
Approximation Algorithms for Minimum-Load k-Facility Location∗

Sara Ahmadian† Babak Behsaz‡ Zachary Friggstad§ Amin Jorati¶

Mohammad R. Salavatipour‖ Chaitanya Swamy∗∗

Abstract

We consider a facility-location problem that abstracts settings where the cost of serving the clients
assigned to a facility is incurred by the facility. Formally, we consider the minimum-load k-facility lo-
cation (MLkFL) problem, which is defined as follows. We have a set F of facilities, a set C of clients,
and an integer k ≥ 0. Assigning client j to a facility f incurs a connection cost d(f, j). The goal
is to open a set F ⊆ F of k facilities, and assign each client j to a facility f(j) ∈ F so as to min-
imize maxf∈F

∑
j∈C:f(j)=f d(f, j); we call

∑
j∈C:f(j)=f d(f, j) the load of facility f . This problem

was studied under the name of min-max star cover in [6, 2], who (among other results) gave bicriteria
approximation algorithms for MLkFL for when F = C. MLkFL is rather poorly understood, and only
an O(k)-approximation is currently known for MLkFL, even for line metrics.

Our main result is the first polytime approximation scheme (PTAS) for MLkFL on line metrics (note
that no non-trivial true approximation of any kind was known for this metric). Complementing this,
we prove that MLkFL is strongly NP-hard on line metrics. We also devise a quasi-PTAS for MLkFL
on tree metrics. MLkFL turns out to be surprisingly challenging even on line metrics, and resilient to
attack by a variety of techniques that have been successfully applied to facility-location problems. For
instance, we show that: (a) even a configuration-style LP-relaxation has a bad integrality gap; and (b) a
multi-swap k-median style local-search heuristic has a bad locality gap. Thus, we need to devise various
novel techniques to attack MLkFL.

Our PTAS for line metrics consists of two main ingredients. First, we prove that there always exists a
near-optimal solution possessing some nice structural properties. A novel aspect of this proof is that we
first move to a mixed-integer LP (MILP) encoding the problem, and argue that a MILP-solution mini-
mizing a certain potential function possesses the desired structure, and then use a rounding algorithm for
the generalized-assignment problem to “transfer” this structure to the rounded integer solution. Comple-
menting this, we show that these structural properties enable one to find such a structured solution via
dynamic programming.

∗A preliminary version of this paper appeared in Proceedings of APPROX 2014.
†Dept. of Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1. Supported by the last author’s NSERC

grant 327620-09. Email: sahmadian@gmail.com
‡Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. Email:

behsaz@ualberta.ca. Supported in part by NSERC.
§Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. Email:

zacharyf@cs.ualberta.ca.
¶Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. Email:

jorati@ualberta.ca.
‖Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. Email:

mrs@ualberta.ca. Supported by NSERC.
∗∗Dept. of Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1. Supported in part by NSERC

grant 327620-09, an NSERC Discovery Accelerator Supplement Award, and an Ontario Early Researcher Award. Email:
cswamy@math.uwaterloo.ca.

1 Introduction

Facility-location (FL) problems have been widely studied in the Operations Research and Computer Science
communities (see, e.g., [16] and the survey [19]), and have a wide range of applications. These problems
are typically described in terms of an underlying set of clients that require service, and a candidate set of
facilities that provide service to these clients. The goal is to determine which facilities to open, and decide
how to assign clients to open facilities to minimize some combination of the facility-opening and client-
connection (a.k.a service) costs. An oft-cited prototypical example is that of a company wanting to decide
where to locate its warehouses/distribution centers so as to serve its customers in a cost-effective manner.

We consider settings where the cost of serving the clients assigned to a facility is incurred by the facility;
for instance, in the above example, each warehouse may be responsible for supplying its clients and conse-
quently bears a cost equal to the total cost of servicing its clients. In such settings, it is natural to consider the
problem of minimizing the maximum cost borne by any facility. Formalizing this, we consider the following
mathematical model: we have a set F of facilities and a set C of n clients. Assigning client j to a facility f
incurs a connection cost or service cost d(f, j). There are no facility-opening costs. The goal is to open k
facilities from F and assign each client j to an open facility f(j) so as to minimize the maximum load of
an open facility, where the load of an open facility f is defined to be

∑
j∈C:f(j)=f d(f, j); that is, the load

of f is the total connection cost incurred in serving the clients assigned to it. We call this the minimum-load
k-facility location (MLkFL) problem. As is common in the study of facility-location problems, we assume
that the clients and facilities lie in a common metric space, so the d(f, j)s form a metric.

Despite the extensive amount of literature on facility-location problems, there is surprisingly little
amount of work on MLkFL and it remains a rather poorly understood problem (see [18]). One can in-
fer that the problem is NP-hard, even when the set of open facilities is fixed, via a reduction from the
makespan-minimization problem on parallel machines, and that an O(k)-approximation can be obtained
by running any of the various O(1)-approximation algorithms for k-median [4, 12, 11, 3, 15] (where one
seeks to minimize the sum of the facility loads). No better approximation algorithms are known for MLkFL
even on line metrics, and this was mentioned as an open problem in [18]. The only works on approxi-
mation algorithms for this problem that we are aware of are due to Even et al. [6] and Arkin et al. [2],
both of which refer to this problem as min-max star cover (where F = C).1 Both works obtain bicri-
teria approximation algorithms for MLkFL in general metrics, which means that the algorithm returns
a solution with near-optimal maximum load but may need to open more than k facilities. For MLkFL
on star metrics and when F = C, some O(1)-approximation algorithms follow from work on minimum-
makespan scheduling and [6, 2] (see “Related work”).

Our results. We completely resolve the status of min-load k-FL on line metrics. As we elaborate below
(see “Our techniques”), MLkFL turns out to be surprisingly challenging even on line metrics, and seems
resilient to attack by a variety of techniques that have been successfully applied to facility-location problems,
including LP-rounding and primal-dual methods. Our main result is that despite these difficulties, one can
devise a polynomial-time approximation scheme (PTAS) for MLkFL on line metrics (Theorem 3.1). As
mentioned earlier, this is the first approximation algorithm for MLkFL on line metrics that achieves anything
better than an O(k)-approximation.

We also consider MLkFL in tree metrics (Section 4). First, we observe that the quasi-PTAS obtained by
Jorati [13] for line metrics extends to yield a quasi-PTAS (QPTAS) for tree metrics (Theorem 4.3). Next,
we consider the special case of star metrics, but in the more-general setting where clients may have non-
uniform integer demands {Dj}j∈C and the demand of a client may be split integrally between several open
facilities. We now define the load of a facility f to be

∑
j xfjd(f, j), where xfj ∈ Z≥0 is the amount

of j’s demand that is assigned to f . We devise a 14-approximation algorithm for MLkFL on star metrics
1Jorati [13], in his Master’s thesis, obtained a preliminary version of some of our current results.

1

with non-uniform demands (Theorem 5.1). Notice that when we restrict the metric to be a star metric, we
cannot create colocated copies of a client (without destroying the star topology), which makes the setting
with non-uniform demands strictly more general than the unit-demand setting.

In Section 6, we obtain various computational-complexity and integrality-gap lower bounds for MLkFL.
Complementing our PTAS, we show (Theorem 6.1) that MLkFL is strongly NP-hard on line metrics (and
hence, a PTAS is the best approximation that one can hope to achieve in polytime unless P =NP). Finally, we
justify our comment about the difficulty of tackling MLkFL via the various LP-based methods developed for
facility-location problems by showing that even a configuration-style LP-relaxation for MLkFL—where we
“guess” the optimum valueB and have a variable xf,S for every facility f and every possible set S of clients
such that

∑
j∈S d(f, j) ≤ B—has an integrality gap of Ω(k/ log k) even for line metrics (Theorem 6.2).

Note that the configuration LP is stronger than the natural LP-relaxation for MLkFL. Moreover, this holds
even if the graph consisting of the edges (j, f) such that d(j, f) ≤ B—call these feasible edges—is con-
nected. This is in contrast with capacitated k-center [5, 1], where a large integrality gap for the natural LP
arises due to the fact that the graph of feasible edges is disconnected.

Our techniques. Before detailing the techniques underlying our PTAS for line metrics, we describe some
of the difficulties encountered in applying the machinery developed for (other) facility-location problems
to MLkFL (even on line metrics). One prominent source of techniques for facility location are LP-based
methods. However, our integrality-gap lower bound for line metrics points to the difficulty in leveraging
such LP-based insights. In fact, we do not know of any LP-relaxation for MLkFL with a constant integrality
gap even on line metrics. An approach that often comes to the rescue for FL problems when there is
no known good LP-relaxation (e.g., capacitated FL) is local search, however the min-max nature of MLkFL
makes it difficult to exploit this. In particular, one can come up with simple examples where a k-median style
multi-swap local-search algorithm does not yield any bounded approximation ratio even for line metrics; see
Section 7. (This is also true for the (uncapacitated) k-center problem, which is another min-max problem,
and we are not aware of any local-search-based algorithms for k-center.)

At an intuitive level, one way to explain some of the difficulties encountered in dealing with MLkFL is
as follows. Much of the machinery used for FL problems relies explicitly or implicitly on the fact that the
underlying problem is “stable under perturbations”: suppose that one perturbs the instance by “moving” each
client j by an amount δj , where either: (a)

∑
j∈C δj can be bounded in terms of the optimal value (for min-

sum problems); or (b) each δj can be bounded in terms of the optimal value (for min-max problems). Then,
any near-optimal solution to the perturbed instance yields a near-optimal solution to the original instance.
This principle forms the basis of various clustering-based algorithms that simplify the original instance by
aggregating “nearby” groups of clients into clusters, and yields approximation algorithms for a variety of
FL problems including uncapacitated FL, k-median, uncapacitated and capacitated k-center [5, 1].

This principle however does not apply to MLkFL since connection costs are aggregated for each facility.
For instance, by moving clients we may end up with a perturbed instance Π′ with a location v having a
large set S of colocated clients and hence open a facility f at v that serves all of S, but the actual load
induced by S at f may be arbitrarily large. Moreover, to ensure that near-optimal solutions to Π′ translate
to near-optimal solutions to the original instance, one needs to solve a harder variant of the problem for Π′

(where we have some “capacity constraints”), which defeats the purpose of moving to Π′ in the first place.
Given these difficulties, one needs to find new venues of attack for min-load k-FL. Our PTAS for line

metrics consists of two main ingredients. First, we prove that there always exists a near-optimal solution
possessing some nice structural properties (Section 3.1). Second, we show in Section 3.2 that these structural
properties enable one to find such a structured solution via dynamic programming (DP).

We now give a high-level overview of these two ingredients. First, we show that, for any ε > 0, there
is a (1 + O(ε))-approximate solution, where the intervals corresponding to the client-facility assignments
with “small” connection costs, which we call small arms, form a laminar family. It appears difficult to argue

2

this directly. However, a key insight and a notable aspect of our proof, is that one can derive this structure
by moving to a mixed-integer LP (MILP), arguing that an MILP solution satisfying this laminarity property
must exist, and then utilizing a suitable rounding algorithm to “transfer” the laminarity property from the
MILP solution to the rounded integral solution. More precisely, we show using uncrossing arguments that an
MILP-solution minimizing a certain potential function (which depends on the optimal solution) must satisfy
the above laminarity property. Further, we observe that the fractional assignment of clients to integrally-
open facilities represented by the MILP solution can be converted to an integral one using the rounding
algorithm of [20] for the generalized assignment problem (GAP), and this rounding procedure preserves the
laminarity property.

Our next step is to exploit the above structure to efficiently find a solution satisfying these structural
properties via DP. To gain some intuition, note that if all arms form a laminar family, then one could use
DP to identify tuples (I, c, r), where I is a maximal interval such that all clients in I are either served by
facilities opened from I or from c, and the load imposed by clients from I that are assigned to c is at most
r. However, our setting is somewhat more complicated since only the small arms form a laminar family.
Our definition of small arms however ensures that the number of “big”, i.e., not small, arms incident to a
facility is at most a constant (depending on ε). Exploiting this, we show that, despite this complication, a
DP scheme is still possible if we maintain some extra information in the DP table corresponding to the big
arms that “cross” each interval (see Section 3.2). This yields the desired PTAS.

Related work. There is a wealth of literature on facility-location problems (see, e.g., [16, 19]); we limit
ourselves to the work that is relevant to MLkFL. As mentioned earlier, Even et al. [6] and Arkin et al. [2]
are the only two previous works that study MLkFL (under the name min-max star cover). They view the
problem as one where we seek to cover the nodes of a graph by stars (hence the name min-max star cover),
and obtain bicriteria guarantees. Viewed from this perspective, MLkFL falls into the class of problems where
we seek to cover nodes of an underlying graph using certain combinatorial objects. Even et al. and Arkin et
al. consider various other min-max problems—where the number of covering objects is fixed and we seek
to minimize the maximum cost of an object—in this genre. Both works devise a 4-approximation algorithm
when the covering objects are trees (see also [17]), and Even et al. obtain the same approximation for the
rooted problem where the roots of the trees are fixed. Arkin et al. obtain an O(1)-approximation when the
covering objects are paths or walks. The approximation guarantees for min-max tree cover were improved
by Khani and Salavatipour [14]. All of these works also consider the version of the problem where we fix the
maximum cost of a covering object and seek to minimize the number of covering objects used. Frederickson
et al. [8] obtain an (e+ 1)-approximation when the covering objects are tours rooted at a given node.

For MLkFL on star metrics, when F = C, certain results follow from some known results and the above
min-max results. For example, it is not hard to show that MLkFL, even with non-unit demands, can be
reduced to the makespan-minimization problem on parallel machines while losing a factor of 2.2 Since
the latter problem admits a PTAS [10], this yields a (2 + ε)-approximation algorithm for MLkFL on star
metrics when F = C. When F = C and with unit demands, one can also infer that (for star metrics) the
objective value of any solution for min-max tree cover (viewed in terms of the node-sets of the trees) is
within a constant factor of its objective value for min-max star cover. (This is simply because for any set S
of nodes, the cost of the best star spanning S is at most twice the cost of the minimum spanning tree for S.)
These correspondences however break down when F 6= C, even for unit demands. Our 14-approximation
algorithm for star metrics works for arbitrary F , C sets and non-unit (equivalently, non-uniform) demands.

As with the k-median and k-center problems, MLkFL can also be motivated and viewed as a clustering
problem: we seek to cluster points in a metric space around k centers in a way that minimizes the maximum

2If we require that all k facilities lie at the root r of the star, then the resulting problem is precisely a makespan-minimization
problem on k parallel machines. Given a partition C1, . . . , Ck of the client-set obtained by solving this problem, we can simply
open, for each Ci, a facility at the node in Ci that is closest to r. This increases the maximum load by a factor of at most 2.

3

load (or “star cost”) of a cluster. Whereas MLkFL and k-center are min-max clustering problems, where the
quality is measured by the maximum cost (under some metric) of a cluster, k-median is a min-sum clustering
problem, where the clustering quality is measured by summing the cost of each cluster.

Finally, observe that if we fix the set of k open facilities, then the problem of determining the client
assignments is a special case of GAP. There is a well-known 2-approximation algorithm for GAP [20]. As
noted earlier, this algorithm plays a role in the analysis of our PTAS for line metrics (but not the algorithm
itself), when we reason about the existence of well-structured near-optimal solutions.

2 Problem definition

In the minimum-load k-facility location (MLkFL) problem, we are given a set of clients C and a set of
facilities F in a given metric space d. The distance between any pair of points i, j ∈ C ∪ F is denoted by
d(i, j). Additionally we are given an integer k ≥ 1. The goal is to select k facilities f1, . . . , fk to open and
assign each client j to an open facility so as to minimize maxki=1

∑
j∈C d(f(j), j), where f(j) is the facility

to which client j is assigned. We use the terms facility and center interchangeably. We frequently use the
term star to refer to a pair (f, S), where f is an open facility in the solution and S ⊆ C is the collection of
clients assigned to f ; we also refer to f as the center of this star. The cost of this star, which is the load
of facility f , is

∑
j∈S d(f, j). Thus, our goal is to find k stars, (f1, S1), (f2, S2), . . . , (fk, Sk), centered at

facilities so that they “cover” all the clients (i.e. C = ∪ki=1Si) and the maximum load of a facility (or cost of
the star) is minimized. Throughout, we use OPT to denote an optimum solution and Lopt to denote its cost.

3 A PTAS for line metrics

In this section we focus on MLkFL on line metrics and present a PTAS for it. Here, each client/facility
i ∈ C ∪ F is located at some rational point vi ∈ R. It may be that vi = vj for i 6= j, for instance when we
have collocated clients. To simplify notation we use the term “point” to refer to a client or facility i ∈ C ∪F
as well as to its location vi. The distance d(i, j) between points i, j ∈ C ∪F is simply |vi− vj |. We assume
that |C ∪F| = n and that 0 ≤ v1 ≤ v2 ≤ . . . ≤ vn. For a star (f, S) in a MLkFL solution and for any j ∈ S,
say that the open interval with endpoints vf and vj is an arm of the star (f, S) and we say that f covers j.
For S′ ⊆ S, we sometimes use the phrase “load of f by S′” to refer to the sum of the lengths of arms of f
to the clients in S′. The main result of this section is the following theorem.

Theorem 3.1 There is a (1 + ε)-approximation algorithm for MLkFL on line metrics for any constant
0 < ε ≤ 1.

Our high-level approach is similar to other min-max problems. Namely, we present an algorithm that,
given a guess B on the optimum solution value, either certify that B < Lopt or else find a solution with cost
not much more than B. Our main technical result, which immediately yields Theorem 3.1 is the following.

Theorem 3.2 Let Π = (C ∪ F , d, k) be a given MLkFL instance. For any constant 0 < ε ≤ 1 and
any B ≥ 0, there is a polynomial-time algorithm A that either finds a feasible solution with cost at most
(1 + 18ε) · B or declares that no feasible solution with cost at most B exists. If B ≥ Lopt , then it always
finds a feasible solution with cost at most (1 + 18ε) ·B.

Proof of Theorem 3.1 : Set ε := ε/18. We use binary search to find a value B ≤ Lopt such that algorithm
A from Theorem 3.2 finds a solution with cost ≤ (1 + 18ε) ·B ≤ (1 + 18ε) · Lopt . Return this solution.

4

Since the points vi are rational and since n · vn is clearly an upper bound on the optimum solution, then
we may perform the binary search over integers α ∈ [0, nvn∆] where ∆ is such that vi∆ ∈ Z for each point
i. For each such value α in the binary search, we try algorithm A with value B = α

∆ .

In what follows, we describe algorithm A. We will assume that B ≥ Lopt and show how to find a
solution with cost at most (1 + 18ε) · B. Let SB denote a collection of stars {(f1, S1), . . . , (fk, Sk)} with
cost at most B. In the remainder of this section, we will describe some preprocessing steps that simplify the
structure of the problem. In Section 3.1 we prove that a well-structured near-optimum solution exists and in
Section 3.2 we describe a dynamic programming algorithm that finds such a near-optimum well-structured
solution.

Without loss of generality, we assume that 1/ε is an integer. We start with some preprocessing steps.
Note that d(j, f) ≤ B for any j ∈ S of a star (f, S) in SB . So, if the distance of two consecutive points
on the line is more than B then we can decompose the instance into some instances that the distance of any
two consecutive points is at most B. For each of the resulting instances Π′, we find the smallest k′ such
that running the subsequent algorithm on the instance with k′ instead of k finds a solution with cost at most
(1 + 18ε)B. Since we are assuming B ≥ Lopt , then the sum of these k′ values over the subinstances is at
most k. Note that in each subinstance Π′ we can assume 0 ≤ vi ≤ n ·B for each point vi.

Next, we perform a standard scaling of distances. Move every point i ∈ C ∪ F left to its nearest integer
multiple of εB

n and then multiply this new point by n
εB . That is, move i from vi to bvi · n/εBc. Denote the

new position of client/facility i by v′i. The following lemma describes how the optimum solutions to the
original and new locations relate.

Lemma 3.3 The optimum solution has cost at most (1 + 1/ε) · n in the instance given by the new positions
v′. Furthermore, any solution with cost at most (1 + αε) · (1 + 1/ε) · n for the new positions has cost at
most (1 + (2 + 2α)ε) ·B in the original instance.

Proof : After sliding each point vi left to its nearest integer multiple of εB
n , the distance between any two

points changes by at most εBn . Therefore, the load of any star changes by at most εB so each star has load at
most (1 + ε)B. Finally, after multiplying all points by n

εB we have that the maximum load of any star is at
most (1 + 1/ε) · n.

Now consider any solution with cost at most (1+α ·ε) ·(1+1/ε) ·n. Scaling the points v′ back by εB/n
produces a solution with cost at most (1+α ·ε)(1+ε)B ≤ (1+(1+2α)ε) ·B. Then sliding, any two points
i, j back to their original positions vi, vj changes their distance by at most εB/n, so doing this for all points
changes the cost of any star by at most εB. The resulting stars then have cost at most (1 + (2 + 2α)ε) ·B.

In subsequent sections, we describe a (1 + 8ε)-approximation for any one of the subinstances Π′ of Π,
except we use the new points v′i. By Lemma 3.3, this gives us a solution to Π with cost at most (1 + 18ε)B,
proving Theorem 3.2

To simplify notation, we use vi to refer to the new location of point i ∈ C ∪ F (i.e. rename v′i to vi).
Similarly, the notation d(i, j) for i, j ∈ C ∪ F refers to these new distances |v′i − v′j | and B denotes the
new budget (1 + 1/ε) · n. From now on, we assume our given instance Π of MLkFL satisfies the following
properties:

• Each point vi is an integer between 0 and (1 + 1/ε) · n2.

• There is a solution SB with cost at most B = n2

ε .

3.1 Structure of Near Optimum Solutions

In this section, we show that there is a near-optimum solution to the instance Π with clients and facilities
C ∪ F that has some suitable structural properties. In Section 3.2, we will find such a solution using a

5

dynamic programming approach.
We denote the open interval between two points vi and vj on the line by Ii,j and call this the arm between

i and j (assuming that one of i, j is a client and the other is a facility). An arm Ii,j is large if d(i, j) > εB
and is small otherwise. We say that two arms Ii,j and Ii′,j′ cross if Ii,j is not contained in Ii′,j′ or vice versa,
and Ii,j ∩ Ii′,j′ 6= ∅.

A well-formed solution for an MLkFL instance is a solution in which the small arms between clients and
their assigned facilities (centers) do not cross. We show that there exists a low cost well-formed solution in
two steps. First, we demonstrate the existence of a fractional solution where there are k (integral) facilities
and the clients are assigned to these centers fractionally. This will be such that the fractional load of each
facility is still at most B, all strictly fractional arms in the support have length at most 2εB, and that all
small arms in the support of the solution do not cross.

Second, we use a rounding algorithm for the Generalized Assignment Problem (GAP) by Shmoys and
Tardos [20] to round such a fractional solution to an integral solution with cost at most (1 + 2ε)B. We
emphasize that this rounding algorithm is not a part of our algorithm, it is only used to demonstrate the
existence of a well-structured solution.

For the first step, we will consider a fractional uncrossing argument to eliminate crossings. Instead of
proving the fractional uncrossing process eventually terminates, we will instead provide a potential function
that strictly decreases in a fractional uncrossing. This potential function is the objective function of a mixed
integer-linear program below; thus an optimal solution will not contain any crossings between small arms
its support.

We let CB = {f1, . . . , fk} denote the centers (facilities) of the stars in the solution SB (recall that each
star in CB has cost/load at most B). The variable xij indicates that client j is assigned to facility fi ∈ CB .
The first constraint ensures every client is assigned to some facility and the second ensures the cost of a star
(i.e. load of a facility) does not exceed B.

minimize
∑
fi∈CB

∑
j∈C

d(fi, j) · xij (MIP)

subject to
∑
fi∈CB

xij = 1 ∀j ∈ C
∑
j∈V

d(fi, j) · xij ≤ B ∀fi ∈ CB

xij ∈ {0, 1} ∀i, j : d(fi, j) ≥ 2εB

0 ≤ xij ≤ 1 ∀i, j : d(fi, j) < 2εB.

We stress that this is not a relaxation for MLkFL. The objective function is more similar to the objective
function for the k-median problem. Rather, we will only be using this to help demonstrate the existence of
a well-formed solution. The objective function acts as a potential function.

Lemma 3.4 There is a feasible solution x to mixed integer-linear program (MIP) where the small arms in
the support of x do not cross.

Proof : First observe that there is in fact a feasible solution x because the integer solution SB is feasible for
this ILP. By standard theory of mixed-integer programming and the fact that the set of feasible solutions is
bounded, there is then an optimal solution x. The rest of this proof shows that an optimal solution to (MIP)
cannot contain crossings between small arms in its support.

So, suppose x is a feasible solution such that two small arms Ii,j and Ii′,j′ in the support of x cross. To
simplify notation, let c1 = vfi , c2 = vfi′ be the locations of the centers fi, fi′ and v1 = vj and v2 = vj′ be
the locations of the clients j, j′. Also let x1 denote xij and x2 denote xi′j′ . That is, x1 is the extent to which

6

the client at location v1 is assigned to the center at location c1 and similarly for x2. Finally, let `1 = |c1−v1|
and `2 = |c2− v2| denote the lengths of the two crossing small arms. See Figure 1 for an illustration of how
this notation is used; the notation ` will be defined separately for each case considered below.

`
c1 v2 v1 c2

x1 x2

(a) v1 and v2 between c1 and c2.
`

c1 v2 v1 c2

x1
x2 − x1

x1

(b) Coverage after fixing the intersection in Case (1).

`c1v2 v1c2

x1x2

(c) v1 and v2 on different sides of c1c2.
`c1v2 v1c2

x1
x2 − x1

`1
`2

x1
`1
`2

(d) Coverage after fixing the intersection in Case (2).

`c1 v2v1c2

x1 x2

(e) v1 and v2 on the same side of c1c2.
`c1 v2v1c2

x1

x2 − x1
`1

`+`2x1
`1

`+`2

(f) Coverage after fixing the intersection in Case (3-1).

`c1 v2v1c2
x2(`+`2)

`1

x1 − x2(`+`2)
`1x2

(g) Coverage after fixing the intersection in Case (3-2).

Figure 1: Fixing the intersection of two small arms.

We check all possible ways that these two arms can cross. When we say that we shift some value α of
coverage from one variable x′ to another x′′, we mean increase x′′ by α and decrease x′ by α. Note that
we will always shift value between the xij , xi′j , xij′ and xi′j′ values. Since `1, `2 ≤ εB then d(fi, j

′) and
d(fi′ , j) ≤ 2εB so such an uncrossing will maintain the constraint that only arms of length at most 2εB
may be fractional.

(1) v1 and v2 lie between c1 and c2 (Figure 1a). Let ` > 0 be the length of intersecting parts of these
arms. Without loss of generality, assume that x1 ≤ x2. Shift x1 coverage from xij to xij′ and from
xi′j′ to xi′j and note that this preserves feasibility, since each client is still covered (fractionally) to
the extent of 1. The coverage x after this shifting is depicted in Figure 1b. The total cost of the two
stars (centered at c1 and c2) decreases by 2`x1 > 0, so the objective function strictly decreases and
we are left with an even cheaper solution to (MIP).

(2) v1 and v2 are on different sides of the segment c1c2 (Figure 1c). Let ` > 0 be the distance between c1

and c2. Without loss of generality, assume that x1`1 ≤ x2`2. Shift x1
`1
`2

from xi′j′ to xij′ and shift x1

from xij to xi′j (Figure 1d).

We verify that the fractional load at each center c1 and c2 does not increase. That is, the load at c1

changes by x1
`1
`2

(`2− `)− x1`1 = −x1
`1
`2
` < 0 and the load at c2 changes by x1(`1− `)− x1

`1
`2
`2 =

−x1` < 0. Since the load at both facilities strictly decreases then this is also yields a cheaper solution
to (MIP).

7

(3) v1 and v2 are on the same side of the segment c1c2 (Figure 1e). Let ` > 0 be the distance between c1

and c2. Without loss of generality, assume that v1 and v2 are on the right side of segment c1 and c2 and
the left center is c1. This means v1 is between c2 and v2 and hence, `1 < ` + `2. As a consequence:
(`+ `2)(`1 − `) < `1`2.

There are two sub-cases:

Case (3-1): x1`1 ≤ x2(`+ `2).
This means x1

`1
`+`2

≤ x2. We shift x1 from x∗ij to x∗i′j and shift x1
`1
`+`2

from x∗i′j′ to x∗ij′
(Figure 1f). The fractional load at s1 changes by x1

`1
`+`2

(` + `2)− x1`1 = 0 and the fractional
load at s2 changes by x1(`1 − `) − x1

`1
`+`2

`2 = x1(`1 − ` − `1`2
`+`2

) < 0. Since the total load
strictly decreases, then this is also yields a cheaper solution to (MIP).

Case (3-2): x1`1 > x2(`+ `2).
We shift x2 from x∗i′j′ to x∗ij′ and shift x2(`+`2)

`1
from x∗ij to x∗i′j (Figure 1g). The fractional

load at s1 changes by x2(` + `2) − x2
`+`2
`1
`1 = 0 and the fractional load at s2 changes by

x2
(`+`2)(`1−`)

`1
− x2`2 < 0. Since the total load strictly decreases, then this is also yields a

cheaper solution to (MIP).

In all these cases, the new solution is feasible and has a smaller objective values as required.

We will use Lemma 3.4 to prove the existence of a near-optimum solution to instance Π where the small
arms used by clients do not cross. To complete this proof, we rely on a structural result concerning the
polytope of a relaxation for the following scheduling problem.

Definition 3.5 In the scheduling problem on unrelated machines, we are given machines m1, . . . ,mk,
jobs j1, . . . , jn, and processing times p(mi, ja) ≥ 0 for any job ja and any machine mi. The goal is
to assign each job ja to a machine φ(ja) ∈ {m1, . . . ,mk} to minimize the maximum total running time∑

a:φ(ja)=mi
p(mi, ja) of any machine.

Shmoys and Tardos [20] prove a result concerning the polytope of an LP relaxation for this problem, as a
part of a more general result concerning the related Generalized Assignment Problem (GAP). The following
summarizes the results they obtain that are relevant for our work.

Theorem 3.6 (Shmoys and Tardos, [20]) Suppose we have a boundB and fractional values x(mi, ja) ≥ 0
for each job ja and each machine mi that satisfy the following:

• ∑k
i=1 x(mi, ja) = 1 for each job ja,

• ∑n
a=1 p(mi, ja) · x(mi, ja) ≤ B for each machine mi.

Then there is an assignment φ of jobs to machines such that x(φ(ja), ja) > 0 for each job ja and the
maximum load of any machine under φ is at most B + maxa,i:0<x(mi,ja)<1 p(mi, ja).

We use the above theorem together with Lemma 3.4 to prove the following.

Theorem 3.7 There is a feasible (integer) solution to the MLkFL instance Π with maximum load (1+2ε)B
on each star such that no two small arms cross.

Proof : Let x∗ be the fractional solution provided by Lemma 3.4. We view x∗ as a solution to the following
scheduling problem on unrelated machines. We have k machines m1, . . . ,mk, each corresponding to a

8

facility fi ∈ CB . For each client a ∈ C, there is a single job ja. The processing time p(mi, ja) of job ja on
machine mi is |vi − va|, the distance between the corresponding locations.

Now, x∗ fractionally assigns each job ja to the machines to a total extent of 1 and the maximum (frac-
tional) load at machine mi is B. Furthermore, the only strictly fractional assignments (i.e. those with
0 < xij < 1) have |vi − vj | ≤ 2εB. In the scheduling terminology, the only strictly fractional assignments
are between a job ja and a machine mi such that p(mi, ja) ≤ 2εB.

Theorem 3.6 shows we can transform this fractional assignment x∗ into an integer assignment such
that a) if client j is assigned to facility/center i, then x∗ij > 0 and b) the maximum load of a facility is
B + maxi,j:0<x∗ij<1 |vi − vj | ≤ B + 2εB. In this solution, small arms used by clients do not cross because
they come from the support of x∗.

3.2 Finding a Well-Formed Solution

3.2.1 Step Min-max Cost

Theorem 3.7 shows that there is a solution of cost at most (1+2ε)B such that no two small arms (i.e. length
≤ εB) used to assign clients to centers cross. Call this solution S ′B. We now show that we can find such a
well-structured solution of cost at most (1 + 8ε)B.

The main idea behind our approach is the following. If it were true that a near-optimum solution did
not have any crossing arms (large or small) then we can find such a solution using a dynamic programming
approach. At a very high-level, we could exploit the laminar structure of the solution by decomposing the
solution into a family of nested intervals I such that for every I ∈ I there is one center c with vc 6∈ I such
that clients in I are served either by centers in I or by c. From this, we can consider triples (I, c, r) where
I ∈ I, c is a location outside of I , and r is some integer between 0 and poly(n, 1/ε) describing the load
assigned to c from clients in I . We can look for partial solutions parameterized by these triples and relate
them through an appropriate recurrence.

Unfortunately, we are only guaranteed that the small arms do not cross in our near-optimum solution so
the collection of all arms in the solution is not necessarily laminar. To handle this general case, we must
carry extra information about large arms through our dynamic programming approach and keep track of
how many large arms of each possible length cross an interval. Since each large arm has a length between
εB and B, if we store the exact length, then this amounts to storing a vector with roughly B coordinates.
There are exponentially many vectors with B coordinates that the values in different coordinates sum up to
at most n, so we cannot keep track of this information. However, by coarsening the length, we ensure that
large arms have only a constant possible number of different perceived length, so we can keep track of this
information when we move to perceived length.

First, recall that all large arms have length more than εB. Thus, each facility is serving at most (1+2ε)B
εB ≤

3
ε clients that are at distance more than εB from it; in other words each facility is assigned at most 3

ε large
arms in the solution provided by Theorem 3.7. Since large arms have length at least εB, if we store their
length in multiple of ε2B, we will not lose much information about them. Let MULT(i, j) denote the number
of multiples of ε2B in (vi, vj] interval for vi ≤ vj , so

MULT(i, j) =
⌊ vj
ε2B

⌋
−
⌊ vi
ε2B

⌋
.

Then, we measure the the length of a large arm Iij between client j and facility i as ε2B · MULT(i, j)
if vi ≤ vj or ε2B · MULT(j, i) otherwise. We call this the percieved cost this arm. In this method of
measurement, the length of the arm changes by at most ε2B, and so the total load for each center changes by
at most 3εB. Now for this method of measurement, since there are 1

ε2
coordinates, the number of possible

vectors for keeping track of large arms is at most n
1
ε2 which is polynomial.

9

In the dynamic programming algorithm described below, we will use this coarse method to measure
the distance of large arms. Since in dynamic programming approach the problem is often broken into
subproblem, a large arm might be partitioned with respect to subproblems. We would like to note that for
points vp0 ≤ vp1 ≤ · · · ≤ vpt with p0 = i and pt = j, MULT(i, j) =

∑t−1
q=0 MULT(pq, pq+1) (Note that

MULT(a, a) = 0 for any a.). We use the term the perceived cost of a facility i to denote the the total cost of
the small arms plus the perceived cost of its large arms. The following is proved using arguments similar to
the proof of Lemma 3.3, recalling that every facility i n S ′B has at most 3/ε large arms.

Lemma 3.8 The perceived cost of every star in S ′B is at most (1 + 5ε)B. Furthermore, any star with
perceived cost at most (1 + 5ε)B and at most 3/ε long arms has (actual) cost at most (1 + 8ε)B.

Our dynamic programming algorithm will find a solution with perceived cost at most (1 + 5ε)B and at
most 3/ε large arms per star, so the actual cost will be at most (1 + 8ε)B.

3.2.2 Dynamic Programming

Before we formally define the subproblems of dynamic programming, we discuss the structure of a well-
formed solution, say S . We call a client covered by a small (large) arm a small client (large client), respec-
tively. It will be convenient to associate a direction with each arm, which goes from the center/facility to the
client. For a star S with center f , let Ssmall denote the clients covered by small arms in S. Let the s-span of
S be the open interval, possibly empty, spanning (lS , rS) where

lS = min

{
vf , min

j∈Ssmall

vj

}
and rS = max

{
vf , max

j∈Ssmall
vj

}
are the left most and the right most small clients (or facility) in this star, respectively. Since the small arms
do not intersect in S , for any two s-spans I1 and I2 of two stars, either I1 ∩ I2 = ∅ or I1 ⊆ I2 or I2 ⊆ I1.
Therefore, the ⊆ relation between s-span of stars in S defines a laminar family. A laminar family can
naturally be viewed as a forest where we put a node for each member of the family and each node I has an
edge to the minimal member say I ′ of the family that contains it, i.e., I ⊆ I ′. If a facility f does not serve
any client by a small arm then its s-span is (vf , vf) by definition and although this is an empty interval, in
the forest corresponding to laminar family, it has an edge to the minimal s-span (interval) that contains vf .
We frequently refer to this forest-view when referring to a laminar family.

Let us try to understand the subproblems that come up in constructing a solution. The dynamic program-
ming in fact stitches together the solutions of these subproblems in order to find the solution to the original
problem. Let Vi,j denote the set of points {vi, vi+1, · · · , vj} with i ≤ j, so V = V1,n. We want to use the
dynamic programming to answer the question if it is possible to open k centers in V1,n and assign clients to
these centers such that the perceived cost of each center is at most (1 + 5ε)B and the s-span of the centers
form a laminar family.

Now consider solution S ′B which has a maximum perceived load of (1 + 5ε)B. Consider the forest
corresponding to the s-span of centers in this solution and let c be the center that its s-span is the leftmost
root in the forest. We can guess c as there are at most O(n) possible choices for it. Let kr and kl denote the
number of centers in S ′B which are on the right and left side of c respectively, so kr + kl = k − 1. There
are O(k) possible choice for values kr and kl, so we guess kr and kl as well (note that k is dominated by
n). Let us now focus on the interval V1,c−1. Since c corresponds to the interval at the root of the forest, no
center in Vc+1,n can serve clients in V1,c−1 by small arms (otherwise the s-span of c is a subset of s-span of
some other center). We can guess the load corresponding to small clients served by c in V1,c−1 as this load
is an integer in poly(n, 1/ε). We may have some clients in V1,c−1 served by large arms originating in Vc,n.
We cannot guess the large arms serving these clients as the number of possible such arms is not polynomial
(there are O(nkn3/ε) possible choices) but instead we can bundle large arms entering V1,c−1 based on their

10

perceived length past vc−1, that is their perceived length in V1,c−1 interval. More precisely, we guess how

many large arms have perceived length q× ε2B past vc−1 for each 0 ≤ q ≤ 1
ε2

as there are O(n
1
ε2) possible

choices for our guess. Similarly, we may have some large arms originating in the interval V1,c−1 which serve
clients in Vc+1,n. Again we can bundle these arms based on their perceived length past vc+1 (their perceived
length in Vc+1,n) and we guess the number of large arms with perceived length q × ε2B past vc+1 for each
0 ≤ q ≤ 1

e2
. This give us an idea of what parameters are needed for describing the subproblems.

Now consider some interval Vl,r between two arbitrary points vl, vr and consider how S ′B looks in this
interval. There may be some large arms that enter and/or leave this interval from vl or vr. The arms that
enter the interval can cover the deficiency of coverage for some clients in the interval and the arms that leave
the interval provide coverage for some clients outside of interval and can be viewed as surplus to the demand
of coverage of the clients in the interval. We keep track of all large arms crossing the sides of interval Vl,r
in terms of deficiency and surplus vectors as follows:

• Deficiencies: Vector Dl is the deficiency vector in [n]
1
ε2 for vl where Dl[q] for 0 ≤ q ≤ ε−2 is the

number of large arms from a center location i < l to a client j ≥ l such that MULT(l, j) = q. So Dl[q]
keeps track of the number of large arms originating in i < l and crossing exactly q multiples of ε2B in
interval (vl, vj]. Note that client j ≥ l can be located outside of interval Vl,r, i.e., j > r as well. The
vector Dr is defined similarly for vr, that is, Dr[q] is the number of large arms from a center location
i > r to a client j ≤ r such that MULT(j, r) = q. Let q′ = MULT(l, r), then all arms represented by
Dl[q] for q < q′ must end at clients located in Vl,r and all arms represented by Dl[q] for q > q′ must
end at clients located to the right of Vl,r. If q = q′ then some arms may end at clients in Vl,r and some
may end at clients located to the right of Vl,r.

• Surpluses: Vector Sl is the surplus vector in [n]
1
ε2 for vl where Sl[q] for 0 ≤ q ≤ ε−2 is the number

of large arms from a center location i ≥ l to a client j < l such that MULT(j, l) = q. So Sl[q] keeps
track of large arms originating at i ≥ l and crossing exactly q multiples of ε2B in interval (vj , vl].
Note that center i ≥ l can be larger than r and does not need to be located in the interval Vl,r. The
vector Sr is defined similarly, that is, Sr[q] is the number of large arms from a center location i ≤ r
to a client j > r such that MULT(r, j) = q. Recall that q′ = MULT(l, r). Note that for q > q′, any
arm contributing to Dl[q] also contributes to Sr[q − q′] and similarly, any arm contributing to Dr[q]
also contributes to Sl[q − q′].

3.3 The Table

The table we build in our dynamic programming algorithm captures “snapshots” of solutions bound be-
tween two given points plus some information on how arms cross these points. We consider boolean value
A[k′, l, r, c, β,Dl,Dr,Sl,Sr] corresponding to subproblems. The meanings of the parameters are as fol-
lows.

• 0 ≤ k′ ≤ k is the number of centers in the interval Vl,r.

• 1 ≤ l ≤ r ≤ n corresponds to the interval Vl,r.

• c ∈ F denotes a single point with either c < l or c > r (i.e. outside of Vl,r), that is the center of some
star, or else c = ⊥. If c 6= ⊥ it is the only center outside of Vl,r with small arms going into Vl,r and the
total cost of small arms that c pays to cover clients i′ with l ≤ i′ ≤ r is β where 0 ≤ β ≤ (1 + 5ε)B
is an integer.

• Dl,Dr,Sl,Sr are deficiency and surplus vectors for the endpoints of interval Vl,r.

11

Note that in the above, if c = ⊥ then the value of β can be assumed to be zero.
The value A[k′, l, r, c, β,Dl,Dr,Sl,Sr] is TRUE if and only if the following holds. It is possible to

open k′ centers in the interval Vl,r and assign each client j ∈ C with l ≤ i′ ≤ r
• to one of the k′ open centers,

• to center c, if c 6= ⊥,

• or to a large arm entering Vl,r

and also assign the start of some of the large arms exiting the interval to these open centers in Ii,j such that
the following hold.

• The perceived load of each of the k′ centers is at most (1 + 5ε)B.

• The load of c from small arms originating from clients j ∈ C with l ≤ j ≤ r is β,

• The large arms entering and/or exiting Vl,r are consistent with Dl,Dr,Sl,Sr.

By consistent, we mean the following. For each interval [a, b] where a and b are consecutive multiples
of ε2B, we check the number of promised clients to be served by Dl,Dr,Sl,Sr in this interval (depending
on position of a and b with respect to l and r, some of these vectors may not give any information). More
precisely, when b ≥ r, each of Dl[q1] and Sr[q2] where q1 = MULT(l, a) and q2 = MULT(r, a) gives the
number of clients in [a, b) that are supposed to be served by a centers i ≤ l and center i′ ≤ r, respectively.
Now since l ≤ r, any large arm counted in Dl[q1] must be counted in Sr[q2], i.e., Sr[q2] ≥ Dl[q1], and we
must have at least Sr[q2] clients in [a, b). Note that Sr[q2] − Dl[q1] correspond to long arms that start in
interval Vl,r. Similar arguments must be made for when a ≤ l and Dr and Sl. For intervals containing l or
r, we have to subdivide the interval, e.g., [a, r) and [r, b), and then check the consistency.

The number of table entries is polynomial, because k′, l, r, c are in O(n) and β is a polynomial in n and
1
ε and the deficiency and surplus vectors, in total, can take one of O(n1+1/ε2) values. We shortly explain
how one can compute the values A in polynomial time through dynamic programming. After that, to find
out if there is a feasible solution having perceived cost (1 + 5ε)B, one simply needs to look at the value of
A[k, 1, n,⊥, 0,0,0,0,0], where 0 is a vector having 1 + 1/ε2 zero components.

3.4 The Recurrence

In the remaining of the section, we explain how the value of a table entry is calculated. We call a subproblem
feasible if A[k′, l, r, c, β,Dl,Dr,Sl,Sr] is TRUE.

Base case. The base case is when k′ = 0 and l = r. Since k′ = 0, we are not allowed to open a facility
at vl (l might not be a facility anyway). There are two possible main cases based on whether c can serve a
possible client at r or not.

• c = ⊥ and so β = 0 or c 6= ⊥ but β = 0.
If r is a client, it has to be served by a large arm coming from outside of Vl,r. Suppose r is served
by a large arm entering from left, so Dl[0] must be non-zero and moreover, values of Dl,Dr,Sl,Sr
must be consistent, i.e., Dl[0] = Sr[0] + 1, Dl[q] = Sr[q] for 1 ≤ q ≤ ε−2, and Dr = Sl. Similar
arguments works for a large arm serving r from right. So if either of these conditions hold, then the
subproblem is feasible and we set the table entry to TRUE.

If r is a facility, then it cannot be opened as k′ = 0. So we only check consistency of Dl,Dr,Sl,Sr,
i.e., Dl = Sr and Dr = Sl. If these conditions hold, we set the value of the table entry to TRUE

otherwise we set it to FALSE.

12

• c 6= ⊥ and β 6= 0.
If r is a client, it has to be served by a small arm originating at c, so β must be equal to d(vj , vc) and it
must be smaller than εB. The vectors Dl,Dr,Sl,Sr must be consistent, i.e., Dl = Sr and Dr = Sl.

If r is a facility, then the subproblem is infeasible by the definition.

Recursive step. Next, we show how to determine if A[k′, l, r, c, β,Dl,Dr,Sl,Sr] is TRUE when the pa-
rameters do not represent a base case by relating its value to values of smaller problems. In what follows, by
guessing a parameter, we mean that we try all polynomially many possible values of that parameter and if
one of them results in a feasible solution, we set the value of the current subproblem to TRUE. We consider
two cases:

Case (1): c 6= ⊥ and β > 0.
Without loss of generality, suppose c < l. There must be a small client j with l ≤ j ≤ r covered
by c. We guess j to be the leftmost such small client along with how many of k′ facilities in
Vl,r are in Vl,j−1, call this k′′ (the rest of facilities, k′ − k′′, will be in Vj+1,r). For subproblem
constructed for Vl,j−1, no small arm can enter Vl,j−1, and for subproblem constructed for Vj+1,r,
the center outside Vj+1,r is c with allowed load of β′ = β−d(vj , vc). We can also guess the large
arms leaving and/or entering Vl,j−1 as well as Vj+1,r and in polynomial time, we check if these
vectors are consistent with each other as well as Dl,Dr,Sl,Sr. So A[k′, l, r, c, β,Dl,Dr,Sl,Sr]
is set to TRUE if one of the following expressions is TRUE (see Figure 2).

A[k′′, l, j − 1,⊥, 0,Dl,Dj−1,Sl,Sj−1] ∧A[k′ − k′′, j + 1, r, c, β − |vc − vj |,Dj+1,Dr,Sj+1,Sr]

For some l ≤ j ≤ r such that Icj is a small arm and |vc − vj | ≤ β, some 0 ≤ k′′ ≤ k′,
, and Dj−1,Sj−1,Dj+1,Sj+1 consistent with Dl,Dr,Sl,Sr,

(using the assumption that j is served with a small arm).

Note that when j = l, we just check one other subproblem, namely A[k′, j + 1, r, c, β − |vc −
vj |,Dj+1,Dr,Sj+1,Sr] (we must have Icj is a small arm, and |vc − vj | ≤ β). Similarly, when
j = r, we just check one subproblem, namely A[k′, l, j − 1,⊥, 0,Dl,Dj−1,Sl,Sj−1] (we must
have Icj is a small arm, and |vc − vj | = β). If l = r then k′ has to be non-zero (otherwise we
are in a base case), and since there is no facility to open at j, we say the subproblem is infeasible.
Similar argument can be made when c > r (in this case, we guess the rightmost client served by
c).

c vjvi

. . .
vj′

. . .

A[k′ − k′′, j′ + 1, j, c, β′, . . .]A[k′′, i, j′ − 1,⊥, 0, . . .]

Figure 2: Case 1 of recursive step

Case (2): c 6= ⊥ and β = 0, or c = ⊥.
We consider two subcases regarding value of k′:

13

Case (2-a): k′ = 0.
In this case l 6= r (otherwise we are in a base case). All clients in Il,r must be covered
by large arms from centers (facilities) outside the interval.
If l is a facility then it must be closed so we recursively checkA[0, l+1, r, c, 0,Dl

′,Dr
′,Sl′,Sr ′]

where the new deficiency and surplus vectors are obtained from Dl,Dr,Sl,Sr after
taking into account the number α of multiples of ε2B between vl and vl+1. If this is
not possible, e.g. if Dr(q) > 0 for some q < α or similarly, then the subproblem is
not feasible.
So, suppose that l is a client. First assume l is covered by a large arm from the left.
Then Dl(0) > 0 and we use one to cover client l. In this case, define Dl

′,Dr
′,Sl′,Sr ′

to reflect the fact that this one large arm covers l and the perceived length of the
remaining ones accounted for by Dl,Sl that entered or exited by vr have a different
perceived length depending on the number of multiples of ε2B between vl and vl+1

(again, if this is not possible then the subproblem is not feasible).
Then we declare the subproblem to be feasible if and only ifA[0, l+1, r, c, 0,Dl

′,Dr
′,Sl′,Sr ′] =

TRUE. A similar argument works if l is covered by a large arm from the right.

Case (2-b): k′ > 0.
Note that since c 6= ⊥ and β = 0, or s = ⊥, no small arm can enter Vl,r. Consider
the set of centers in Vl,r. The s-span (interval of small arms) of these centers forms
a laminar family. Consider the roots of the forest of this laminar family and let c′ be
the center corresponding to the leftmost root; we guess c′ (see Figure 3) along with
the contribution of small arms originating at c′ going to the left (call β′) and the right
(call β′′), and also the number of centers located between l and i, say k′′. Observe
that the s-span of i is not contained in the s-span of any other center in Vl,r. Center
c′ has at most 3/ε large arms. We guess the large arms of c′ along with large arms
entering/leaving Vl,c′−1 and Vc′+1,r. For all the guesses that the perceived cost of c′

is at most (1 + 5ε)B and the large arms are consistent with each other as well as
Dl,Dr,Sl,Sr. So A[k′, l, r, c, β,Dl,Dr,Sl,Sr] is set to TRUE if one the following
expressions is TRUE (see Figure 3).

A[k′′, l, c′ − 1, c′, β′,Dl,Dc′−1,Sl,Sc′−1] ∧A[k′ − k′′ − 1, c′ + 1, r, c′, β′′,Dc′+1,Dr,Sc′+1,Sr]

For some l ≤ c′ ≤ r, 0 ≤ k′′ ≤ k′ − 1

guessed ≤ 3/ε long arms such that the perceived cost at c′ is at most (1 + 5ε)B,

guessed large arms and Dc′−1,Sc′−1,Dc′+1,Sc′+1 consistent with Dl,Dr,Sl,Sr.

4 Tree Metrics

The extension of the PTAS presented for line metrics to tree metrics is not clear because we heavily exploited
the linear structure of line metrics in the PTAS from Section 3. However, we can obtain a QPTAS for this
case using a different approach. Our approach is inspired by the QPTAS for line metrics from [13] in that
it uses a recursive decomposition of the tree into geometrically smaller subtrees, but the parameters used to
define a subproblem are a fair bit different.

14

c′ vjvi

.

A[k′ − k′′ − 1, c′ + 1, j, c′, β′′, . . .]A[k′′, i, c′ − 1, c′, β′, . . .]

Figure 3: Case (2-b) of recursive step

Let T be a tree with edge costs de, e ∈ T . For two nodes u, v ∈ T , let d(u, v) be the cost of all edges on
the unique u− v path in T . Also for a node v and edge e = uw, let d(v, e) = min{d(v, u), d(v, w)}. Let n
denote the total number of nodes in T . Not all nodes are required to be a client or a facility.

The algorithm, as before, works with a guessed value B as an upper bound for Lopt . Delete every
edge with cost greater than B and focus on one of the resulting subtrees. We try all guesses for k′ ≤ k to
determine the smallest one for which there is a solution with cost (1 + O(ε)) · B in this subtree (if any). If
any of these subtrees does not have such a solution for any k′ ≤ k or if the sum of these values k′ over all
subtrees exceeds k, we determine there is no solution with cost ≤ B. From now on, we will simply let k
denote this guessed value for k′ in the subtree and assume all edge costs are at most B.

Next, we make T have degree at most 3 by “expanding” any node with at least four neighbours. That is,
if v is a node with at least four neighbours then we add a new vertex v′ that is neither a client nor a facility,
connect v′ to v with a 0-cost edge, and have two neighbours, say u,w, of v instead be neighbours of v′ with
the same edge cost (i.e. duv′ = duv and dwv′ = dwv). The optimum solution cost does not change. The
degree of v strictly decreases, so iterating this process until all nodes have degree at most 3 produces a tree
with at most 2n nodes. Let T ′ denote this tree and say it has n′ ≤ 2n nodes.

Using a scaling argument as for the case of line metrics, we can assume that the aspect ratio of heaviest
to cheapest nonzero edge cost is polynomially bounded: edges with cost less than εB/n′2 are changed to
have a cost of 0. Let T ′′ denote this modification of T ′. Since each of the n′ clients hops across at most n′

edges to their assigned facility in any solution, the difference in cost when measuring a solution in T ′ or T ′′

is at most εB. Finally, scale the costs by n′2/(εB), so each edge has cost either 0 or in the range [1, n′2/ε].
Let T ′′ denote the tree produced from T ′ after the edge costs are scaled this way.

Observation 4.1 If there was a solution with cost B in the original tree T , then there is a solution with cost
at most (1 + ε) · n′2/ε in T ′′. Conversely, any solution with cost at most (1 + ε) · n′2/ε in the T ′′ will have
cost at most (1 + ε) ·B in T .

From now on, we will assume that T has maximum degree 3 and each nonzero edge cost lies in the range
[1, n2/ε] where n denotes the number of nodes in T . Summarizing the above discussion, we are assuming:

• For each edge e of T , either de = 0 de ∈ [1, n2/ε].

• B = (1 + ε) · n2/ε.

4.1 The Decomposition Tree

We construct a rooted decomposition tree T for T , which is itself a tree whose nodes correspond to con-
nected subtrees of T . The tree T itself will be the root of T .

15

To construct T , initially set it to be the tree with just T as its only node. Then, while there is some leaf
node T ′ in T (taking T ′ = T if T only includes the one node T) with n′ ≥ 2 nodes, find an edge e = (u, v)
such that the two connected components of T ′ − e have size in [n′/3, 2n′/3]. It is well known that such an
edge exists in any tree with degree at most 3. Add two subtrees as children of T ′ in T . Denote this edge e
by eT ′ .

The height of T is O(log n) because the sizes of the subtrees on any root-to-leaf path in T decrease
geometrically. Each edge e ∈ T is of the form eT ′ for precisely one non-leaf T ′ ∈ T . For a subtree T ′ in T ,
we let

p(T ′) = {eT ∗ : T ∗ a proper ancestor of T ′ in T }
be the set of portal edges for T . Note that have that p(T) = ∅ and if T ′′ is a child of T ′ in T then
p(T ′′) = p(T ′) ∪ {eT ′}. This also shows |p(T ′)| ≤ height(T) = O(log n) for any subtree T ′ ∈ T .

Observation 4.2 Let T ′ ∈ T and consider any u ∈ T ′, v 6∈ T ′. The u− v path crosses at least one edge in
p(T ′) (perhaps more). In particular, it crosses eT ′′ where T ′′ is the least common ancestor of the leaf nodes
Tu and Tv in T corresponding to the singleton subtrees {u} and {v}, respectively.

As in the case of paths, we refer to the directed path from a center c to a client j being served by c as an
arm. Our recurrence coarsens how we measure different parts of an arm. Let C = {0} ∪ {(1 + ε)k : 0 ≤
k ≤ blog1+εBc} be the set of possible coarse arm lengths. Note |C| = O(ε−1 log n).

We classify arms in the following way. For some e ∈ T and some α, β ∈ C, we say that the arm c − j
has type (e, α, β) if

• The c − j path traverses e and e = eT ′ where T ′ is the least common ancestor of the leaf nodes
corresponding to the singletons {c} and {j} in T .

• α ≤ d(c, e) ≤ (1 + ε) · α

• β ≤ d(e, j) ≤ (1 + ε) · β
That is, e is the “highest” portal edge traversed by the c − j arm and α, β approximate the c − e and e − j
distances within a factor of 1 + ε. We will say the perceived distance of this arm is α+ β + de.

4.2 The Recurrence

We still maintain deficiency and surplus vectors for various subtrees, but they are indexed somewhat dif-
ferently than in our recurrence for line metrics. A subproblem consists of a subtree T ′ ∈ T , an integer
0 ≤ k′ ≤ k, and surplus and deficiency integer vectors S,D, both indexed by tuples (e, α, β) where
e ∈ p(T ′) and α, β ∈ C.

Let A[T ′, k′,S,D] be a boolean value that is TRUE if it is possible to:

• Open exactly k′ centers in T ′.

• Assign each client c ∈ T ′ to one of these centers or is served by a center outside T ′ using an arm of
type (e, α, β) where e ∈ p(T ′). This should be done such that exactly D(e, α, β) clients are assigned
to outside T ′ using an arm of type (e, α, β) and a client c can only be assigned to such an arm if
β ≤ d(e, j) ≤ (1 + ε) · β.

• Assign precisely S(e, α, β) arms of type (e, α, β) between the k′ open centers for each e ∈ p(T ′).
Such an arm can only be assigned to a center c if α ≤ d(c, e) ≤ (1 + ε) · α.

• The perceived distance of all arms and clients assigned to any one of these k′ centers is at most
(1 + ε) ·B.

16

Note that one major difference between this table and the table used in the PTAS for line metrics is that no
arm will be counted by both S and D in a subproblem. That is, while some arms may “enter and exit” T ′,
they won’t be accounted for in this subproblem. An arm is only counted in this subproblem if it has one
endpoint in T ′ and the other endpoint not in T ′.

Simply by definition of A, if there is a solution with maximum load B, then A[T, k,0,0] will be true
and if A[t, k,0,0] is true then be replacing the perceived distance of each arm with its actual distance we
see there is in fact a solution with maximum load (1 + ε) ·B.

The recurrence for A is somewhat simpler than the recurrence we used for line metrics. The base cases
are precisely when T ′ corresponds to a subtree with exactly one node (i.e. when T ′ is a leaf in T).

Base Cases

1. T ′ = {v} where v is neither a client or a facility. Then A[T ′, k′,S,D] = TRUE if and only if k′ = 0
and S = D = 0 as there are no client or facility nodes in this subtree.

2. T ′ = {j} where j is a client node. Then A[T ′, k′,S,D] = TRUE if and only if k′ = 0,S = 0,
D(e, α, β) = 1 for some e ∈ p(T ′) where β ≤ d(j, e) ≤ (1 + ε)β, and the remaining D entries are 0.

3. T ′ = {c} where c is a facility node. Then either it is closed, in which case we must have k′ = 0 and
S = D = 0, or it is open, in which case we must have k′ = 1, D = 0, and∑

e∈p(T ′)
α,β∈C

S(e, α, β) · (α+ β + de) ≤ (1 + ε) ·B.

That is, the total perceived distance of all arms accounted for by the surplus vector should not exceed
(1 + ε) ·B.

Inductive Step
Suppose T 1, T 2 are the two children of a non-leaf node. At a high level, to determine if A[T ′, k′,S,D] =
TRUE, we simply have to guess which arms represented by the surplus and deficiency vectors start/end from
T 1 and which ones start/end from T 2, and also how many arms of various types reach between T 1 and T 2

(in which case eT ′ would be the highest portal edge they cross).
More specifically, A[T ′, k′,S,D] = TRUE if and only if there are values 0 ≤ k1, k2 ≤ k and integer

vectors S1,D1,S2,D2 corresponding to the subproblems T 1, T 2, respectively, such that

• A[T i, ki,Si,Di] = TRUE for both i = 1, 2

• k1 + k2 = k′

• S1(eT ′ , α, β) = D2(eT ′ , α, β) and S2(eT ′ , α, β) = D1(eT ′ , α, β). In words, the subproblems agree
on the arms that have eT ′ as their highest edge.

• For each α, β ∈ C and each e ∈ p(T ′), S1(e, α, β) + S2(e, α, β) = S(e, α, β) and D1(e, α, β) +
D2(e, α, β) = D(e, α, β). In words, the arms that enter/exit each subproblem but do not cross
between T 1 and T 2 form a partition of the arms exiting T ′.

Verifying correctness of this recurrence is straightforward. Note that the number of subproblems is
nO(ε−1·logn) because there are O(n) subtrees in T , at most k + 1 ≤ n + 1 possible values for k′, and
each of the O(ε · log n) components of the surplus and deficiency vectors is an integer between 0 and n.
Similar counting shows the number of subproblems that have to be checked when computingA[T ′, k′,S,D]
is nO(ε·logn).

17

Theorem 4.3 For any constant 0 < ε ≤ 1, there is a (1 + ε)-approximation algorithm for MLkFL on tree
metrics that runs in quasi-polynomial time.

5 A constant-factor approximation algorithm for MLkFL in star metrics

We now consider MLkFL in star metrics, but in the more-general setting where each client j has an integer
demand Dj that may be split integrally across various open facilities; we call this an integer-splittable
assignment. The load of a facility i is now defined as

∑
j xijd(i, j) where xij ∈ Z≥0 is the amount of

j’s demand that is served by i. We devise a 14-approximation algorithm for this problem. At a high level
our approach is similar to the one used to obtain the PTAS for line metrics. We again “guess” the optimal
value B. We argue via a slightly different uncrossing technique that if B ≥ Lopt , then there exists a well-
structured fractional solution with maximum load at most 6B, and use DP to obtain a fractional solution with
maximum load at most 12B. This can then be converted to an integer-splittable assignment with maximum
load at most 14B using the GAP-rounding algorithm, since it is easy to ensure via some preprocessing that
d(i, j) ≤ 2B for every facility i and client j. Thus, we either determine that B < Lopt or obtain a solution
with maximum load at most 14B.

Theorem 5.1 There is a 14-approximation algorithm for MLkFL on star metrics with non-uniform demands
and integer-splittable assignments.

Let r be the root of the star graph defining the star metric, V denote the set of all leaf nodes, and let
di = d(i, r) for leaf i. We may assume that r /∈ F ∪ C since we can add an extra leaf with distance zero to
r. Number the nodes of V from 1 to n so that d1 ≤ d2 ≤ · · · ≤ dn. Let Dj be the integer demand of client
j ∈ C. Recall that we consider integer-splittable assignments, where each open facility serves an integer
amount of the demand (possibly 0) of each client. We often refer to a pair (i, j), where i ∈ F , j ∈ C, as an
arm.

Let B be our current guess of the optimal value. Our goal is to either certify that B < Lopt , or find a
solution with maximum load at most 14 · B. We may assume that di ≤ B for all i = 1, . . . , n. Otherwise,
if di > B, then no client may assign any demand to i (if i ∈ F) in any integer-splittable assignment; also, if
Di > 0, then all of Di must be served by i. Thus, we can remove i from V , and in the latter case, decrease
k by 1, and proceed with the smaller instance.

In Section 5.1, we show that if B ≥ Lopt , then there exist k facilities, and a well-structured fractional
assignment of clients to these facilities of cost (i.e., maximum load) at most 6B. In Section 5.2, we devise
a dynamic programing approach that finds k facilities and a well-structured fractional assignment of clients
to these facilities of cost at most 12B provided there is such a solution of cost at most 6B. Combining these
results, if B ≥ Lopt , we can find k facilities and a fractional assignment of clients to these facilities that has
maximum load at most 12B. Finally, using Theorem 3.6, we can round this solution to an integer solution
while increasing the maximum load by at most maxi∈F ,j∈C d(i, j) ≤ 2B.

5.1 A well-structured near-optimal solution

We show that if B ≥ Lopt , then there exists a fractional assignment satisfying various nice structural
properties, which will then enable us to find such a solution via DP (Section 5.2). Let CB be the set of open

18

facilities in some integer-splittable solution having maximum load at most B. Consider the following LP.

minimize
∑
i∈CB

∑
j∈C

d(i, j) · xij (S-P)

subject to
∑
i∈CB

xij = Dj ∀j ∈ C
∑
j∈V

d(i, j) · xij ≤ B ∀i ∈ CB

xii = Di ∀i ∈ CB
xij ≥ 0 ∀i ∈ CB, j ∈ C.

Given a solution x to (S-P), we say that arms (i, j′) and (i′, j) cross in x if xij′ ·xi′j > 0 and d(i, j)·d(i′, j′) <
d(i′, j) · d(i, j′). We know that (S-P) is feasible. We prove that the optimal solution to (S-P) does not have
any crossing arms in its support.

Lemma 5.2 The optimal solution to (S-P) does not have any crossing arms in its support.

Proof : Let x be an optimal solution to (S-P) Suppose (i, j′) and (i′, j) cross in x. If d(i, j) = 0 then
simply update x by moving all of j’s demand to i. Similarly, if d(i′, j′) = 0 then move all of the demand
of j′ to i′. In both cases, the objective value of x decreases, which is a contradiction. So suppose that
0 < d(i, j) · d(i′, j′).

For some ε, ε′ > 0 to be specified shortly, we create a new assignment x′ that agrees with x in all
center-client pairs except that:

• x′ij = xij + ε, x′i′j = xi′j − ε.

• x′i′j′ = xi′j′ + ε′, x′ij′ = xij′ − ε′.

It must be that d(i, j) < d(i, j′) or d(i′, j′) < d(i′, j) so assume, without loss of generality, that d(i, j) <
d(i, j′). We chose ε, ε′ such that the load at i does not change, so ε · d(i, j) = ε′ · d(i, j′) and so that either
x′i′j = 0 or x′ij′ = 0 while the other remains nonnegative. The change in the load of i′ as well as the change
in objective value is given by

ε′ · d(i′, j′)− ε · d(i′, j) = ε

(
d(i, j) · d(i′, j′)

d(i, j′)
− d(i′, j)

)
which is nonpositive because d(i, j) · d(i′, j′) < d(i, j′) · d(i′, j). This yields a contradiction.

Observe that the above uncrossing property is stronger then the uncrossing that we achieved for line
metrics, where we only ensured that small arms do not cross. The figure below illustrates all the (non-
symmetric) cases that count as crossing. The figures on the right show the result after modifying x as
described in the above proof. In each picture, at most one of the dotted arrows has a non-zero xij value. We
use c1, c2 for the location of centers i, i′ and v1, v2 for the location of clients j′, j to be consistent with the
notation used in the PTAS for line-metrics.

Definition 5.3 A fractional solution x to (S-P) is well-structured if we can partition V = {1, . . . , n} into
consecutive subsequences V1, V2, . . . , Vm such that:

• For each Va and each j ∈ Va ∩ C, we have xij = 0 for i 6∈ Va. That is, each client is completely
served within its partition.

19

(a) Case(1) :c1 and c2 between v1 and v2. (b) Coverage after fixing the intersection in Case (1).

(c) Case (2): v1 and v2 between c1 and c2. (d) Coverage after fixing the intersection in Case (2).

(e) Case 3: c1 and c2 on the left side of v1 and v2. (f) Coverage after fixing the intersection in Case (3).

(g) Case (4): i and i′ on the right side of j and j′. (h) Coverage after fixing the intersection in Case (4).

Figure 4: Fixing the crossing of two arms.

• For each Va, at least one of the followings hold:

1. |CB ∩ Va| = 1

2. xij = 0 for all j ∈ Va ∩ C and i < j (clients are only satisfied by centers to the right)

3. xij = 0 for all j ∈ Va ∩ C and i > j (clients are only satisfied by centers to the left)

Lemma 5.4 There is a well-structured fractional solution x to (S-P) with maximum load at most 6B.

Proof : Let x0 be an optimal solution to (S-P). So x0 has maximum load at most B, and by Lemma 5.2, it
does not have any crossings. We start with x0 and in each step modify given solution such that the maximum
load is not increased by more than a constant factor. We use xr to denote the output of Step r, for 1 ≤ r ≤ 3.

• Step 1) Ensuring all clients are served in only one direction.
We initialize x1 to x0. For any client j ∈ CB , all the demand at j can be satisfied by the collocated

20

center so we can assume x1
ij = 0 for i 6= j. For any other client j 6∈ CB , either

∑
i<j x

1
ij ≥

Dj
2 or∑

i>j x
1
ij ≥

Dj
2 . Suppose the former is true (the latter is similar). Then we simply set x1

ij = 0 for
i > j and scale the x1

ij with i < j uniformly until they sum to Dj again. After doing this for all
clients, we have that x1

ij at most doubles for each center-client pair so the maximum load is at most
2B. Note that any non-zero coordinate in x1 is a non-zero coordinate in x0 as well, so x1 does not
have any crossings either.

• Step 2) Ensuring all centers either serve clients only to the left or only to the right, or form their
own consecutive partition.
First, we initialize x2 to x1. Let i be any center inCB with x2

ip, x
2
iq > 0 for two clients p < i < q (note

that x1
ip, x

1
iq > 0). If there is no such center, then this step is done. We will modify the assignment to i

and, perhaps, some nearby centers and then form a consecutive subsequence of V whose only center
is i.

Consider the rightmost center iL ∈ CB such that iL < i, see Figure 5. If there is no center to the left
of i, then the operations in this paragraph are skipped. Otherwise we update the assignment x2 in the
following way: For any client j < iL with x2

ij > 0, we update x2
iLj
← x2

iLj
+ x2

ij and x2
ij ← 0. Note

that x2
iLiL

= DiL by (S-P) constraint. Note that this modification does not introduce any crossings in
x2 as each client j is now assigned to a closer location. Moreover, now any client j < i with x2

ij > 0,
has to be on the right of iL, i.e., iL < j.

Figure 5: Moving client assignments. Black solid circles denote clients with xij > 0.

Similarly, if there is a leftmost center iR ∈ CB with iR > i then move all assignment x2
ij with j > iR

to iR. Again after these modifications, no new crossing is introduced, and any client j > i with
x2
ij > 0, has to be on the left of iR, i.e., j < iR.

Let jL be the leftmost client with x2
ijL

> 0, if no such client exists define jL = n + 1. Similarly,
let jR be the rightmost client with x2

ijR
> 0, if no such client exist let jR = 0. Define interval Va

to be j1, j2, · · · , jm where j1 = min(jL, i) and jm = max(i, jR) (See Figure 5). Note that partition
Va satisfies |CB ∩ Va| = 1. We claim that all clients in Va are completely assigned to i. Let j be an
arbitrary client in Va. Without loss of generality assume j < i (the other case is similar). Note that in
this case j1 6= i, and so j1 = jL < n+ 1. We have two possible cases:

– j = jL. By definition of jL, x2
ijL

> 0. By step 1, we know that jL is served in one direction
which has to be right as i is on the right of jL. Suppose facility i′ > i, serves jL. Since i in x1

serves q > i (initial condition for picking i), this gives us a contradiction as x1
i′jL
· x1

iq > 0 and
arms (i, q) and (i′, jL) cross (Case (1) or Case (4) depending on the position of q with respect
to i′, see Figure 4).

21

– j > jL. First, we show j cannot be served by a facility i′ < i. Let us assume the contrary.
By definition of iL, we have i′ ≤ iL, and hence arms (i′, j) and (i, jL) cross which gives us a
contradiction as x1

i′j · x1
ijL

> 0 (Case (2) in Figure 4c). Second, we show j cannot be served
by facility i′ > i. Again let us the contrary. Since arms (i, q) and (i′, j) cross for solution x1

while x1
i′j · x1

iq > 0 (Case (1) or Case (4) depending on the position of q with respect to i′, see
Figure 4).

Note that partition Va satisfies |CB ∩ Va| = 1 and that all clients in Va are completely assigned to the
sole center in Va. Removing Va from V effectively divides the instance into two subinstances. We
only note that x2

i′j′ = 0 for any j′ < i < i′ or i′ < j < j′. Otherwise, if (say) j′ < i < i′ has x1
i′j′ > 0

then this would cross arm (i, q) that was assigned to i in x1 which gives us a contradiction.

We claim the maximum load after performing the second step has increased by at most 4B. The only
times the load increases are when some centers of the form iL or iR have some x2

ij reassigned to them.
Each center i′ can be some center of the form iL only once and of the form iR only once. Moreover,
the load of i′ cannot be increased in both cases. Suppose the contrary, i.e., i′ is iL for some center i0
and iR for some center i1 where there exist clients j0 < i′ and j1 > i′ with x1

i0j0
, x1

i1j1
> 0. Since the

arms (i0, j0) and (i1, j1) cross, we get a contradiction. So at most one center can increase the load of
i′, therefore it remains to show that the increase in the load if i′ is iL or iR of some center is at most
4B.

First assume that i′ is of the form iL for some facility i. Since d(i′, j) < d(i, j) for each client j 6= i,
the load of i′ after the process is increased by the portion of load of i that corresponds to serving
clients j < iL which is at most 2B. Now assume i′ is of the form iR for some facility i. Note that any
client j moved to i′ has d(i, j) < d(i′, j) but d(i′, j) < 2d(i, j) as j > i′. So the load increase on i′

is at most twice the load on i due to clients j > i′; therefore, the load increase is at most 4B.

• Step 3) Dividing the remaining instance.
First initialize x3 to x2. Now each j ∈ C \ CB assigns all demand either completely to the left or
completely to the right. Similarly, any i ∈ CB collects demand either completely from the left or
completely from the right. Say that j ∈ CB ∪ C “goes left” if j 6∈ CB and x3

ij > 0 only for i < j or
j ∈ CB and x3

jj′ > 0 only for j′ ≥ j. If j does not “go left” then say it “goes right”. Now V naturally
breaks up into maximal consecutive intervals of nodes, each of which only includes clients that “go
left” or “go right”. These form the remaining partitions Va.

The only thing left to note is that a client is completely served within its partition. Suppose j ∈ Va
and that j “goes left”. Either Va is the first partition, or the preceding partition Va′ “goes right”. Since
Va′ is not a singleton (that was taken care of at the end of step 2), then there is some j′ ∈ Va′ with
x3
i′j′ > 0 for some i′ ∈ CB ∩ Va′ , i′ 6= j′. Thus, j cannot assign any demand to a client to the left of
Va since this assignment would cross with the assignment of j′.

Now let x = x3 which is a desired solution satisfying the condition of the lemma.

5.2 A dynamic-programming algorithm for finding a well-structured solution

We describe the dynamic programming approach in two steps. For notational convenience, we set Dj = 0
if j /∈ C, and think of every node as a client (but with potentially 0 demand). First, for any subsequence
V ′ = {jL, . . . , jR} of V , and any 1 ≤ p ≤ k we describe a boolean value I(V ′, p) that is true if and only if
one of the following is true.

22

1. p = 1 and there is some facility i ∈ V ′ ∩F such that assigning each client from V ′ to i places load at
most 6B on i.

2. There is a set C ′ ⊆ V ′ ∩ F of p facilities, and a fractional assignment (xij)i∈C′,j∈V ′ such that for
every j ∈ V ′ we have xij = 0 for i < j and

∑
i∈C′ xij = Dj , and for every i ∈ C ′ we have

di ·
∑

j∈V ′ xij ≤ 6B.

3. There are some p locations C ′ and a fractional assignment (xij)i∈C′,j∈V ′ such that for every j ∈ V ′
we have xij = 0 for i > j and

∑
i∈C′ xij = Dj , and for every i ∈ C ′ we have

∑
j∈V ′ dj · xij ≤ 6B.

If we can compute I(V ′, p) for all (V ′, p) tuples (as well as the solution that generates it), then we claim that
we are done. Observe that if I(V ′, p) = true when p > 1, then the fractional assignment x corresponding
to I(V ′, p) induces a maximum load of 12B on the centers opened from V ′. If I(V ′, p) is true due to the
second condition, then this is because if xij > 0, then d(i, j) ≤ 2di, and we have di ·

∑
j∈V ′ xij ≤ 6B.

Similarly, if I(V ′, p) is true due to the third condition, then xij > 0 implies that d(i, j) ≤ 2dj , and we have∑
j∈V ′ dj · xij ≤ 6B.
Now it is a simple matter to determine, using another dynamic program, how to partition V into consec-

utive intervals V1, . . . , Vm with positive integers p1, . . . , pm summing to k such that I(Vi, pi) = true for
each 1 ≤ i ≤ m.

To wrap up the proof, we describe how to compute I(V ′, p). We can associate a table for each case in
the definition of I(V ′, p). Let T1(V ′) be the table corresponding to the first case. There are O(n) possible
choices for the center, so each table entry can be computed in O(n) time and there are O(n2) table entries.

For the second case, we consider the table T2(V ′, p). In order to compute the entries of T2, we use
an auxiliary table f(i, p′) for jL ≤ i ≤ jR, 0 ≤ p′ ≤ p. f(i, p) is the minimum possible excess demand∑

j≤i
(
Dj −

∑
i′∈C′ xi′j

)
among all ways to choose p′ centers C ′ in {jL, . . . , i} and fractionally assign up

to Dj units of demand of each client j ≤ i to centers in C ′ such that no center i′ ∈ C ′ is assigned more than
6B/di′ units of demand from clients j < i′ and xi′j = 0 if i′ < j.

The base cases with i = jL are easy: f(i, 0) = Di and f(i, 1) = 0 if i ∈ F ; we set f(i, p′) = ∞ if
p′ > 1, or (p′ > 0 and i /∈ F). Also, for i > jL but p′ = 0 we have f(i, p′) = f(i− 1, p′) +Di. Otherwise,
if i > jL and p′ > 0 we have

f(i, p′) =

{
min{max{0, f(i− 1, p′ − 1)− 6B/di}, f(i− 1, p′) +Di}; if i ∈ F
f(i− 1, p′) +Di otherwise.

The first term in the min says that if we open i, then we assign as much leftover demand that we can.
The second term says that if we do not open i then all of the demand at i must go to the right of i. Once we
compute this, we set T2(V ′, p) to true if and only if f(jR, p) = 0.

For the last case, we consider a similar dynamic programming algorithm in a “right-to-left” manner,
except we are concerned with the minimum value of

∑
j≥i dj ·

(
Dj −

∑
i′∈C′ xi′j

)
. We associate the table

T3(V ′, p) for this case, and we use the auxiliary table g(i, p′) for jL ≤ i ≤ jR, 0 ≤ p′ ≤ p. g(i, p) is
the minimum possible excess load

∑
j≥i dj

(
Dj −

∑
i′∈C′ xi′j

)
among all ways to choose p′ centers C ′ in

{i, . . . , jR} and fractionally assign up to Dj units of demand of each client j ≥ i to centers in C ′ such that
no center i′ ∈ C ′ is assigned more than 6B and xi′j = 0 if i′ > j.

The base cases with i = jR are easy: g(i, 0) = di · Di and g(i, 1) = 0 if i ∈ F ; we set g(i, p′) = ∞
if p′ > 1, or (p′ > 0 and i /∈ F). Also, for i < jR but p′ = 0 we have g(i, p′) = g(i − 1, p′) + di · Di.
Otherwise, if i < jR and p′ > 0 we have

g(i, p′) =

{
min{max{0, g(i− 1, p′ − 1)− 6B}, g(i− 1, p′) + di ·Di}; if i ∈ F
g(i− 1, p′) + di ·Di otherwise.

23

The first term in the min says that if we open i, then we assign as much leftover load that we can. The
second term says that if we do not open i then all of the demand at i must go to the left of i. Once we
compute this, we set T3(V ′, p) to true if and only if g(jL, p) = 0.

Finally, once all of the T1(V ′), T2(V ′, p) and T3(V ′, p) are computed, we can set I(V ′, 1) = T1(V ′)
and I(V ′, p) = T2(V ′, p) ∨ T3(V ′, p) for p > 1.

6 Hardness results and integrality-gap lower bounds

We now present various hardness and integrality-gap results. We prove that MLkFL is strongly NP-hard on
line metrics (Theorems 6.1). We also demonstrate that a natural configuration-style LP has an unbounded
integrality gap (Theorem 6.2).

Theorem 6.1 Minimum-load k-facility location is strongly NP-hard even in line metrics.

Proof : We reduce from 3-partition, where we are given n = 3k integers b1, . . . , bn and a bound B such
that

∑n
i=1 bi = kB. The goal is to partition the integers into k groups such that the sum of the integers in

any group is at most B. It is NP-complete to determine if there is a feasible solution, even when bi ≤ 216n4

and B
4 < bi <

B
2 for each i (e.g. [9]). In particular, any feasible solution will have precisely three integers

in each group of the partition.
We create an instance of MLkFL on the line by creating two groups of clients. First, for each point

p ∈ {−k−1
3k ,−k−2

3k , . . . ,− 1
3k , 0} we place 3k2(B + 1) clients at p. Next, for each integer bi, 1 ≤ i ≤ n, we

add a single client at position bi. Let N be the number of clients in the resulting instance and notice that all
values have bit complexity bounded by a polynomial in N . The claim is that there is a solution with cost
B + k−1

k if and only if the 3-partition problem is a yes instance.
First, suppose there is a partition of the integers b1, . . . , bn into k groups G1, . . . , Gk such that the sum

of the integers in any group Gi is B. For each 1 ≤ i ≤ k we create a star with center at − i−1
3k , assign all

clients located at this center to this star, and also assign the clients in group Gi to this star. The only clients
that move some positive distance to the center of the star are those from the group Gi, and they move a total
distance of B + i−1

k < B + k−1
k .

Conversely, suppose there is a solution with maximum load at most B+ k−1
k . First, we claim that every

point of the form − i
3k , 0 ≤ i < k must be the center of a star. Otherwise, the 3k2(B + 1) clients at this

location must be assigned to other stars. The minimum distance each of these client travels is 1
3k and one

of the open centers receives at least 3k(B + 1) of these clients, so its load is at least B + 1 > B + k−1
k .

Therefore, the centers are at locations − i
3k , 0 ≤ i < k.

Since B
4 < bi <

B
2 , then every star must contain exactly three clients corresponding to integers

b1, . . . , bn in the 3-partition instance. Without loss of generality, say b1, b2, b3 are the three integers in some
star. The total distance they travel lies between b1 + b2 + b3 and b1 + b2 + b3 + k−1

k so b1 + b2 + b3 ≤ B.
Therefore, if we let Gi be the clients corresponding to integers b1, . . . , bn that are in the star with center
− i−1

3k for each 1 ≤ i ≤ k, then G1, . . . , Gk is a feasible solution to the 3-partition problem.

Integrality-gap lower bound. Let
(
F , C, d, k

)
be an MLkFL instance. Given a candidate “guess” B of

the optimal value, we can consider the following LP-relaxation of the problem of determining if there is a
solution with maximum load at most B. We propose the following linear programming for the MLkFL . For
each facility i ∈ F , define S(B; i) := {C ⊆ C :

∑
j∈C d(i, j) ≤ B} to be the set of all stars centered at i

that induce load at most B at i. We will often refer to a star in S(B; i) as a configuration. (Note that S(B; i)
contains ∅.) Our LP Will be a configuration-style LP, where for every facility i and star C ∈ S(B; i), we
have a variable denoting if star C is chosen for facility i. This yields the following natural feasibility LP.

24

∑
i∈F

∑
C∈S(B;i):j∈C

x(i, C) ≥ 1 ∀j ∈ C (1)

∑
C∈S(B;i)

x(i, C) ≤ 1 ∀i ∈ F (2)

∑
i∈F

∑
C∈S(B;i)

x(i, C) ≤ k (3)

x ≥ 0.

(P)

Constraint (1) ensures that each client belongs to some configuration, and constraints (2) and (3) ensure that
each facility belongs to at most one configuration, and that there are at most k configurations. We show
that there is an MLkFL instance on the line metric, where the smallest value BLP for which (P) is feasible
is smaller than the optimal value by an Ω(k/logk) factor; thus, the “integrality gap” of (P) is Ω(k/ log k).
Moreover, in this instance, the graph containing the (i, j) edges such that d(i, j) ≤ BLP is connected.

Theorem 6.2 The integrality gap of (P) is Ω(k/ log k) even for line metrics.

Proof : Assume for simplicity that k is odd. Consider the following simple MLkFL instance. We have
F = {a1, b1, a2, b2, . . . , am, bm}, where 2m = k + 1. These facilities are located on a line as shown
in Figure 6, with the distance between any two consecutive nodes being T/2. There are n = 2k clients
colocated with each facility. Let Ai (respectively Bi) denote the set of clients located at ai (respectively bi)
for 1 ≤ i ≤ m.

Figure 6: Example showing bad integrality gap for the configuration LP in line metric

There is a feasible solution to (P) with B = T . For all i = 1, . . . ,m, we set x(ai, Ai ∪ {j, j′}) =
k

(k+1)·(n2)
for all j, j′ ∈ Bi; note that all these configurations lie in S(T ; ai). Similarly, we set x(bi, Bi ∪

{j, j′}) = k
k+1·(n2)

for all j, j′ ∈ Ai. It is easy to verify that x is a feasible solution. It is clear that constraints

(2) and (3) hold since every facility belongs to exactly
(
n
2

)
configurations. Consider a client j ∈ Ai. j is

covered to an extent of k
k+1 by the

(
n
2

)
configurations

{
Ai ∪ {k, `}

}
k,`∈Bi in S(ai;T) and to an extent of

1
k+1 by the n − 1 configurations

{
Bi ∪ {j, k}

}
k∈Ai:k 6=j . A symmetric argument applies to clients in some

Bi set.
Finally, we show that any feasible solution must have maximum load at least T · k

2Hk
, where Hr :=

1 + 1
2 + . . . + 1

r is the r-th harmonic number, which proves the theorem. In any feasible solution, there
is some location v that does not have an open facility. For i = 1, . . . , k, let ni be the number of clients
colocated at v that are assigned to a facility at a location that is i hops away from v; set ni = 0 if there is no
such location. Then,

∑k
i=1 ni = n, and the maximum load L at a facility is at least maxi=1,...,k

niiT
4 since

there are at most two facilities that are i hops away from v, and one of them must have at least ni2 clients
assigned to it. Thus, we have ni ≤ 4L

iT for all i = 1, . . . k, and so n ≤ 4L
T ·Hk, or L ≥ nT

4Hk
.

25

7 An unbounded locality gap for the multi-swap local-search algorithm for
MLkFL

A natural local-search heuristic for MLkFL is one where given a current set S of k facilities, we may swap
out a facility in S and swap in a facility not in S. More generally, we may consider a p-swap heuristic
where we swap out and swap in at most p facilities. Note that given a set of k facilities, one can find the
assignment of clients to facilities by solving an instance of the generalized assignment problem [20]. We
keep performing such local moves as long as it improves the maximum load of the solution. One can come
up with simple examples showing that the locality gap of the p-swap heuristic, which is the worst-case ratio
between the maximum load at a local optimum and the (global) optimal value, can be arbitrarily large, even
on line metrics.

Theorem 7.1 The locality gap of the p-swap heuristic is unbounded, even on line metrics.

Proof : Choose any ε < 1. Consider 3k consecutive locations s1, j1, o1, s2, j2, o2, . . . , sk, jk, ok located on
a line with the d(si, ji) = 1, d(ji, oi) = ε for all i = 1, . . . , k, and d(oi, si+1) = 1−ε for all i = 1, . . . , k−1.
The facility set is F = S ∪ O, where S = {s1, . . . , sk} and O = {o1, . . . , ok}, and the client set is
C = {j1, . . . , jk}.

We claim that the solution S, which has maximum load 1, is a local optimum for the p-swap heuristic,
for any p < k. Consider a p-swap move where we swap out si1 , . . . , sip and swap in o`1 , . . . , o`p . We claim
that this move does not decrease the maximum load, and hence is not an improving move. If it were, then
the load of every facility in F = S \ {si1 , . . . , sik} ∪ {o`1 , . . . , o`k} must be strictly less than 1. But then
none of the facilities in S \{s1, . . . , sk}may be assigned any clients; thus, no facility in S serves any client.
Since p < k, there is some i such that oi is not swapped in. Then, ji is not assigned to si ot oi and hence has
connection cost larger than 1, which contradicts the assumption that the maximum load is less than 1.

Thus, S is a local optimum, whereas the global optimum is to open the facilities in O and assign each ji
to oi incurring a maximum load of ε.

In some sense, the rather simplistic nature of the above example exemplifies the difficulties in applying
local search to min-max problems.

8 Conclusion

In this paper we considered the minimum load k-facility location problem, which generalizes the min-max
star cover problem studied earlier and presented the first true approximation algorithms for it on line and
tree metrics. (a PTAS for line metrics and a QPTAS for trees). We also proved that the problem is APX-
hard on Euclidean metrics and it is resilient against a host of standard algorithmic techniques such as local
search and LP based relaxations. Several questions remain open, the most prominent one being to find a
true (not bicriteria) approximation for the problem on general metrics. Some (perhaps) easier intermediate
steps would be to find such a true approximation algorithm for the problem on some restricted familties of
graphs that are more general than a line. Getting a PTAS for trees is another interesting question.

References

[1] Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and Ola Svens-
son. Centrality of trees for capacitated k-center. In Proceedings of IPCO, 2014.

26

[2] E.M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and min-max vehicle routing
problems. Journal of Algorithms, 59(1):1–18, 2006.

[3] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SIAM Journal on Computing, 33(3):544–562, 2004.

[4] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm for
the k-median problem. Journal of Computer and System Sciences, 65(1):129–149, 2002.

[5] M. Cygan, M.T. Hajiaghayi, and S. Khuller. Lp rounding for k-centers with non-uniform hard capaci-
ties. Arxiv preprint arXiv:1208.3054, 2012.

[6] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Covering graphs using trees and stars. Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 24–35,
2003.

[7] Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 434–444. ACM, 1988.

[8] G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation algorithms for some routing problems.
SIAM Journal on Computing, 7:178, 1978.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[10] D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling on uniform pro-
cessors: using the dual approximation approach. SIAM Journal on Computing, 17:539–551, 1988.

[11] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility location algorithms
analyzed using dual-fitting with factor-revealing lp. Journal of the ACM, 50(6):795–824, 2003.

[12] K. Jain and V.V. Vazirani. Approximation algorithms for metric facility location and k-median prob-
lems using the primal-dual schema and lagrangian relaxation. Journal of the ACM, 48(2):274–296,
2001.

[13] Amin Jorati. Approximation algorithms for min-max vehicle routing problems. Master’s thesis, Uni-
versity of Alberta, Department of Computing Science, 2013.

[14] M. R. Khani and M. R. Salavatipour. Improved approximation algorithms for the min-max tree cover
and bounded tree cover problems. Algorithmica, 69:443–460, 2014.

[15] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Symposium on
Theory of Computing (STOC), 2013.

[16] P. Mirchandani and R. Francis, editors. Discrete location theory. Jown Wiley and Sons, 1990.

[17] H. Nagamochi and K. Okada. Approximating the minmax rooted-tree cover in a tree. Information
Processing Letters, 104(5):173–178, 2007.

[18] R. Ravi. Workshop on Flexible Network Design, 2012. http://fnd2012.mimuw.edu.pl/qa/
index.php?qa=4&qa_1=approximating-star-cover-problems.

[19] D. Shmoys. The design and analysis of approximation algorithms: facility location as a case study. In
S. Hosten, J. Lee, and R. Thomas, editors, Trends in Optimization, AMS Proceedings of Symposia in
Applied Mathematics 61, pages 85–97. 2004.

27

http://fnd2012.mimuw.edu.pl/qa/index.php?qa=4&qa_1=approximating-star-cover-problems
http://fnd2012.mimuw.edu.pl/qa/index.php?qa=4&qa_1=approximating-star-cover-problems

[20] D B Shmoys and E Tardos. An approximation algorithm for the generalized assignment problem.
Mathematical Programming, 62(3):461–474, 1993.

28

	Introduction
	Problem definition
	A PTAS for line metrics
	Structure of Near Optimum Solutions
	Finding a Well-Formed Solution
	Step Min-max Cost
	Dynamic Programming

	The Table
	The Recurrence

	Tree Metrics
	The Decomposition Tree
	The Recurrence

	A constant-factor approximation algorithm for MLkFL in star metrics
	A well-structured near-optimal solution
	A dynamic-programming algorithm for finding a well-structured solution

	Hardness results and integrality-gap lower bounds
	An unbounded locality gap for the multi-swap local-search algorithm for MLkFL
	Conclusion

