
Improved Approximation Algorithms for the Min-max Tree Cover

and Bounded Tree Cover Problems

M. Reza khani∗ Mohammad R. Salavatipour†

Abstract

In this paper we provide improved approximation algorithms for the Min-Max Tree Cover
and Bounded Tree Cover problems. Given a graph G = (V,E) with weights w : E → Z+, a set

T1, T2, . . . , Tk of subtrees of G is called a tree cover of G if V =
⋃k

i=1 V (Ti). In the Min-Max
k-tree Cover problem we are given graph G and a positive integer k and the goal is to find
a tree cover with k trees, such that the weight of the largest tree in the cover is minimized.
We present a 3-approximation algorithm for this improving the two different approximation
algorithms presented in [1, 5] with ratio 4. The problem is known to have an APX-hardness
lower bound of 3

2 [12]. In the Bounded Tree Cover problem we are given graph G and a bound λ
and the goal is to find a tree cover with minimum number of trees such that each tree has weight
at most λ. We present a 2.5-approximation algorithm for this, improving the 3-approximation
bound in [1].

1 Introduction

The study of problems in which the vertices of a given graph are needed to be covered with special
subgraphs, such as trees, paths, or cycles, with a bound on the number of subgraphs used or their
weights has attracted a lot of attention in operations research and computer science community.
Such problems arise naturally in many applications such as vehicle routing. As an example, in
a vehicle routing problem with min-max objective, we are given a weighted graph G = (V,E)
in which each node represents a client. The goal is to dispatch a number of service vehicles to
service the clients and the goal is to minimize the largest client waiting time, which is equivalent
to minimizing the total distance traveled by the vehicle which has traveled the most. Observe
that the subgraph traveled by each vehicle is a walk that can be approximated with a tree. This
problem, under the name of “Nurse station location”, was the main motivation in [5] to study
these problems. In a different scenario, we may want to guarantee an upper bound for the service
time; so we are given a bound on the distance traveled by each vehicle and the objective is to
minimize the number of required vehicles needed to satisfy this guarantee. Min-max and bounded
vehicle routing problems are part of an active body of research in the literature and have several
application (see e.g.[2, 5, 1, 11, 12] and the references there).

In this paper we consider Min-Max k-Tree Cover Problem (MMkTC) and Bounded Tree Cover
Problem (BTC) defined formally below. Suppose we are given an undirected graph G = (V,E) and
a weight function w : E → Z+. For every subgraph H of G we use V (H) and E(H) to denote the

∗Department of Computing Science,University of Alberta, Edmonton, Alberta T6G 2E8, Canada. e-mail:
khani@ualberta.ca
†Toyota Tech. Inst. at Chicago, and Department of Computing Science, University of Alberta, Edmonton, Alberta

T6G 2E8, Canada. e-mail: and mreza@cs.ualberta.ca. Supported by NSERC and an Alberta Ingenuity New Faculty
award.

1

set of vertices and edges of H, respectively. A set T1, T2, . . . , Tk of subtrees of G is called a tree
cover of G if every vertex of V appears in at least one Ti (1 ≤ i ≤ k), i.e. V =

⋃k
i=1 V (Ti). Note

that the trees in a tree-cover are not necessarily edge-disjoint (thus may share vertices too). The
weight of a tree Ti is W (Ti) =

∑
e∈Ti w(e). In the Min-Max k-tree Cover problem (MMkTC) we

are given the weighted graph G and a positive integer k and the goal is to find a tree cover with k
trees, which we call a k-tree cover, such that the weight of the largest tree in the cover is minimized.
In the Bounded Tree Cover problem (BTC), we are given the weight G and a parameter λ and the
goal is to find a tree cover with minimum number of trees such that the weight of every tree in the
cover is at most λ. There are other variations of these problems in which one wants to cover the
vertices of a graph with paths or cycles (instead of trees), however the known algorithms for these
variations (e.g. see [1]) solve the problem for tree versions first and then take a walk of the trees
to obtain a path. So apart from their real world applications [5], covering graphs with trees have
been the main step for covering graphs with paths and cycles.

Related Works: Even et al. [5] and Arkin et al. [1] gave two different 4-approximation
algorithms for MMkTC. It is shown that MMkTC is APX-hard in [12], specifically a lower bound
of 3

2 . The best approximation factor for BTC is due to Arkin et al. [1] which give a 3-approximation
algorithm. It is easy to see that BTC is APX-hard even in the case when G is a weighted graph
with height one, by an easy reduction from the bin packing problem.

Even et al. [5] give a 4-approximation algorithm for the rooted version of MMkTC in which k
vertices are given in input and each tree of the trees in a k-tree cover has to be rooted at one of
them. Nagamochi and Okada[10] give a (3− 2

p+1)-approximation algorithm for MMkTC when all

the trees have to be rooted at a given vertex r. They also give a (2− 2
k+1)-approximation algorithm

for MMkTC when the underlying metric is a tree and (2+ ε)-approximation algorithm for MMkTC
when the underlying metric is a tree and each tree should be rooted at a certain vertex r.

In addition to trees, covering with other objects, such as tours, paths, and stars are studied in
the literature. Frederickson et al. [6] gave an (e + 1 − 1

k)-approximation algorithm for covering
a metric graph with k tours rooted at a given vertex (called k-traveling salesperson problem or
k-TSP) where e is the best approximation ratio for the classic TSP problem. Other different
variations of min-max and bounded vehicle routing problems are also studied in the literature (see
e.g. [1, 11, 13, 9, 7]). Another related problem to k-TSP is called k-Traveling Repairman Problem
(KTR) in which instead of minimizing the total lengths of the tour the objective function is to
minimize the total latency of the nodes where the latency of each node is the distance traveled
(time elapsed) before visiting that node for the first time. The case of k = 1 is known as the
minimum latency problem. The best known approximation algorithm for k = 1 is 3.59 due to [3]
and the best known approximation for KTR is 2(2 +α) [4] where α is the best approximation ratio
for the problem of finding minimum tree spanning k vertices a.k.a k-MST (see also [8] and the
references there).

Our Result: In this paper we improve the approximation ratios for both MMkTC and BTC
problems.

Theorem 1 There is a polynomial time 3-approximation algorithm for the MMkTC problem.

This improves upon the 4-approximation algorithms of [1, 5]

Theorem 2 There is a polynomial time 2.5-approximation algorithm for the BTC problem.

This improves upon the 3-approximation algorithm of [1]. We prove Theorem 1 in Section 3
and Theorem 2 in Section 4.

2

2 Preliminaries

For a connected subgraph H ⊆ G by tree weight of H we mean the weight of a minimum spanning
tree (MST) of H and denote this value by WT (H). Note that this is different from the weight of H,
i.e. W (H) which is the sum of weights of all the edges of H. In every solution to either MMkTC or
BTC problem, we can replace every edge uv of a tree in the cover with the shortest path between
u, v in the graph without increasing the cost of the tree and the solution still remains feasible.
Therefore, without loss of generality, if the input graph is G and G̃ is the shortest-path metric
completion of G, we can assume that we are working with the complete graph G̃. Any solution
to G̃ can be transformed into a feasible solution of G (for MMkTC or BTC) without increasing
the cost. The following lemma will be useful in our algorithms for both the MMkTC and BTC
problems.

Lemma 1 Suppose G = (V,E) is a graph which has a k-tree cover T = {T1, . . . , Tk}, with maxi-
mum tree weight of λ and let λ′ ≤ λ be a given parameter. Assume we delete all the edges e with
w(e) > λ′ (call them heavy edges) and the resulting connected components be C1, . . . , Cp. Then
Σp
i=1WT (Ci) ≤ kλ+ (k − p)λ′.

Proof. Let G′ =
⋃p
i=1Ci be the graph after deleting the heavy edges. Each tree in T might be

broken into a number of subtrees (or parts) after deleting heavy edges; let T ′ denote the set of
these broken subtrees, |T ′| = k′, and ni be the number of trees of T ′ in component Ci. The total
weight of the subtrees in T ′ is at most kλ− (k′− k)λ′, since the weight of each tree in T is at most
λ and we have deleted at least k′ − k edges form the trees in T each having weight at least λ′. In
each component Ci we use the cheapest ni − 1 edges that connect all the trees of T ′ in Ci into one
spanning tree of Ci. The weight of each of these added edges is no more than λ′ and we have to
add a total of k′ − p such edges (over all the components) in order to obtain a spanning tree for
each component Ci. Thus, the total weight of spanning trees of the components Ci’s is at most
kλ− (k′ − k)λ′ + (k′ − p)λ′ = kλ+ (k − p)λ′.

Through our algorithms we may need to break a large tree into smaller trees that cover the
(vertices of) original tree, are edge-disjoint, and such that the weight of each of the smaller trees is
bounded by a given parameter. We use the following lemma which is implicitly proved in [5] (in a
slightly weaker form) in the analysis of their algorithm.

Lemma 2 Given a tree T with weight W (T) and a parameter β > 0 such that all the edges of T

have weight at most β, we can edge-decompose T into trees T1, . . . , Tk with k ≤ max(bW (T)
β c, 1)

such that W (Ti) ≤ 2β for each 1 ≤ i ≤ k.

Proof. The idea is to “split away” (defined below) trees of weight in interval [β, 2β) until we are
left with a tree of size smaller than 2β. This process of “splitting away” is explained in [5]. We
bring it here for the sake of completeness. Consider T being rooted at an arbitrary node r ∈ T .
For every vertex v ∈ T we use Tv to denote the subtree of T rooted at v; for every edge e = (u, v)
we use Te to denote the subtree rooted at u which consist of Tv plus the edge e. Subtrees are called
light, medium, or heavy depending on whether their weight is smaller than β, in the range [β, 2β),
or ≥ 2β, respectively. For a vertex v whose children are connected to it using edges e1, e2, . . . , el
splitting away subtree T ′ =

⋃b
i=a Tei means removing all the edges of T ′ and vertices of T ′ (except

v) from T and putting T ′ in our decomposition. Note that we can always split away a medium tree
and put it in our decomposition and all the trees we place in our decomposition are edge-disjoint.
So assume that all the subtrees of T are either heavy or light. Suppose Tv is a heavy subtree whose

3

children are connected to v by edges e1, e2, . . . such that all subtrees Te1 , Te2 , . . . are light (if any
of them is heavy we take that subtree). Let i be the smallest index such that T ′ =

⋃i
a=1 Tea has

weight at least β. Note that T ′ will be medium as all Tej ’s are light. We split away T ′ from T
and repeat the process until there is no heavy subtree of T (so at the end the left-over T is either
medium or light).

If W (T) ≤ 2β then we do not split away any tree (since the entire tree T is medium) and the
theorem holds trivially. Suppose the split trees are T1, T2, . . . , Td with d ≥ 2 with W (Ti) ∈ [β, 2β)
for 1 ≤ i < d. The only tree that may have weight less than β is Td. Note that in the step when
we split away Td−1 the total weight of the remaining tree was at least 2β, therefore we can assume
that the average weight of Td−1 and Td is not less than β. Thus, the average weight of all Ti’s is

not less than β which proves that d cannot be greater than bW (T)
β c.

3 3-approximation algorithm for MMkTC

In this section we present our 3-approximation algorithm for MMkTC. Before describing our al-
gorithm we briefly explain the 4-approximation algorithm of [5]. Suppose that the value of the
optimum solution to the given instance of MMkTC is opt and let λ ≥ opt be a value that we have
guessed as an upper bound for opt. The algorithm of [5] will either produce a k-tree cover whose
largest tree has weight at most 4λ or will declare that opt must be larger than λ, in which case
we adjust our guess λ. So assume we have guessed λ with λ ≥ opt.

For simplicity, let us assume that G is connected and does not have any edge e with w(e) > λ
as these clearly cannot be part of any optimum k-tree cover. Let T be a MST of G and T =
{T1, . . . , Tk} be an optimum k-tree cover of G. We can obtain a spanning tree of G from T by
adding at most k − 1 edges between the trees of T . This adds a total of at most (k − 1)λ since
each edge has weight at most λ. Thus, W (T) ≤

∑k
i=1W (Ti) + (k − 1)λ ≤ (2k − 1)λ. Therefore,

if we start from a MST of G, say T , and we split away trees of size in [2λ, 4λ) then we obtain
a total of at most (2k − 1)λ/2λk ≤ k trees each of which has weight at most 4λ. In reality the
input graph might have edges of weight larger than λ. First, we delete all such edges (called heavy
edges) as clearly these edges cannot be part of an optimum solution. This might make the graph
disconnected. Let {Gi}i be the connected components of the graph after deleting these heavy edges
and let Ti be a MST of Gi. For each component Gi the algorithm of [5] splits away trees of weight
in [2λ, 4λ). Using Lemma 2 one can obtain a ki-tree cover of each Gi with ki ≤ max(WT (Gi)/2λ, 1)
with each tree having weight at most 4λ. A similar argument as the one above shows (Lemma 3
in [5]) that

∑
i(ki + 1) ≤ k. One can do a binary search for the value λ which yields a polynomial

4-approximation.
Now we describe our algorithm. As said earlier, we work with the metric graph G̃. We use

OPT to denote an optimal solution and opt to denote the weight of the largest tree in OPT.
Similar to [5] we assume we have a guessed value λ for opt and present an algorithm which finds
a k-tree cover with maximum tree weight at most 3λ if λ ≥ opt. By doing a binary search for
λ we obtain a 3-approximation algorithm that runs in time polynomial in input size. First, we
delete all the edges e with w(e) > λ/2 to obtain graph G′. Let C1, . . . , C` be the components of G′

whose tree weight (i.e. the weight of a MST of that component) is at most λ (we refer to them as
light components), and let C`+1, . . . , C`+h be the components of G′ with tree weight greater than λ
(which we refer to as heavy components). The general idea of the algorithm is as follows: For every
light component we do one of the following three: find a MST of it as one tree in our tree cover, or
we decide to connect it to another light components with an edge of weight at most λ in which case
we find a component with MST weight at most 3λ and put that MST as a tree in our solution, or

4

we decide to connect a light component to a heavy component. For heavy components (to which
some light components might have been attached) we split away trees with weight in [32λ, 3λ). We
can show that if this is done carefully, the number of trees is not too big. We explain the details
below.

For every light component Ci let wmin(Ci) be the minimum edge weight (in graph G̃) between
Ci and a heavy component if such an edge exists with weight at most λ, otherwise set wmin(Ci)
to be infinity. We might decide to combine Ci with a heavy component (one to which Ci has an
edge of weight wmin(Ci)). In that case the tree weight of that heavy component will be increased
by A(Ci) = WT (Ci) + wmin(Ci). The following lemma shows how we can cover the set of heavy
components and some subset of light components with a small number of trees whose weight is not
greater than 3λ.

Lemma 3 Let Ls = {Cl1 , . . . , Cls} be a set of s light-components with bounded A(Ci) values. If∑
1≤i≤sA(Cli) +

∑
`+1≤i≤`+hWT (Ci) ≤ x − hλ2 , then we can cover all the nodes in the heavy-

components and in components of Ls with at most b 2x3λc trees with maximum tree weight no more
than 3λ.

Proof. First we find a MST in each heavy component and in each component of Ls, then we
attach the MST of each Cli to the nearest spanning tree found for heavy components. As we have
h heavy components, we get a total of h trees, call them T1, . . . , Th. From the definition of A(Clj),
the total weight of the constructed trees will be

h∑
i=1

W (Ti) =
∑

1≤j≤s
A(Clj) +

∑
`+1≤i≤`+h

WT (Ci) ≤ x− h
λ

2
, (1)

where the last inequality is by the assumption of lemma. Now to each of the h constructed trees
we will apply the procedure of Lemma 2 with β = 3

2λ to obtain trees of weight at most 3λ. This

gives at most
∑

1≤i≤h max(b2W (Ti)
3λ c, 1) trees. To complete the proof of lemma it is sufficient to

prove the following: ∑
1≤i≤h

max(b2W (Ti)

3λ
c, 1) ≤ b2x

3λ
c. (2)

Consider Ti for an arbitrary value of i. If Ti has been split into more than one tree, by Lemma 2
we know that the amortized weight of the split trees is not less than 3

2λ. If Ti is not split, as Ti
contains a spanning tree over a heavy component, W (Ti) ≥ λ. Thus every split tree has weight at
least 3

2λ excepts possibly h trees which have weight at least λ. Therefore, if the total number of

split trees is r, they have a total weight of at least r 32λ− h
λ
2 . Using Equation (1), it follows that r

cannot be more than b 2x3λc.
Before presenting the algorithm we define a graph H formed according to the light components.

Definition 1 For two given parameters a, b, graph H has ` + a + b nodes: ` (regular) nodes
v1, . . . , v`, where each vi corresponds to a light component Ci, a dummy nodes called null nodes, and
b dummy nodes called heavy nodes. We add an edge with weight zero between two regular nodes vi
and vj in H if and only if i 6= j and there is an edge in G̃ with length no more than λ connecting a
vertex of Ci to a vertex of Cj. Every null node is adjacent to each regular node vi (1 ≤ i ≤ `) with
weight zero. Every regular node vi ∈ H whose corresponding light component Ci has finite value
of A(Ci) is connected to every heavy node in H with an edge of weight A(Ci). There are no other
edges in H.

5

Inputs: G(V,E), k, λ
Output: A set S which is a k-tree cover with maximum tree size 3λ.

1. Build G̃ which is the shortest-path metric completion of G and then delete all edges with
weight more than λ

2 ; let C1, . . . , C`+h be the set of ` light and h heavy components created.

2. For a : 0→ `

(a) For b : 0→ `

i. S ← ∅
ii. Construct H (as described above) with a null nodes and b heavy nodes.

iii. Find a perfect matching with the minimum cost in H; if there is no such perfect
matching continue from Step 2a ,

iv. Attach each light-component Ci to its nearest heavy component (using the cheapest
edge in G̃ between the two) if vi is matched to a heavy node in the matching

v. Decompose all the heavy components and the attached light components using
Lemma 3 and add the trees obtained to S

vi. If a vertex vi is matched to a null node, add a MST of Ci to S.

vii. For every matching edge between two regular nodes vi and vj join a MST of Ci and
a MST of Cj using the cheapest edge among them (in G) and add it to S.

viii. If |S| ≤ k then return S.

3. return failure

Figure 1: MMkTC Algorithm

Theorem 3 Algorithm MMkTC (Figure 1) finds a k-tree cover with maximum tree weight at most
3λ, if λ ≥ opt.

Proof. Through out the whole proof we assume λ ≥ opt. In order to bound the maximum weight
of the cover with 3λ we need to use the optimal k-tree cover. Consider an optimal k-tree cover
OPT; so each T ∈ OPT has weight at most λ. First note that every tree T ∈ OPT can have
at most one edge of value larger than λ/2; therefore each T ∈ OPT is either completely in one
component Ci or has vertices in at most two components, in which case we say it is broken. If T
is broken it consists of two subtrees that are in two components (we refer to the subtrees as broken
subtree or part of T) plus an edge of weight > λ/2 connecting them; we call that edge the bridge
edge of T . We characterize the optimal trees in the following way: a tree T ∈ OPT is called light
(heavy) if the entire tree or its broken subtrees (if it is broken) are in light (heavy) components
only, otherwise if it is broken and has one part in a light component and one part in a heavy
component then we call it a bad tree. We denote the number of light trees, heavy trees, and bad
trees of OPT by k`, kh, and kb; therefore k`+kh+kb = k. We say that a tree T ∈ OPT is incident
to a component if the component contains at least one vertex of T (see Figure 2).

We define multi-graph H ′ = (V ′, E′) similar to how we defined H except that edges of H ′ are
defined based on the trees in OPT. V ′ consists of ` vertices, one vertex v′i for each light component
Ci. For each light tree T ∈ OPT, if T is entirely in one component Ci we add a loop to v′i and if T
is broken and is incident to two light components Ci and Cj then we add an edge between v′i and
v′j . So the total number of edges (including loops) is k`. There may be some isolated nodes (nodes

6

without any edges) in H ′, these are nodes whose corresponding light components are incident to
only bad trees. Suppose M is a maximum matching in H ′ and let U be the set of vertices of H ′

that are not isolated and are not saturated by M . Because M is maximal, every edge in E′ \M is
either a loop or is an edge between a vertex in U and one saturated vertex. Therefore:

|M |+ |U | ≤ k`. (3)

Note that for every node v′i (corresponding to a light component Ci) which is incident to a bad
tree, that bad tree has a bridge edge (of weight at most λ) between its broken subtree in the light
component (i.e. Ci) and its broken subtree in a heavy component. Therefore:

Lemma 4 For every light component Ci which is incident to a bad tree, and in particular if v′i is
isolated, A(Ci) is finite.

We define the excess weight of each bad tree as the weight of its broken subtree in the light
component plus the bridge edge. Let Wexcess be the total excess weights of all bad trees of OPT.
Note that Wexcess contains

∑
vi is isolated

A(Ci), but it also contains the excess weight of some bad
trees that are incident to a light component Ci for which vi is not isolated. Thus:

Wexcess ≥
∑

vi is isolated

A(Ci). (4)

Only at Steps 2(a)v, 2(a)vi, and 2(a)vii the algorithm adds trees to S. First we will show that
each tree added to S has weight at most 3λ. At step 2(a)v, according to Lemma 3, all the trees will
have weight at most 3λ. At Step 2(a)vi, as Ci is a light components its MST will have weight at
most λ. At Step 2(a)vii, the MST of Ci and Cj are both at most λ, and as vi and vj are connected
in H there is an edge with length no more than λ connecting Ci and Cj ; thus the total weight of
the tree obtained is at most 3λ. Hence, every tree in S has weight no more than 3λ. The only
thing remained is to show that the algorithm will eventually finds a set S that has no more than
k trees. We show that in the iteration at which a = |U | and b is equal to the number of isolated
nodes in H ′: |S| ≤ k.

Lemma 5 The cost of the minimum perfect matching computed in step 2(a)iii is no more than
Wexcess.

Proof. Consider the iteration at which a = |U | and b is the number of isolated nodes in H ′. In
this case, we can find a perfect matching in the following way: for every vertex v′i ∈ U , vi ∈ H can
be matched to a null node in H, for every isolated node v′i ∈ H ′, vi ∈ H can be matched to a heavy
node in H (note that A(Ci) is finite by Lemma 4), for all other vertices v′i ∈ H ′, v′i is saturated by
M , so the corresponding vi ∈ H can be matched according to the matching M . Note that the cost
of this matching is

∑
vi is isolated

A(Ci) which is no more than Wexcess by Equation (3). Since we
find a minimum perfect matching in step (2(a)iii).

Note that the number of trees added to S at step (2(a)vii) is |M | and the number of trees added
at step (2(a)vi) is |U |. Thus the total number of trees added to S at these two steps is at most
|M | + |U | ≤ k` by Equation (3). The weight of the minimum perfect matching found in (2(a)iii)
represents the total weight we add to the heavy components in step (2(a)iv). By Lemma 5, we
know that the added weight is at most Wexcess. In Lemma 6 we bound the total weight of heavy
components and the added extra weight of matching by (kh + kt) ∗ 3

2λ − h
λ
2 . Using Lemma 3 we

know that we can cover them by at most kh + kb trees. Thus the total number of trees added to S
is at most k` + kh + kb = k.

The following lemma will bound the weight of the heavy components and Wexcess.

7

Lemma 6
∑

`+1≤i≤`+hWT (Ci) +Wexcess ≤ (kh + kb) ∗ 3
2λ− h

λ
2 , if λ ≥ opt.

Proof. Again, we assume that λ ≥ opt. We show a possible way to form a spanning tree for each
heavy component plus the light components attached to it. Then we bound the total weight of
these spanning trees.

We can make a spanning tree over a heavy component Ci by connecting all the trees and broken
subtrees of the optimum solution that are in that component by adding edges of weight at most
λ/2 between them since each edge in Ci has weight at most λ/2 (see Figure 2). Therefore, the tree
weight of a heavy component can be bounded by the weight of optimal trees or broken subtrees
inside it plus some edges to connect them. Suppose p trees of the heavy trees are broken and q of
them are completely inside a heavy component; note that p+ q = kh. The rest of broken subtrees
in heavy components are from bad trees. So overall we have 2p+ q+ kb trees or broken subtrees in
all the heavy components. Each of the q heavy trees that are not broken contribute at most qλ to
the left hand side. Those p heavy trees that are broken contribute at most pλ/2 to the left hand
side since each of them has an edge of weight more than λ/2 that is deleted and is between heavy
components. By definition of Wexcess, we can assume the contribution of all bad trees to the left
hand side is at most kbλ. Thus, the total weight of edges e such that e belongs to an optimal tree
and also belongs to a heavy component or is part of Wexcess (i.e. the broken part of a bad tree plus
its bridge edge) is at most (p+ q + kb)λ− pλ2 .

Overall we have 2p + q + kb trees or broken subtrees in all the heavy components. In order to
form a spanning tree in each heavy component we need at most 2p+q+kb−h edges connecting the
optimal trees and broken subtrees in the heavy components, since we have h heavy components.
Since each edge in a component has weight at most λ

2 , the total weight of these edges will be at

most (2p+ q + kb − h)λ2 . Therefore, the total weight of spanning trees over all heavy components

plus Wexcess will be at most (p+ q + kb)λ− pλ2 + (2p+ q + kb − h)λ2 = (kh + kb) ∗ 3
2λ− h

λ
2 .

We know that opt can be at most
∑

e∈E w(e). By Theorem 3 we know that if λ ≥ opt,
Algorithm 1 will find a k-tree cover with maximum tree weight at most 3λ. If λ < opt the
algorithm may fail or may provide a k-tree cover with maximum weight at most 3λ which is also
a true 3-approximation. Now by a binary search in the interval [0,

∑
e∈E w(e)], we can find a λ for

which our algorithm will give a k-tree cover with bound 3λ and for λ − 1 the algorithm will fails.
Thus, λ = opt which gives us a 3-approximation factor. This completes the proof of Theorem 1.

4 2.5-approximation algorithm for BTC

Given an instance of BTC consisting of a graph G and bound λ on the tree sizes we use OPT to
denote an optimum solution and k = opt denote the number of trees in OPT. As before, we can
assume we are working with the shortest-path metric completion graph G̃ = (V,E). Our algorithm
for this problem is similar to the algorithm for MMkTC, although the analysis is different. The
over all structure of the algorithm is as follows. We delete all the edges with weight greater than
λ/4 in G̃ to obtain graph G′. Let C1, . . . , C` be the components of G′ whose weight is at most
λ/4, called light components, and C`+1, . . . , C`+h be the components with weight greater than λ/4
which we refer to as heavy components. We define A(Ci), the tree of a light component Ci plus the
weight of attaching it to a heavy component as before: it is the weight of minimum spanning tree
of Ci, denoted by WT (Ci), plus the minimum edge weight that connects a node of Ci to a heavy
node if such an edge e exists (in G̃) such that WT (Ci)+w(e) ≤ λ; otherwise A(Ci) is set to infinity.
The proof of the following lemma is identical to that of Lemma 3 with 3

2λ replaced with 1
2λ.

8

Lemma 7 Let Ls = {Cl1 , . . . , Cls} be a set of s light-components with bounded A(Ci) values. If∑
1≤i≤sA(Cli) +

∑
`+1≤i≤`+hWT (Ci) ≤ x − hλ4 , then we can cover all the nodes in the heavy

components and in components of Ls with at most b2xλ c trees with maximum tree weight no more
than λ.

Before presenting the algorithm we define a graph H = (L,F) formed according to the light
components similar to the way we defined it in the MMkTC problem.

Definition 2 For two given parameters a, b, graph H has ` + a + b nodes: ` (regular) nodes
v1, . . . , v`, where each vi corresponds to a light component Ci, a dummy nodes called null nodes,
and b dummy nodes called heavy nodes. We add an edge with weight zero between two regular
vi and vj in H if and only if i 6= j and there is an edge e between Ci and Cj in G̃ such that
WT (Ci) +WT (Cj) +w(e) ≤ λ. Every null node is adjacent to each regular node vi (1 ≤ i ≤ `) with
weight zero. Every regular node vi ∈ H whose corresponding light component Ci has finite value
of A(Ci) is connected to every heavy node in H with an edge of weight A(Ci). There are no other
edges in H.

Theorem 2 follows from the following theorem.

Theorem 4 Algorithm BTC (Figure 3) finds a k′-tree cover with maximum tree cost bounded by
λ, such that k′ ≤ 2.5opt.

Proof. It is easy to check that in all the three steps 2(a)v, 2(a)vi, and 2(a)vii the trees found
have weight at most λ: since each is either found using Lemma 7 (Step 2(a)v), or is a MST of a
light component (Step 2(a)vi), or is the MST of two light components whose total weight plus the
shortest edge connecting them is at most λ (Step 2(a)vii). So it remains to show that for some
values of a, b, the total number of trees found is at most 2.5opt.

First note that if matching M found in Step 2(a)iii assigns nodes vl1 , . . . , vlb to heavy nodes
and has weight WM then

∑
1≤i≤bA(Cli) = WM . Let Wh denote the total tree weight of heavy

components, i.e. Wh =
∑

`+1≤i≤`+hWT (Ci). Then the number of trees generated using Lemma 7

in Step 2(a)v is at most b2(WM+Wh+hλ/4)
λ c, and the number of trees generated in Steps 2(a)vi and

2(a)iii is exactly (` − b + a)/2; so we obtain a total of at most b2(WM+Wh+hλ/4)
λ c + (` − b + a)/2

trees. We prove the following lemma (see Appendix A for proof):

Lemma 8 There exist 0 ≤ a′ ≤ n and 0 ≤ b′ ≤ n such that if H is built with a′ null nodes and
b′ heavy nodes then H has a matching M ′ such that if Algorithm BTC uses M ′ then each tree
generated has weight at most λ and the total number of trees generated will be at most 2.5opt.

This lemma is sufficient to complete the proof of theorem as follows. Consider an iteration of
the algorithm in which a = a′ and b = b′. Suppose that the minimum perfect matching that the
algorithm finds in this iteration is M with weight WM . Since WM ≤ WM ′ , the total number of

trees generated in Step 2(a)v is at most b2(WM+Wh+hλ/4)
λ c ≤ b2(WM′+Wh+hλ/4)

λ c. Furthermore, the
number of trees generated in Steps 2(a)vi and 2(a)vii is exactly (`− b′+ a′)/2, so we obtain a total

of at most b2(WM+Wh+hλ/4)
λ c + (` − b + a)/2 trees. This together with the fact that WM ≤ WM ′

and Lemma 8 shows that we get at most 2.5opt trees using M .

9

References

[1] Esther M. Arkin, Refael Hassin, and Asaf Levin. Approximations for minimum and min-max
vehicle routing problems. Journal of Algorithms, 59:1–18, 2006.

[2] Ann Melissa Campbell, Dieter Vandenbussche, and William Hermann. Routing for relief
efforts. Transportation Science, 42:127–145, May 2008.

[3] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours.
In Proceedings of the 44th Annual IEEE Symposium on the Foundations of Computer Science,
pages 36– 45, 2003.

[4] C. Chekuri and A. Kumar. maximum coverage problem with group budget constraints. In
Proceedings of APPROX, 2004.

[5] G. Even, N. Garg, J. Konemann, R. Ravi, and A. Sinha. Covering graphs using trees and stars.
Operations Research Letters, 32:309–315, 2004. Earlier version in Proceedings of APPROX
2003.

[6] Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Approximation algorithms for
some routing problems. SIAM J. on Computing, 7:178–193, 1978.

[7] Nili Guttmann-Beck and Refael Hassin. Approximation algorithms for min-max tree partition.
J. Algorithms, 24:266–286, August 1997.

[8] R. Jothi and B. Raghavachari. Approximating k-traveling repairman problem with repairtimes.
J. of Discrete Algorithms, 5:293–303, 2007.

[9] Chung-Lun Li, David Simchi-Levi, and Martin Desrochers. On the distance constrained vehicle
routing problem. Oper. Res., 40:790–799, July 1992.

[10] Hiroshi Nagamochi. Approximating the minmax rooted-subtree cover problem. IEICE Trans-
actions on Fundamentals of Electronics, E88-A:1335–1338, 2005.

[11] Viswanath Nagarajan and R. Ravi. Approximation algorithms for distance constrained vehicle
routing problems, 2008.

[12] Zhou Xu and Qi Wen. Approximation hardness of min-max tree covers. Operations Research
Letters, 38:169–173, 2010.

[13] Zhou Xu and Liang Xu. Approximation algorithms for min-max path cover problems with
service handling time. In Proceedings of the 20th International Symposium on Algorithms and
Computation, ISAAC ’09, pages 383–392, Berlin, Heidelberg, 2009. Springer-Verlag.

A Proof of Lemma 8

The rest of this section is to prove this lemma. We use the structure of OPT in order to determine
a′, b′ as well as the matching M ′. We do not give an explicit value for a′, b′, instead we start with
a′ = b′ = 0 and we define the edges we add to M ′ instead. For every two vertices of H that we pair
(i.e. every edge we place in M ′) if that edge involves a null node (or a heavy node) we increase
a′ (or b′) accordingly. In other words, we add a new null node (or heavy node) to H whenever we

10

need to use a new copy of a null node (or heavy node). At the end, a′ will be the total number of
null nodes we used in our matching M ′ and b′ will be the number of heavy nodes we used.

We call every tree in OPT an optimum tree. We say an optimum tree T is incident to a
component Ci if Ci contains at least one node of T . Note that each optimum tree can be incident
to at most 4 components as each edge deleted had weight more than λ/4. Let F be the set of light
components which are incident to only one optimum tree. So each such component contains only
one tree or broken subtree of a tree. We add matching edges to M ′ in 5 steps (described below) and
also characterize the optimum trees into types. Initially M ′ = ∅, and we start with the optimum
trees of first type and match some pairs of nodes in H based on the definition of Type 1 and add
them to M ′; then in Step 2 we define optimum trees of Type 2 and add all the matching edges that
they define into M ′, and so on. Whenever we need to match a node vi to a node vj where vj is
already matched to another node in M ′ (in one of the previous steps) we use a new null node and
match vi to the null node (instead of vj).

Step 1: Type 1 trees
An optimum tree is Type 1 if it is incident to only light components, say Cx1 , . . . , Cxp (with p ≤ 4)
which satisfy at least one of the following: i) p ≤ 2, in which case we match each of vx1 and vx2 (if
it is not already matched) to a new null node and add these (at most) two edges to M ′, or ii)p = 3
and at least two of vx1 , vx2 , vx3 are adjacent in H, say vx1 , vx2 , then we add the edge vx1vx2 to M ′

and match vx3 with a null node, or iii) p = 4 and there are two independent edges among these
four vertices in H, say vx1 , vx2 are adjacent and vx3 , vx4 are adjacent, then we add these two edges
to M ′. So, for each Type 1 optimum tree, we generate at most a total of two trees in Steps 2(a)vi
and 2(a)vii (each corresponding to a matching edge described above) that together cover all the
vertices of the components Cx1 , . . . , Cxp . Note that each of the trees generated this way has weight
at most λ by definition of edges of H. In Step 1 we add all possible matching edges to M ′ by
considering all Type 1 optimum trees before going to the next step.

Step 2: Type 2 trees
Every optimum tree T that is not Type 1 and is incident to an even number (specifically 2 or 4)
of the light components in F is Type 2. We claim that the vertices of H corresponding to these
light components are all adjacent (with edges of weight zero). So we can match them arbitrarily
with at most two edges, we add these (at most) two edges to M ′. The reason is each of these
components contains only the vertices of T (because they are in F , so cannot be incident with any
other optimum tree). Therefore all these components belong to the same optimum tree T ; so for
any two such components, say Ci and Cj , there is a path P connecting two vertices of them in T
such that WT (Ci) +WT (Cj) +W (P) ≤ λ. Since we are working with the complete graph G̃, there
is an edge e ∈ G̃ between Ci and Cj with WT (Ci) + WT (Cj) + w(e) ≤ λ, so vi, vj are adjacent in
H. In Step 2 we place all the matching edges generated by Type 2 trees into M ′ before going to
the next step.

Step 3: Type 3 trees
Every optimum tree T that is not Type 1 or 2 and has following properties is Type 3: T is incident
to an odd number of light components Cx1 , . . . , Cxp (p is specifically 1 or 3) in F and at least one
light component Cy not in F such that the broken subtree of T in Cy is connected to the broken
subtree of one of Cxi ’s, say Cx1 , with an edge eT of T (which is now deleted).

Suppose that T is Type 3, and p = 3 (the case that T is incident with only one light component
in F is easier and is dealt with below). First note that since each of Cx1 , Cx2 , Cx3 belongs to
the same optimum tree (namely T), similar arguments as in case of Type 2, shows that vertices
vx1 , vx2 , vx3 are all adjacent in H. Without loss of generality assume eT connects the broken subtree
of T in Cy to the one in Cx1 . We claim in that vx1vy is an edge in H as well. More specifically

11

WT (Cx1) +WT (Cy) + w(eT) ≤ λ. The following claim implies this:

Claim 1 WT (Cx1) +WT (Cy) + w(eT) ≤ λ.

Proof. Since T is not Type 1, Cx1 and Cy cannot be the only components to which T is incident
(otherwise, each of Cx1 and Cy would be matched to null nodes as in Type 1). Therefore, there is
at least one other component that has a broken subtree of T , and there is at least one other edge
of T , call e′, (which is deleted now) connecting that broken subtree to Cx1 or to Cy in G̃. Note
that w(e′) > λ/4 and WT (Cy) ≤ λ/4. Therefore, WT (Cx1)+WT (Cy)+w(eT) ≤WT (Cx1)+w(e′)+
w(eT) ≤ λ since all these are parts of T .

Hence we can pair vx1 with vy and pair vx2 with vx3 and add these two edges to M ′. Note that
again the tree generated by each of these pairs has weight at most λ. If T is Type 3 and is incident
to only one light component in F , say Cx1 then we pair vx1 with vy as above and add only one
edge to M ′. We consider all Type 3 optimum trees and add the corresponding matching edges to
M ′ before going to consider the next step..

Step 4: Type 4 trees
Every optimum tree T that is not Type 1, 2, or 3 and has following properties is Type 4: T is
incident to an odd number of light components Cx1 , . . . , Cxp (p is specifically 1 or 3) in F and at
least one heavy component Cy such that the broken subtree of T in Cy is connected to the broken
subtree in one of Cxis with an edge eT of T (which is now deleted).

Suppose that optimum tree T is Type 4 and p = 3 (again the case that T is incident with only
one light component in F is easier). Arguments similar to the case of Type 3 show that vertices
vx1 , vx2 , vx3 (corresponding to Cx1 , Cx2 , Cx3) are all adjacent in H. Without loss of generality let
assume eT connects the broken subtree of T in Cy to the one in Cx1 . In this case, the weight of the
broken subtree of T in Cx1 , plus the weight of eT is no more than λ (as they are all part of T); in
particular WT (Cx1)+w(eT) ≤ λ. This implies A(Cx1) ≤ λ and so vx1 is adjacent to heavy nodes in
H. In this case we pair vx1 with a (not already matched) heavy node in H and pair vx2 with vx3 and
add these two edges to M ′. Note that as argued before, the tree generated by the matching edge
vx2 , vx3 has weight at most λ. Also, since we use Lemma 7 for each heavy component together with
the light components attached to it, the weight of each tree generated from the heavy components
(and their assigned light components) is at most λ.

Step 5: The rest of light components
This step completes the description of M ′. Before starting this step, we explain why all the vertices
in H corresponding to components in F are saturated by M ′ before this step. We show that if T
has at least one broken subtree in a component in F then T is either Type 1, 2, 3, or 4, therefore
all the components in F containing a broken subtree of T are matched in M ′. We consider the
following three cases for T : (1) If T is incident at only components in F then it is Type 1, (2) If T
is incident at even number of components in F then it is Type 2, (3) If T is incident at odd number
of components in F then, as it is not Type 1, T is incident at some other components not in F . As
T is connected, there is an edge eT which connects a broken subtree of T in a component in F to a
broken subtree of T to a component Cy not in F . If Cy is a light component then T is Type 3 and
if Cy is a heavy component then T is Type 4. So, all vertices corresponding to light components
in F are already matched. In Step 5, if there is any light component that is not matched so far,
each of them is incident with at least two optimum trees. In this step we match the corresponding
vertex (in H) of each of these light components to a null node and these edges are added to M ′.

Now we prove that the total number of trees generated by matching M ′ is at most 2.5opt.
Let N1 denote the number of matching edges added to M ′ in Step 1, Y denote the number of
matching edges added to M ′ in Steps 2 to 5 that does not involve a heavy node, and N4 denote

12

the number of trees generated by applying Lemma 7 to the matching edges added to M ′ in Step
4 that involves a heavy node. Note that the total number of trees generated in the final solution
based on matching M ′ is N1 + Y + N4. We use opt1 to denote the number of optimum trees of
Type 1, and optrest = opt − opt1 to denote the number of other optimum trees. Our goal is to
show N1 + Y +N4 ≤ 2.5opt, more specifically we show: N1 + Y +N4 ≤ 2opt1 + 2.5optrest. It is
easy to see that for every optimum tree of Type 1, we add at most 2 edges to M ′ in Step 1 (and
therefore at most 2 trees in the final solution). Therefore, N1 ≤ 2opt1. In the rest we show that
Y +N4 ≤ 2.5optrest. We prove the following claim.

Claim 2 Suppose we add Y edges to M ′ in Steps 2 to 5 that do not involve a heavy node and have
matched light components Cl1 , . . . , Cls to heavy nodes in Step 4. Then:

(i) The union of the Y trees that are generated in the final solution based on the matching edges
added to M ′ in Steps 2 to 5 that do not involve a heavy node contains at least 2Y broken
subtrees of the optimum trees that are not Type 1.

(ii)
∑s

i=1A(Cli) +
∑

`+1≤i≤`+hWT (Ci) ≤ 5
4λ · optrest −

λ
2 · Y − h

λ
4 .

First, let us show how we can complete the proof of lemma using this claim. Using Lemma 7 and
part (ii) of Claim 2, the total number of trees generated based on matching edges added to M ′ at
Step 4 that involves a heavy node is bounded by: N4 ≤ b2.5optrest−Y c. Also, the total number of
matching edges that do not involve a heavy node (and therefore the corresponding number of trees
in the final solution) generated at Steps 2 to 5 is Y . So we get Y +N4 ≤ b2.5optrest − Y c+ Y ≤
2.5optrest, as wanted. Now it only remains to prove Claim 2.
Proof of Claim 2:
Part (i): We show that for every tree generated in the final solution based on matching edges added
to M ′ in Steps 2 to 5 that do not involve a heavy node, there are two distinct broken subtrees of
the optimum trees. To show this, we assign two broken subtrees for every such tree generated in
the final solution such that each broken subtree is assigned to at most one tree of final solution.

For every optimum tree T of Type 2, each edge e added to matching M ′ in Step 2 is between
two components in F each of which contains exactly one broken subtree of T ; therefore the cor-
responding tree in the final solution generated based on e contains the broken parts of T in those
two components of F . We assign those two broken subtrees to the tree generated. Also, every light
component that is considered in Step 5 is not in F , i.e. it is incident with at least two optimum
trees and so has at least two broken subtrees of two different optimum trees (that are not Type
1). Therefore, the tree generated at the final solution for each light component in Step 5 contains
at least two broken subtrees of optimum trees that are not Type 1, we assign those two broken
subtrees to the tree generated. Now we consider the matching edges added in Step 3 and 4 that do
not involve a heavy node. If the matching edge e ∈ M ′ corresponds to two components in F then
similar to the case of Step 2, the tree generated in the final solution based on e contains the broken
subtrees defined by the two components in F ; we assign those two parts to the tree generated based
on e. So the only remaining case is when we have a Type 3 tree T and it has a broken subtree in
a component in F , say Cx1 , and another broken subtree in a light component not in F , say Cy (in
Step 3). Note that Cx1 (since is in F) by definition has only one broken subtree and that is of tree
T . Also, Cy has at least one broken subtree of T even if vertex vy ∈ H (corresponding to Cy) was
matched to a different vertex (because Cy also had a broken subtree for a different optimum tree
T ′). So regardless of whether vx1 is matched to vy or to a null node, we can assign the two broken
subtrees of T (one in Cx1 and one in Cy) to the tree generated based this matching edge in M ′.

13

part (ii): To prove this part, suppose T is a Type 4 optimum tree as in Step 4 which has two
broken subtrees, one subtree in the light component Cx1 ∈ F , denote it by Tx1 (note that there is
no other subtree in Cx1), and one subtree in the heavy component Cy, denote it by Ty, and there
is an edge eT ∈ T that connects a node of Tx1 to a node of Ty. Recall that eT was deleted as
W (eT) > λ/4. For the purpose of analysis, we merge component Cx1 (which consists of the vertices
of Tx1) with the heavy component Cy by adding the edge eT back; this will merge the two broken
subtrees Tx1 and Ty into one subtree. Also, by doing this, the weight of a MST in the new heavy
component increases by A(Cx1) only. If there are multiple optimum trees of Type 4 which have a
broken subtree in Cy we merge them all with Cy. More generally, we do this merge operation for all
the light trees Cl1 , . . . , Cls that are matched with heavy nodes in Step 4 and we let C ′`+1, . . . , C

′
`+h

be the set of new modified heavy components after these merge operations. Note that:

s∑
i=1

A(Cli) +
∑

`+1≤i≤`+h
WT (Ci) =

∑
`+1≤i≤`+h

WT (C ′i).

Now we prove that
∑

`+1≤i≤`+hWT (C ′i) ≤ 5
4λ · optrest −

λ
2 · Y − h

λ
4 . Let p denote the number

of (new) broken subtrees of the optrest optimum trees that are not Type 1; Using part (i), at least
2Y of these parts are covered by (i.e. are contained in) the Y trees generated using the matching
edges of Steps 2 to 5 that do not involve a heavy node. Therefore, the remaining at most p − 2Y
broken subtrees are in the modified heavy components. The total weight of optimum trees that are
not Type 1 is at most λ ·optrest. Out of these trees at least p−optrest edges are deleted even after
merge operations that built modified heavy components, since we have a total of p broken subtrees.
Therefore, the total weight of these p broken subtrees is at most λ · optrest − λ

4 · (p − optrest)
and all of these are inside the modified heavy components. By an argument similar to that of
proof of Lemma 1, to make a spanning tree in each modified heavy component, the total weight
of edges that need to be added between the broken subtrees inside the heavy components is at
most (p− 2Y − h)λ4 . Therefore, the total weight of (MST’s of) the modified heavy components is
bounded by:

λ · optrest −
λ

4
· (p− optrest) + (p− 2Y − h)

λ

4
≤ 5

4
λ · optrest −

λ

2
· λ− h · λ

4
.

14

Heavy Components

Light Components

Bad Trees

Heavy Trees

Light Trees

Connection Edges

Figure 2: Structure of G after deleting edges with length greater than λ
2 . Each thin circle corre-

sponds to a component and each solid circle corresponds to an optimum tree or a broken subtree
(part) of an optimum tree.

15

Inputs G(V,E), λ
Output: A set s containing k′-tree cover with maximum tree cost λ in which k′ ≤ 2.5opt.

1. Take G̃ to be the metric completion of G and delete edges with length more than λ
4 to form

graph G′ with components C1, . . . , C`+h

2. For a : 0→ `

(a) For b : 0→ `

i. Sa,b ← ∅
ii. Build graph H according to Definition 2 with a null nodes and b heavy nodes.

iii. Find a perfect matching with the minimum cost in H, if there is no such perfect
matching continue from Step 2a

iv. Attach each light component Ci to its nearest heavy component if vi is matched to
a heavy node

v. Decompose all the heavy components and the attached light components as ex-
plained in Lemma 7 and add the trees obtained to Sa,b

vi. If a vertex vi is matched to a null node, add MST of Ci to Sa,b.

vii. For every matching edge between vi and vj consider the cheapest edge e between Ci
and Cj (in G̃) and add a minimum spanning trees of Ci ∪ Cj ∪ {e} to Sa,b.

3. return set Sa,b with the minimum number of trees.

Figure 3: BTC Algorithm

16

Heavy Components

Light Components

F

Type 1

Type 2

Type 3 Type 4

Figure 4: Each thin circle shows a component and each solide circle shows a broken subtree of
an optimum tree; the solid lines show bridge edges that are deleted and were connecting broken
subtrees of optimum trees

17

