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Abstract

In themobile facility locationproblem, which is a variant of the classical facility location, each facility and
client is assigned to a start location in a metric graph and our goal is to find a destination node for each client
and facility such that every client is sent to a node which is the destination of some facility. The quality of a
solution can be measured either by the total distance clients and facilities travel or by the maximum distance
traveled by any client or facility. As we show in this paper (by an approximation preserving reduction), the
problem of minimizing the total movement of facilities and clients generalizes the classicalk-median problem.
The class of movement problems was introduced by Demaine et al. in SODA 2007 [11] where a simple 2-
approximation was proposed for the minimum maximum movement mobile facility location problem while
an approximation for the minimum total movement variant andhardness results for both were left as open
problems. Our main result here is an 8-approximation algorithm for the minimum total movement mobile
facility location problem. Our algorithm is obtained by rounding an LP relaxation in five phases. For the
minimum maximum movement mobile facility location problem, we show that we cannot have a better than
a 2-approximation for the problem, unlessP = NP ; so the simple algorithm proposed in [11] is essentially
best possible.

1 Introduction

Consider the following scenario. There is a company with some manufacturing plants. There are also several
retail stores (with different demands) to which the products must be shipped and we are interested in minimizing
the cost of shipping. One possibility is to send the productsto each retailer from its closest manufacturing plant.
Another possibility is to set up a distribution center for each plant (perhaps somewhere else), send the products
from that plant to the distribution center (in one shipment)and then for each retailer ship the products from the
closest distribution center; this way we save on shipping cost as we might bring the distribution center closer
to the set of retailers it is serving and combining their total demand into one big shipment to be sent from the
plant to the distribution center. This problem can be modeled using the following natural generalization of the
classicalk-median and variation of the facility location problem. Suppose we are given a connected undirected
graphG(V,E) with metric distancesdij between every pair of nodesi, j ∈ V . We have a set of clientsC with
eachi ∈ C located at a node (these correspond to retailers). To handlemultiple clients at a single location, we
assume each location has at most one client and that each client i ∈ C has demandDi. Therefore, we can view
C as a subset ofV and we think ofDi as being the number of clients initially located ati. This also allows
an efficient representation of instances where the number ofclients is exponentially larger than the number of
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nodes. We also have a set of facilitiesF (corresponding to plants), each located at a node. We want tomove each
facility and client in the graph to a (possibly different) vertex such that in the final configuration each client is at
a node with some facility, while minimizing the total cost ofmovements of facilities and clients. Formally, we
want to assign a destinationvj for each facilityj to minimize

∑

j∈F djvj +
∑

i∈C Didivi wherevi is the nearest
facility destination to clienti. This is called theminimum total movement mobile facility locationproblem, or
TM-MFL. If we wish to minimize the maximum distance a client or facility travels then we obtain theminimum
maximum movement mobile facility locationproblem, or MM-MFL. Total movement can be thought of as the
total amount of resources (e.g. gasoline) consumed by all facilities and clients in reaching a valid solution while
maximum movement can be viewed as the time it takes to simultaneously move all units to a valid configuration
(e.g. response time). Note that the demand (number of individual clients) per node is irrelevant in MM-MFL
since we are only concerned with the distance.

These problems fall into a natural class of problems, calledmovement problems, which were introduced by
Demaine et al. [11]. In these types of problems, we are typically given an instance which contains a weighted
graphG together with some pebbles on the vertices (and/or edges) and a desired propertyP ; some examples
of this propertyP can be connectivity (in which our desired propertyP is that the subgraph induced by the
final pebbles’ locations is connected),s, t-connectivity (in which two given nodess andt have to be in the same
component in the subgraph induced by the final pebbles’ locations), and independent set inR2 (the Euclidean
distance between every pair of pebbles should be at least 1).We are looking to obtain a movement of pebbles
so that the final configuration of pebbles in the graph satisfies the desired propertyP while minimizing some
objective function. Some of the natural objective functions considered are the total distance traveled by all
pebbles or the maximum distance a pebble has to move (distance in a graph is the shortest path andR

2 distance
is Euclidean distance). Many problems of this type arise naturally in other areas, such as operation research,
robotics, and design of systems of wireless networks. For instance, suppose each pebble corresponds to a wireless
sensor and our goal is to move these sensors around so that they form a connected network. This corresponds
to the movement problem with propertyP being the subgraph induced by the final pebbles’ locations being
connected. (see e.g. [16, 6] and the references in [11] for more applications).

Demaine et al. [11] give approximation algorithms and hardness results (for different objective functions)
for the propertiesP mentioned earlier. They also raise the question of minimizing movement in mobile facility
location problems. For the minimum maximum movement mobilefacility location problem (MM-MFL), they
[11] observed that there is a simple 2-approximation and asked whether this can be improved. They also left the
problem of finding a good approximation algorithm for the minimum total movement mobile facility location
problem (TM-MFL) as an open question. In this paper, we answer both these questions. For MM-MFL, we show
that it is NP-hard to obtain better than a 2-approximation. The main contribution of this paper is to present a
constant factor approximation algorithm for the TM-MFL problem defined earlier. As we will see, this problem
in fact generalizes the classicalk-median problem. We show that there is an approximation preserving reduction
from k-median to the minimum total movement facility location problem.

Related Works: In the classical (uncapacitated) facility location problem UFL, we are given a graphG(V,E)
with metric costsdij on the edges, a set of clientsC ⊆ V , and a set of facilitiesF ⊆ V with eachi ∈ F having
an opening costfi. The goal is to open some of the facilities and assign each client to an open facility such
that the total cost of opening facilities plus the costs of clients traveling to open facilities is minimized. The first
approximation algorithm for facility location had ratioO(log n) and is due to Hochbaum [15]. Shmoys, Tardos,
Aardal [24] were the first to give a constant ratio approximation for this problem; their algorithm had ratio 3.16.
Later, in a series of papers several constant approximationalgorithm were obtained for this problem with better
ratios (see [14, 10, 17, 19, 3, 25, 22, 7] and references in [7]). The best known algorithm has ratio 1.5 [7]. Guha
and Khuller [14] showed that, unlessNP ⊆ DTIME(npolylog(n)), there is no better than a 1.463-approximation
for UFL. Several variations of the facility location problem have been studied such as the capacitated facility
location problem, in which there is a capacity on the number of clients that can be served at each facilityfi (e.g.
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see [21] and the references there).
The TM-MFL problem can be thought of as a variant of the classical facility location problem. In both

problems, the goal is to assign clients to facilities to minimize the total cost. The ideas of moving a client (as in
TM-MFL) versus assigning clients (as in classical facilitylocation) can be thought of as equivalent. Similarly,
the cost of moving a facility in TM-MFL is also analogous, butnot equivalent, to the opening cost of a facility
in classical facility location. These ideas are not equivalent since in TM-MFL, although there are|V | potential
locations for facilities, we can only open at most|F | out of the|V | many locations for facilities and the cost of
opening a facility at a certain locationv ∈ V is dependent on the other at most|F | − 1 locations that are opened.
That is, the cost of assigning facilities some setU ⊆ V, |U | ≤ |F | locations is determined by a minimum cost
matching between the initial locations of facilities and the destinations inU .

Another well-studied related problem is the classicalk-median. In thek-median problem there is no opening
cost for facilities but we can open up tok facilities. In the more general setting ofk-median, each clientci ∈ C
can have a (positive) demandDi and the cost of serving this demand at locationj (if there is facility there) is
Di · dij . The best known approximation algorithm fork-median uses local search heuristics and has ration3+ ǫ,
for any constantǫ > 0, due to Arya et al [3]. On the other hand, Jain, Mahdian, and Saberi [18] showed that
unlessNP ⊆ DTIME(nO(log logn)), then there is no1.735-approximation algorithm for thek-median problem.
TM-MFL can be thought of as a variant of thek-median problem in that we have a bounded number of locations
we can select to serve clients. However, in addition to minimizing the cost of serving clients, we must consider
the cost of assigning (i.e. moving) facilities to these locations.

Other variants and generalizations of the uncapacitated facility location andk-median problems have been
studied. One popular variant is thek-facility location problem which is the classical uncapacitated facility loca-
tion problem with the additional restriction that at mostk facilities be opened. Likek-median, the current best
approximation ratio (2+

√
3+ǫ) for k-facility location is obtained through a local search algorithm [26]. Initially,

it might appear that thek-facility location problem seems similar enough to our problem that it may be possible
to model TM-MFL as ak-facility location problem by somehow having the opening costs ink-facility location
correspond to movement costs in TM-MFL. However, we show that a local search technique for TM-MFL that is
analogous to the local search fork-facility location has an unbounded locality gap. This highlights the fact that
allowing facilities to be mobile creates a fundamentally different problem.

The mobile facility location problem is, in some ways, reminiscent of thek-level facility location problem
with k = 2. Here, we havek sets of facilitiesF1, . . . , Fk where each facility has an opening cost and each clienti
is assigned a sequence ofk facilities fi1, . . . , fik wherefij ∈ Fj . Say clienti starts at locationv, then the service
cost of clienti is dvfi1 + dfi1fi2 + . . . + dfi(k−1)fik . The goal is to minimize the total service cost of all clients
plus the opening cost of all facilities that are serving at least one client. If the distances are metric then thek-level
facility location problem admits a 3-approximation [1] while the special case ofk = 2 has a 1.77-approximation
[27]. To some it might seem that our problem can be modeled somehow as a 2-level facility location problem; one
level could be the clients moving to their destination and the other level could be moving from these destinations
to the original facility assigned to that particular destination. However, there are several fundamental differences
between the 2-level facility location problem and TM-MFL. For example, if we move clients from level 1 to
level 2 as described above, then the distance from a level 1“facility” to the level 2 would be counted toward the
total movement cost (as many times as there are clients traveling this route) whereas in TM-MFL each facility
is moved from level 2 to level 1 and this distance is only counted once toward the total cost of the solution.
Also, while there aren potential facilities in level 1, we can use at most|F | such locations and no two clients
visiting different level 1 facilities could visit the same level 2 facility since a mobile facility can only move to one
location. Finally, 2-level facility location has a 1.77-approximation whereas we show that TM-MFL cannot be
approximated within any constant better thank-median, for which only the best approximation achieves a factor
of 3 + ǫ. So solving TM-MFL by modeling it as a 2-level facility location instance seems difficult.

Demaine et al. [11] considered some classes of movement problems. For the property of forming a connected
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induced subgraph, they obtained approximation algorithmswith ratiosO(
√

m/OPT ) andÕ(min{n,m}) for
minimum maximum movement and total movement, respectively, and hardness ofΩ(n1−ǫ) for the total move-
ment (they use the term “sum” to refer to what we call “total” movement). They also considered variations in
which pebbles need to establish connectivity between two given nodess, t, or to form an independent set (on the
planeR2).

Finally, we mention that the name “mobile facility location” has been used to refer to the study of how
facilities move to optimally serve a set of clients who are moving in a continuous manner inRd (see,e.g. [5]).
This problem seems mostly unrelated to the problem discussed in this paper.

Our results: We consider both the TM-MFL and MM-MFL problems. For TM-MFL restricted to trees it is
possible to obtain a pseudo-polynomial time exact algorithm using dynamic programming where the demands are
polynomial in the size of the input. Using the fact that everygraph metric can be probabilistically embedded into
a tree with distortionO(log n) [4, 12], this yields anO(log n)-approximation for TM-MFL in general graphs in
pseudo-polynomial time [13]; however, obtaining a trueO(log n)-approximation seems non-trivial. For example,
unlike the classical facility location problem, the natural greedy algorithm that tries to find good partial solutions
iteratively fails. Our main result in this paper is the following.

Theorem 1.1 There is a polynomial time deterministic 8-approximation algorithm for the minimum total move-
ment mobile facility location problem (TM-MFL).

This algorithm is based on rounding an optimal solution to anIP/LP relaxation of the problem in five major
rounds. Each round brings the solution closer to an integer solution. This algorithm is inspired by the work of
Charikar et al. [9] but uses several new ideas, such as the total unimodularity of the matching polytope as well
as an augmenting path argument to obtain a half-integer solution. Although the algorithm is fairly involved, we
believe some of the ideas developed here might be useful in solving other combinatorial optimization problems.
This theorem is complemented by the following whose proof follows almost immediately from the proof of
APX-hardness for uncapacitated facility location by Guha and Khuller [14]:

Theorem 1.2 The minimum total movement mobile facility location problem (TM-MFL) is APX-hard.

We also present an approximation preserving reduction fromk-median to TM-MFL. Note that the best ap-
proximation algorithm fork-median has ratio3 + ǫ [3].

Theorem 1.3 If there is anα-approximation for TM-MFL then there is an(α + o(1))-approximation for the
k-median problem.

Jain, Mahdian, and Saberi [18] proved that there is no 1.735-approximation algorithm fork-median unless
NP ⊆ DTIME(npolylog(n)). By Theorem 1.3, the same hardness holds for TM-MFL.

For the MM-MFL problem, there is a simple 2-approximation algorithm (as observed in [11]) as follows: do
not move the facilities; only move each client to the nearestfacility. It is easily seen that the maximum distance
traveled in this solution is at most twice the optimum. We show that this is essentially best possible (this was
independently discovered by Armon [2]):

Theorem 1.4 For anyǫ > 0, there is no(2− ǫ)-approximation algorithm for the minimum maximum movement
mobile facility location problem (MM-MFL) unlessP = NP .

Remark: Since the best known approximation algorithm fork-median uses local search [3] and given the similar-
ity of the TM-MFL problem tok-median (e.g. by Theorem 1.3), it is natural to guess that local search technique
might also be useful to design an approximation algorithm for TM-MFL. However, we can construct examples
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that show that any natural local search algorithm that performs a bounded number of exchange or switch opera-
tions at each iteration will have an unbounded ratio. More specifically, we can show the following. First observe
that if we fix the destinations of the set of facilities then the solution for clients is obvious (each client must go
to the nearest vertex which has a facility). Now consider thefollowing local search operation; select a subset of
k ≤ p facilities fi1 , . . . , fik and a subset ofk destinationsv1, . . . , vk and movefij to vj for each1 ≤ j ≤ k.
Note that this operation allows to permute the final locationof facilities among themselves too. Consider an
algorithm that iteratively performs such local search operations that improve the overall cost of the solution until
no more improvements can be made. In section 4, we show there are examples for which this algorithm will have
unbounded approximation ratio.

The rest of the paper is organized as follows. For ease of exposition we start by presening a proof for a
slightly weaker version of Theorem 1.1 in Section 2. Then in Section 3 we show how to improve this algorithm
to obtain the result of Theorem 1.1. Section 5 contains the proofs of hardness results. We conclude the paper
with a few remarks.

2 A Randomized 16-Approximation Algorithm

In this section, we present a randomized 16-approximation algorithm for the minimum total movement mobile
facility location problem. This algorithm uses randomizedrounding of the optimal fractional solution obtained
from solving a natural IP/LP formulation. In the next section we show how we can derandomize this algorithm
as well as improve the analysis to obtain a deterministic 8-approximation algorithm.

Recall that in TM-MFL, we have a graphG(V,E) with metric costsdij on the edges, a set of clientsC each
having a demandDi, and a set of facilitiesF . Note that, since we do not need more than one facility on any
node in the final configuration, we assume that each node has atmost|V | facilities so|F | ≤ |V |2. Furthermore,
we then assume (after the previous observation) that each facility is located on a node with no other facilities
or clients; this can be enforced by transforming the generalproblem of facilities sharing a node by creating a
dummy-node for each facility and connecting it to the original node with cost 0. Thus we can assumeF ⊆ V .
Also, we can assumeC ⊆ V by combining the demands of clients in any node into one client since clients
starting on the same node can be moved to the same destinationin the optimal solution.

2.1 Outline of the Algorithm

Our starting point is an integer programming formulation ofthe problem. Define indicator variablesxiv for each
i ∈ C andv ∈ V , andyjv for eachj ∈ F andv ∈ V ; variablesxiv andyjv will be 1 if client i or facility j is
moved to locationv, respectively, and 0 otherwise. Then the goal is to optimizeto following program:

minimize :
∑

i∈C

∑

v∈V

xivDidiv +
∑

j∈F

∑

v∈V

yjvdjv

such that :
∑

v∈V

xiv = 1 ∀i ∈ C

∑

v∈V

yjv = 1 ∀j ∈ F

∑

j∈F

yjv ≥ xiv ∀i ∈ C, v ∈ V

xiv ∈ {0, 1} ∀i ∈ C, v ∈ V
yjv ∈ {0, 1} ∀j ∈ F, v ∈ V

The first two constraints ensure that a client or facility hasa unique destination vertex while the third ensures
that any vertex that is the destination of some client is alsothe destination of some facility. We say a locationv
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is coveredif there is at least one facility assigned to it (so we can moveany client to be served atv). We obtain a
linear program (LP) relaxation of this problem by relaxing the last two constraints to non-negativity constraints
xiv ≥ 0 andyjv ≥ 0. Since the size of this LP is polynomial in the size of the input we can compute the optimum
fractional solution(x, y) with objective function valueOPTf . For each clienti defineCi =

∑

v xivdiv and for
each facilityj defineF j =

∑

v yjvdjv. Note thatCi andFj are the total costs of moving a unit of demand of
client i and facilityj, respectively. Denote

∑

i CiDi asC and
∑

j F j asF ; soC+F = OPTf . Our randomized

algorithm produces an integral solution of (expected) costat most16C + 4F ≤ 16 · OPTf .
The algorithm has five phases, starting from the optimal fractional solution(x, y), where each phase brings

the current solution closer to an integer solution while keeping a bound on the cost increases. We begin with
a summary of each phase. Since the values of(x, y) change frequently throughout the algorithm, we adopt the
following notation. For each stepp, (x(p), y(p)) will denote the assignments of clients and facilities to locations

after stepp. Similarly, we will let C
(p)
i andF

(p)
j denote the respective costs of moving one unit of demand

of client i and moving facilityj under the assignment(x(p), y(p)). Finally, we letC
(p)

=
∑

i C
(p)
i Di and

F
(p)

=
∑

j F
(p)
j .

Step 1: Clustering of clients: To start, we will create a modified instance of the original problem by moving
demands between clients and removing clients with zero demand so that different locations with non-zero client
demands are far apart. More specifically, for all pairs of clients i 6= i′ we want to make sure thatdii′ >
4 · max

{

Ci, Ci′
}

. This will be guided by the values of(x, y) so that the cost of the new instance under the
assignments of(x, y) is at mostOPTf and so we can recover an integer solution to the original problem from an
integer solution to the modified problem by paying only a constant factor ofC.

Step 2: Relocation of facilities: The next step is to ensure that each locationv with x
(2)
iv > 0 for somei ∈ C

is the initial location of some clienti′. That is, at the end of Step 2,x(2)iv > 0 implies there is somei′ where client
i′ starts at nodev. Based on the previous step of clustering the demands and on how we perform this step, we will
now be able to say thatx(2)ii ≥ 1

2 , so less than half of each clienti must be served at a locationv different fromi
and that this location is the location of another client. Moreover, each client has this amount served at the nearest
i′ to i while breaking ties by choosing the clienti′ with lowest index. Let this closest client toi be denoted by
φ(i). Finally, we remove useless facilities so that each location v now has

∑

j y
(2)
jv ≤ 1.

Step 3: Getting a half-integer solution: The third step is more involved. Here we obtain a half-integer
solution through two sub-processes. The first ensures that for each locationv,

∑

j y
(3)
jv = a

2 for some integera by
redirecting facility assignments using an augmenting path. The second relies on a matching polytope argument
and uses a minimum weighted perfect matching algorithm (in abipartite graph) to ensure that we can assume
each individualy(3)jv ∈

{

0, 12 , 1
}

. At this stage, we will have half-integer values for all ofx
(3)
i andy(3)j variables.

Step 4: Modifying the half-integer solution: We first describe the final step to provide motivation for the
fourth step. The final step obtains an integer solution by first fixing a destination for each facility and then
assigning each client to a covered location. This step first has each facility being uniformly randomly rounded to
one of its at most 2 (fractional) destinations. Then we move each clienti which is not covered toφ(i) and from
there toφ(φ(i)) if there is no facility assigned there either, and so on, until the client reaches a covered location.
The expected facility cost is exactly the current fractional cost. The expected cost of moving the clients will be
bound by moving each client fromi to φ(i), iteratively.

In order to bound the cost of moving clients in the final step, the fourth step will prepare the current half-
integer solution for the randomized rounding step. There are two types of clients that we will consider as“bad” .
The first type consists of clientsi with x

(4)
ii = 1 while having two distinct facilitiesj andj′ such thaty(4)ji =

y
(4)
j′i = 1

2 . This is bad because the client currently has costCi = 0 (it is completely covered at its own location),

but randomly rounding facilities based on theiry
(4)
jv values may result in locationi not being covered; therefore

we cannot bound the increase in the cost of that client. The second type of bad client is one withφ(φ(i)) = i,
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but bothi andφ(i) have their locations covered with weight1
2 by different facilities. This is bad since the event

where neitheri nor φ(i) are covered results in clienti being moved betweeni andφ(i) back and forth. Notice
client i being bad in this case impliesφ(i) is also bad. Through this step, we ensure that there is no bad client (or
client pairs) and so we are able to say that every client must be eventually covered as it followsφ(i) and the cost
of moving each client increases, in expectation, by a constant factor of its original half-integer cost.

Step 5: Randomized Rounding As described before, we randomly round each facility location to one of its
at most 2 (fractional) destination locations with equal probability. Then we move each clienti to φ(i) and from
there toφ(φ(i)) if there is no facility assigned there, and so on, until the client reaches a covered location.

2.2 Clustering of Clients

This phase is similar to the first step in [9]. Recall that we start from an optimum LP solution andCi =
∑

v xivdiv. We modify the instance in such a way that the current fractional solution is also a feasible solution
for the new instance, and given an integer solution for the new instance, we can obtain an integer solution for the
original instance with a bounded increase in the cost. Without loss of generality, assume thatC1 ≤ C2 ≤ · · · ≤
C |C|. We assign(x(1), y(1))← (x, y) and cluster the demands of clients by the following procedure:

for i = 1 . . . |C| do
if ∃ i′ < i such thatDi′ > 0 anddii′ ≤ 4Ci then

let i’ be any such client
Di′ ← Di′ +Di

Di ← 0 (i is no longer a client)

In the following three lemmas we show how to find a good integersolution of the original instance from a
solution of this new instance. The first lemma describes how to obtain an integer solution to the original instance
from an integer solution to the new instance with an increaseof 4C in cost. The second lemma expresses the fact
that this new problem does not get worse in its objective function value under the assignments(x, y). The final
lemma states that any two clients are far from each other; a property that is used in obtaining an integer solution
of the new instance. The proofs of the first two lemmas are fairly simple while the third is immediate from the
clustering procedure.

Lemma 2.1 Any integer solution of costT to the modified instance can be turned into an integer solution of the
original problem with cost at mostT + 4C.

Proof. Simply move the location of each unit of demand in the modifiedinstance to the location of that unit of
demand in the original instance. By the definition of the new instance, the cost increase for the unit of demand
due to this move is bound by4Ci wherei was the original client that possessed that demand. Summingover all
units of demand and original clientsi, the cost increase is at most4C. 2

Lemma 2.2 C
(1) ≤ C andF

(1)
= F .

Proof. Consider each unit of demand of a client. The contribution ofthat unit of demand toC
(1)

is exactly the
same as inC if the demand is not moved. If the demand is moved, then it moves to a new location with a smaller
index which implies a reduction in cost since theCi are considered in increasing order. The cost of the facilities
stays the same since their assignments were not changed. 2

Lemma 2.3 Any two clientsi andi′ in the modified instance havedii′ > 4 ·max
{

C
(1)
i , C

(1)
i′

}

.

From now on, we will be dealing with the modified instance of the problem.
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2.3 Relocation of Facilities

First, initialize (x(2), y(2)) ← (x(1), y(1)). Now, consider each locationv with x
(2)
iv > 0 for some clienti (i.e.

there is some client being served fractionally atv) but there is no client demand located atv. Let i′ ∈ C be any
closest client to this location, i.e.di′v ≤ div for all other clientsi ∈ C. We are going to relocate the clients

being served atv to locationi′ and take the facilities that coverv with them. LetM =
maxi x

(2)
iv

∑
j y

(2)
jv

be the fraction

of the facility coverage atv that is required to cover all clientsi being served atv (it may be that
∑

j y
(2)
jv > x

(2)
iv

for all i ∈ C, for example whendjv = 0 for many facilitiesj but we will remove all such occurrences after

this step). For all clientsi and facilitiesj, assign:x(2)ii′ ← x
(2)
ii′ + x

(2)
iv , x(2)iv ← 0, y(2)ji′ ← y

(2)
ji′ +M · y(2)jv , and

y
(2)
jv ← (1−M) · y(2)jv .

Lemma 2.4 C
(2) ≤ 2C

(1)
andF

(2) ≤ F
(1)

+ C
(1)

.

Proof. Consider a vertexv as above where the assignments atv were moved to a nearest clienti′. For each client
i the cost increases by at mostDi ·x(1)iv · dvi′ ≤ Di · x(1)iv · dvi, where we use the fact thatdvi′ ≤ dvi (by definition
of i′). This fraction of the client’s assignment will not be movedagain since it is moved to a client location.

Therefore, summing over alli andv, it follows that the cost increase for clients is at mostC
(1)

.
For each vertexv we know there is a clienti with x

(1)
iv = M ·∑j y

(1)
jv . The cost increase incurred by moving

facility assignments tov is:

M ·
∑

j∈F

y
(1)
jv (dji′ − djv) ≤M ·

∑

j∈F

y
(1)
jv di′v = di′v ·M ·

∑

j∈F

y
(1)
jv = x

(1)
iv · di′v ≤ x

(1)
iv · div ≤ x

(1)
iv · div ·Di,

where the first inequality uses the fact thatdji′ ≤ djv+dvi′ by triangle inequality. Notice that when an assignment
of a facility is moved from somev to somei′ then that fraction of the assignment will never move again inthis
step. Furthermore, eachx(1)iv fraction of a client will be used at most once in bounding the facility cost increase.
Therefore, summing this change in cost over allv shows the cost increase for both clients and facilities is bound

by C
(1)

. 2

Even more can be said about the structure of the current solution. Using a simple averaging argument we can
prove:

Lemma 2.5 For all clients i: x
(2)
ii ≥ 1

2 . In other words, each client has less than half of its assignment being
served at a different location than its own.

Proof. This follows from a simple averaging argument. Consider a client i and the set of all verticesv with

distancediv ≤ 2C
(1)
i ; we call this a ball with radius2C

(1)
i aroundi, denoted byRi. First, we claim that for every

pair i, i′ of clients,Ri andRi′ are disjoint. Otherwise, ifv belongs to bothRi andRi′ , with C
(1)
i′ < C

(1)
i , then

we havedi′v ≤ 2C
(1)
i which impliesdiv + di′v ≤ 4C

(1)
i . By the triangle inequality, this results indii′ ≤ 4C

(1)
i

which contradicts Lemma 2.3. Next we claim that
∑

v∈Ri
x
(1)
iv ≥ 1

2 , for otherwise, the total cost for fractional

values assigned to the vertices outsideRi is strictly larger thanC
(1)
i , a contradiction. Since all client assignments

to the verticesv insideRi are moved toi thenx(2)ii ≥ 1
2 .

2

Next, for each vertexv with Dv = 0 and each facilityj, if y(2)jv > 0 then move this amount back to the location
of j at no additional cost. This can happen if at the beginning of this phase,M < 1; therefore after relocating
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the facility values assigned to vertexv we still have
∑

j y
(2)
jv > 0. Then, for each clienti if

∑

j y
(2)
ji > 1 we can

move coverage from facilities fromy(2)ji to y
(2)
jj until

∑

j y
(2)
ji = 1 at no extra cost. Since we assume that each

facility starts on a location with no other facilities or clients then this is always possible. Thus, in the current
solution we have that the only vertices with non-zero coverage are those that are either a client or facility location,
∑

j y
(2)
ji ≤ 1 for all locationsv and, for all clientsi, x(2)ii ≥ 1

2 and
∑

i′∈C x
(2)
ii′ = 1. We can assume that the

remaining1−x
(2)
ii ≤ 1

2 fraction of each clienti not being served at its own location is being served at the nearest
client. Denote this client asφ(i) while breaking ties by the lowest index. Also assume that each client uses the

coverage at its own location to the maximum amount. That is, for eachi, we can assume thatx(2)ii =
∑

j y
(2)
ji by

moving
∑

j y
(2)
ji − x

(2)
ii from x

(2)
iφ(i) to x

(2)
ii at no additional cost.

2.4 Getting a Half-Integer Solution

In this phase our goal is to ensure that the value of eachx
(3)
iv andy(3)jv is in {0, 12 , 1}. Start with(x(3), y(3)) ←

(x(2), y(2)). We say that a locationv is covered half-integrally if
∑

j y
(3)
jv ∈

{

0, 12 , 1
}

. Given the assignment

(x(3), y(3)), we construct a weighted bipartite graphB in the following manner. For each locationv create a
vertex on one side of the bipartition and for each facilityj create a vertex on the other side of the bipartition. We
connectv to j in B with weighty(3)jv only if this weight is positive. The edge weights in any connected component
of B must sum to an integer since the sum of the weights of the edgesincident to any particular facility must be
1. Therefore, if there is a locationv that is not covered half-integrally in the current assignment (x(3), y(3)), then
there must be another locationv′ in the same connected component asv that is not covered half-integrally inB.

While there is still a locationv that is not covered half-integrally we execute the following procedure. Find
a pathv = v0, j1, v1, j2, v2, . . . , vk−1, jk, vk = v′ in the bipartite graphB constructed fromv (using current
(x(3), y(3))) to some other locationv′ that is not covered half-integrally. Defineα0 = diφ(i)Di if v is some client
i and otherwise sayα0 = 0. Similarly defineαk for v′. Theseα0, αk quantities express the cost of serving
one unit of demand for the clients at locations corresponding to v andv′ if there is no facility coverage at their
location.

Let τ be a constant which we will specify after the entire algorithm is presented. Since we could consider
this path in the reverse order, without loss of generality, assume that:

α0 + τ
k
∑

m=1

djmvm ≤ αk + τ
k
∑

m=1

djmvm−1 (1)

What we plan to do is shift some coverage fromv to v′ through this path, by simultaneously increasing each
y
(3)
jmvm

and decreasing eachy(3)jmvm−1
(at the same rate) until one of the edges in the path has value 0(i.e. the edge

disappears fromB) or one of the endpointsv or v′ is covered half-integrally. Letǫ = min{y(3)jm,vm−1
|1 ≤ m ≤ k}.

If v is a clienti, then updateǫ← min{ǫ, x(3)ii − 1
2}. Finally, updateǫ← min{ǫ, 1−∑j y

(3)
jv′} (this is1−x

(3)
i′i′ if v′

is a clienti′). Now, by our construction ofB and the assumption that neitherv norv′ are covered half-integrally,
we haveǫ > 0. We perform updates to(x(3), y(3)) as in Figure 1.

Since a new edge inB can never be introduced by this method and all half-integrally covered locations
remain so, then there is a polynomial upper-bound on the number of times we must perform this re-assignment
of facilities. Denote the differenceǫ(

∑k
m=1(djmvm − djmvm−1)) by δ. After a step is performed, the total cost

of all clientsC
(3)

is changed byǫ(α0 − αk) which is at most−τδ by (1). Similarly, the change in the cost
of the facilities isδ. Letting ∆ be the sum of theδ values over all executions of such an update, we see that

C
(3) ≤ C

(2) − τ∆ andF
(3)

= F
(2)

+∆.
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y
(3)
jmvm−1

← y
(3)
jmvm−1

− ǫ ∀ 1 ≤ m ≤ k

y
(3)
jmvm

← y
(3)
jmvm

+ ǫ ∀ 1 ≤ m ≤ k

x
(3)
ii ← x

(3)
ii − ǫ if v is a clienti

x
(3)
iφ(i) ← x

(3)
iφ(i) + ǫ if v is a clienti

x
(3)
i′i′ ← x

(3)
i′i′ + ǫ if v′ is a clienti′

x
(3)
i′φ(i′) ← x

(3)
i′φ(i′) − ǫ if v′ is a clienti′

−ε

−ε

j j j j 4

0 4321

1 2 3

v v v v  = v’v  = v

+ε−ε+ε−ε+ε−ε+ε

+ε

(v  )0φ (v  )φ 4

Figure 1: Changing fractional values over a path between twoclients with non-half-integer coverage.

The previous process obtains a half-integer solution in that each locationv has
∑

j y
(3)
jv ∈

{

0, 12 , 1
}

. However,

it is not necessarily true that eachy(3)jv is a half-integer. We rectify this situation with a matching.

Lemma 2.6 If there is an assignment(x, y) such
∑

j yjv is a half-integer for all locationsv, then we can find an
assignment(x′, y′) with all y′jv being half-integer where neither the client nor the facility costs increase.

Proof. We split all locationsv with
∑

j yjv = a(v)
2 into locationsv1, . . . , va(v) (note thata(v) ∈ {0, 1, 2}). Split

each facilityj into nodesj1 andj2. Finally, for each original locationv with a(v) > 0 and each original facility
j, setyj1vd = yj2vd =

yjv
a(v) for 1 ≤ d ≤ a(v) and keep the original distances. Notice that for each new facility, the

sum of fractional values over the edges incident to it is still 1 and each new location is fractionally covered with
value exactly 1. We now have a fractional matching between the 2|F | new facilities and the2|F | new locations
of cost2F (since we doubled the edges). By total-unimodularity of thematching polytope, we can assume that
there is an integral matching of at most the same cost. We can find such a matching using a minimum weight
perfect matching in bipartite graphs algorithm (e.g. [23]). Consider the new assignment values defined by this
matching; allyjαvd ’s are either 0 or 1.

Now in the original problem (before splitting) lety′jv ← 1
2

∑a(v)
d=1(yj1vd+yj2vd) for each locationv and facility

j. Since we had an integer matching with the new locations and facilities, we now have thaty′jv ∈
{

0, 12 , 1
}

.
Each new locationvd, for all 1 ≤ d ≤ va(v), was covered with weight 1 in the integer matching so each original

locationv still has
∑

j y
′
jv =

a(v)
2 . The weights of the assignments in the integer matching werehalved to restore

the original problem, so now the current cost of the facilities is at mostF . The client assignmentsx do not change
so the client costs do not increase. 2

Applying Lemma 2.6 to(x(3), y(3)), we obtain an assignment tox, y variables in which eachy(3)jv is half-

integer, for allj, v. Since each clienti hasx(3)ii ≥ 1
2 and uses its own coverage to the maximum amount, it

follows that eachx(3)ii ∈ {12 , 1} and ifx(3)ii = 1
2 thenx(3)

iφ(i) =
1
2 .

2.5 Modifying the Half-Integer Solution

We construct an auxiliary directed graphH which has a vertexvi for each clienti and a directed edge fromvi
to vφ(i) with weightdiφ(i). So each vertex inH has outdegree exactly one and by the definition ofφ, the edge
weights are non-increasing in any walk onH, which means any directed cycle ofH must have all edge weights
being the same. Moreover, sinceφ(i) was defined by breaking ties with lower-indexed clients thenall cycles in
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H have length 2. So,H can be viewed as a collection of connected components each ofwhich is a unicyclic
graph consisting of a directed tree with a 2-cycle at the rootand all other edges being oriented toward the root.

We define two types ofbad clients. Call each clienti a type 1bad client ifx(3)ii = 1 and for two distinct

facilities j andj′, y(3)ji = y
(3)
j′i = 1

2 . Also, a pair of clientsi andi′ is calledtype 2if φ(i) = i′, φ(i′) = i and

x
(3)
ii = x

(3)
i′i′ =

1
2 but two different facilitiesj andj′ are such thaty(3)ji = y

(3)
j′i′ =

1
2 . The remaining locations

aregoodones. Recall that the final step of the algorithm will round each facility j to locationv with probability

y
(4)
jv . With this in consideration, we see that type 1 clients are those whereC

(3)
i = 0 but i might not receive a

facility after the randomized rounding of facilities (and so has to be served at the nearest location with a facility),
thus incurring a positive cost increase. We make a modification to the half-integer solution such that this does
not happen in the next step. We will bound the expected cost ofeach client by considering the expected distance
a clienti has to move along the sequence of locationsφ(0)(i), φ(1)(i), φ(2)(i) . . . until it reaches a location that
received a facility. Here we defineφ(k)(i) recursively asφ(0)(i) = i andφ(k+1)(i) = φ(φ(k)(i)). The problem
with type 2 clients is that they will never reach a location with a facility if both of their half-covering facilities
are assigned elsewhere in the randomized rounding phase. Ifall 2-cycles are guaranteed to receive a facility in
the randomized rounding, then all clients will eventually be covered by iteratively followingφ(l)(i) to φ(l+1)(i)
since this sequence eventually reaches the 2-cycle root inH.

We now turn our attention to fixing type 1 and type 2 clients. Begin by setting(x(4), y(4)) ← (x(3), y(3)).
Consider any type 1 clienti or type 2 client pairsi andi′ with contributing facilitiesj andj′. We will build a
sequence of locations and facilities starting withj. Now, j must be contributing to another locationv since it
was only contributing12 to i. If there is a type 1 clienti′ at v, then continue constructing this sequence withi′

followed by the other facilityj′′ contributing toi′. If there is a type 2 clienti′ at v, then continue constructing
this sequence withi′ being followed byφ(i′) and then by the facilityj′′ contributing toφ(i′). Continue to extend
the sequence in this way until a location is reached that is good or until the location of the original type 1 client
i is reached. In the former of these two cases, extend the same path from facility j′ contributing to the original
i. This process forms a sequence consisting only of clients oftype 1 or 2 (except, perhaps, the endpoints, if we
do not get a cycle) and the facilities which contribute to them. If we do this for every type 1 or 2 client, we get a
collection of sequences of which each facilityj and locationv are adjacent in at most one of them (so that each
y
(4)
jv is represented at most once). Refer to figure 2(a) for an example of such a sequence. Notice that each type 1

client and type 2 pair of clients appears exactly once in exactly one such sequence (it may be that a client appears
at the start and end of a sequence; we can think of this sequence as a cycle in which the client appears once). We
will deal with each of these sequences individually.

Sayv0, j1, v′1, v1, j2, v
′
2, v2, . . . , v

′
m−1, vm−1, jm, v′m is such a sequence where, for0 < i < m, if vi is a

type 1 client we assumevi = v′i. Finally, if v0 is of type 1 then we havev0 = v′m and if v0 is of type 2 then
φ(v0) = v′m. Since we could consider this sequence in the reverse order,without loss of generality, we can
assume that:

m−1
∑

i=1

(

2djiv′i + djivi−1

)

≤
m−1
∑

i=1

(

djiv′i + 2djivi−1

)

(2)

Perform the following sequence of updates to fix the type 1 and2 locations in this sequence (sayvm′ = v0):
y
(4)
jivi−1

← 0 for 1 ≤ i ≤ m, andy(4)jivi
← y

(4)
jivi

+ 1
2 , for 1 ≤ i ≤ m. Note that by rule 2 above, ifv′i = vi (i.e.

it is a type 1 client) then we are essentially settingy
(4)
jivi
← 1 and if v′i 6= vi we will havey(4)

jiv
′
i

= y
(4)
jivi

= 1
2 (see

Figure 2 for an example).
There are no more type 1 or type 2 clients remaining after thisupdate is performed for all of the sequences. It

is easy to see that we do not have to changex(4) values, therefore since onlyy(4) variables are changed, we have

C
(4)

= C
(3)

. We can also bound the cost ofF
(4)

as follows:
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(a) (b)

Figure 2: A sequence of bad clients before (a) and after (b) applying the fixing operation. Each edge represents
an assignment of fractional value12

Lemma 2.7 F
(4) ≤ 4F

(3)

Proof. The overall increase in facility costs for a givenv0, j1, v′1, v1, j2, . . . , v
′
m−1, vm−1, jm, v′m sequence is

given by:

1

2

(

m−1
∑

i=1

(djivi − djivi−1) + djmv0 − djmvm−1

)

≤ 1

2

(

m−1
∑

i=1

(djivi − djivi−1)+

m−1
∑

i=1

(djivi−1 + djivi) + djmvm−1 − djmvm−1

)

=
m−1
∑

i=1

djivi

≤
m−1
∑

i=1

(djiv′i + dv′
i
vi)

≤
m−1
∑

i=1

(djiv′i + dv′ivi−1
)

≤
m−1
∑

i=1

(djiv′i + djiv′i + djivi−1)

≤ 3

2

(

m−1
∑

i=1

djiv′i + djivi−1

)

= 3

m−1
∑

i=1

F
(3)
ji

The first, second and fourth inequalities come from the triangle inequality. For each0 < i < m, if v′i is of
type 1, thendv′ivi = 0 and ifv′i andvi are of type 2, then sinceφ(v′i) = vi we have thatdv′ivi ≤ dv′ivi−1

. In either
case, the third inequality holds. The last inequality comesfrom the assumption in expression (2). Summing over

all such paths and cycles yieldsF
(4) ≤ 4F

(3)
because eachy(4)jv variable was updated at most once. 2
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2.6 Randomized Rounding

As mentioned before, our final step is to round each facilityj to a locationv with probability y
(4)
jv . Since for

each facilityj,
∑

v y
(4)
jv = 1, the expected cost of the facilities after rounding is exactly F

(4)
. Naturally, for each

client that does not have a facility at its location we send itto the nearest location with a facility after this step
is performed. We bound the cost increase due to moving clients in the following lemma. Recall thatφ(k)(i) is
defined recursively asφ(0)(i) = i andφ(k+1)(i) = φ(φ(k)(i)) for k ≥ 0.

Lemma 2.8 The expected cost of the client assignments after the randomized rounding ofy(4) is at most4C
(4)

.

Proof. For any clienti with x
(4)
ii = 1 we haveC

(4)
i = 0. Since there are no type 1 clients, then locationi is

guaranteed to receive a facility so the new cost of this client is still 0. Now assume that clienti hasx(4)ii = 1
2 . We

now prove, for anyk ≥ 1, that:
Pr(φ(k)(i) does not receive a facility| φ(l)(i) did not receive a facility for all0 ≤ l < k) ≤ 1

2 .

Since there are no type 1 clients, ifx
(4)

φ(k)(i)φ(k)(i)
= 1 thenφ(k)(i) will receive a facility. Otherwise, letj be

the facility withy
(4)

jφ(k)(i)
= 1

2 . If y(4)
jφ(l)(i)

= 0 for all 0 ≤ l < k (that is,j is not partially assigned to any location

before thek’th step alongφ starting ati), then the probability thatj will be assigned toφ(k)(i) is exactly 1
2 . If

y
(4)

jφ(l)(i)
= y

(4)

jφ(k)(i)
= 1

2 for some0 ≤ l < k, then it must be thatφ(l)(i) 6= φ(k)(i). If this were not true, then this

implies thatφ(l)(i) is in a cycle of the graphH of theφ function considered in the previous step. Since all cycles
of H have length 2 and since there are no type 2 clients, thenφ(l)(i) not receiving a client impliesφ(l+1)(i) must
have received one. Since we assume that allφ(l′)(i) do not receive a facility for0 ≤ l′ < k, then it must be that
l + 1 = k which implies the contradictionφ(l)(i) = φ(k)(i) = φ(l+1)(i). Therefore, sinceφ(l) 6= φ(k)(i) and
φ(l)(i) does not receive facilityj thenj must have been assigned to locationφ(k)(i). Therefore, in each possible
caseφ(k)(i) receives a facility with probability at least12 which proves our claim.

From this we see:

Pr(φ(l)(i) do not receive a facility for all0 ≤ l < k)

=

k−1
∏

l′=0

Pr(φ(l′)(i) does not receive a facility| φ(l)(i) did not receive a facility for all0 ≤ l < l′)

≤ 2−k.

Note that because we do not have a type 2 client pair, for everypair of clientsi, i′ with φ(i) = i′ andφ(i′) = i

(i.e. they form a 2-cycle inH), there must be one facilityj with y
(4)
ji′ = y

(4)
ji = 1

2 . So exactly one ofi or i′ will
be covered byj after the rounding. Since any walk onH eventually leads to a 2-cycle (containing the root) of
which one location must be assigned a facility, then there isa minimum valueki such thatφ(ki)(i) will receive a
facility with probability 1 if the previous locationsφ(l)(i) do not receive a facility for0 ≤ l < ki.

Also, since the weights of edges ofH do not increase in any walk, then it is easy to prove by induction that
diφ(k)(i) ≤ k · diφ(i). Thus, the expected cost of serving clienti with x

(4)
ii = 1

2 is bound by:
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ki
∑

k=0

Di · diφ(k)(i) · Pr(φ(k)(i) receives a location andφ(l)(i) do not for all0 ≤ l < k)

≤
ki
∑

k=0

k ·Di · diφ(i) · Pr(φ(l)(i) do not receive a facility for all0 ≤ l < k)

≤ Di · diφ(i) ·
∞
∑

k=0

k

2k
= 2 ·Di · diφ(i) = 4C

(4)
i Di,

and so the lemma follows. 2

2.7 Putting it all Together

Working with the modified instance, we have the client/facility costs initially being at most(C,F ). After the
second step, the new client/facility costs are bounded by(2C,F +C). When obtaining the half-integer solution,
the costs increase to at most(2C − τ∆, F + C +∆) for some constantτ which we will specify shortly. Fixing
type 1 and type 2 clients resulted in the cost of the current solution rising to at most(2C − τ∆, 4F +4C +4∆).
Finally, the random rounding produced an integer solution to the modified instance with an expected cost of at
most(8C − 4τ∆, 4F + 4C + 4∆).

However, as detailed in the clustering step, we have to move the demands back to their original locations
which is done with a penalty of4C. Thus, the final cost of the algorithm is16C+4F +4(1−τ)∆. Choosing the
constantτ to be 1 when obtaining the half-integer solution, we see the overall cost of the final integer solution to
the original problem being bound by16C + 4F ≤ 16 ·OPTf .

3 Derandomizing and Improving to an 8-Approximation

In this section we show how we can build upon the algorithm of Section 2 to prove Theorem 1.1. The 8-
approximation algorithm is essentially the same algorithmas presented. First, we show how we can derandomize
that algorithm using the method of conditional expectations to get a deterministic one. Next we describe a more
careful analysis of some of the steps in the algorithm which yields an improved ratio of 8 for the approximation.
We will not fix the value ofτ until the end of this new analysis.

3.1 Derandomizing the Algorithm of Theorem 1.1

As said before, we use the method of conditional expectations to do the final step of our rounding algorithm
deterministically. Since we will move each clienti to its nearest location that received a facility after the rounding,
we can efficiently compute the expected cost of clienti given that some of the facilities are already rounded in
the following manner. Begin by ordering the locationsv1, v2, . . . , v|V | so thatdiv1 ≤ div2 ≤ · · · ≤ div|V |

. The
expected cost can be expressed as:

|V |
∑

m=1

divm Pr(vm receives a facility andvl do not for1 ≤ l < m)

We can compute the expected cost for clienti in the following manner:
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Cost(i,m)
if there is a facility assigned tovm with weight 1then returndivm
else if there is a facilityj that is assigned tovm with weight 12 then

if j is also assigned tovl with weight 12 for somel < m, then returndivm
else return 1

2 · divm + 1
2 · Cost(i,m+ 1)

else return Cost(i,m + 1)

Lemma 3.1 The expected cost of clienti for a given partial assignment of facilities is Cost(i, 0, ∅).

Proof. First of all, the recursive routine reaches a base case sinceall facilities are assigned with weights1 or 1
2

to locations in|V |. Say this base case happens when considering locationvm. We prove, in an inductive fashion,
that the value returned when considering locationvl for 1 ≤ l ≤ m is the expected assignment cost of clienti
given that all locationsvl′ , 1 ≤ l′ < l are not allocated a facility.

Consider the base case ofvm. If vm has a weight 1 assignment, then since there are no type 1 clients and all
unused assignments do not move from their initial starting position it must be that some facility is completely
assigned tovm. If vm has a weight12 assignment, then since this is a base case it must be that the facility j
partially assigned tovm was also partially assigned to somevl′ for 1 ≤ l′ < m. Sincej was not assigned tovl′
by assumption, it must be assigned tovm. In either case, the value returned isdivm .

Now consider somevl locations for1 ≤ l < m. The first and second cases of the recursive function do not
apply becausevl is not a base case. If there is no facility that is partially assigned tovl then the probability ofvl
receiving a facility is 0. Thus, the expected cost is exactlythe expected cost ofvl+1 receiving a facility given that
no vl′ receives a facility for any1 ≤ l′ ≤ l. If vl was partially assigned a facilityj, then it must be thatj is not
partially assigned to a previous locationvl′ for 1 ≤ l′ < l (otherwisevl is a base case). Thus, the probability of
j being assigned tovl is exactly 1

2 and the assignment cost fori is divl in this case. The probability thatj is not
assigned tovl is also1

2 . In this event, the expected assignment cost ofi is then recursively computed. 2

Now consider each facilityj in some order. Ifj is such thaty(4)jv = 1 for somev, then we assignj to this

location. Otherwise, sayv andv′ are the two locations such thaty(4)jv = y
(4)
jv′ =

1
2 . Try the two cases of assigning

j to v andv′ and pick the one that produces the least expected cost. When this is done for all facilities, we have
an integer assignment of facilities and clients to nodes whose cost is at most the expected value before any of this
rounding was performed.

3.2 Improving the Relocation of Coverage

Consider the second step of the algorithm which consists of relocating the facilities (and the clients with them).
Previously, when we move facility coverage from a locationv to the nearest clienti′, we also moved all client
assignments fromv to clienti′. Instead of doing that, we will move onlyx(2)i′v from each client (assigned tov) and

leave any extra client assignment atv. That is, for each clienti let ǫi = min
{

x
(2)
iv , x

(2)
i′v

}

and move this much

assignment fromv to i′. DefineM =
x
(2)

i′v
∑

j y
(2)
jv

and move this fraction of all facility assignments fromv to i. In

other words, for each clienti and facilityj, perform the following update:

x
(2)
ii′ ← x

(2)
ii′ + ǫi

x
(2)
iv ← x

(2)
iv − ǫi

y
(2)
ji′ ← y

(2)
ii′ +M · y(2)jv

y
(2)
jv ← (1−M) · y(2)jv

15



It may be that after such an update that there are still clients assigned to locationv. This happens in the case

thatx(2)i′v < max
{

x
(2)
iv | i ∈ C

}

. However, we have moved exactlyx(2)iv total facility assignments fromv to i, so

the clients with some assignment toi or v are still covered and clienti′ now hasx(2)i′v = 0. We repeat this process

on vertexv with the next closest clienti′′ that still hasx(2)i′′v > 0 after the re-assignment. Iterate this process until
all client assignments tov have been moved to some client location. For each locationv and clienti′, where the
assignments tov were (partially) moved toi′ during this process, letαv,i′ denote the cost of moving the fraction

of assignment ofi′ to v back toi′; this isDi′ timesdi′v times the value ofx(2)i′v at the time of this movement
(note that the client cost fori′ decreases byαv,i′). Letαv be the sum of allαv,i′ over all iterations of the above

procedure onv. If we consider each clienti′ that had some portion of the assignmentx
(2)
i′v moved back tox(2)i′i′ ,

then the total cost of these clients decreases byαv and the total facility cost increases by at mostαv. Denote by
βv the cost that all other clientsi paid to have their assignments moved fromv to somei′ location wherei 6= i′.

Let α =
∑

v αv andβ =
∑

v βv and notice thatα + β ≤ C
(1)

since each fraction of each client is moved at

most once. Therefore, the new facility costF
(2)

is at mostF
(1)

+ α and the new client costC
(2)

is at most

C
(1)

+ β − α.

3.3 Improving the Analysis of the Expected Cost

In the randomized rounding phase, as observed before, for each clienti there is a minimum valueki such that

Pr(φ(ki)(i) receives a facility| φ(l)(i) do not receive a facility0 ≤ l < ki) = 1.

For each0 ≤ l < ki, the probability ofφ(l)(i) receiving a facility given thatφ(l′)(i) do not for all0 ≤ l′ < l is
exactly 1

2 . Therefore, the expected cost for clienti after the randomized rounding of facilities can be bound as
follows:

ki
∑

k=0

Di · diφ(k)(i) · Pr(φ(k)(i) receives a location andφ(l)(i) do not for all0 ≤ l < k)

=

ki
∑

k=0

Di · diφk(i) · Pr(φ(l)(i) do not receive a facility for all0 ≤ l < k)

·Pr(φ(k)(i) receives a location| φ(l)(i) does not for all0 ≤ l < k)

=
Di · diφ(ki)(i)

2ki
+Di

ki−1
∑

k=0

diφ(k)(i)

2k+1

≤ Di · ki · diφ(i)
2ki

+Di

ki−1
∑

k=0

k · diφ(i)
2k+1

= Di · diφ(i) ·
(

ki
2ki

+ 1− ki + 1

2ki

)

= Di · diφ(i) ·
(

1− 1

2ki

)

,

where the second last equality can easily be verified by induction. This shows that the cost increase for each

client i is at mostC
(4)
i (note that the final expression is 0 ifki = 0).
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Figure 3: An example with a large locality gap. A dot represents a facility and a number represents client demand.

3.4 The Final Analysis

As before, we start with the modified instance which has client/facility costs at most(C,F ). The new analysis

on the relocating step shows that the cost can be then be boundby (C+β−α,F +α) whereα+β ≤ C
(1) ≤ C.

The cost after obtaining the half integer solution increases to at most(C+β−α− τ∆, F +α+∆). Fixing type
1 and type 2 clients then implies the resulting costs increase to at most(C+β−α−τ∆, 4F +4α+4∆). Finally,
the new analysis on the expected cost increase, along with the derandomization, shows the integer solution to the
modified instance has client/facility costs at most(2C + 2β − 2α− 2τ∆, 4F + 4α+ 4∆).

As before, move the demands back to their original locationswith a cost increase of4C. By choosingτ = 2,
we have the final cost of the integer solution being bound by:

6C + 4F + 2α+ 2β + (4− 2τ)∆ ≤ 8C + 4F + (4− 2τ)∆

= 8C + 4F

≤ 8 ·OPTf

4 Instances With Large Locality Gap

Let p be a fixed positive integer and consider the following local search operation. Select a subsetk ≤ p of
facilities fi1 , . . . , fik and a subset of sizek of destinations for themv1, . . . , vk, respectively; movefij to vj, for
each1 ≤ j ≤ k. Finish by reassigning clients to their nearest facility.

We will exhibit, for any large enough positive integerF , an instance of TM-MFL with locality gap at least
F/(p + 2) with respect to the above operations. To that end, consider acycle onF + p + 1 vertices where
all edges have cost 1. Letv1, . . . , vF+p+1 be the label of the vertices in counter-clockwise order. On vertices
vi, i = 2 . . . F − p, place a client with demand2i and a single facility. On the2p + 1 vertices following vertex
F −p, alternate between placing a client with demand that is 2 more than the previously placed client and placing
a facility. Finally, place a single facility on vertexv1. This instance is illustrated in Figure 3.

Consider the solution to TM-MFL on this instance where each facility moves counter-clockwise one step.
All clients are covered and the total cost of this solution isF . One possible way to get to this configuration
starting from the initial configuration is by first moving thefacility on vertexF + p to locationF + p+ 1 (since
this reduces the cost of serving the2(F + 1) facilities there), then moving the facility on vertexF + p − 2 to
locationF + p− 1, and so on. In other words, every facility (starting from theone at locationF + p down to the
one at location 1) moves one step counter-clockwise to the nearest location that has clients on it. Each of these
moves reduces the total cost. The claim is that this solutionis a local minimum with respect to the local search
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operations detailed above. Consider some local search operation that moves a set ofk ≤ p facilities fi1 , . . . , fik
to locationsv1, . . . , vk. Say, wlog, thatc is the index such that allvi, i ≤ c are starting locations of some clients
and allvi′ , i′ > c are not starting locations of some client. Before this localsearch step all clients have some
facility at their start location and each facility has movedonly one step. This means the local search operation
that only movesfi1 , . . . , fic to locationsv1, . . . , vc does no worse than the operation that moves allk facilities
since we save at most one step for eachfij , c < j ≤ k and each client collocated withfij must now move at
least one step. It is also not hard to see that permuting the destinations of anyk ≤ p facilities will not improve
the cost so the current solution is a local minimum.

In contrast, a solution of costp+ 2 is obtained by moving all facilities that do not start at a client location to
the nearest client in the clockwise direction. Therefore, the ratio gap is at leastF/(p + 2).

5 Hardness Result

In this section we prove Theorems 1.3 and 1.4.
Proof of Theorem 1.3:. Suppose we are given an instance ofk-median on a graphG(V,E) with metric edge
weightsdij and demandDv for each vertex, and integerk. First, using scaling, we assume that the minimum edge
length inG is at least 1 and the minimum demandDv is at least 1. We construct an instance of the mobile facility
location problem as follows. Let∆ denote the maximum distances of this metric and defineσ = αnk∆, with
n = |V |. We use the same graphG and placek facilities in arbitrary nodes ofG and let eachv ∈ V be a client
with demandσDv ≥ 1. Consider any optimum solution of the instance of TM-MFL with costC + F , whereC
denotes the cost of moving clients andF denotes the cost of moving facilities, and any optimum solution with
costC∗ to thek-median instance.

We claim thatC + F ≤ σC∗ + σ
αn

. To see this, take the optimum solution of thek-median. Moving the
demands in TM-MFL as in this solution ofk-median costs exactlyσC∗. To bring facilities to thesek locations
costs at mostk∆ = σ

αn
. Thus we have:

C + F

σ
≤ C∗ +

1

αn
≤ C∗

(

1 +
1

αn

)

, (3)

sinceC∗ ≥ 1.
Now suppose there is anα-approximation algorithm for TM-MFL and it returns a solution with costC ′+F ′.

Obtain a solution to thek-median based on this approximate solution by moving the demands as in the TM-MFL

solution, and letC ′′ be its cost. Using (3):C ′′ = C′

σ
≤ (C′+F ′)

σ
≤ α(C+F )

σ
≤ C∗α

(

1 + 1
αn

)

. ThusC ′′ is within
ratioα+ 1

n
of the optimum, i.e. we have an(α+ o(1))-approximation fork-median. 2

Proof of Theorem 1.4:. NP-completeness of the classic vertex cover problem, proven by Karp [20], is all that
is required for this result. Given a graphG(V,E) and an integerk, the vertex cover problem is to determine if
there is a collection of nodesC ⊆ V with |C| ≤ k such that each edgeE has one of its endpoints inC. From
such a instance of the vertex cover problem, we construct an instance of minimum maximum movement facility
location on a new graphH as follows. Let the vertex set ofH beV ∪ E ∪ {f1, . . . , fk} where eachfi is a new
node. Add an edge from everyfi to every vertex inV with cost 1 and place a facility in eachfi. For eachv ∈ V
ande ∈ E, if v is an endpoint ofe in the original graphG then connectv ande in H with an edge having cost 1.
Finally, the set of all clients in this new graph is exactlyE.

If G has a vertex cover of sizek, then we can obtain a solution inH with maximum movement 1 by moving
the k facilities to the vertices inV that correspond to some vertex cover of sizek. Then each cliente ∈ E is
adjacent to some vertex inV with a facility which can be reached with cost 1. Similarly, if there is a solution of
with maximum movement of 1 inH, then it is easy to see that all clients must meet facilities at nodes inv which
corresponds to a vertex cover ofG of size at mostk. This implies the cost of a solution inH is 2 if G does not
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have a vertex cover of sizek (since we can always move all the clients to a vertexfi with maximum movement
cost being2).

Consequently, any(2 − ǫ)-approximation algorithm, for anyǫ > 0, will return a solution of cost less than 2
if G has a vertex cover of sizek. Conversely, ifG does not have a vertex cover of sizek then any algorithm must
return a solution of cost 2 inH. 2

6 Concluding Remarks

One natural question is whether we can obtain an approximation algorithm with ratio better than 8 for TM-
MFL. Since this generalizes the classicalk-median problem, improving this ratio beyond 3 would imply an
approximation algorithm that is better than the currently best known approximation algorithm fork-median.

Another direction is to consider a more general version of TM-MFL in which there is a weightwj associated
with each facilityj and the cost of moving this facility to locationi is nowwjdij . Our approximation algorithm
does not work for this more general setting. For example, we cannot bound the change in the cost of the solution
after performing Phase 2 of our rounding (relocation of facilities). Note that this is also a problem when trying to
balance our approximation ratio. That is, our algorithm finda solution of cost at most8C +4F . A standard trick
is to scale the costs of the facilities by some constant to improve the overall approximation guarantee. However,
the proof of lemma 2.4 requires the movement cost of each facility to be bound by the movement cost of each
client (captured by1 ≤ Di in our setting) so such scaling is not possible.

As mentioned in [11], many classical optimization problemscan be defined in this movement setting which
are both theoretically interesting and have applications in real world. So far there are only a few problems
considered in [11] and this paper.

Acknowledgements: The second author thanks M. Hajiaghayi for some initial discussions about the prob-
lem. We also thank anonymous referees for their comments andsuggestions.

References

[1] K. Aardal, F. Chudak, and D.B. Shmoys,A 3-approximation for thek-level uncapacitiated facility location
problem, Information Processing Letters, 72 (1999), pp. 161–167.

[2] A. Armon, On min-maxr-gatherings, To appear in Theoretical Computer Science. Earlier version in pro-
ceedings of the 5th international conference on Approximation and online algorithms, Lecture Notes in
Computer Science, Volume 4927, year 2008. pp. 128-141

[3] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala,and V. Pandit,Local search heuristics for
k-median and facility location problems, SIAM J. Comput., 33 (2004), pp. 544-562.

[4] Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proc. of the 29th annual ACM Symp. on
Theory of Computing (STOC), 1997, pp. 161–168.

[5] S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick, andM. Segal,Mobile Facility Location, In Proc. of 4th
intl. workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM),
2000, pp. 46–53.

[6] J.L. Bredin, E. Demaine, M.T. Hajiaghayi, and D. Rus,Deploying sensor networks with guaranteed ca-
pacity and fault tolerance, in Proc. of the 6th annual ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC), 2005, pp. 309–319.

19



[7] Jaroslaw Byrka,An optimal bifactor approximation algorithm for the metricuncapacitated facility location
problem, In Proceedings of APPROX 2007, pp. 29–43.

[8] M. Charikar and S. Guha,Improved combinatorial algorithms for facility location andk-median problems,
in Proc. of the 40th Annual IEEE Symp. on Foundations of Comp.Sci. (FOCS), 1999, pp. 378–388.

[9] M. Charikar, S. Guha, D. Shmoys, and E. Tardos,A constant factor approximation algorithm for the k-
median problem, in Proc. of the 31st annual ACM Symp. on Theory of Computing (STOC), 1999, pp.
1–10.

[10] F. Chudak and D.B. Shmoys,Improved approximation algorithms for uncapacitated facility location prob-
lem, SIAM J. Comput., 33 (2003), pp. 1–25.

[11] E. Demaine, M. Hajiaghayi, H. Mahini, A. Sayid-Roshkar, S. Oveisgharan, and M. Zadimoghaddam,Min-
imizing movement, In Proc. of the 18th annual ACM-SIAM Symp. on Discrete Algorithms (SODA), 2007,
pp. 258–267.

[12] J. Fakcharoenphol, S. Rao, and K. Talwar,A tight bound on approximating arbitrary metrics by tree met-
rics, JCSS, 69 (2004), pp. 485–497. Preliminary version in Proc.35th Annual ACM Symp. on Theory of
Computing (STOC), 2003.

[13] Z. Friggstad,Minimizing Movement in Mobile Facility Location ProblemsM.Sc. thesis, University of Al-
berta, 2007.

[14] S. Guha and S. Khuller,Greedy strikes back: improved facility location algorithms, in Proc. of the 9th
annual ACM-SIAM Symp. on Discrete Algorithms (SODA), 1998,pp. 649–657.

[15] D. Hochbaum,Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), pp.
148–162.

[16] T-R. Hsiang, E.M. Arkin, M. Bender, S. Fekete, and J.S. Mitchell, Algorithms for rapidly dispersing robot
swarms in unknown environments, in Proc. of the 5th Workshop on Algorithmic Foundations of Robotics
(WAFR), 2002, pp. 77–94.

[17] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V.V. Vazirani, Approximation algorithms for facility
location via dual fitting with factor-revealing LP, J. ACM, 50 (2003), pp. 795–824.

[18] K. Jain, M. Mahdian, and A. Saberi,A new greedy approach for facility location problems, in Proc. of the
34th annual ACM Symp. on Theory of Computing (STOC), 2002, pp. 731–740.

[19] K. Jain and V.V. Vazirani,Approximation algorithms for metric facility location andkmedian problems
using the primal-dual schema and Lagrangian relaxation, J. ACM, 48 (2001), pp. 274–296.

[20] R. Karp,Reducibility among combinatorial problems, In Raymond E. Miller and James W. Thatcher, editors
Complexity of Computer Computations, 85–103, Plenum Press, 1972.

[21] M. Mahdian and M. Pál,Universal facility location, in Proc. of the 11th annual European Symp. on Algo-
rithms (ESA), 2003, pp. 409–421.

[22] M. Mahdian, Y. Ye, and J. Zhang,Approximation algorithms for metric facility location problems, SIAM J.
Comput., 36 (2006), pp. 411–432.

[23] A. Schrijver, Combinatorial Optimization - Polyhedraand Efficiency, Springer-Verlag, New York, 2005.

20
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