT1 and OPT2 be the clusters of OPT′

to the left and right of ` and consider choices of κ1 = |OPT1| and κ2 = |OPT2|. Let R1, R2, T1, T2

be exactly as in the algorithm.
Then, the proof of correctness follows inductively. One can show that, by the induction hy-

pothesis, DC(R1, κ1, T1) and DC(R2, κ2, T2) return an optimal solution. To complete the proof of
correctness, we only need to prove that |T1| ≤ β and |T2| ≤ β. The proof for |T1| ≤ β is as follows.
The proof for T2 is analogous.

Every disc in T1 comes from a guessed D0 for a separator in a higher level of the nested recursive
calls. We partition the separators of higher level recursive calls, into two groups and bound the
number of discs from each set. Assume R1 is a rectangle of length a. Let R̄ be a square of side
5a centered at the center of R1. Consider the separators of higher level calls that do not intersect
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R̄. A disc that intersects these separators and R1 has radius at least a and by Lemma 4, there
can be only 40 of them in T1, because T1 ⊆ OPT. Now, consider the rest of separators. These
separators intersect R̄. By Lemma 6, it can be seen that there are at most 5a/(a/3) + 1 = 16
vertical (horizontal) such separators. Therefore, there are at most 32×12 = 384 discs coming from
these separators in T1 that can intersect R1. Thus, we must have |T1| ≤ 384 + 40 = 424 = β.

4.2 A PTAS for Euclidean MSD

Let CH(C) be the convex hull of the points in a cluster C in Euclidean MSD. Consider two clusters
C1 and C2 of an optimum solution. If CH(C1) and CH(C2) intersect, we can replace the two
clusters with one containing all the points in C1 ∪C2 without increasing the total diameter. Thus,
without loss of generality, we can focus on the solutions in which the convex-hulls of their clusters
are disjoint. Therefore, each cluster can be unambiguously defined by its convex-hull. This convex-
hull belongs to the set of convex polygons having all corners from V . Let P be the set of these
convex polygons. For this reason, from now on, when we say a cluster, we consider a convex polygon
in P.

There are three main difficulties in extending the arguments of GKKPV for MSR to MSD. First,
as we have seen before in the MSR problem, one can bound the number of distinct maximal clusters
that can appear in a solution by n2. This allows one to enumerate over all possible clusters (and
more generally over all constant size subsets of clusters) that appear in an optimal solution. This
fact is critically used in the GKKPV algorithm. For the MSD problem, we do not have such a nice
(i.e. polynomially bounded) characterization of clusters that can appear in an optimum solution.
To overcome this obstacle, we show that for every cluster C, there is a cluster C ′ enclosing it whose
diameter is at most a factor (1 + ε) of the diameter of C, and C ′ belongs to a polynomial size set
of polygons. The critical property of C ′ is that it is simpler to describe: it is determined by O(1/ε)
points of input.

The second difficulty in adapting the GKKPV algorithm is that they show one cannot have too
many large clusters close to a rectangle of comparable length in any optimum solution (Lemma 5).
To prove this, they use the simple fact that no disc (cluster) in an optimum solution can contain
the center of another disc (cluster) as otherwise one can merge the two clusters into one with
smaller total radius. In the MSD problem, clusters are not necessarily defined by a disc and there
is no notion of center here. We can potentially have many thin (e.g. non-fat triangles) and non-
overlapping polygons of an optimum solution inside a region. We can still argue that in an optimum
solution, we cannot have too many large clusters in a bounded region but the packing argument is
different from that of [10] (see Lemma 10). Third, when we fix the first two issues, some parts of
the correctness proof fail and we need to prove some extra properties to handle this new difficulty.

We start by stating a special case of Jung’s theorem about the minimum enclosing ball of a set
of points in Rn (i.e., the special case that n = 2) and a definition that will be used later.

Lemma 7 [13] A convex polygon in R2 with diameter D has an enclosing circle with radius at
most

√
3D/3.

Definition 3 A σ-restricted polygon is a convex polygon with at most σ sides such that each side
contains (not necessarily at the corners) at least two points of V .

We emphasize that each corner of a σ-restricted polygon is not necessarily a point of V ; it is
obtained from the intersection of two lines each of which contains at least two points of V . We need
the following lemma. It was brought to our attention that this lemma (and in fact its extensions
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to higher dimensions) could be implied from Theorem 4.1 of [7]. We present our own proof here
for completeness.

Lemma 8 For any convex polygon P and fixed ε > 0, there is a σ(ε)-restricted polygon Q with

σ(ε) = 13 + 4
√

3π
3

1
ε ≈ 13 + 7.26

ε , satisfying the following properties:

1. Q contains P ,

2. diam(Q) ≤ (1 + ε) diam(P ),

3. For any vertical or horizontal line `, ` intersects P if and only if ` intersects Q.

Proof. The sides of Q are extensions of a subset of sides of P that we choose. In other words,
we choose a subset of sides of P , consider the straight lines extending these sides and the convex
polygon defined by these lines is the polygon Q. The number of sides of Q is exactly equal to the
size of the chosen subset of sides of P . Clearly, if we choose Q this way, it encloses P and therefore
contains P . We show there is a subset of size σ(ε) of sides of P , call it S, such that the resulting
polygon Q satisfies Properties 2 and 3 as well.

Let us order the vertices of P in clock-wise order u1, u2, . . . (starting from the left-most corner of
P ). We traverse the sides of P in clockwise order and choose some of them along the way, starting
with selecting u1u2, and select only a small number of sides in total. In order to satisfy Property
3, we also make sure that the left-most, top-most, right-most, and bottom-most corners of P are
selected to be in Q (along with the two sides defining those corners of P ). So first, we choose the
(at most) 8 sides defining each of these (at most) 4 corners of P and let S consists of these sides.
The remaining sides added to Q are obtained by traversing on the sides of P (in clock-wise order)
starting from u1u2 and we add them (if not already among those 8 sides) according to the following
rules.

Let D be diam(P ). Suppose the last side chosen was uiui+1. We call ujuj+1 (j ≥ i + 1)
dismissible with respect to uiui+1 if it satisfies both of the following conditions (see Figure 3):

• its angle, say θ, with uiui+1 is less than π/2,

• dist(ui+1, uj) ≤ εD/2.

Let j be the largest index such that ujuj+1 is dismissible with respect to the last chosen side. Then,
we add this side to S, and continue until we arrive at u1u2. We let Q be the convex polygon defined
by the set of straight lines obtained from the sides in S. Note that Q satisfies Property 3.

ui+1 uj

uj+1

v

y

ui

x

θ

X

Y

Figure 3: The solid sides uiui+1 and ujuj+1 belong to P . The extension of sides uiui+1 and ujuj+1

in polygon Q are shown with dashed lines. Line ` is shown with a solid line. The part of ` outside
P has length x which is less than the length of side ui+1uj .
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Let R be the perimeter of P . By Lemma 7, P can be enclosed by a circle of perimeter 2
√

3πD/3
and hence, we have R ≤ 2

√
3πD/3. It is not hard to see that we choose at most 2π/(π/2) sides,

because of the first condition in the definition of a dismissible side and we choose at most R/(εD/2)

sides, because of the second condition. Therefore, we choose a total of at most 1 + 4 + 4
√

3π
3

1
ε sides

in our traversal. Given that we add at most 8 sides for the left-most, top-most, right-most, and

bottom-most vertices of P , we have |S| ≤ 13 + 4
√

3π
3

1
ε .

It only remains to show that diam(Q) ≤ (1+ ε)D. It is enough to show that for any two corners
of Q their distance is at most (1 + ε)D. Consider two arbitrary corners of Q, say v and w, and the
line segment ` connecting these points. At most two segments of ` may be outside of P and this
happens when both v and w are not corners of P . The section of ` that lies inside P has clearly
length at most D. We prove that each of the (at most) two segments of ` which lies in between P
and Q has length at most εD/2. Let us assume that v is the corner obtained from the two lines
that contain sides uiui+1 and ujuj+1 of P and consider the segment of ` that has v as an end-point
(see Figure 3). Let X be the other end-point of it, which is a cross point of P and `. We also name
the cross-point of vw and ui+1uj point Y . Let x be the length of vX and let y be the length of
vY . Because of the convexity of P , we must have y ≥ x. Consider the triangle ui+1vuj . Since the
angle of lines uiui+1 and ujuj+1, θ, is less than π/2, the angle ̂ui+1vuj ≥ π/2, which implies ui+1uj
is the longest side of triangle ui+1vuj . We know that the length of ui+1uj is at most εD/2. We
also know that a segment enclosed in a triangle has length at most equal to the longest side of the
triangle. Thus, we must have y ≤ εD/2 which implies x ≤ εD/2, as wanted.

Let OPT denote an optimal solution. The above lemma implies that for every cluster P of
OPT, there is a σ(ε)-restricted polygon Q containing all the points of P such that diam(Q) ≤
(1+ ε) diam(P ). Thus, if we replace each cluster P with the set of points in the corresponding σ(ε)-
restricted polygon (breaking the ties for the points that belong to different σ(ε)-restricted polygons
arbitrarily), we find a (1 + ε)-approximate solution. This enables us to use essentially the same
Algorithm 3 (i.e., GKKPV algorithm), where we enumerate over σ(ε)-restricted polygons (instead
of all clusters), which is a polynomially bounded set of polygons.

Let R0 be a rectangle containing all the points of V . First, we define a Θ(n) size set of separators.
The notion of a balanced rectangle and a separator line is the same. A vertical (horizontal) line
is called critical if it passes through a point in the input. It is not hard to see that all vertical
(horizontal) lines between two consecutive critical vertical (horizontal) lines are equivalent in the
sense that they intersect the same set of clusters (recall that the clusters are convex polygons).
Choose an arbitrary vertical (horizontal) line between each consecutive vertical (horizontal) critical
lines. As before, let L(R) show the separators of a rectangle R from these chosen lines and the
leftmost and rightmost separators of it.

We apply the following modifications to Algorithm 3 to obtain our PTAS (Algorithm 4). We
substitute D with P, which is the set of all σ(ε)-restricted polygons, i.e., for each σ(ε)-restricted
polygon Q, the set of points in Q forms a cluster in P. By definition of a σ(ε)-restricted polygon,
|P| ∈ O(n2σ(ε)) which is a polynomial in the size of input for a fixed ε > 0.

Note that for each cluster P ∈ P, there is a cluster Q ∈ P with diam(Q) ≤ (1 + ε) · diam(P ),
by Lemma 8. We fix an arbitrary such cluster Q and call it the representative of P and denote it
by Rep(P ). Note that (again by Lemma 8):

Corollary 2 A vertical (or horizontal) line intersects a cluster P if and only if it intersects Rep(P ).
In particular for every axis-parallel rectangle R, P intersects R if and only if Rep(P ) intersects R.

Although we have an exponential number of clusters in P, we have a polynomially bounded size
set of representatives. For a set of clusters P̃, we use Rep(P̃) to denote the set of clusters in P
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Algorithm 4 Recursive Clustering for Euclidean MSD: DC(R, κ, T )

Input: Balanced rectangle R, integer κ, and constant size subset T ⊂ D of optimum intersecting
R selected so far.

Output: Find best cover for points in R not covered by those in T using at most κ clusters.
1: If Table[V ∩R, κ, T ] is created then return its value; otherwise create it.
2: Let X = {x : x ∈ V ∩ R, x is not covered by T}. If X = ∅ then Table[V ∩ R, κ, T ] ← ∅ and

return ∅.
3: If κ = 0, let Table[V ∩R, κ, T ]← {I} (infeasible) and return {I}.
4: If |X| = 1, let Table[V ∩R, κ, T ] be the solution with a singleton cluster and return its value.
5: Let R′ be a minimal balanced rectangle containing V ∩R.
6: Initialize P ′ ← {I}.
7: for all choices ` ∈ L(R′) do
8: for all choices of a set P0 ⊆ P of size at most 4 that intersect ` do
9: for all choices of κ1, κ2 ≥ 0 with κ1 + κ2 + |P0| ≤ κ do

10: Let R1 and R2 be the two rectangles obtained from cutting R′ by `. Let T1 = {Q ∈
T ∪ P0 : Q intersects R1} and T2 = {Q ∈ T ∪ P0 : Q intersects R2}.

11: if |T1| ≤ β and |T2| ≤ β then
12: Recursively call DC(R1, κ1, T1) and DC(R2, κ2, T2).
13: if cost(P0 ∪Table[V ∩R1, κ1, T1] ∪Table[V ∩R2, κ2, T2]) < cost(P ′) then
14: Update P ′ ← P0 ∪Table[V ∩R1, κ1, T1] ∪Table[V ∩R2, κ2, T2].
15: Assign Table[V ∩R, κ, T ]← P ′ and return its value.

that are representative of clusters in P̃. In particular, Rep(OPT) are the representative clusters of
OPT.

We keep the same dynamic programming table, Table[V ∩R, κ, T ], which stores a cover with
at most κ clusters of P having cost within (1 + ε) factor of the optimum cover for the set of points
{q : q ∈ V ∩ R, q is not covered by T}. We only consider sets T ⊆ P with size at most β ≤ 83.
Similar to GKKPV algorithm, we later show that considering sets of at most this size is enough
to get a solution within factor 1 + ε of the optimum value. As a result, the size of the table is
polynomially bounded. Also, we substitute D0 with a set P0 ⊆ P in line 8 and change the bound
of 12 for |D0| to a bound of 4 for |P0|. This comes from Lemma 9 which is the equivalent version of
Lemma 4 for the Euclidean MSR problem. In addition, we use β = 83 for the bounds of |T1| and
|T2| in line 11. Also, Lemma 10 is the equivalent version of Lemma 5.

Lemma 9 Suppose R is a rectangle containing a set of points V ′ ⊆ V and O is an optimum
solution of MSD on V ′. Let P ′ be the set of representatives of clusters of O. Then there is a
separator ` for R such that it intersects at most 4 clusters of O (and their representatives in P ′).

Proof. Let a be the length of the longer side of R. If one chooses a separator ` uniformly at
random, then the probability that ` intersects a cluster P ∈ O is at most diam(P )/(a/3) (recall
that the separators are in the middle one third of a rectangle). So the expected number of clusters
of O that intersect ` is

∑
P∈O 3 diam(P )/a ≤ 3 · cost(O)/a ≤ 3

√
2 < 4.25, because cost(O) ≤

√
2a

as they all are inside R. So there is a separator ` that intersects at most 4 clusters of O, and by
Corollary 2, it intersects at most 4 representative clusters of them in P ′.

Lemma 10 A rectangle R of length a intersects at most 3 clusters of OPT with diameter at least a.

Proof. Let OPT′ be the set of clusters of OPT with diameter at least a that are intersecting R.
By way of contradiction, assume that C1, C2, C3, and C4 are four clusters of OPT′ with diameters
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d1, d2, d3, and d4 each intersecting R. Without loss of generality, assume that d1 ≥ d2 ≥ d3 ≥ d4 ≥
a. This implies that the distance of any two points u, v ∈ C1∪C2∪C3∪C4 is at most d1 +d2 +

√
2a

since the total distance from u and v to R is at most d1 +d2 and the diameter of R is at most
√

2a.
But d1 + d2 +

√
2a < d1 + d2 + d3 + d4, so if one replaces these 4 clusters of OPT with one single

cluster (containing all those points), the total diameter decreases, which is a contradiction.

Corollary 3 A rectangle R of length a intersects at most 3 clusters, which are representatives of
clusters of diameter at least a in OPT.

Note that Lemma 6 still holds here as it is based on the properties of balanced rectangles and
separator lines, which we did not change. We prove the following Lemma which is the equivalent
version of Lemma 3.2 in [10].

Lemma 11 Suppose that DC(R, κ, T ) is called at some level of recursion by top-level invocation
to DC(R0, k, ∅) in Algorithm 4. Let T ′ ⊆ OPT be those clusters of OPT that have a point in
both V ∩ R as well as a point in V \ R and suppose T = Rep(T ′). Also, let X ′ = {x : x ∈
V ∩R, x is not covered by T ′} and X = {x : x ∈ V ∩R, x is not covered by T}, and OPT′ be the
set of clusters of OPT that contain a point in X ′. Suppose that κ ≥ |OPT′|. Then after calling
DC(R, κ, T ), Table(V ∩R, κ, T ) contains a κ-cover for X whose cost is at most (1+ε)·cost(OPT′).

Proof. The proof is similar to that of Lemma 3.2 in [10] and is by induction on |V ∩R|. The proof
of base cases is straightforward. When |X| < 2, the reader can verify that the algorithm returns
an optimal solution in the lines 2 to 4.

Consider the case that |X| ≥ 2, and recall that R′ is a balanced rectangle over points of V ∩R.
Without loss of generality, assume the separators of R′ are vertical. First note that OPT′ is an
optimum solution for X ′ with |OPT′| clusters since each point in (V ∩ R) \ X ′ is covered by T ′.
Therefore, using Lemma 9, R′ has a separator `′ that intersects at most 4 clusters of OPT′; let S
be that set of clusters of OPT′ and let P̃0 = Rep(S). We can move `′ to be one of the separators
in L(R′); so we consider the choice of ` ∈ L(R′) in the algorithm that intersects only set S of those
in OPT′ and consequently, only P̃0.

Consider the iterations of the loops in lines 7 and 8 where ` is chosen as above and P0 is chosen
to be P̃0, and κ1 and κ2 are the numbers of clusters of OPT′ to the left and right of `, respectively.
Similarly, we denote the subsets of OPT′ to the left and right of ` by OPT′1 and OPT′2, respectively.
We define T ′1 = {C ∈ T ′∪S : C intersects R1} and T ′2 = {C ∈ T ′∪S : C intersects R2}. Note that
from the definitions of T , T ′, S, P0, and Corollary 2, it follows that T1 = Rep(T ′1) and T2 = Rep(T ′2).
Observe that T ′1 ⊆ OPT and T ′1 contains every cluster of OPT that contains a point in both V ∩R1

as well as a point in V \ R1. Also, OPT′1 is the set of clusters of OPT′ that contain points in
X ′1 = {x : x ∈ V ∩R1, x is not covered by T ′1} and |OPT′1| = κ1. Let us define X1 = {x : x ∈ V ∩
R1, x is not covered by T1}. Thus, we can use induction hypothesis on the call to DC(R1, κ1, T1)
so that the entry Table[V ∩R1, κ1, T1] contains a κ1-cover of X1 of cost at most (1+ε)cost(OPT′1).
Similarly, after call DC(R2, κ2, T2), the entry Table[V ∩ R2, κ2, T2] contains a κ2-cover of X2 of
cost at most (1 + ε)cost(OPT′2), where X2 = {x : x ∈ V ∩R2, x is not covered by T2}. Thus, the
clusters in P0 ∪ Table[V ∩ R1, κ1, T1] ∪ Table[V ∩ R2, κ2, T2] form a κ-cover of X with cost at
most (1 + ε)cost(S) + (1 + ε)(cost(OPT′1) + cost(OPT′2)) ≤ (1 + ε) · cost(OPT′).

It only remains to show that |T1|, |T2| ≤ 83 and as a result, we actually call DC(R1, κ1, T1) and
DC(R2, κ2, T2). The argument for this is similar to that in Lemma 3.2 of [10] whose outline was
given at the end of Section 4.1. We prove this for |T1| and the case of |T2| is analogous. Suppose we
have called DC(R̃0, ·, ·), . . . ,DC(R̃t, ·, ·) before arriving at instance (R, κ, T ), where R̃t = R. Then
it follows that T1 ⊆

⋃t
j=0 P0(R̃j). Assuming that R1 in the algorithm has length a, we take R̄ to be
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the square of side 3a with the same center as R1. By Lemma 6, the number of vertical (horizontal)
separators `(R̃0), . . . , `(R̃t) that intersect R̄ is at most (3a)/(a/3) + 1 = 10 (as they are at least a/3
apart). Therefore, using Lemma 9, the number of clusters of T1 that belong to P0(R̃j) (for those
j’s) is at most 4× 20 = 80, i.e., 4 for each of 20 vertical and horizontal separators that intersect R̄.
Now we bound the number of clusters of T1 that belong to a P0(R̃j) where `(R̃j) does not intersect
R̄. These clusters must have diameter at least a as they intersect both R1 as well as `(R̃j). From
Corollary 3, the number of such clusters is bounded by 3. Thus, we have |T1| ≤ 83.

It follows from Lemma 11 that after termination of DC(R0, k, ∅), the entry Table[V, k, ∅]
contains a (1 + ε)-approximate solution for V . This completes the proof of Theorem 3.

Remark 3 We believe that this algorithm can be extended to three-dimensional Euclidean space
or any fixed dimension Euclidean space. The extension of all lemmas (except Lemma 8) would
be similar to the extension of [10] for the MSR problem. The extension of Lemma 8 to higher
dimensions would be based on Theorem 4.1 of [7].

5 MSD with Constant k

Recall that Hansen and Jaumard [11] presented an exact algorithm for the MSD problem when
k = 2, but the case of constant k > 2 has been open. The reader may ask why their algorithm
fails to generalize to this case. Let us consider the case of k = 3. The first step of their algorithm
is to guess the diameter of the clusters, which we can do for the case of k = 3 in polynomial time,
too. Then, they reduce the problem of finding a feasible solution with these guessed diameters to
a 2-SAT problem. They use a Boolean variable to represent the cluster of each vertex and for any
pair of vertices u and v, they add between zero to two clauses to the SAT formula based on the
distance between u and v. For k = 3, the variable that shows the cluster of each vertex should
have 3 values. Therefore, if we try to model the problem this way, we need to solve a constraint
satisfaction problem which is hard in general case.

Our approach is as follows. Define a canonical optimal solution as before, i.e., among the
optimal solutions, a canonical optimal solution is a solution with the minimum possible number of
clusters. We denote the set of all the distinct distances between vertices in the input graph by D.
We have the following trivial observations:

Observation 1 Let C∗1 and C∗2 be two clusters in a canonical optimal solution. There is a vertex
v in C∗1 and a vertex u in C∗2 such that dist(u, v) > diam(C∗1 ) + diam(C∗2 ).

Observation 2 The size of D is at most n2. In addition, the diameter of any cluster in an optimal
solution is in D.

The general idea of the algorithm (Algorithm 5) is as follows. Since the size of D is polynomially
bounded, we can guess the diameters of clusters in an optimal solution (done in Line 3 of Algo-
rithm 5). Consider a canonical optimal solution and two clusters C∗1 and C∗2 in it with diameters
D1 and D2 that we have already guessed. By Observation 1, there is a vertex v in C∗1 and a vertex
u in C∗2 such that dist(u, v) > diam(C∗1 ) + diam(C∗2 ). Denote by V1 and V2 the set of vertices with
distance at most D1 from v and distance at most D2 from u, respectively. The crucial observations
are that C∗1 and C∗2 are subsets of V1 and V2, respectively and V1 and V2 are disjoint. As a result,
if we guess the vertices u and v (done in Line 4) and compute V1 and V2, we have separated the
set of vertices that can be in C∗1 and C∗2 . If we do the same process for all pairs of clusters, we can
separate the vertices that can be in a specific optimal cluster from the vertices in other optimal
clusters, which is equivalent to finding the clusters in an optimal solution.
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Algorithm 5 BestCover(G, k)

Input: A graph G and an integer k > 0
Output: An optimal clustering C
1: Initialize C with the cluster containing all the vertices.
2: for all 2 ≤ q ≤ k do
3: for all choices of q values D1, . . . , Dq from D do
4: for all choices of q groups S1, . . . Sq of at most q − 1 vertices each do
5: for all 1 ≤ i ≤ q do
6: Compute Vi the set of vertices with distance at most Di from all the vertices in Si.
7: if there are two vertices in Vi with distance more than Di then
8: Discard this choice of S1, . . . , Sq and go to Step 4.
9: if ∪qi=1Vi 6= V then

10: Discard this choice of S1, . . . , Sq and go to Step 4.
11: if

∑q
i=1Di is less than cost of C then

12: Update C with the solution V1, . . . , Vq.
13: return C.

The correctness of this algorithm is stated in the following theorem, which implies Theorem 4.

Theorem 6 Algorithm 5 returns an optimal solution for the MSD problem in time nO(k2), which
is polynomial for any fixed k.

Proof. We first show that the algorithm runs in time nO(k2). Assume we know the distances
between all the pairs of vertices and the numbers in set D by running an all-pairs-shortest-path
algorithm in a preprocessing step. There are O(k) choices in Step 2. In Step 3, we choose at most
k values from the set D. By Observation 2, there are O(n2k) choices for this step. In Step 4, we
choose at most k(k − 1) vertices from V . There are O(nk(k−1)) choices for this step. It is not hard
to see that the body of the for-loop in Step 4 takes O(kn2). As a result, the final running time is
in O(k2nk

2+k+2), which is a polynomial for constant k.
One can verify that when the algorithm is in Step 11, V1, . . . , Vq is a feasible solution with cost∑q
i=1Di. Therefore, we just need to prove that for some choices in the for-loops, we encounter an

optimal solution in Step 11. Consider a canonical optimal solution C∗ = {C∗1 , . . . , C∗k∗}, with k∗ ≤ k.
Consider the iteration in Step 2 that q = k∗. By Observation 2, we have diam(C∗i ) ∈ D for all
1 ≤ i ≤ q. Consider the iteration in Step 3 that Di = diam(C∗i ) for all 1 ≤ i ≤ q. By observation 1,

for all 1 ≤ i 6= j ≤ q, there are vertices in C∗i and C∗j , say v
(i)
j and v

(j)
i , respectively, such that

dist(v
(i)
j , v

(j)
i ) > Di + Dj . Consider the iteration in Step 4 that Si = {v(i)

j : 1 ≤ j ≤ q, j 6= i}. We
shortly prove that for each 1 ≤ i ≤ q, set Vi computed from this choice of Si is equal to C∗i and
as a result, for the above mentioned choices in the for-loops, we encounter an optimal solution in
Step 11.

Clearly, we have Si ⊆ C∗i and hence, each vertex in C∗i has distance at most Di from all
the vertices in Si. Thus, we must have C∗i ⊆ Vi. In addition, for any i 6= j, we must have
Vi ∩ Vj = ∅. The reason is that if there is at least a vertex, say u, in the intersection of these sets,

by definition of Vi and Vj , we have dist(v
(i)
j , u) ≤ Di and dist(v

(j)
i , u) ≤ Dj . Therefore, we must

have dist(v
(i)
j , v

(j)
i ) ≤ Di + Dj , which is a contradiction. We claim that Vi \ C∗i = ∅ and in other

words, Vi = C∗i . Assume there is at least one vertex in Vi \C∗i , say u. Let C∗j be a cluster covering
u where trivially j 6= i. Clearly, we have u ∈ Vj that means u ∈ Vi ∩Vj , which is a contradiction.
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6 Concluding Remarks

We presented an exact algorithm for the unweighted MSR problem when no singleton clusters are
permitted. To get the exact algorithm, we proved that in the absence of zero balls, each connected
component of the input graph is covered by a path or cycle of balls in a canonical optimal solution.
By using this structural property, we designed an exact dynamic programming algorithm that runs
in polynomial time.

The difficult core of the MSR problem is to find the location of zero balls. If we can find
these locations even approximately, our exact algorithm solves the rest of the problem and at least,
we can hope for a good approximation algorithm for this case. The current best ratio even for
unweighted graphs is 3.504, which is the same for the general metrics. To solve the difficulty with
zero balls, one might try the widely used LP-based and local search techniques. Unfortunately, the
natural ways to utilize these techniques do not seem promising as both the LP and any standard
local search approach have large gaps [1]. Even for the case that there are no zero balls, the gap of
standard LP is at least 3

2 [1]. It seems that to design better approximation for MSR, one needs to
introduce substantially new techniques.

We also presented a PTAS for the Euclidean MSD problem that partially answers the open
question asked by Doddi et al. [5], but the complexity of the Euclidean MSD problem remains
open. Before our algorithm, the best approximation ratio for this problem was 2. Finally, we
settled another open question of Doddi et al. [5] regarding the complexity of the MSR problem
when k is constant. We presented a polynomial time exact algorithm for this case, while the best
previous result was a 2-approximation algorithm.

There are still several interesting questions left open related to the considered problems. Perhaps
the most interesting question is to obtain a PTAS for general MSR. The existence of a QPTAS
for this problem [10] is a strong evidence that there could be a PTAS. Also, given a fixed set of
centers, we gave a 2-approximation algorithm for the problem of assigning a radius to each center
to minimize the total radii. It is an interesting question to find an algorithm with an improved
ratio for this case. For MSD on Euclidean metrics, the complexity of the problem is open. We
suspect that unlike MSR (which has an exact algorithm on Euclidean metrics), the Euclidean MSD
problem is NP-hard. Finally, we presented an exact algorithm for the MSD problem with constant
k, but the running time is too high even for small k. It will be useful if one can find a more efficient
algorithm for this case.

Acknowledgment: We would like to thank two anonymous referees for their great comments
and suggestions, especially for bringing to our attention the connection of Lemma 8 and [7].
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