
Improved Approximations for Buy-at-bulk and Shallow-Light

k-Steiner Trees and (k, 2)-Subgraph

M. Reza khani∗ Mohammad R. Salavatipour†

Abstract

In this paper we give improved approximation algorithms for some network design problems.
In the Bounded-Diameter or Shallow-Light k-Steiner tree problem (SLkST), we are given an
undirected graph G = (V,E) with terminals T ⊆ V containing a root r ∈ T , a cost function
c : E → R

+, a length function ℓ : E → R
+, a bound L > 0 and an integer k ≥ 1. The goal is

to find a minimum c-cost r-rooted Steinter tree containing at least k terminals whose diameter
under ℓ metric is at most L. The input to the Buy-at-Bulk k-Steiner tree problem (BBkST) is
similar: graph G = (V,E), terminals T ⊆ V , cost and length functions c, ℓ : E → R

+, and an
integer k ≥ 1. The goal is to find a minimum total cost r-rooted Steiner treeH containing at least
k terminals, where the cost of each edge e is c(e) + ℓ(e) · f(e) where f(e) denotes the number of
terminals whose path to root in H contains edge e. We present a bicriteria (O(log2 n), O(log n))-
approximation for SLkST: the algorithm finds a k-Steiner tree of diameter at most O(L · logn)
whose cost is at most O(log2 n · opt∗) where opt

∗ is the cost of an LP relaxation of the
problem. This improves on the algorithm of [25] (APPROX’06/Algorithmica’09) which had
ratio (O(log4 n), O(log2 n)). Using this, we obtain an O(log3 n)-approximation for BBkST,
which improves upon the O(log4 n)-approximation of [25]. We also consider the problem of
finding a minimum cost 2-edge-connected subgraph with at least k vertices, which is introduced
as the (k, 2)-subgraph problem in [32] (STOC’07/SICOMP09). This generalizes some well-
studied classical problems such as the k-MST and the minimum cost 2-edge-connected subgraph
problems. We give an O(log n)-approximation algorithm for this problem which improves upon
the O(log2 n)-approximation of [32]

1 Introduction

We consider some network design problems where in each one we are given an undirected graph
G = (V,E) with a terminal set T ⊆ V (including a node r ∈ T called root) and some cost functions
defined on the edges, plus an integer k ≥ 1. The goal is to find a subgraph satisfying certain
properties with minimum cost which contains at least k terminals. Below, we describe each of
these problems in details.

Bounded Diameter or Shallow-Light Steiner Tree and k-Steiner Tree: Suppose we are
given an undirected graph G = (V,E), a cost function c : E → R

+, a length function ℓ : E → R
+, a

subset T ⊆ V called terminals which includes a root node r, and a positive bound L. The goal is to
find a Steiner tree over terminals T and rooted at r such that the cost of the tree (under c metric)

∗Department of Computing Science,University of Alberta, Edmonton, Alberta T6G 2E8, Canada. e-mail:

khani@ualberta.ca
†Toyota Tech. Inst. at Chicago, and Department of Computing Science, University of Alberta, Edmonton, Alberta

T6G 2E8, Canada. e-mail: and mreza@cs.ualberta.ca. Supported by NSERC and an Alberta Ingenuity New Faculty

award.

1

is minimized while the diameter of the tree (under ℓ metric) is at most L. This problem is referred
to as Bounded Diameter (BDST) or Shallow-Light Steiner Tree (SLST). In a slightly more general
setting, in the input we also have an integer k ≥ 1 and a feasible solution is an r-rooted Steiner
tree containing at least k terminals. We refer to this as Shallow-Light k-Steiner Tree (SLkST).

Another closely related class of network design problems are buy-at-bulk network design prob-
lems defined below.

Buy-at-Bulk Steiner Tree (BBST) and k-Steiner Tree (BBkST): Suppose we are given
an undirected graph G = (V,E), a set of terminals T ⊆ V including root r, a sub-additive monotone
non-decreasing cost function fe : R

+ → R
+ for each edge e, and positive real demand values {δi}i,

one for each ti ∈ T . In the BBST problem the goal is to find an r-rooted Steiner tree to route
the demands from terminals to root which minimizes the sum of cost of the edges, where the cost
of each edge e is fe(δ(e)) where δ(e) is the total demand routed over edge e. This is also refered
to as single-sink buy-at-bulk problem. Similar to SLkST, one can generalize the BBST problem
by having an extra parameter k ≥ 1 in the input and a feasible solution is an r-rooted Steiner
tree which contains at least k terminals (instead of all of the terminals). This way, we obtain the
Buy-at-Bulk k-Steiner Tree (BBkST) problem. It can be shown that the definition of buy-at-bulk
problems given above is equivalent (with a small constant factor loss in approximation factor)
to the following variation which is also called cost-distance. The input is the same except that
instead of function fe for every edge e, we have two metric functions on the edges: c : E → R

+

is called cost and ℓ : E → R
+ is called length. The cost of a feasible solution H is defined as:∑

e∈H c(e) +
∑

i δi ·L(ti), where L(ti) is the length (w.r.t ℓ) of the r, ti-path in H. It is easy to see
that this formulation is a special case of buy-at-bulk since a linear function (defined based on c and
ℓ) is also sub-additive. It turns out that an α-approximation for the cost-distance version implies
a (2α+ ǫ)-approximation algorithm for the buy-at-bulk version too (see [2, 14, 34]). For simplicity,
we focus on the two cost function (cost+distance) formulation of buy-at-bulk from now on.

Network optimization problems with multiple cost functions, such as buy-at-bulk network design
problems, have been studied extensively because of their applications. These problems can model,
among others, situations where every edge e (link) can be either purchased at a fixed price c(e)
or rented at a price r(e) per amount of flow (or load). The selected edges are required to provide
certain bandwidth to satisfy certain demands between nodes of the graph. So if an edge is rented
and there is a flow of f(e) on that edge the cost for that edge will be r(e) · f(e) whereas if the edge
is purchased, the cost will be c(e) regardless of the flow. It can be shown that this problem and
some other variations can be modeled using buy-at-bulk network design defined above (see [25]).
Buy-at-bulk problems and their special cases have been studied through a long line of papers in the
operation research and computer science communities after the problem was introduced by Salman
et al. [37] (see e.g. [2, 3, 4, 11, 14, 21, 23, 24, 25, 30, 31, 34]).

Another major line of research in network design problems has focused on problems with con-
nectivity requirements where one has another parameter k, and the goal is to find a subgraph
satisfying the connectivity requirements with a lower bound k on the total number of vertices. The
most well-studied problem in this class is the minimum k-spanning tree problem, a.k.a. k-MST.
The approximation factor for this problem was improved from

√
k [35] to 2 [20] in a series of pa-

pers. A very natural common generalization of both the k-MST problem and the minimum cost
λ-edge-connected spanning subgraph problem is the (k, λ)-subgraph problem inroduced in [32]. In
this paper we focus on the case of λ = 2:

(k, 2)-Subgraph Problem: In the (k, λ)-subgraph problem, we are given a (multi)graph G =
(V,E) with a cost function c : E → R

+, and a positive integer k. The goal is to find a minimum
cost λ-edge-connected subgraph containing at least k vertices.

2

We should point out that the cost function c is arbitrary (i.e. does not necessarily satisfy the
triangle inequality). Furthermore, we are not allowed to take more copies of an edge that present
in the graph. In particular, if G is a simple graph the solution must be simple too. The (k, λ)-
subgraph problem contains some classical problems as special cases. For example, (k, 1)-subgraph
problem is the k-Minimum Spanning Tree problem (k-MST) and (|V |, λ)-subgraph is simply asking
for a minimum cost λ-edge-connected spanning subgraph. It was proved in [32] that the minimum
densest k-subgraph problem has a poly-logarithmic reduction to the (k, λ)-subgraph problem. Since
the densest k-subgraph has proved to be an extremely difficult problem (the best approximation

algorithm for it has ratio O(n
1

4) [9]), this shows that for general λ, (k, λ)-subgraph problem is a
very hard problem too.

Related Work: In the multi-commodity buy-at-bulk problem (which is a generalization of
BBST) we are given p source-sink pairs of terminals {si, ti}pi=1 each with a demand δi. A subset
of edges E′ is feasible if for every 1 ≤ i ≤ p there is a si, ti-path in G′ = (V,E′). The goal is to
minimize

∑
e∈E′ c(e) +

∑
i δi · distG′(si, ti) where the distance is with respect to length function ℓ.

In the uniform version of buy-at-bulk all the values along the edges are the same, i.e. c(e) = c(e′)
and ℓ(e) = ℓ(e′), for all e, e′ ∈ E (we refer to the version we defined as non-uniform). The uniform
multi-commodity buy-at-bulk has an O(log n)-approximation [4, 6, 19]. There are constant-factor
approximation for the single-sink uniform case and some other special cases [21, 23, 24, 31]. Meyer-
son et al. [34] gave a randomized O(log n)-approximation for the (non-uniform) BBST and this was
derandomized in [15] using an LP formulation. For the (non-uniform) multi-commodity version
[12] gave the first polylogarithmic approximation with ratio O(log4 n). In [30] this was improved to
O(log3 n) if all the demands are polynomial in n. Some generalizations of these problems to higher
connectivity are considered in [3, 22]. For hardness of approximation, Andrews [1] showed that
unless NP ⊆ ZPTIME (npolylog n) the buy-at-bulk multicommodity problem has no O(log1/2−ǫ n)-
approximation algorithm for any ǫ > 0. For the BBST [17] showed that the problem cannot be
approximated better than Ω(log log n) unless NP ⊆ DTIME(nlog log logn).

The BBkST and SLkST problems generalize some classic problems such as Steiner tree and
k-MST. The k-MST problem [5, 10, 20] is the special case of SLkST when L = ∞ and also the
bounded diameter spanning tree problem [27] is the special case when costs are zero. Also, the
SLST problem studied in [33] is a special case of SLkST with k = |T |. Even the k = |T | special case
is NP-hard and also NP-hard to approximate within a factor better than c log n for some universal
constant c [7]. An (α, β)-bicriteria approximation algorithm for SLST or SLkST is an algorithm
which finds a Steiner tree H (which has all the terminals in SLST or at least k terminals in SLkST)
whose diameter (under ℓ metric) is at most βL and whose cost is at most α times an optimum
solution with diameter bound L. For k = |T | an (O(log n), O(log n))-approximation algorithm is
given in [33] for SLST.

For the (k, 2)-subgraph problem, an O(log n · log k)-approximation was presented in [32]. For
the more general problem of requiring the k-subgraph to be 2-node-connected an O(log n · log k)-
approximation was presented in [16]. These are the best known approximation algorithms for the
(k, 2)-subgraph problem. In [22] using a different approach an O(log3 n)-approximation was given.
For metric cost functions, [36] presented an O(1)-approximation for (k, λ)-subgraph (the constant
is very large though).

Our results: Our first result is an improved bicriteria approximation for SLkST.

Theorem 1 There is a polynomial time (O(log2 n), O(log n))-approximation for SLkST. More
specifically, the algorithm finds a k-Steiner tree of diameter at most O(L · log n) whose cost is
at most O(opt∗ · log2 n) where opt

∗ is the cost of an LP relaxation of the problem.

3

To prove this theorem we combine ideas from all of [8, 14, 15, 30]. We first show that the
algorithm of Marathe et al. [33] for SLST actually finds a solution with diameter at most O(L ·
log |T |) whose cost is at most O(opt∗ · log |T |), where opt

∗ is the cost of a natural LP-relaxation,
so we give a stronger bound (based on an LP relaxation) for the cost of their algorithm. This
is based on ideas of [15] which gives a deterministic version of algorithm of [34] for BBST. Then
we use an idea in [30] to write an LP for SLkST and use a trick in [8] for rounding this LP (the
problem considered in [8] is completely unrelated to SLkST, namely k-ATSP tour problem). The
only previous result for SLkST was [25] which had ratio (O(log4 n), O(log2 n)). This was obtained
by applying the following theorem iteratively:

Theorem 2 [25] There is a polynomial time algorithm that given an instance of the SLkST problem
with diameter bound L returns a k

8
-Steiner tree with diameter at most O(log n ·L) and cost at most

O(log3 n · opt), where opt is the cost of an optimum shallow-light k-Steiner tree with diameter
bound L.

Then a set-cover type analysis yields an (O(log4 n), O(log2 n))-approximation for SLkST. We
should point out that this theorem was the main ingredient in a greedy typeO(log4 n)-approximation
for multi-commodity buy-at-bulk in [12, 14] as well. In [25], the following lemma was also proved:

Lemma 1 [25] Suppose we are given an approximation algorithm for the SLkST problem which
returns a solution with at least k

8
terminals and has diameter at most α ·L and cost at most β ·opt.

Then we can obtain an approximation algorithm for the BBkST problem that such that given an
instance of BBkST in which all demands δi = 1 and a given parameter M ≥ opt (where opt is
the optimum cost of the BBkST instance) returns a solution of cost at most O((α+ β) log k ·M).

The corollary of this lemma and Theorem 2 is an O(log4 n)-approximation for the BBkST for
unit demand instances; this can also be extended to an O(log3 n · logD)-approximation for general
demands where D =

∑
t δt. Using Theorem 1 and Lemma 1 we obtain:

Corollary 1 There is an O(log2 n · logD)-approximation for BBkST, where D is the sum of de-
mands.

This improves the result of [25] for BBkST by a log n factor. Finally, we improve the result of
[32] for the (k, 2)-subgraph problem:

Theorem 3 There is an O(log n)-approximation for the (k, 2)-subgraph problem.

This is based on rounding an LP relxation of the problem similar to the one presented in [32].
Again we use the trick of [8] to round this LP and use the ideas of [32] to prune a partial solution.

2 Shallow-Light Steiner Trees

In this section we prove Theorem 1. In order to prove this we first show that the algorithm of [33] in
fact bounds the integrality gap of the SLST problem too. Recall that the instance of SLST consists
of a graph G = (V,E) with costs c(e), lengths ℓ(e), terminal set T ⊆ V including a node r. The
goal is to find a Steiner tree H over T with minimum

∑
e∈H c(e) such that the diameter w.r.t. ℓ

function is at most L. First, let us briefly explain the algorithm of [33] for SLST. Denote the given
instance of SLST by I and define graph F over terminals as below. For every pair of terminals

4

u, v ∈ T , let b(u, v) be the (approximate) lowest c-cost path between them whose length (under ℓ)
is no more than L (there is an FPTAS for computing the value of b(u, v) [26]); let the weight of
edge between (u, v) in F be cost of b(u, v). It is a simple exercise to show that in the optimum
solution of I, we can pair the terminals (except possibly one if the number of them is odd) in such
a way that the unique paths connecting the pairs in the optimum are all edge-disjoint. Therefore,
the total cost of these paths is at most the value of optimum solution, denoted by opt, and the
length of each of them is at most L. So, if we consider a minimum cost maximum matching in F ,
the cost of this matching is at most (1+ ǫ)opt. We find a minimum cost maximum matching in F
and let say terminals {ui, vi}i are paired. We pick one of the two (arbitrarily), say ui and remove
vi from the terminal set; let this new instance be I ′. Clearly the cost of optimum solution on I ′,
denoted by opt

′, is at most opt (as the original solution is still feasible). Also, for any solution of
I ′, we can add the paths defined by b(ui, vi) to connect vi to ui. This gives a solution to instance
I of cost at most opt

′ + (1 + ǫ)opt and the diameter increases by at most L. We can do this
repeatedly for O(log |T |) iterations until |T | = 1, since each time the number of terminals drops by
a constant factor.

Remark: A similar algorithm was desgined in [34] to obtain an O(log n)-approximation for
BBST problem. Then an LP-based algorithm was presented by Chekuri et al. [15] to derandomize
the algorithm of [34] for BBST.

We use the same approach as in [15] to bound the integrality gap of SLST. This LP is a flow-
based LP (like those used in [14, 15]). We use the idea of [30] which only considers bounded lengths
flow paths. For each terminal t ∈ T let Pt be the set of all paths of length at most L from t to r
in G. We assume that the terminals are at distinct nodes (we can enforce this by attaching some
dummy nodes with edge cost and length equal to zero to the original nodes). Therefore, Pt and
Pt′ are disjoint. For every edge e we have an indicator variable xe which indicates whether edge e
belongs to the tree H or not. For each path p ∈ ⋃

t Pt, f(p) indicates whether path p is used to
connect a terminal to the root.

LP-SLST min
∑

e c(e) · xe
s.t.

∑
p∈Pt|e∈p

f(p) ≤ xe ∀e ∈ E, t ∈ T (1)
∑

p∈Pt
f(p) ≥ 1 t ∈ T (2)

xe, f(p) ≥ 0 ∀e ∈ E, p ∈ ∪tPt (3)

Define graph F over terminals T as above, i.e. the weight of edge e = (u, v) ∈ F for two
terminals u, v ∈ T will be the cost of (1 + ǫ)-approximate minimum c-cost u, v-path of length at
most L computed using algorithm of [26]. Let (x∗, f∗) be an optimal solution to LP-SLST with cost
opt

∗. We show that the cost of algorithm of [33] is at most O(opt∗ · log |T |) while the diameter
is at most O(L · log |T |). The proof of the following lemma is similar to that of Lemma 2.1 in [15]
and is omitted here.

Lemma 2 The graph F contains a matching M of size at least |T |/3 whose cost is at most (1 +
ǫ)opt∗.

Suppose we have a matching M as above with cost CM . For every pair of terminals ui, vi
matched by M pick one of the two as the hub for connecting both of them to r and remove the
other one from T . Let opt′ be the LP cost of the new instance. The current solution (x∗, f∗) is still
feasible for the new instance; therefore opt

′ ≤ opt
∗. Also, the cost of routing all terminals that

were deleted to their hubs is at most CM ≤ (1 + ǫ)opt∗. Doing this iteratively, an easy inductive

5

argument (using the fact that the number of terminals drops by a constant factor at each iteration.)
shows that we obtain a solution whose cost is at most O(log |T | · opt∗) and the diameter of the
solution is at most O(L · log |T |).

Now we prove Theorem 1. Our algorithm is based on rounding a natural LP relaxation of the
problem. Before presenting the LP we explain how we preprocess the input. We first guess a value
opt

′ such that opt ≤ opt
′ ≤ 2opt. We do a binary search between zero and the largest possible

value of opt (e.g.
∑

e∈E c(e)). The solution returned by the algorithm satisfies the bounds if
opt

′ ≥ opt. If the algorithm fails we adjust our guess. We define V ′ ⊆ V to be the set of vertices
v such that v has a path p to r with c(p) ≤ opt

′ and length at most L. Clearly, every vertex of
any optimum solution must belong to V ′. We can safely delete all the vertices of V \ V ′; so let G
be the new graph after pre-processing. The following LP is similar to LP-SLST, except that we
have an indicator variable yt for every terminal.

LP-SLkST min
∑

e c(e) · xe
s.t.

∑
p∈Pt|e∈p

f(p) ≤ xe ∀e ∈ E, t ∈ T (4)
∑

p∈Pt
f(p) ≥ yt t ∈ T (5)

∑
t∈T yt ≥ k (6)

yt ≤ 1 t ∈ T (7)
xe, f(p) ≥ 0 ∀e ∈ E, p ∈ ∪tPt

If we replace yt in the 2nd constraint with 1 and drop constraints (6) and (7) (and remove yt
variables) then we obtain the LP-SLST. Our rounding algorithm is similar to those in [14, 8] for two
completely different problems (density version of Buy-at-Bulk Steiner tree in [14] and k-ATSP tour
in [8]). Since we need to solve this LP let’s briefly say that although LP-SLkST has an exponential
number of variables, one can obtain an optimum feasible solution if one can give a separation oracle
for the dual. It is easy to verify that a shortest-path algorithm gives a separation oracle for the
dual LP. Suppose that (x∗, y∗, f∗) is an optimum feasible solution to LP-SLkST with value opt

∗.
Our first step is to convert (x∗, y∗, f∗) to an approximate solution in which yt values are of the
form 2−i, 0 ≤ i ≤ ⌈3 log n⌉. Lemmas 3 and 5 are analogous of Lemma 9 and Theorem 10 in [8].

Lemma 3 There is a feasible solution (x′, y′, f ′) to LP-SLkST of cost at most 4opt∗ such that
each y′t is equal to 2−i for some 0 ≤ i ≤ ⌈3 log n⌉.

Proof. Let (x∗, y∗, f∗) be an optimal feasible solution to LP-SLkST. We set x′e = 4x∗e for all
e ∈ E and f ′(p) = min(4f∗(p), 1) for all t ∈ T and p ∈ Pt. For each t ∈ T and i such that
1/2i ≤ y∗t < 1/2i−1, if i > ⌈3 log(n)⌉ set y′t = 0; otherwise, y′t = min(1, 1/2i−2). It is easy to see
that cost of (x′, y′, f ′) is at most 4opt∗. Also, the first constraint is satisfied. The second constraint
is also satisfied since it is clearly satisfied if f ′(p) = 4f∗(p) for all p ∈ Pt, and if this is not the case
then at least one f ′(p) = 1 which at least as big as y′t since y′t ≤ 1. So it only remains is to show
that the last constraint is satisfied.

Let Y0 be the set of terminals t for which y∗t > 0 but y′t = 0. These are the only terminals whose
y value has decreased. Note that for each t ∈ Y0: y

∗
t ≤ 1/n3; so

∑
t∈Y0

y∗t ≤ 1/n2. Let Y1 be the set
of terminals t with y′t = 1. If |Y1| ≥ k, then the last constraint clearly holds. Otherwise, |Y1| ≤ k−1
which implies that

∑
t6∈Y1

y∗t ≥ 1 must be true; therefore
∑

t6∈Y1∪Y0
y∗t ≥ 1−1/n2 ≥ 1/n2 ≥∑

t∈Y0
y∗t .

Also, note that for each vertex t 6∈ Y0 ∪ Y1: y
′
t ≥ 2y∗t . Thus, the amount

∑
t∈Y0

y∗t that is decreased
in y′ is compensated for by

∑
t6∈Y0∪Y1

y′t therefore the last constraint holds too.

6

Let Ti be the set of terminals with y′t = 2−i and ki = |Ti|, for 0 ≤ i ≤ ⌈3 log n⌉. Note that
∑⌈3 logn⌉

i=0 2−i · ki ≥ k. Consider the instance of SLST defined over Ti ∪ {r}. First observe that
we can obtain a feasible solution (x′′, f ′′) to LP-SLST over this instance of SLST of cost at most
2i+2 · opt∗ in the following way: define x′′e = 2i · x′e for each edge e ∈ E and f ′′(p) = 2i · f ′(p) for
each t ∈ Ti and path p ∈ Pt. The cost of this solution is O(2i+2 · opt∗) since x′′e = 2i+2 · x∗e. Now
since we proved the integrality gap of LP-SLST is O(log n), we obtain the following:

Lemma 4 For each Ti, we can find a Steiner tree over Ti ∪ {r}, rooted at r of total cost O(2i+2 ·
opt

∗ · log n) and diameter O(L · log n).

Next we prove the following lemma.

Lemma 5 For every 0 ≤ i ≤ ⌈3 log n⌉ and given a Steiner tree Hi over Ti with total cost O(2i+2 ·
opt

∗ log n) and diameter O(L·log n) we can find a Steiner tree H ′
i rooted at some ri ∈ Ti containing

at least ⌈ki/2i⌉ terminals of Ti of cost at most O(opt∗ · log n) and diameter at most O(L · log n).

For now, let us assume this lemma and see how to complete the proof. Suppose that H ′
i is the

Steiner tree promised by Lemma 5 which contains ⌈ki/2i⌉ terminals of Ti and is rooted at at a
node r′i. Let pi be the minimum cost path from r′i to r with length at most L (note that because
of the pre-processing we did, such path pi exists). Let H ′′

i = H ′
i ∪ pi and let H =

⋃
iH

′′
i . Observe

that H contains at least
∑⌈3 logn⌉

i=0 2−i · ki ≥ k terminals. Also, the total cost of H is at most
∑⌈3 logn⌉

i=0 c(H ′′
i) ≤ O(opt∗ · log2 n). Since the diameter of each H ′′

i is at most O(L · log n) (because
diameter of H ′

i is at most O(L · log n) and we added a path pi of length at most L to H ′
i) and since

all of H ′′
i ’s share the root r, the diameter of H is at most O(L · log n) as well. This completes the

proof of Theorem 1.
So it only remains to prove Lemma 5. If we are given the Steiner tree Hi over Ti we use the

following lemma with β = ⌈ki/2i⌉ to edge-decompose Hi into F1, . . . , Fd such that the number of
terminals of each Fi is in [β, 3β). It follows that d = θ(2i) and so by an averaging argument, at
least one of Fi’s has cost O(opt∗ · log n). The proof of the following lemma is implicit in [18] and
is explicitly proved in [29].

Lemma 6 Given a rooted tree F containing a set of k terminals and given an integer 1 ≤ β ≤ k
we can edge-decompose F into trees F1, . . . , Fd with the number of terminals of each Fi in [β, 3β),
1 ≤ i ≤ d.

3 O(logn)-approximation (k, 2)-subgraph problem

In this section we prove Theorem 3. In fact (similar to the algorithm in [32]) our algorithm works
for a slightly more general case in which along with the weighted graph G = (V,E) and integer k
we are also given a set of terminals T ⊆ V and the goal is to find a minimum cost 2-edge-connected
subgraph that contains at least k terminals. Since our algorithm is based on that of [32], let us
briefly explain how their algorithm works. The algorithm of [32] is for the rooted version of the
problem, in which we are given an extra parameter r ∈ V in the input and the solution must
contain root r. Since one can try every possible vertex as the root, we can reduce the un-rooted
version to the rooted version as well. A partial solution is a 2-edge-connected subgraph containing
the root and the density of a partial solution is the ratio of the cost of the edges over the number
of terminals it contains. The algorithm of [32] was based on finding a good density partial solution

7

iteratively until the number of terminals is at least k. They presented an O(log n)-approximation
for finding good density partial solutions using an LP rounding procedure and since one has to
repeat the procedure until the number of terminals covered is at least k, a simple set-cover type
analysis shows the final approximation ratio would be O(log n · log k). One has to be careful as in an
iteration where we are looking to cover k′ terminals (for some k′ ≤ k) it is possible to find a partial
solution with much larger than k′ terminals (and so the combined solution has much larger than k
terminals). In that case the algorithm has to be able to prune the partial solution to obtain a good
density solution with about k′ terminals. Lau et al. [32] present an algorithm for this pruning step
which we will use too.

Our algorithm will round a LP relaxation directly instead of iteratively finding good density
partial solutions. This is similar to the overall structure of the algorithm we presented for the
SLkST. Note that, it is sufficient to find a solution in which every terminal has two edge-disjoint
paths to r. Similar to [32] first we preprocess the graph by deleting the vertices that cannot be
part of any optimum solution. For that for every vertex v we find two edge-disjoint paths between
v and r of minimum total cost, let us denote it by d2(v, r). For this we can use a minimum
cost flow algorithm between v and r [38]. Suppose we know have guessed a value opt

′ such that
opt ≤ opt

′ ≤ 2opt, where opt is the value of optimum solution. Clearly every vertex v with
d2(v, r) > opt

′ cannot be part of any optimum solution and can be safely deleted. We work with
this pruned version of graph G. Our algorithm is guided by the solution of an LP relaxation of the
problem. Consider the following LP relaxation which is similar to what proposed by Lau et al.[32].

LP-k2EC min
∑

e c(e) · xe
s.t. x(δ(U)) ≥ 2yv U ⊆ V − {r}, v ∈ U (8)

x(δ(U)) − xe′ ≥ yv U ⊆ V − {r}, v ∈ U, e′ ∈ δ(U) (9)∑
v∈T yv ≥ k (10)

yr = 1 (11)
yt ≤ 1 (12)

xe, yv ≥ 0 ∀e ∈ E, v ∈ T

There are two types of indicator variables, xe for each e ∈ E and yv for each v ∈ T ; for every
subset U ⊆ V , δ(U) is the set of edges across the cut (U, V −U). Constraints (8) and (9) guarantee
2-edge-connectivity to the root. Our algorithm solves this LP and then uses the solution to find
an integral solution of cost at most O(log(n)) apart from the optimal value, in order to do that
we merge ideas from [8] and [32]. As argued in [32] this LP is a relaxation of the (k, 2)-subgraph
problem and we can find an optimum solution of this LP. We run the following algorithm whose
detailed steps are explained below.

In the rest of this section we show that Algorithm K2EC finds a 2-edge-connected subgraph of
value O(log(n) · opt) for the (k, 2)-subgraph problem. First we provide the details of the steps of
the algorithm. Assume we sort all the vertices v according to their d2(v, r) value and let L be the
kth smallest value. It is easy to see that L ≤ opt ≤ k.L. So we can start with L as our guess
for opt′; if the algorithm fails to return a feasible solution of cost at most O(opt′ · log n) then we
double our guess opt′ and run the algorithm again. Note that in O(log k) many steps will have a
guessed value opt

′ with opt ≤ opt
′ ≤ 2opt and therefore all the vertices that are deleted surely

cannot be part of an optimum solution. Let (x∗, y∗) be an optimum feasible solution to LP-k2EC
with value opt∗. For Step 5 of K2EC we round y values of the LP following the schema in [8]. The
proof of following lemma is very similar to Lemma 3 and appears in Appendix A

8

(k, 2)-Subgraph Algorithm (k2EC)

Input: Graph G = (V,E), terminal set T ⊆ V with root r, and integer k ≥ 1
Output: a 2-edge-connected subgraph containing at least k terminals including r
1. Guess a value of opt′ for optimum solution and run the following algorithm.
2. U ← r
3. Start from original graph G and remove all the vertices with d2(v, r) > opt

′

4. Solve LP-K2EC and let its solution be (x∗, y∗)
5. Obtain (x′, y′) from (x∗, y∗) according to Lemma 7
6. Let Ti be the set of terminals v with y′v = 2−i plus the root, for 0 ≤ i ≤ ⌈3 log(n)⌉
7. Find a 2-edge-connected subgraph Hi over Ti ∪ {r} with cost O(2i · opt∗)
8. From Hi, find a 2-edge-connected subgraph H ′

i containing r and at least ⌈|Ti|/2i⌉ and
at most 2⌈|Ti|/2i⌉ vertices of Ti of cost at most O(opt∗) and add it to U ;
if failed for any i then double the guess for opt′ and start from Step 2.

9. Return U .

Figure 1: Algorithm K2EC

Lemma 7 There is a feasible solution (x′, y′) to LP-K2EC of cost at most 4opt∗ such that all
nonzero entries of y′ belong to {2−i|0 ≤ i ≤ ⌈3 log(n)⌉}.

Let Ti be the set of terminals with y′t = 2−i and ki = |Ti|, for 0 ≤ i ≤ ⌈3 log n⌉. Note

that
∑⌈3 logn⌉

i=0 2−i · ki ≥ k. Consider an instance of classical survivable network design problem
over terminals in Ti ∪ {r} with connectivity requirement 2 from every node in Ti to root. In the
following lemma we show that we can compute a 2-edge-connected subgraph Hi over Ti ∪ {r} of
cost at most O(2i ·opt∗). This describes how to perform Step 7. The proof of this lemma is similar
to Lemma 5.2 in [32].

Lemma 8 In Step 7, For each 0 ≤ i ≤ ⌈3 log n⌉, we can find a 2-edge-connected subgraph Hi of
cost at most 2i+3 · opt∗ containing terminals Ti ∪ {r}.

Proof. In order to bound the cost of 2-edge-connected subgraph over Ti ∪{r} we use the following
natural LP for the special case of survivable network design problem in which all connectivity
requirements are 2:

LP-2EC min
∑

e c(e) · xe
s.t. x(δ(U)) ≥ 2 U ⊆ V − {r}, U ∩ Ti 6= ∅ (11)

1 ≥ xe ≥ 0 ∀e ∈ E

Jain [28] proved that the integrality gap of this LP is at most 2. Here, we show that after
scaling (x′, y′), we can find a feasible solution of LP-2EC over terminals Ti ∪ {r} of value at most
2i+2 ·opt∗. Using Jain’s algorithm, we can then obtain an integer solution, i.e. a 2-edge-connected
subgraph over Ti ∪ {r} of cost at most 2i+3 · opt∗, which completes the proof of lemma.

Consider (x′, y′) obtained by Lemma 7 and define x̂e = min(1, 2i · x′e). We will show that x̂ is a
feasible solution for LP-2EC, which clearly has cost at most 2i+2 · opt∗ since 2i · x′e = 2i+2 · x∗e.

To verify that x̂ is feasible for LP-2EC, take any set U ⊆ V − r with U ∩ Ti 6= ∅ and the
corresponding constraint (11) in LP-2EC: x(δ(U)) ≥ 2. This has the corresponding constraint (8)

9

in LP-k2EC x(δ(U)) ≥ 2yv for each v ∈ U − {r}. Suppose we define x̂e = min{1, 2i · x′e} and
ŷv = min{1, 2i ·y′v}. Note that for each v ∈ Ti: ŷv = 1. If all the edges e ∈ δ(U) have values x′e ≤ y′v
then after scaling we will have x̂(δ(U)) ≥ 2 because the left hand side of x(δ(U)) ≥ 2yv is grown at
least as much as the RHS is scaled. If there is at least one edge e′ ∈ δ(U) with x′e′ > y′v then because
of constraints (9) in LP-k2EC and since (x′, y′) is feasible, we have x′(δ(U))− x′e′ ≥ y′v. Thus after
the scaling we still have x̂(δ(U))− x̂e′ ≥ 1 because again the LHS is grown at least as much as the
RHS. Also x̂e′ = 1 because ŷv = 1 and x′e′ > y′v; so x̂(δ(U)) ≥ 2. This shows constraints (11) in
LP-2EC are satisfied and so there is a feasible solution to LP-2EC with terminal set Ti ∪ {r} with
cost at most 2iopt∗.

In the following we show how to find subgraph H ′
i in Step 8, which is 2-edge-connected, has

root r, and has cost O(opt′), assuming that opt
′ ≥ opt. Note that union of all Hi’s (0 ≤ i ≤

⌈3 log n⌉) will be 2-edge-connected (since r is common in H ′
i’s), has at least k terminals, and has

cost O(opt′ · log n). This will complete the proof of approximation ratio of the algorithm.
To show how to find a subgraph H ′

i we use the same trick as in Section 5.1 of [32] for pruning a
large good density solution to a smaller one. A nowhere-zero 6-flow in a directed graph D = (V,A),
is a function f : A → Z6 such that we have flow conservation at every node (i.e. f(δin(v)) =
f(δout(v))) and no edge gets f value of zero. If there is an orientation of an undirected graph H
in which a nowhere-zero 6-flow can be defined we say H has a nowhere-zero 6-flow. Seymour [39]
proved that every 2-edge-connected graph has a nowhere-zero 6-flow which can also be found in
polynomial time. We obtain a multigraph D = (Hi, A) from Hi by placing f(e) copies of e with
the direction defined by the flow. From Lemma 8 and the fact that we have at most 6 copies of
each edge, the cost of D can be at most 6× 2i+3 · opt∗.

Note that D does not have directed cycle of length 2, therefore has an Eulerian Walk. Start
from r and build an Eulerian walk and partition the walk into the segments P1, P2, . . . , Pℓ each of
which includes ⌈|Ti|/2i⌉ terminals of Hi excepts possibly Pℓ which can have between ⌈|Ti|/2i⌉ and
2⌈|Ti|/2i⌉ terminals. Thus, ℓ ≥ max(1, 2i−1) and so there is an index 1 ≤ q ≤ ℓ such that the cost
of path Pq is at most 6×2i+2 ·opt∗/2i−1 = 48opt∗. Let u,w be the endpoints of Pq and let Q1

u and
Q2

u be the two edge-disjoint paths of d2(u, r) (in G) and Q1
w and Q2

w be the two edge-disjoint paths
of d2(w, r) (again in G) of minimum total cost. Because of the preprocess step, the sum of costs of
Q1

u, Q
2
u, Q

1
w, and Q2

w is at most 2opt′. Let Fq be the simple graph in G defined by the edges of Pq

and let H ′
i = Fq∪Q1

u∪Q2
u∪Q1

w∪Q2
w. It follows that H

′
i has cost at most 48opt∗+2opt′ ≤ 50opt′.

It only remains to show that H ′
i is 2-edge-connected. By way of contradiction, suppose there is an

edge e′ such that H ′
i − e′ has two components C1 and C2. Because of Q1

u, Q
2
u, Q

1
w, and Q2

w the two
endpoints u and w are in the same component let say C1. Since Pq is a directed walk from u to w
and there is no cycle of size 2, there must be another edge e′′ 6= e′ between C1 and C2 which goes
in opposite direction of e′, thus e′ is not a cut edge.

References

[1] M. Andrews. Hardness of buy-at-bulk network design. Proc. of IEEE FOCS, 115–124, 2004.

[2] , M. Andrews and L. Zhang. Approximation algorithms for access network design, Algorithmica
32(2):197-215, 2002. Preliminary version in Proc. of IEEE FOCS, 1998.

[3] S. Antonakopoulos, C. Chekuri, B. Shepherd, and L. Zhang, Buy-at-bulk network design with
protection, InProceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science FOCS 2007.

10

[4] , B. Awerbuch and Y. Azar, Buy-at-bulk network design, In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (FOCS ’97),

[5] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, New approximation guarantees for minimum-
weight k-trees and prize-collecting salesmen, SIAM Journal on Computing 28(1):254-262, 1999.

[6] Y. Bartal. On approximating arbitrary metrics by tree metrics. Proc. of ACM STOC, 161–168,
1997.

[7] J. Bar-Ilan, G. Kortsarz, and D. Peleg, Generalized submodular cover problems and applica-
tions, Theoretical Computer Science Vol. 250, pages 179-200, 2001.

[8] M. Bateni and J. Chuzhoy, Approximation Algorithms for the Directed k-Tour and k-stroll
Problems, In proceedings of Approx 2010

[9] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan, Detecting High Log-
Densities – an O(n1/4)-Approximation for Densest k-Subgraph In Proceedings of Symposium
on the Theory of Computing (STOC) 2010.

[10] A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for the k-
MST problem, In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing (STOC ’96),

[11] M. Charikar and A. Karagiozova, On non-uniform multicommodity buy-at-bulk network de-
sign, In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
STOC 2005.

[12] C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. Salavatipour. Approximation algorithms for
non-uniform buy-at-bulk network design problems. Proc. of IEEE FOCS, 677–686, 2006.

[13] C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. Salavatipour. Approximation algorithms for
node-weighted buy-at-bulk network design. Proc. of ACM-SIAM SODA, 1265–1274, 2007.

[14] , C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. Salavatipour. Approximation Algorithms for
Non-Uniform Buy-at-Bulk Network Design SIAM J. on Computing, 39(5):1772–1798, 2009.

[15] C. Chekuri, S. Khanna and J. Naor. A Deterministic Approximation Algorithm for the Cost-
Distance Problem Short paper in Proc. of ACM-SIAM SODA, 232–233, 2001.

[16] C. Chekuri and N. Korula Pruning 2-Connected Graphs, In Proceedings of FSTTCS, December
2008. Preliminary version with a different title in ArXiv.

[17] , J. Chuzhoy, A. Gupta, S. Naor, and A. Sinha, On the approximability of some network
design problems, In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA ’05).

[18] G. Even, N. Garg, J. Konemann, R. Ravi, and A. Sinha Covering graphs using trees and stars,
Operations Research Letters 32(4):309-315, 2004. Earlier version in Proceedings of APPROX
2003.

[19] , J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics
by tree metrics, Journal of Computer and System Sciences 69(3):485-497, 2004.

11

[20] N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, In Pro-
ceedings of the thirty-seventh annual ACM symposium on Theory of computing (STOC), 396
- 402, 2005.

[21] S. Guha, A. Meyerson, and K. Munagala, A constant factor approximation for the single sink
edge installation problems, In Proceedings of the thirty-third annual ACM symposium on
Theory of computing (STOC ’01).

[22] A. Gupta, R. Krishnaswamy, and R. Ravi, Tree Embeddings for Two-Edge-Connected Network
Design In Proceedings of SODA 2010.

[23] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden, Approximation via cost-sharing: a simple
approximation algorithm for the multicommodity rent-or-buy problem, In Proceedings of the
44rd Symposium on Foundations of Computer Science (FOCS ’03).

[24] A. Gupta, A. Kumar, T. Roughgarden, Simpler and better approximation algorithms for
network design, In Proceedings of the thirty-fifth ACM symposium on Theory of computing
(STOC ’03).

[25] M.T. Hajiaghayi, G. Kortsarz, and M.R. Salavatipour. Approximating buy-at-bulk and
shallow-light k-steiner tree. Algorithmica 53(1): 89-103, 2009.

[26] R. Hassin, Approximation schemes for the restricted shortest path problem. Mathematics of
Operations Research 17(1):36–42, 1992.

[27] R. Hassin and A. Levin, Minimum Restricted Diameter Spanning trees, In Proceedings of
APPROX 2002.

[28] K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

[29] M.R. Khani and M.R. Salavatipour, Approximation algorithms for min-max tree cover and
bounded tree cover problems To appear in Proceedings of APPROX 2011.

[30] G. Kortsarz and Z. Nutov. Approximating some network design problems with vertex costs.
Proc. APPROX-RANDOM, 231-243, 2009.

[31] A. Kumar, A. Gupta, and T. Roughgarden, A Constant-Factor Approximation Algorithm
for the Multicommodity Rent-or-Buy Problem, In Proceedings of the 43rd Symposium on
Foundations of Computer Science (FOCS ’02).

[32] L. Lau, S. Naor, M.R. Salavatipour, and M. Singh , Survivable network design with degree or
order constraints, SIAM J. on Computing 39(3): 1062-1087, 2009. Special issue for selected
papers of STOC 2007.

[33] M. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. Rosenkrantz, H. B. Hunt. Bicriteria network
design. Journal of Algorithms, 28(1):142–171, 1998.

[34] A. Meyerson, K. Munagala, and S. Plotkin. Cost-Distance: Two Metric Network Design.
SIAM J. on Computing, 2648–1659, 2008. Preliminary version in Proc. of IEEE FOCS, 2000.

[35] R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrants, and S.S. Ravi, Spanning trees short
or small, SIAM Journal on Discrete Mathematics, 9(2):178-200, 1996.

12

[36] M.A. Safari and M.R. Salavatipour, A constant factor approximation for minimum λ-edge-
connected k-subgraph with metric costs, To appear in SIDMA. Earlier version in APPROX
2006.

[37] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian, Approximating the Single-Sink
Link-Installation Problem in Network Design, SIAM J. on Optimization 11(3):595-610, 2000.
Preliminary version in Proc. of ACM-SIAM SODA, 619–628, 1997.

[38] A. Schrijver. Combinatorial optimization: Polyhedra and Efficiency. Springer-Verlag, Berlin,
2003.

[39] P.D. Seymour, In Graph Theory and related topics (Proc. Waterloo, 1977). Academic Press
(1979), 341-355.

[40] V. Vazirani. Approximation algorithms. Springer, 1994.

A Proof of Lemma 7

We set x′e = min(4x∗e, 1) for all e ∈ E and for all v ∈ T , select i such that 2−i ≤ yv < 2−i+1, then
if i > ⌈3 log(n)⌉ set y′v = 0; otherwise, y′v = min(1, 2−i+2). It is easy to see that cost of (x′, y′)
is at most 4opt∗; what remains is to show that (x′, y′) is a feasible solution to LP-K2EC. It is
easy to see that Equations (8),(9),(11), and (12) are true for (x′, y′) as LHS is scaled at least as
much as the RHS. Equation (10) is the only one to verify. As in the proof of Lemma 3, let Y0 be
the set of vertices v such that y∗v > 0 but y′v = 0. Note that

∑
v∈Y0

y∗v ≤ 1/n2. These vertices
are the only ones whose y value has decreased. Let Y1 be the set of vertices v with y′v = 1. If
|Y1| ≥ k, then constraint (10) holds. Otherwise, |Y1| ≤ k − 1 which implies

∑
v 6∈Y1

y∗v ≥ 1, and

therefore
∑

v 6∈Y1∪Y0
y∗v ≥ 1− 1/n2 ≥∑

v∈Y0
y∗v . Note also for each vertex v 6∈ Y0 ∪Y1, we know that

y′v ≥ 2y∗v . Thus, the amount
∑

v∈Y0
y∗v is compensated for with

∑
v 6∈Y0∪Y1

y′v; therefore constraint
(10) continues to hold.

13

