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Abstract

At the 16th British Combinatorial Conference (1997), Cameron introduced a new concept
called 2-simultaneous coloring. He used this concept to reformulate a conjecture of Keedwell
(1994) on the existence of critical partial latin squares of a given type. Using computer programs,
we have veri�ed the truth of the above conjecture (the SE conjecture) for all graphs having less
than 29 edges. In this paper we prove that SE conjecture is a consequence of the well-known
oriented cycle double cover conjecture. This connection helps us to prove that the SE conjecture
is true for semieulerian graphs. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In this paper we consider �nite loopless graphs. For notations not de�ned here we
refer to [1]. By ‘edge-coloring’ here we mean a proper edge-coloring. A cycle double
cover (CDC) C of a graph G is a collection of cycles in G such that every edge of G
belongs to exactly two cycles of C. Note that the cycles are not necessarily distinct.
It can be easily seen that a necessary condition for a graph to have a CDC is that
the graph be bridgeless. Seymour [5] in 1979 conjectured that this condition is also
su�cient.

Conjecture 1 (CDC conjecture, Seymour [5]). Every bridgeless graph has a cycle
double cover.
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Actually Seymour stated: ‘Let G be a bridgeless graph; then there is a list of circuits
(closed trails) of G with each edge in precisely two of them’. Given the fact that every
circuit is an edge disjoint union of cycles, it is obvious that this statement is equivalent
to the conjecture stated above. Also, Szekeres [7] in 1973 had conjectured that every
bridgeless cubic graph has a CDC, which is now known to be equivalent to the above
conjecture.
The idea of the conjecture above comes from the fact that the set of faces of a

planar graph (including the in�nite face) is a set of circuits that cover every edge
exactly twice. The CDC conjecture has many stronger forms, one of which is the
following:

Conjecture 2 (Oriented CDC conjecture). Every bridgeless graph has a cycle double
cover in which every cycle can be oriented in such a way that every edge of the graph
is covered by two directed cycles in two di�erent directions.

By replacing every edge of an arbitrary graph G by a path of length 2, we obtain a
bipartite graph G′′ such that every (oriented) CDC in G′′ corresponds to an (oriented)
CDC in G. Thus, we have established the following proposition.

Proposition 1. The oriented CDC conjecture in the case of bipartite graphs is
equivalent to the oriented CDC conjecture in the general case.

Recently, Cameron [4], stated a conjecture called the simultaneous edge-coloring
(SE) conjecture which is, in fact, a reformulation of a conjecture by Keedwell [2] on
the existence of critical partial latin squares (CPLS) of a given type. Before stating
the conjecture, we de�ne the concept of a 2-simultaneous coloring.

De�nition. Let G be a graph. A 2-simultaneous coloring of G is a pair of edge-colorings
of G such that

• for each vertex, the sets of colors appearing on the edges incident to that vertex are
the same in both colorings;

• no edge receives the same color in both colorings.
If G has a 2-simultaneous coloring, then G is called a 2-simultaneous colorable graph.

In fact, 2-simultaneous colorable graphs for graph colorings play a role such as the
role of trades in block designs [6]. Therefore, this concept has applications in the study
of the de�ning sets of graph colorings and uniquely colorable graphs [3].
Let G be a bipartite graph with bipartition (X; Y ). The bipartite degree sequence

of G is the sequence (x1; x2; : : : ; xn;y1; y2; : : : ; ym) where (x1; x2; : : : ; xn) are the vertex
degrees in X and (y1; y2; : : : ; ym) are the vertex degrees in Y . A sequence S of positive
integers is called a bipartite graphic sequence if there exists a bipartite graph G whose
bipartite degree sequence is S.
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Conjecture 3 (SE conjecture, Problems from the 16th British Combinatorial
Conference [4]). For each bipartite graphic sequence S with all its elements greater
than 1, there exists a simple bipartite graph G whose bipartite degree sequence is S
and it has a 2-simultaneous coloring.

We have veri�ed the truth of the SE conjecture for all M628 using computer
programs, where M = x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ ym.
In this paper, we study the relationship between the oriented CDC conjecture and the

SE conjecture. In the next section, this relationship is discussed and the SE conjecture
is veri�ed in some special cases. Finally, in Section 3 we mention some open problems
related to these conjectures.

2. The strong SE conjecture

Cameron in [4] noted that it is not true that every bipartite graph G with �(G)¿ 1
is 2-simultaneous colorable. His example is a graph which consists of two 4-cycles
with an extra edge joining them together. It is easy to verify that this graph is not
2-simultaneous colorable.
We will see in Theorem 2 that every bipartite graph which has a cut edge does not

have a 2-simultaneous coloring. We conjecture that the converse of this proposition is
true:

Conjecture 4 (Strong SE conjecture). Every bridgeless bipartite graph has a
2-simultaneous coloring.

We have checked that the above conjecture is true for every graph with less than
or equal to 22 edges using computer programs. The following theorem shows that the
above conjecture actually is stronger than the SE conjecture.

Theorem 1. The strong SE conjecture implies the SE conjecture.

Proof. It su�ces to show that if we have a bipartite graphic sequence S, then there
exists a 2-edge-connected simple bipartite graph G with this bipartite degree
sequence.
Let G be a graph with the bipartite degree sequence S which has the minimum

number of cut edges. Assume that e is one of the cut edges of G. Let G1 and G2 be
two components of G−e. Both G1 and G2 contain at most one vertex of degree 1. So,
there exists a cycle C1 in G1 and a cycle C2 in G2. Now, we choose an edge u1v1 ∈ C1
and an edge u2v2 ∈ C2, neither being adjacent to e, and replace them with two edges
u1v2 and u2v1. This replacement does not change the bipartite degree sequence of G,
and also the resulting graph is still bipartite assuming that u1 and u2 belong to the
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same vertex part of G. After the replacement, e is not a cut edge anymore, and also
it can be easily seen that no new cut edge is added by this process. This contradicts
the minimality of the number of cut edges of G.

Now, we are ready to prove the following theorem.

Theorem 2. The strong SE conjecture is equivalent to the oriented CDC conjecture.

Proof. First, assume that the oriented CDC conjecture is true. Let G be a bridgeless
bipartite graph with bipartition (X; Y ), let {C1; C2; : : : ; Cm} be an oriented CDC for G
and let x ∈ X; y ∈ Y . We color those edges xy of the oriented cycle Ci which are
oriented in the direction x to y with colour i in the �rst coloring and those which
are oriented in the direction y to x with color i in the second coloring. Since, by
assumption, each edge xy is covered by two cycles, one in the direction x to y and
the other in the direction y to x, each edge receives two distinct colors and so the two
colorings de�ne a 2-simultaneous coloring for G.
Conversely, assume that the Strong SE conjecture is true. By Proposition 1, we know

that it is su�cient to prove the oriented CDC conjecture for bipartite graphs. Let G be
a bridgeless bipartite graph. By the Strong SE conjecture there exists a 2-simultaneous
coloring for G. Let Ai (Bi, respectively) be the set of all edges which are colored with
the color i in the �rst (second, respectively) coloring. Let Ci = Ai ∪ Bi. Obviously,
G[Ci] is a collection of disjoint cycles. For every i these cycles form a CDC for G.
We will give an orientation for these cycles as follows. Orient each edge xy (x ∈ X
and y ∈ Y ) in a cycle of G[Ci] from x to y if i is its �rst color and from y to x if i
is its second color.

The oriented CDC conjecture is true for Eulerian graphs, because every Eulerian
graph has a cycle decomposition. Now we prove that it is also true for semi-Eulerian
graphs. This shows that the SE conjecture is true for all sequences which have all
elements even except possibly two elements.

Theorem 3. The Strong SE conjecture is true for semi-Eulerian bipartite graphs.

Proof. Let G be a bridgeless bipartite graph whose vertices have even degrees, except
for two vertices u and v. By Menger’s theorem, there exist two edge-disjoint paths P0
and P1 between u and v. We claim that there are actually three edge-disjoint paths
between them. We remove the edges of P1, to obtain a new graph G′. In G′, every
vertex has even degree. Also we know that u and v are connected in G′ by the path
P0. Thus u and v fall in the same connected component of G′. Since every Eulerian
graph in bridgeless, again we use the Menger theorem in the connected component of
G′ which contains u and v. This shows that there are two edge-disjoint paths P2 and
P3 between u and v.
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Now, we remove the edges of the three paths P1; P2, and P3 from G to obtain a
new graph G′′. Every connected component of G′′ is an Eulerian graph and thus has
an oriented CDC. It is su�cient to �nd an oriented CDC for P1 ∪ P2 ∪ P3. Consider
the directed graph Pi ∪ Pj where the edges of Pi are oriented from u to v and the
edges of Pj are oriented from v to u. This digraph is an Eulerian digraph and therefore
has a directed cycle decomposition Cij. Now C12 ∪ C23 ∪ C31 is an oriented CDC for
P1 ∪ P2 ∪ P3.

3. Some open problems

In the previous sections, we discussed 2-simultaneous coloring. It is natural to
generalize this concept to k-simultaneous coloring.

De�nition. Let G be a graph. A k-simultaneous coloring of G is a set of k edge-
colorings of G such that

• for each vertex, the sets of colors appearing on the edges incident to that vertex are
the same in each coloring;

• no edge receives the same color in any two colorings.
If G has a k-simultaneous coloring, then G is called a k-simultaneous colorable graph.

Now, we ask the following question.

Problem. Characterize all k-simultaneous colorable graphs.

In fact the strong SE conjecture is a characterization of all 2-simultaneous colorable
bipartite graphs. In the general case, it is easy to see that every 2-simultaneous colorable
graph should have a (not necessarily orientable) CDC. Thus, having no cut-edge is still
a necessary condition for 2-simultaneous colorability. But this condition is not su�cient.
For example, every odd cycle is not 2-simultaneous colorable. Also, the graph K4−e
is another example which is not 2-simultaneous colorable.
The following theorem shows that an in�nite family of k-simultaneous colorable

graphs exists.

Theorem 4. Every r-regular r-edge colorable graph is k-simultaneous colorable for
every k6r.

Proof. Let G be an r-regular r-edge colorable graph. Let c : E(G) 7→ {0; 1; : : : ; r − 1}
be an r-edge coloring of G. We de�ne the coloring ci for 06i6r − 1 by ci(e) ≡
c(e) + i (mod r). It is easy to verify that c0; c1; : : : ; cr−1 are r di�erent colorings which
satisfy the conditions of an r-simultaneous coloring.
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