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Abstract

In themobile facility locatiorproblem, which is a variant of the classical facility locatj each facility and
client is assigned to a start location in a metric graph andyoal is to find a destination node for each client
and facility such that every client is sent to a node whiclhédestination of some facility. The quality of a
solution can be measured either by the total distance slemd facilities travel or by the maximum distance
traveled by any client or facility. As we show in this papey @m approximation preserving reduction), the
problem of minimizing the total movement of facilities arints generalizes the classiéamedian problem.
The class of movement problems was introduced by Demaink @ 8ODA 2007 [11] where a simple 2-
approximation was proposed for the minimum maximum movemebile facility location problem while
an approximation for the minimum total movement variant aaddness results for both were left as open
problems. Our main result here is an 8-approximation aflgorifor the minimum total movement mobile
facility location problem. Our algorithm is obtained by raling an LP relaxation in five phases. For the
minimum maximum movement mobile facility location problewe show that we cannot have a better than
a 2-approximation for the problem, unleBs= N P; so the simple algorithm proposed in [11] is essentially
best possible.

1 Introduction

Consider the following scenario. There is a company with somanufacturing plants. There are also several
retail stores (with different demands) to which the produntst be shipped and we are interested in minimizing
the cost of shipping. One possibility is to send the prodt@each retailer from its closest manufacturing plant.
Another possibility is to set up a distribution center focleglant (perhaps somewhere else), send the products
from that plant to the distribution center (in one shipmemtyl then for each retailer ship the products from the
closest distribution center; this way we save on shipping es we might bring the distribution center closer
to the set of retailers it is serving and combining their ltdmand into one big shipment to be sent from the
plant to the distribution center. This problem can be matleleing the following natural generalization of the
classicalk-median and variation of the facility location problem. $ape we are given a connected undirected
graphG(V, E') with metric distanced,;; between every pair of nodésj € V. We have a set of clientS' with
eachi € C located at a node (these correspond to retailers). To hamdlkiple clients at a single location, we
assume each location has at most one client and that eanhictieC' has demand);. Therefore, we can view

C as a subset o and we think ofD; as being the number of clients initially locatediatThis also allows

an efficient representation of instances where the numbeliesfts is exponentially larger than the number of
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nodes. We also have a set of facilitiEgcorresponding to plants), each located at a node. We wanbve each
facility and client in the graph to a (possibly differentytex such that in the final configuration each client is at
a node with some facility, while minimizing the total costrabvements of facilities and clients. Formally, we
want to assign a destinatian for each facility; to minimizezjeF djy; + > icc Didy,; wherev; is the nearest
facility destination to client. This is called theminimum total movement mobile facility locatiproblem, or
TM-MFL. If we wish to minimize the maximum distance a cliemtfacility travels then we obtain th@inimum
maximum movement mobile facility locatiproblem, or MM-MFL. Total movement can be thought of as the
total amount of resources (e.g. gasoline) consumed byadilities and clients in reaching a valid solution while
maximum movement can be viewed as the time it takes to simadiasly move all units to a valid configuration
(e.g. response time). Note that the demand (number of thaibiclients) per node is irrelevant in MM-MFL
since we are only concerned with the distance.

These problems fall into a natural class of problems, cafteslement problems, which were introduced by
Demaine et al. [11]. In these types of problems, we are tylgigiven an instance which contains a weighted
graphG together with some pebbles on the vertices (and/or edgesa atesired property?; some examples
of this propertyP can be connectivity (in which our desired propeRyis that the subgraph induced by the
final pebbles’ locations is connected)/-connectivity (in which two given nodesandt have to be in the same
component in the subgraph induced by the final pebbles’itmts)t and independent setR? (the Euclidean
distance between every pair of pebbles should be at leas¥d)are looking to obtain a movement of pebbles
so that the final configuration of pebbles in the graph sagidfie desired property? while minimizing some
objective function. Some of the natural objective funcsiawonsidered are the total distance traveled by all
pebbles or the maximum distance a pebble has to move (distarzcgraph is the shortest path dRéldistance
is Euclidean distance). Many problems of this type ariseinadly in other areas, such as operation research,
robotics, and design of systems of wireless networks. FEbante, suppose each pebble corresponds to a wireless
sensor and our goal is to move these sensors around so thidbthrea connected network. This corresponds
to the movement problem with properfy being the subgraph induced by the final pebbles’ locatiormsgbe
connected. (see e.g. [16, 6] and the references in [11] foe mpplications).

Demaine et al. [11] give approximation algorithms and hassnresults (for different objective functions)
for the properties”? mentioned earlier. They also raise the question of minimgiznovement in mobile facility
location problems. For the minimum maximum movement motaility location problem (MM-MFL), they
[11] observed that there is a simple 2-approximation ané@skhether this can be improved. They also left the
problem of finding a good approximation algorithm for the immaom total movement mobile facility location
problem (TM-MFL) as an open question. In this paper, we andwth these questions. For MM-MFL, we show
that it is NP-hard to obtain better than a 2-approximatioie Tain contribution of this paper is to present a
constant factor approximation algorithm for the TM-MFL plem defined earlier. As we will see, this problem
in fact generalizes the classidaimedian problem. We show that there is an approximationepvasy reduction
from k-median to the minimum total movement facility location fplem.

Related Works: In the classical (uncapacitated) facility location probleFL, we are given a grapf(V, E)
with metric costsi;; on the edges, a set of clierlfsC V/, and a set of facilitied” C V' with eachi € I having
an opening cosf;. The goal is to open some of the facilities and assign eaemtclo an open facility such
that the total cost of opening facilities plus the costs @frab traveling to open facilities is minimized. The first
approximation algorithm for facility location had ratio(log ) and is due to Hochbaum [15]. Shmoys, Tardos,
Aardal [24] were the first to give a constant ratio approxiorafor this problem; their algorithm had ratio 3.16.
Later, in a series of papers several constant approximatgurithm were obtained for this problem with better
ratios (see [14, 10, 17, 19, 3, 25, 22, 7] and references )n THe best known algorithm has ratio 1.5 [7]. Guha
and Khuller [14] showed that, unle®6P C DTIME(nP°Y!°2(") there is no better than a 1.463-approximation
for UFL. Several variations of the facility location probiehave been studied such as the capacitated facility
location problem, in which there is a capacity on the numlbetients that can be served at each facilfty(e.g.



see [21] and the references there).

The TM-MFL problem can be thought of as a variant of the ctadsiacility location problem. In both
problems, the goal is to assign clients to facilities to miizie the total cost. The ideas of moving a client (as in
TM-MFL) versus assigning clients (as in classical faciliigation) can be thought of as equivalent. Similarly,
the cost of moving a facility in TM-MFL is also analogous, gt equivalent, to the opening cost of a facility
in classical facility location. These ideas are not eqeintakince in TM-MFL, although there af¥| potential
locations for facilities, we can only open at m¢&Y out of the|V'| many locations for facilities and the cost of
opening a facility at a certain locatiane V' is dependent on the other at mp&t — 1 locations that are opened.
That is, the cost of assigning facilities some Eet_ V, |U| < |F| locations is determined by a minimum cost
matching between the initial locations of facilities and tlestinations /.

Another well-studied related problem is the classicahedian. In thé:-median problem there is no opening
cost for facilities but we can open up tdfacilities. In the more general setting Bfmedian, each client; € C
can have a (positive) demard; and the cost of serving this demand at locatjofif there is facility there) is
D; - d;;. The best known approximation algorithm foimedian uses local search heuristics and has ratipa,
for any constant > 0, due to Arya et al [3]. On the other hand, Jain, Mahdian, artuk6418] showed that
unlessNP C DTIME (nC(glogn)) then there is nd.735-approximation algorithm for thé-median problem.
TM-MFL can be thought of as a variant of themedian problem in that we have a bounded number of locations
we can select to serve clients. However, in addition to mizimg the cost of serving clients, we must consider
the cost of assigning.€. moving) facilities to these locations.

Other variants and generalizations of the uncapacitateititfjadocation andk-median problems have been
studied. One popular variant is tkefacility location problem which is the classical uncapatgd facility loca-
tion problem with the additional restriction that at mésfacilities be opened. Liké&-median, the current best
approximation ratioX+ /3 +¢) for k-facility location is obtained through a local search aitjon [26]. Initially,
it might appear that thé-facility location problem seems similar enough to our peabthat it may be possible
to model TM-MFL as &:-facility location problem by somehow having the openingtsank-facility location
correspond to movement costs in TM-MFL. However, we showaHacal search technique for TM-MFL that is
analogous to the local search feifacility location has an unbounded locality gap. This higtts the fact that
allowing facilities to be mobile creates a fundamentallffedent problem.

The mobile facility location problem is, in some ways, reisient of thek-level facility location problem
with £ = 2. Here, we haveé sets of facilitiest, . . ., £, where each facility has an opening cost and each dlient
is assigned a sequencefofacilities f;1, ..., fix wheref;; € F};. Say client starts at locatiom, then the service
cost of clienti is dyy, + df, s,2 + ... +dy,,_, 5,- The goal is to minimize the total service cost of all clients
plus the opening cost of all facilities that are serving astene client. If the distances are metric thenkitievel
facility location problem admits a 3-approximation [1] @hthe special case &f = 2 has a 1.77-approximation
[27]. To some it might seem that our problem can be modelectbom as a 2-level facility location problem; one
level could be the clients moving to their destination areddther level could be moving from these destinations
to the original facility assigned to that particular deation. However, there are several fundamental differences
between the 2-level facility location problem and TM-MFLorFexample, if we move clients from level 1 to
level 2 as described above, then the distance from a levatility” to the level 2 would be counted toward the
total movement cost (as many times as there are clientditrgwtbis route) whereas in TM-MFL each facility
is moved from level 2 to level 1 and this distance is only cednbnce toward the total cost of the solution.
Also, while there arex potential facilities in level 1, we can use at moB{ such locations and no two clients
visiting different level 1 facilities could visit the samevkl 2 facility since a mobile facility can only move to one
location. Finally, 2-level facility location has a 1.77mpximation whereas we show that TM-MFL cannot be
approximated within any constant better thamedian, for which only the best approximation achievesctofa
of 3 + €. So solving TM-MFL by modeling it as a 2-level facility lodan instance seems difficult.

Demaine et al. [11] considered some classes of movemenepnsbFor the property of forming a connected



induced subgraph, they obtained approximation algorittitis ratios O(+/m/OPT) andO(min{n,m}) for
minimum maximum movement and total movement, respectiaig hardness dfz(nl—ﬁ) for the total move-
ment (they use the term “sum” to refer to what we call “totaldvement). They also considered variations in
which pebbles need to establish connectivity between twengnodes, ¢, or to form an independent set (on the
planeR?).

Finally, we mention that the name “mobile facility locatiohas been used to refer to the study of how
facilities move to optimally serve a set of clients who areving in a continuous manner iR? (see,e.g. [5]).
This problem seems mostly unrelated to the problem disdusshis paper.

Our results: We consider both the TM-MFL and MM-MFL problems. For TM-MFéstricted to trees it is
possible to obtain a pseudo-polynomial time exact algoritising dynamic programming where the demands are
polynomial in the size of the input. Using the fact that evgrgph metric can be probabilistically embedded into
a tree with distortiorO(log n) [4, 12], this yields arO(log n)-approximation for TM-MFL in general graphs in
pseudo-polynomial time [13]; however, obtaining a tédgog n)-approximation seems non-trivial. For example,
unlike the classical facility location problem, the natugeeedy algorithm that tries to find good partial solutions
iteratively fails. Our main result in this paper is the foliog.

Theorem 1.1 There is a polynomial time deterministic 8-approximatidgogithm for the minimum total move-
ment mobile facility location problem (TM-MFL).

This algorithm is based on rounding an optimal solution téRILP relaxation of the problem in five major
rounds. Each round brings the solution closer to an integjetisn. This algorithm is inspired by the work of
Charikar et al. [9] but uses several new ideas, such as takuimodularity of the matching polytope as well
as an augmenting path argument to obtain a half-integeti@oluAlthough the algorithm is fairly involved, we
believe some of the ideas developed here might be usefuhimgmther combinatorial optimization problems.
This theorem is complemented by the following whose prodib¥es almost immediately from the proof of
APX-hardness for uncapacitated facility location by Guhd Ehuller [14]:

Theorem 1.2 The minimum total movement mobile facility location prabl@M-MFL) is APX-hard.

We also present an approximation preserving reduction fremedian to TM-MFL. Note that the best ap-
proximation algorithm fok-median has rati8 + € [3].

Theorem 1.3 If there is ana-approximation for TM-MFL then there is afa + o(1))-approximation for the
k-median problem.

Jain, Mahdian, and Saberi [18] proved that there is no 1af§Foximation algorithm fok-median unless
NP C DTIME(nP°¥'oe(?)) By Theorem 1.3, the same hardness holds for TM-MFL.

For the MM-MFL problem, there is a simple 2-approximatiogaathm (as observed in [11]) as follows: do
not move the facilities; only move each client to the nediadtity. It is easily seen that the maximum distance
traveled in this solution is at most twice the optimum. Wewsltbat this is essentially best possible (this was
independently discovered by Armon [2]):

Theorem 1.4 For anye > 0, there is no(2 — €)-approximation algorithm for the minimum maximum movement
mobile facility location problem (MM-MFL) unles8 = N P.

Remark: Since the best known approximation algorithmfemedian uses local search [3] and given the similar-
ity of the TM-MFL problem tok-median (e.g. by Theorem 1.3), it is natural to guess that Isearch technique
might also be useful to design an approximation algorithmiid-MFL. However, we can construct examples



that show that any natural local search algorithm that per$ca bounded number of exchange or switch opera-
tions at each iteration will have an unbounded ratio. Moecgjzally, we can show the following. First observe
that if we fix the destinations of the set of facilities thee #olution for clients is obvious (each client must go
to the nearest vertex which has a facility). Now considerftitlewing local search operation; select a subset of
k < p facilities f;,, ..., f;, and a subset of destinationsy, ..., vy and movef;, to v; for eachl < j < k.
Note that this operation allows to permute the final locatidriacilities among themselves too. Consider an
algorithm that iteratively performs such local search apiens that improve the overall cost of the solution until
no more improvements can be made. In section 4, we show treexamples for which this algorithm will have
unbounded approximation ratio.

The rest of the paper is organized as follows. For ease ofsitiquo we start by presening a proof for a
slightly weaker version of Theorem 1.1 in Section 2. Thenegt®n 3 we show how to improve this algorithm
to obtain the result of Theorem 1.1. Section 5 contains tbhefprof hardness results. We conclude the paper
with a few remarks.

2 A Randomized 16-Approximation Algorithm

In this section, we present a randomized 16-approximatigorithm for the minimum total movement mobile
facility location problem. This algorithm uses randomizednding of the optimal fractional solution obtained
from solving a natural IP/LP formulation. In the next sentise show how we can derandomize this algorithm
as well as improve the analysis to obtain a deterministip@@ximation algorithm.

Recall that in TM-MFL, we have a gragh(V, E) with metric costs/;; on the edges, a set of clientseach
having a demand;, and a set of facilitied”. Note that, since we do not need more than one facility on any
node in the final configuration, we assume that each node ImasstV'| facilities so|F'| < |V|?. Furthermore,
we then assume (after the previous observation) that eadhyfas located on a node with no other facilities
or clients; this can be enforced by transforming the gena@blem of facilities sharing a node by creating a
dummy-node for each facility and connecting it to the orgjinode with cost 0. Thus we can assume_ V.
Also, we can assumé€ C V by combining the demands of clients in any node into one tkamce clients
starting on the same node can be moved to the same destimati@optimal solution.

2.1 Outline of the Algorithm

Our starting point is an integer programming formulatiorihef problem. Define indicator variableg, for each
i € C'andv € V, andy;, for eachj € F andv € V; variablesz;, andy;, will be 1 if client i or facility j is
moved to locatiorv, respectively, and O otherwise. Then the goal is to optirtozellowing program:

minimize : Z Z TiyDidiy  + Z Z Yjudjo

i€CveV jEFveV
such that : Z Tin = 1 VieC
veV
Yy = 1 VjieF
veV
Zij > T VieCveV
JEF
i € {0,1} VieCiveV
yjv € {0,1} Vie FFveV

The first two constraints ensure that a client or facility aamique destination vertex while the third ensures
that any vertex that is the destination of some client is #isadestination of some facility. We say a location



is coveredif there is at least one facility assigned to it (so we can maveclient to be served a). We obtain a
linear program (LP) relaxation of this problem by relaxihg tast two constraints to non-negativity constraints
x;» > 0 andy;, > 0. Since the size of this LP is polynomial in the size of the inpa can compute the optimum
fractional solution(z, ) with objective function valu& PT}. For each client defineC; = >, Tivdi, and for
each facilityj defineF’; = Y y;.d;,. Note thatC; and F}; are the total costs of moving a unit of demand of
clienti and facility j, respectively. Denoty"; C;D; asC and)_ ; F; asF; soC + F = OPTy. Our randomized
algorithm produces an integral solution of (expected) abstostl6C + 4F < 16 - OPTy.

The algorithm has five phases, starting from the optimatifsaal solution(z,7), where each phase brings
the current solution closer to an integer solution whilegieg a bound on the cost increases. We begin with
a summary of each phase. Since the value&of) change frequently throughout the algorithm, we adopt the
following notation. For each step (Z), 7)) will denote the assignments of clients and facilities tcatimmns

after stepp. Similarly, we will let @(p) andfﬁp) denote the respective costs of moving one unit of demand

of client i and moving facilityj under the assignmenr®), 7). Finally, we letc” — > Q@)Di and
7P _ >, ng)_

Step 1: Clustering of clients: To start, we will create a modified instance of the originalgyem by moving
demands between clients and removing clients with zero ddrea that different locations with non-zero client
demands are far apart. More specifically, for all pairs oérds: # i’ we want to make sure that; >
4 -max {C;,Cy}. This will be guided by the values dfz,7) so that the cost of the new instance under the
assignments ofz, ) is at mostO P71y and so we can recover an integer solution to the originallprolfrom an
integer solution to the modified problem by paying only a ¢ansfactor ofC'.

Step 2: Relocation of facilities: The next step is to ensure that each locatiavith x§§> > 0 forsomei € C

is the initial location of some clierit. That is, at the end of Step 2;2)) > 0 implies there is somé where client
i’ starts at node. Based on the previous step of clustering the demands anovowb perform this step, we will
now be able to say th&g(.f) > % so less than half of each clienmust be served at a locatiendifferent froms
and that this location is the location of another client. ®aver, each client has this amount served at the nearest
1/ to 7 while breaking ties by choosing the clieitwith lowest index. Let this closest client idoe denoted by
¢(i). Finally, we remove useless facilities so that each looatinow has) _; yj(z) <1

Step 3: Getting a half-integer solution: The third step is more involved. Here we obtain a half-intege
solution through two sub-processes. The first ensuresdhatth location, Zj yj(‘z) = g for some integeu by
redirecting facility assignments using an augmenting .patie second relies on a matching polytope argument
and uses a minimum weighted perfect matching algorithm (iipartite graph) to ensure that we can assume

each individualy](-f’}) € {0, %, 1}. At this stage, we will have half-integer values for allagﬁf’) andy](.?’) variables.

Step 4: Modifying the half-integer solution: We first describe the final step to provide motivation for the
fourth step. The final step obtains an integer solution by fiking a destination for each facility and then
assigning each client to a covered location. This step fastdach facility being uniformly randomly rounded to
one of its at most 2 (fractional) destinations. Then we maehelient; which is not covered te(i) and from
there top(¢(1)) if there is no facility assigned there either, and so on| timé client reaches a covered location.
The expected facility cost is exactly the current fractia@st. The expected cost of moving the clients will be
bound by moving each client frointo ¢ (i), iteratively.

In order to bound the cost of moving clients in the final stéye, fourth step will prepare the current half-
integer solution for the randomized rounding step. Theegwao types of clients that we will consider ‘dmad” .
The first type consists of clientswith ng) = 1 while having two distinct facilitieg and;’ such thaty](.f) =
yj(? = % This is bad because the client currently has €gst 0 (it is completely covered at its own location),

but randomly rounding facilities based on thgjﬁ) values may result in locationnot being covered; therefore
we cannot bound the increase in the cost of that client. Tbensetype of bad client is one with(¢(i)) = 1,



but bothi and¢(i) have their locations covered with weightby different facilities. This is bad since the event
where neitheli nor ¢(i) are covered results in cliemtbeing moved betweehnand ¢(i) back and forth. Notice
clienti being bad in this case implies) is also bad. Through this step, we ensure that there is noliesud (@r
client pairs) and so we are able to say that every client maisi/bntually covered as it follows i) and the cost
of moving each client increases, in expectation, by a coh$ator of its original half-integer cost.

Step 5: Randomized Rounding As described before, we randomly round each facility lazatb one of its
at most 2 (fractional) destination locations with equalbataility. Then we move each cliento ¢(i) and from
there top(¢(i)) if there is no facility assigned there, and so on, until thentlreaches a covered location.

2.2 Clustering of Clients

This phase is similar to the first step in [9]. Recall that wartsfrom an optimum LP solution an@; =

> . Tivdiy. We modify the instance in such a way that the current fraefisolution is also a feasible solution
for the new instance, and given an integer solution for thve instance, we can obtain an integer solution for the
original instance with a bounded increase in the cost. Withuss of generality, assume th@ < Cy < --- <
C\c|- We assigrz?), 1)) + (z,7) and cluster the demands of clients by the following procedur

fori=1...|C|do
if 34’ < i such thatD; > 0 andd;;; < 4C; then
let i" be any such client
Dy < Dy + D;
D; < 0 (i is no longer a client)

In the following three lemmas we show how to find a good integggution of the original instance from a
solution of this new instance. The first lemma describes lwowbtain an integer solution to the original instance
from an integer solution to the new instance with an increds€ in cost. The second lemma expresses the fact
that this new problem does not get worse in its objective tioncvalue under the assignmerft® ). The final
lemma states that any two clients are far from each othemegpty that is used in obtaining an integer solution
of the new instance. The proofs of the first two lemmas aréyfaimple while the third is immediate from the
clustering procedure.

Lemma 2.1 Any integer solution of co&t to the modified instance can be turned into an integer sailutiicthe
original problem with cost at mogt + 4C.

Proof. Simply move the location of each unit of demand in the modifistiance to the location of that unit of
demand in the original instance. By the definition of the nestance, the cost increase for the unit of demand
due to this move is bound byC; wherei was the original client that possessed that demand. Sumonigll
units of demand and original clientsthe cost increase is at mest. O

Lemma22 ¢V <C andFY = F.

Proof. Consider each unit of demand of a client. The contributiothaf unit of demand t@(l) is exactly the
same as i if the demand is not moved. If the demand is moved, then it mtw@ new location with a smaller
index which implies a reduction in cost since thgare considered in increasing order. The cost of the faasliti
stays the same since their assignments were not changed. O

Lemma 2.3 Any two clients andi’ in the modified instance havg; > 4 - max {UEU,U?)}.

From now on, we will be dealing with the modified instance & gnoblem.
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2.3 Reocation of Facilities

First, initialize (z(?), 7)) « (z,7"). Now, consider each locationwith xf}) > 0 for some clienti (i.e.
there is some client being served fractionallyabut there is no client demand locatedvatLet:/ € C be any
closest client to this location, i.el;,, < d;, for all other clientsi € C. We are going to relocate the clients

@
being served at to locationi’ and take the facilities that coverwith them. LetM = =2 f;’g be the fraction
i Yjv
of the facility coverage at that is required to cover all clientdbeing served at (it may be thaty j y](i) > :cf))
for all © € C, for example wheni;, = 0 for many facilities;j but we will remove all such occurrences after

this step). For all clients and facilitiesj, assign:z”) « 22 + 27, 22 « o, yﬁ) — yﬁ) + M - yﬁ), and

i’ v ' Vv
2 2
y](-v) —~1-M)- yj(»v).

Lemma24 C% < o0 andF® < FY oW,

Proof. Consider a vertex as above where the assignments aiere moved to a nearest clieit For each client

i the cost increases by at mdst - :cz(})) cdyy < D+ x;{’ - dyi, Where we use the fact thdt; < d,; (by definition
of 4'). This fraction of the client’s assignment will not be movaghin since it is moved to a client location.
Therefore, summing over allandu, it follows that the cost increase for clients is at mest .

For each vertex we know there is a clientwith mﬁ) =M-3; yﬁ). The cost increase incurred by moving
facility assignments to is:

M-y yj(*i)(djz‘/ —djy) <MY y](i)di/v =dip - M- y](},) = ol dy, < al) - diy <) - diy - Dy,

jEF jeF jEF
where the first inequality uses the fact thgt < d;,+d,; by triangle inequality. Notice that when an assignment
of a facility is moved from some to some:’ then that fraction of the assignment will never move agaithis

step. Furthermore, eaoiﬁi) fraction of a client will be used at most once in bounding theaility cost increase.
Therefore, summing this change in cost ovewahows the cost increase for both clients and facilities isdo

by 6(1) 0
Even more can be said about the structure of the curreni@oluiising a simple averaging argument we can
prove:

Lemma2.5 For all clients:: ng) > L. In other words, each client has less than half of its assigmnbeing

served at a different location than its own.

Proof. This follows from a simple averaging argument. Considerientlk and the set of all vertices with
distanced;, < 2651); we call this a ball with radiuQUﬁl) around:, denoted byR;. First, we claim that for every
pairz,7’ of clients, R; and R; are disjoint. Otherwise, if belongs to both?; and R;/, with 55,1) < @(-1), then
we haved;,, < 2@(-1) which impliesd;, + d;, < 4@(-1). By the triangle inequality, this results i, < 4@(-1)
which contradicts Lemma 2.3. Next we claim thal, . . x;{’ > 1, for otherwise, the total cost for fractional
values assigned to the vertices outsitlgs strictly larger tharfgl)
to the vertices inside R; are moved ta thenng) > 1

, a contradiction. Since all client assignments

a

Next, for each vertex with D,, = 0 and each facilityj, if y](i) > 0 then move this amount back to the location
of j at no additional cost. This can happen if at the beginnindnisfphaseM < 1; therefore after relocating
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the facility values assigned to vertexwe still havezj yj(i) > 0. Then, for each client if Zj y](f) > 1 we can

move coverage from facilities froryﬁ) to yj(i) until Zj yj(f) = 1 at no extra cost. Since we assume that each
facility starts on a location with no other facilities orettits then this is always possible. Thus, in the current
solution we have that the only vertices with non-zero coyerare those that are either a client or facility location,

> yﬁ) < 1 for all locationsv and, for all clientsi, ng) > Landy, . mgf,) = 1. We can assume that the

remainingl — mgf) < 1 fraction of each client not being served at its own location is being served at theesea
client. Denote this client ag(:) while breaking ties by the lowest index. Also assume thah etient uses the

coverage at its own location to the maximum amount. Thabisefchi, we can assume thaﬁf) =2 yﬁ) by

(2) (2)

moving} -, y](f) —xy; froma; g, to 2\?) at no additional cost.

i
2.4 Getting a Half-Integer Solution
In this phase our goal is to ensure that the value of aé?handy](fz) is in {0, 1,1}. Start with(z®),7®)) «
(z?,7?)). We say that a location is covered half-integrally i, yﬁ) € {0,1,1}. Given the assignment
z®), 7)), we construct a weighted bipartite graphin the following manner. For each locatiancreate a
vertex on one side of the bipartition and for each facifityreate a vertex on the other side of the bipartition. We
connect to 7 in B with weighty§i) only if this weight is positive. The edge weights in any carted component
of B must sum to an integer since the sum of the weights of the edgielent to any particular facility must be
1. Therefore, if there is a locatianthat is not covered half-integrally in the current assigntig(®),7(3)), then
there must be another locatiohin the same connected componentdbat is not covered half-integrally iB.
While there is still a location that is not covered half-integrally we execute the follogvprocedure. Find
a pathv = wvg, j1,v1, Jo, Vo, ..., vk_1, jk, Uk = v’ in the bipartite graphB constructed fromv (using current
(@®),73))) to some other location’ that is not covered half-integrally. Defing = d; ;) D; if v is some client
i and otherwise say, = 0. Similarly defineqa;, for v'. Theseay, a;. quantities express the cost of serving
one unit of demand for the clients at locations correspanttirv and+’ if there is no facility coverage at their
location.
Let 7 be a constant which we will specify after the entire alganitts presented. Since we could consider
this path in the reverse order, without loss of generalgguane that:

k k
OZO + TZ d]m'Um S O[k + TZ djman—l (l)
m=1

m=1

What we plan to do is shift some coverage froro v’ through this path, by simultaneously increasing each

yj(.f’n)vm and decreasing ea<1,l§f’n)vm_1 (at the same rate) until one of the edges in the path has vdlue the edge

disappears fron®?) or one of the endpointsor v’ is covered half-integrally. Let= min{yj(f’n)’vw1 1 <m <k}

If vis aclienti, then update < min{e, mgf’) — £}, Finally, update: < min{e,1— > yj(f’}} (thisis1— xg,?’l), if v/

is a client:’). Now, by our construction oB and the assumption that neithenor«’ are covered half-integrally,
we havee > 0. We perform updates t@®), 7)) as in Figure 1.

Since a new edge i can never be introduced by this method and all half-intég@bvered locations
remain so, then there is a polynomial upper-bound on the rumitimes we must perform this re-assignment
of facilities. Denote the differencqzﬁlzl(djmvm — dj,vm_1)) DY 6. After a step is performed, the total cost

of all cIientsﬁ(?’) is changed by(ay — ay) which is at most—7§ by (1). Similarly, the change in the cost
of the facilities isd. Letting A be the sum of thé values over all executions of such an update, we see that

c® <? _ ;A andF® = F? 4 A,



(3) (3) —€e V1i<m<k

yjmvmfl A yjmvmfl

y](»f’n)vm — yjivm + € Vi<m<k

xS’) — mgf’) —€ if vis aclient;
%) ) if v is a client;

xw(i) — CEi¢(i) +e€ mTovl lent:
5?9’2), — 552(131)/ +e if v" is a clients’
3) B TR At

Tigany & Tigun — € if v’ is a clienti

Figure 1: Changing fractional values over a path betweerctigats with non-half-integer coverage.

The previous process obtains a half-integer solution inghah location haszj y](i) € { 0, %, 1}. However,
it is not necessarily true that eagﬁ) is a half-integer. We rectify this situation with a matching

Lemma 2.6 If there is an assignmenit, 7) suchzj yjv Is @ half-integer for all locations), then we can find an
assignmen(z’, y’) with all %, being half-integer where neither the client nor the fagilipsts increase.

Proof. We split all locationsy with . y;, = @ into locationsuvy, . . ., v, (note thata(v) € {0, 1,2}). Split
each facility; into nodesj; andj,. Finally, for each original location with a(v) > 0 and each original facility

Jr SeWj vy = Yjory = % for 1 < d < a(v) and keep the original distances. Notice that for each nellitjathe
sum of fractional values over the edges incident to it i$ 5tdnd each new location is fractionally covered with
value exactly 1. We now have a fractional matching betweer2|th| new facilities and th&|F'| new locations

of cost2F (since we doubled the edges). By total-unimodularity ofrtieching polytope, we can assume that
there is an integral matching of at most the same cost. We odrsfich a matching using a minimum weight
perfect matching in bipartite graphs algorithm (e.g. [2Z]pnsider the new assignment values defined by this
matching; ally;..,’s are either 0 or 1.

Now in the original problem (before splitting) Ig}v — % zgg (Yj10q +Y520, ) TOr each location and facility
j. Since we had an integer matching with the new locations aaititfes, we now have th@t}v € {O, %, 1}.
Each new locationy, forall1 < d < Vg(v), WAS covered with weight 1 in the integer matching so eadlirai

locationw still haszj y}v = @ The weights of the assignments in the integer matching hered to restore

the original problem, so now the current cost of the faetitis at mosF'. The client assignmeni®do not change
so the client costs do not increase. O

Applying Lemma 2.6 toz*®), 7)), we obtain an assignment tgy variables in which eacbﬁ) is half-
integer, for allj,v. Since each client has:cg”) > % and uses its own coverage to the maximum amount, it
(3 (3 3)
follows that each:?) € {1,1} and ifz{®) = thenxgd)(l.) =1
2.5 Modifying the Half-Integer Solution

We construct an auxiliary directed graphwhich has a vertex; for each clienti and a directed edge from
to vg(;) With weightd, ;). So each vertex il has outdegree exactly one and by the definitiop,ahe edge
weights are non-increasing in any walk & which means any directed cycle Bf must have all edge weights
being the same. Moreover, singéi) was defined by breaking ties with lower-indexed clients thkycles in
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H have length 2. SoH can be viewed as a collection of connected components eashiolfi is a unicyclic
graph consisting of a directed tree with a 2-cycle at the anot all other edges being oriented toward the root.

We define two types abad clients. Call each client atype 1bad client if:cg”) = 1 and for two distinct
facilities j andj’, y(f) = yﬁ) = 1. Also, a pair of clients andi’ is calledtype 2if ¢(i) = i’, ¢(i') = i and
aregoodones. Recall that the final step of the algorithm will roundretacility ; to locationv with probability

yﬁ). With this in consideration, we see that type 1 clients aosehNher@E?’) = 0 but might not receive a
facility after the randomized rounding of facilities (anmltgas to be served at the nearest location with a facility),
thus incurring a positive cost increase. We make a modifinaty the half-integer solution such that this does
not happen in the next step. We will bound the expected casadi client by considering the expected distance
a clienti has to move along the sequence of locatiof8(i), (V) (i), ) (i) ... until it reaches a location that
received a facility. Here we defing®) (i) recursively ass(¥) (i) = i and¢p*+1 (i) = ¢(¢¥)(3)). The problem
with type 2 clients is that they will never reach a locatiorihna facility if both of their half-covering facilities
are assigned elsewhere in the randomized rounding phaa#.2itycles are guaranteed to receive a facility in
the randomized rounding, then all clients will eventualeydmvered by iteratively following®) (i) to ¢(+1 ()
since this sequence eventually reaches the 2-cycle rdét in

We now turn our attention to fixing type 1 and type 2 clientsgiBeby setting(z¥,74) « (z3),73)).
Consider any type 1 clientor type 2 client pairg and:’ with contributing facilities; andj’. We will build a
sequence of locations and facilities starting withNow, j must be contributing to another locatiensince it
was only contributing% tos. If there is a type 1 client’ atv, then continue constructing this sequence with
followed by the other facility;” contributing toi’. If there is a type 2 client’ at v, then continue constructing
this sequence withf being followed by#(:') and then by the facility” contributing tog(i’). Continue to extend
the sequence in this way until a location is reached thatasl go until the location of the original type 1 client
1 is reached. In the former of these two cases, extend the sathdrpm facility ; contributing to the original
1. This process forms a sequence consisting only of clientgpaf 1 or 2 (except, perhaps, the endpoints, if we
do not get a cycle) and the facilities which contribute tahdf we do this for every type 1 or 2 client, we get a
collection of sequences of which each faciljtand locationv are adjacent in at most one of them (so that each
yﬁ) is represented at most once). Refer to figure 2(a) for an eleapfiguch a sequence. Notice that each type 1
client and type 2 pair of clients appears exactly once intgkaoe such sequence (it may be that a client appears
at the start and end of a sequence; we can think of this seg@sra cycle in which the client appears once). We
will deal with each of these sequences individually.

Say o, j1, V], 01, Jo, Vh, V2, ..., Vb 1, Um—1, Jm, UL, IS SUCh a sequence where, for< i < m, if v; is a
type 1 client we assume = v,. Finally, if vy is of type 1 then we have, = v}, and if v, is of type 2 then
¢(vg) = vl,,. Since we could consider this sequence in the reverse ositbiout loss of generality, we can
assume that:

2P = &) = L put two different facilitiesj andj are such thayﬁ’ = yﬁ.), = 1. The remaining locations

m—1 m—1
<2djw§ + d'iviﬂ) < Z (djivg +2d 'ivifl) 2)
i=1 i=
Perform the following sequence of updates to fix the type 12alegtations in this sequence (say = vg):
y](43_1 — 0forl <i<m, andy§f3i — y](‘?) + % for 1 < i < m. Note that by rule 2 above, if, = v; (i.e.
it is a type 1 client) then we are essentially settj;ﬁgi + landifuv, # v; we will haveyj(.iz; = y](‘?) = % (see
Figure 2 for an example).
There are no more type 1 or type 2 clients remaining afterupiiate is performed for all of the sequences. It
is easy to see that we do not have to chardévalues, therefore since oniy®) variables are changed, we have

oW =¥ We can also bound the costBf* as follows:

11



AN \gx

Vo V1 v Vz Va V3 ¥ V4

(@) (b)

Figure 2: A sequence of bad clients before (a) and after (blyaqy the fixing operation. Each edge represents
an assignment of fractional valde

Lemma27 F < AF®

Proof. The overall increase in facility costs for a givem, ji, v}, v1, jo, ..., U, _1, Um—1, jm, V), SEQUENCE iS
given by:

(djivi - djwiﬂ)‘{'

[N\
N | —
VRS
i{ngh

m—1
1
9 (Z (djivi - djivi—l) + dj00 — djmvm—1>

i=1

(djivi—l + d'ivi) + djmvm—l - djmvm—1>

™

(djivg + dvgvi)

IA
Y
o

G, + dv;vifl)

AN
Qv
Q&.
d
+
Q&.
d
+
QL
Z@
»—A
N—

IN

The first, second and fourth inequalities come from the gliaimequality. For each < i < m, if v} is of
type 1, thend,,,, = 0 and ifv; andv; are of type 2, then sinag(v;) = v; we have thatl,;,, < d,,,_,. In either
case, the third inequality holds. The last inequality cofn@® the assumption in expression (2) Summing over
all such paths and cycles yiel@ﬂ‘) < 4T because eaq/ﬁ) variable was updated at most once. O
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2.6 Randomized Rounding

As mentioned before, our final step is to round each facjlitp a locationv with probability yﬁ). Since for

each facilityj, >, y](i) = 1, the expected cost of the facilities after rounding is dyaFt(A‘). Naturally, for each
client that does not have a facility at its location we send ithe nearest location with a facility after this step
is performed. We bound the cost increase due to moving slierthe following lemma. Recall that'*) (i) is
defined recursively ag(®) (i) = i andp**+1 (i) = ¢(¢*)(3)) for k > 0.

Lemma 2.8 The expected cost of the client assignments after the raizddrmmounding off® is at most45(4).

(4)

7

Proof. For any client; with mgf) = 1 we haveC; ’ = 0. Since there are no type 1 clients, then locatios

guaranteed to receive a facility so the new cost of this tlestill 0. Now assume that cIiemihas:ngf) =1 We
now prove, for any: > 1, that:
Pr(¢™*) (i) does not receive a facilitys(’) (i) did not receive a facility for ald < I < k) < 1.

Since there are no type 1 clientsi &)(i)qb(k)(i) = 1 then¢™®) (i) will receive a facility. Otherwise, lef be

the facility with yj‘;)(k)(i) = % If yﬁ)wn =0forall0 <[ < k (that is,j is not partially assigned to any location
before thek’th step alongp starting ati), then the probability that will be assigned ta*) (i) is exactly%. If

y;‘;)(l)(i) = ](.j))m(i) = 1 for some0 < I < k, then it must be thap(!) (i) # ¢ (i). If this were not true, then this
implies thaty(®) (i) is in a cycle of the grapl#/ of the ¢ function considered in the previous step. Since all cycles
of H have length 2 and since there are no type 2 clients, ¢fféft) not receiving a client implieg (1) (i) must
have received one. Since we assume thab%\'l’l(z‘) do not receive a facility fob < I’ < k, then it must be that
I + 1 = k which implies the contradictiop”) (i) = ¢*)(i) = ¢+ (7). Therefore, since") # ¢(*) (i) and
# (i) does not receive facility then;j must have been assigned to locatigf) (i). Therefore, in each possible
casep¥) (i) receives a facility with probability at Iea%twhich proves our claim.

From this we see:

Pr(¢") (i) do not receive a facility for al) < [ < k)
k-1

=[] Pr(¢") (i) does not receive a facility¢") (i) did not receive a facility for ald < I < 1)
=0

< 27k

Note that because we do not have a type 2 client pair, for gaanof clientsi, i’ with ¢(i) = ¢/ and¢(i’) =i
(i.e. they form a 2-cycle irH), there must be one facility with y(.‘.l) = y(.‘.l) = % So exactly one of or 7/ will

be covered by after the rounding. Since any walk di eventuglly Iea{js to a 2-cycle (containing the root) of
which one location must be assigned a facility, then thesengnimum valuek; such thatp*+) (i) will receive a
facility with probability 1 if the previous locations(”) (i) do not receive a facility fob < I < k;.

Also, since the weights of edges Af do not increase in any walk, then it is easy to prove by induacthat

dig) iy < k - dig(i)- Thus, the expected cost of serving cliemtith ng) = 1 is bound by:
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k;
ZDZ- +dgm ) - Pr(¢™) (i) receives a location and’) (i) do not for allo < I < k)

ki

< ) k- Di-dig - Pr(¢(4) do not receive a facility for al) < I < k)
k=0
D o D; - b
< Dj-dig) - Z ok = =2 D diyq) =4C; "Dy,
k=0
and so the lemma follows. O

2.7 Puttingit all Together

Working with the modified instance, we have the client/fcitosts initially being at mostC, F). After the
second step, the new client/facility costs are bounde®by F' + C). When obtaining the half-integer solution,
the costs increase to at m@8C — 7A, F + C + A) for some constant which we will specify shortly. Fixing
type 1 and type 2 clients resulted in the cost of the curreintisa rising to at mos{2C — 7A,4F + 4C + 4A).
Finally, the random rounding produced an integer solutemthe modified instance with an expected cost of at
most(8C — 47A,4F +4C + 4A).

However, as detailed in the clustering step, we have to moxalemands back to their original locations
which is done with a penalty @fC. Thus, the final cost of the algorithmi§C +4F 4 4(1 —7)A. Choosing the
constantr to be 1 when obtaining the half-integer solution, we see tegadl cost of the final integer solution to
the original problem being bound B$C + 4F < 16 - OPT}.

3 Derandomizing and Improving to an 8-Approximation

In this section we show how we can build upon the algorithm eft®n 2 to prove Theorem 1.1. The 8-
approximation algorithm is essentially the same algorigspresented. First, we show how we can derandomize
that algorithm using the method of conditional expectatitimget a deterministic one. Next we describe a more
careful analysis of some of the steps in the algorithm whieldg an improved ratio of 8 for the approximation.
We will not fix the value ofr until the end of this new analysis.

3.1 Derandomizing the Algorithm of Theorem 1.1

As said before, we use the method of conditional expectatiordo the final step of our rounding algorithm
deterministically. Since we will move each clierb its nearest location that received a facility after thending,

we can efficiently compute the expected cost of cliegiven that some of the facilities are already rounded in
the following manner. Begin by ordering the locatianswvs, . . ., vy so thatd;,, < djy, < -+ < diU\V\' The
expected cost can be expressed as:

V]
> di,, Pr(vm, receives a facility ana; do not forl <1 < m)

m=1

We can compute the expected cost for clieint the following manner:
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Costi, m)
if there is a facility assigned tg,, with weight 1then returnd;,,,
elseif there is a facility;j that is assigned to,, with Weight% then
if j is also assigned tg with weight% for somel < m, then returnd,,,,,
dsereturns - d;,, + 5 - Cost(i,m + 1)
elsereturn Costi, m + 1)

Lemma 3.1 The expected cost of clienfor a given partial assignment of facilities is CasD, 0).

Proof. First of all, the recursive routine reaches a base case alhfailities are assigned with weightsor %
to locations inV|. Say this base case happens when considering locatiokVe prove, in an inductive fashion,
that the value returned when considering locatipfior 1 < [ < m is the expected assignment cost of cliént
given that all locations;,, 1 < !’ < [ are not allocated a facility.

Consider the base casewf. If v, has a weight 1 assignment, then since there are no type iscéied all
unused assignments do not move from their initial startiogitfpn it must be that some facility is completely
assigned tay,,. If v, has a Weigh% assignment, then since this is a base case it must be thaaditieyf;
partially assigned te,,, was also patrtially assigned to somefor 1 < I’ < m. Sincej was not assigned tq,
by assumption, it must be assignedip. In either case, the value returnedijs,, .

Now consider some; locations forl < [ < m. The first and second cases of the recursive function do not
apply because; is not a base case. If there is no facility that is partiallyigized tov; then the probability of;
receiving a facility is 0. Thus, the expected cost is exatiéyexpected cost of_; receiving a facility given that
no vy receives a facility for any < I’ < [. If v; was partially assigned a facility, then it must be that is not
partially assigned to a previous location for 1 < I’ < [ (otherwisev; is a base case). Thus, the probability of
j being assigned to; is exactly% and the assignment cost fors d;,, in this case. The probability thatis not
assigned tay; is also%. In this event, the expected assignment cogtisthen recursively computed. O

Now consider each facility in some order. Ifj is such tha@;ﬁ) = 1 for somew, then we assign to this

location. Otherwise, say andv’ are the two locations such thgzjf) = yﬁ? = % Try the two cases of assigning

j towv andv’ and pick the one that produces the least expected cost. \Wiseis tlone for all facilities, we have
an integer assignment of facilities and clients to nodessefiost is at most the expected value before any of this
rounding was performed.

3.2 Improving the Relocation of Coverage

Consider the second step of the algorithm which consistslotating the facilities (and the clients with them).
Previously, when we move facility coverage from a locatioto the nearest client, we also moved all client

assignments from to clients’. Instead of doing that, we will move onb;fi,zg from each client (assigned t9 and

w P Vily

leave any extra client assignmentwatThat is, for each client let ¢; = min {x(Q) x(Q)} and move this much
@)
s> and move this fraction of all facility assignments franto i. In

other words, for each cliertand facilityj’, jpverform the following update:

T

assignment fromv to 7/. DefineM =

ng,) — wgf,)—i-ei
I
vy e M)
y < (1= M)yl
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It may be that after such an update that there are still diassigned to location. This happens in the case

thatx(zg < max {xf}) KAS C}. However, we have moved exacdfv) total facility assignments from to 7, so

Z‘l
the clients with some assignmentitor v are still covered and clierit now hase'?)

7 = 0. We repeat this process
on vertexv with the next closest client’ that still haSrE,Q,z) > ( after the re-assignment. Iterate this process until
all client assignments to have been moved to some client location. For each locatiamd client:;’, where the

assignments to were (partially) moved t@’ during this process, let,, ;; denote the cost of moving the fraction
of assignment of’ to v back tos’; this is D;; timesd;, times the value ofzcl(?g at the time of this movement
(note that the client cost faf decreases by, ;7). Leta, be the sum of alk, ; over all iterations of the above
procedure on. If we consider each client that had some portion of the assignmeﬁﬁ moved back tonfz)

then the total cost of these clients decreasesa bogind the total facility cost increases by at mast Denote by
B, the cost that all other clientspaid to have their assignments moved froro somei’ location where # 7'.

Leta = >, o @andg = >, 3, and notice thaty + § < " since each fraction of each client is moved at
most once. Therefore, the new facility cd&t” is at mostF"” + o and the new client cost"”
(1)

C+ 8 —a.

is at most

3.3 Improving the Analysis of the Expected Cost

In the randomized rounding phase, as observed before, ¢araiant: there is a minimum valug; such that
Pr(¢*7) (i) receives a facilityl ¢ (i) do not receive a facilitp < I < k;) = 1.

For each) < I < k;, the probability ofp(!) () receiving a facility given thai(1’)(i) do not for allo < I’ < [ is
exactly%. Therefore, the expected cost for clierdfter the randomized rounding of facilities can be bound as
follows:

k;
D; - d;y00(3) - Pr(¢™ (i) receives a location angl’) (i) do not for allo < I < k)
k=0

k;
= ) D;-dig - Pr(¢1(i) do not receive a facility for al) < I < k)
k=0

-Pr(¢™ (i) receives a locatioh¢”) (i) does not for alh < [ < k)

_ ¢ (i) ‘ ¢t (i)
- ki +Di Z ok+1

k=0
k;i—1
Di - ki - dig i) k- dig(i)

ok; * Diz ok+1

k=0

"dw(z)'(@H— ok >

1
“dig(i) - (1 - 2—k> ;

where the second last equality can easily be verified by timhuc This shows that the cost increase for each
clienti is at mos@§4) (note that the final expression is Gkif = 0).
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2(F-p+1)

2(F-p-1) 2(F-p)

Figure 3: An example with a large locality gap. A dot représerfacility and a number represents client demand.

3.4 TheFinal Analysis

As before, we start with the modified instance which has thecility costs at mostC, F'). The new analysis

on the relocating step shows that the cost can be then be byuidd+ 5 — o, F + ) wherea + 8 < oV <T.
The cost after obtaining the half integer solution increaseat mostC + 3 — a — 7A, F 4+ a + A). Fixing type
1 and type 2 clients then implies the resulting costs ineré@at mostC + 3 —a — 1A, 4F +4a+4A). Finally,
the new analysis on the expected cost increase, along weitthetandomization, shows the integer solution to the
modified instance has client/facility costs at m@&t' + 23 — 2o — 27A,4F + 4o + 4A).
As before, move the demands back to their original locatwitis a cost increase afC. By choosingr = 2,
we have the final cost of the integer solution being bound by:

6C +4F +2a+28+ (4 —27)A < 8C +4F + (4 —27)A
8C + 4F

4 Instances With Large L ocality Gap

Let p be a fixed positive integer and consider the following loadrsh operation. Select a subgeK p of
facilities f;,, ..., fi, and a subset of size of destinations for themy, . .., vy, respectively; move;, to v;, for
eachl < j < k. Finish by reassigning clients to their nearest facility.

We will exhibit, for any large enough positive integer an instance of TM-MFL with locality gap at least
F/(p + 2) with respect to the above operations. To that end, consiadgcla onF' + p + 1 vertices where
all edges have cost 1. Let,...,vr4p4+1 be the label of the vertices in counter-clockwise order. @riiges
vi,i = 2...F — p, place a client with demari and a single facility. On thép + 1 vertices following vertex
F —p, alternate between placing a client with demand that is Zrti@n the previously placed client and placing
a facility. Finally, place a single facility on vertax. This instance is illustrated in Figure 3.

Consider the solution to TM-MFL on this instance where eaatilify moves counter-clockwise one step.
All clients are covered and the total cost of this solutiorFlis One possible way to get to this configuration
starting from the initial configuration is by first moving tfaeility on vertexF + p to locationF' + p + 1 (since
this reduces the cost of serving the” + 1) facilities there), then moving the facility on vertéx+ p — 2 to
location F' 4+ p — 1, and so on. In other words, every facility (starting from ¢ime at location?” + p down to the
one at location 1) moves one step counter-clockwise to theestlocation that has clients on it. Each of these
moves reduces the total cost. The claim is that this solusi@local minimum with respect to the local search
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operations detailed above. Consider some local searclatopethat moves a set &f < p facilities f;,, ..., fi,
to locationsuy, . .., v;. Say, wlog, that is the index such that all;, 7 < ¢ are starting locations of some clients
and allv;,i" > c are not starting locations of some client. Before this Isedrch step all clients have some
facility at their start location and each facility has mowedy one step. This means the local search operation
that only movesf;,, ..., fi, to locationsuvy, ..., v. does no worse than the operation that moves ddicilities
since we save at most one step for edghe < j < k and each client collocated witfy;, must now move at
least one step. It is also not hard to see that permuting tstindéons of anyt < p facilities will not improve
the cost so the current solution is a local minimum.

In contrast, a solution of cogt+ 2 is obtained by moving all facilities that do not start at @istilocation to
the nearest client in the clockwise direction. Therefdne,ratio gap is at leagt/(p + 2).

5 Hardness Result

In this section we prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3:. Suppose we are given an instancekahedian on a grapli(V, E') with metric edge
weightsd,; and demand, for each vertex, and integér First, using scaling, we assume that the minimum edge
length inG is at least 1 and the minimum demany is at least 1. We construct an instance of the mobile facility
location problem as follows. Leh denote the maximum distances of this metric and definre ankA, with

n = |V|. We use the same grajghand placek facilities in arbitrary nodes off and let eachv € V' be a client
with demandrD,, > 1. Consider any optimum solution of the instance of TM-MFLwibstC' + F, whereC
denotes the cost of moving clients aRddenotes the cost of moving facilities, and any optimum smiutvith
costC™* to thek-median instance.

We claim thatC' + F < oC* + 2. To see this, take the optimum solution of thenedian. Moving the
demands in TM-MFL as in this solution ékmedian costs exactlyC™*. To bring facilities to thesé locations
costs at mostA = 2-. Thus we have:

C+F§C*+igc*<1+i>, 3)
an

an

2

sinceC* > 1.

Now suppose there is arapproximation algorithm for TM-MFL and it returns a sotutiwith costC’ + F’.
Obtain a solution to thé-median based on this approximate solution by moving theadeismias in the TM-MFL
solution, and leC” be its cost. Using (3)C" = & < (CljF’) < O‘(C;LF) < C*a (1+ L), ThusC” is within
ratioa + 1 of the optimum, i.e. we have g + o(1))-approximation fork-median. O

Proof of Theorem 1.4:. NP-completeness of the classic vertex cover problem, proyeKarp [20], is all that
is required for this result. Given a gragl(V, ) and an integek, the vertex cover problem is to determine if
there is a collection of nodegs C V with |C| < k such that each edgé has one of its endpoints ifi. From
such a instance of the vertex cover problem, we construatstarice of minimum maximum movement facility
location on a new grapH as follows. Let the vertex set df beV U E U {f1,..., fx} where eacly; is a new
node. Add an edge from evelfy to every vertex irl” with cost 1 and place a facility in eagh. For eachv € V
ande € F, if v is an endpoint oé in the original graphG then connect ande in H with an edge having cost 1.
Finally, the set of all clients in this new graph is exadily

If G has a vertex cover of siZe then we can obtain a solution fi with maximum movement 1 by moving
the k facilities to the vertices iV that correspond to some vertex cover of sizeThen each client € F is
adjacent to some vertex i with a facility which can be reached with cost 1. Similarfythere is a solution of
with maximum movement of 1 ifif, then it is easy to see that all clients must meet facilittesodes inv which
corresponds to a vertex cover @fof size at mosk. This implies the cost of a solution i is 2 if G does not

18



have a vertex cover of size(since we can always move all the clients to a verfewith maximum movement
cost bein@).

Consequently, any2 — ¢)-approximation algorithm, for any > 0, will return a solution of cost less than 2
if G has a vertex cover of size Conversely, ifG does not have a vertex cover of sizéhen any algorithm must
return a solution of cost 2 i&f. O

6 Concluding Remarks

One natural question is whether we can obtain an approxamagigorithm with ratio better than 8 for TM-
MFL. Since this generalizes the classiéamedian problem, improving this ratio beyond 3 would imply a
approximation algorithm that is better than the currenéigttknown approximation algorithm férmedian.

Another direction is to consider a more general version ofWIML in which there is a weightv; associated
with each facility;j and the cost of moving this facility to locatiaris noww;d;;. Our approximation algorithm
does not work for this more general setting. For example,ammat bound the change in the cost of the solution
after performing Phase 2 of our rounding (relocation oflfées). Note that this is also a problem when trying to
balance our approximation ratio. That is, our algorithm frgblution of cost at mosiC' + 4F'. A standard trick
is to scale the costs of the facilities by some constant tooregthe overall approximation guarantee. However,
the proof of lemma 2.4 requires the movement cost of eaclitfam be bound by the movement cost of each
client (captured byt < D; in our setting) so such scaling is not possible.

As mentioned in [11], many classical optimization probleras be defined in this movement setting which
are both theoretically interesting and have applicationseal world. So far there are only a few problems
considered in [11] and this paper.
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