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Abstract

In this paper, we present approximation algorithms for the Airport and Rail-
way problem (AR) on several classes of graphs. The AR problem, introduced by
[1], is a combination of the Capacitated Facility Location problem (CFL)
and the Network Design Problem (NDP). An AR instance consists of a
set of points (cities) V in a metric d(., .), each of which is associated with a
non-negative cost fv and a number k, which represent respectively the cost of
establishing an airport (facility) in the corresponding point, and the universal
airport capacity. A feasible solution is a network of airports and railways provid-
ing services to all cities without violating any capacity, where railways are edges
connecting pairs of points, with their costs equivalent to the distance between
the respective points. The objective is to find such a network with the least
cost. In other words, find a forest, each component having at most k points and
one open facility, minimizing the total cost of edges and airport opening costs.
Adamaszek et al. [1] presented a PTAS for AR in the two-dimensional Euclidean
metric R2 with a uniform opening cost. In subsequent work [2] presented a bicrite-
ria 4

3

(
2 + 1

α

)
-approximation algorithm for AR with non-uniform opening costs

but violating the airport capacity by a factor of 1 + α, i.e. (1 + α)k capacity

where 0 < α ≤ 1, a
(
2 + k

k−1
+ ε

)
-approximation algorithm and a bicriteria

Quasi-Polynomial Time Approximation Scheme (QPTAS) for the same problem
in the Euclidean plane R2. In this work, we give a 2-approximation for AR with
a uniform opening cost for general metrics and an O(logn)-approximation for
non-uniform opening costs. We also give a QPTAS for AR with a uniform open-
ing cost in graphs of bounded treewidth and a QPTAS for a slightly relaxed
version in the non-uniform setting. The latter implies O(1)-approximation on
graphs of bounded doubling dimensions, graphs of bounded highway dimensions
and planar graphs in quasi-polynomial time.
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1 Introduction

We study a problem that integrates Capacitated Facility Location and Net-
work Design problems. The problem referred to as Airport and Railway problem
denoted as AR (introduced by [1] and studied further in [2]) is the following. Suppose
we are given a complete weighted graph G = (V,E) embedded in some metric space
(for instance the Euclidean plane), with two cost functions f : V → R≥0 for opening
facilities (also known as airports) at vertices (also known as cities) and c : E → R≥0

for installing railways on the edges in order to connect cities to airports. We are also
given a positive integer k ∈ Z+ as the capacity of each airport. The goal is to partition
the vertices into a set of clusters each of size at most k, find a set of vertices A ⊆ V
at which we open facilities (airports) so that each cluster has exactly one airport, and
a set of edges R ⊆ E, such that the edges on each cluster induce a connected graph,
while minimising the total cost of the edges plus the opening of selected facilities.

Clearly, the graph induced by each cluster must be a tree. So we have a collection
of trees, each of size at most k and each having an open facility. The idea is each open
facility serves as an airport that will serve all the cities in the cluster it belongs to
(including the city at that vertex). The goal is to minimise the total cost

C =
∑
v∈A

fv +
∑
e∈R

ce.

To be more precise, a cluster is an airport and the set of all the cities served by it,
together with the set of railways connecting the cities to the airport that forms a tree.
Adamaszek et al. [2] also defined a relaxed version of AR (they called AR′) where in a
feasible solution a component of the forest might have multiple airports and multiple
copies of any edge and each component allows routing one unit of flow from all its
cities to the airports so that each airport receives at most k flows and each copy of
an edge has capacity k. Note that in this version of the problem, the cities belonging
to different airports can share the edges of the network. So an edge might be used by
cities from different clusters but no more than k in total; in this case, the cost of the
edge occurs only once in the objective.

When considering special metrics (e.g. shortest path metrics induced by trees or
other special graph classes) we may not have a feasible solution to AR in the strict
setting that clusters need to be disjoint. For this reason, we consider a slightly relaxed
version of AR, denoted by ÃR where the clusters do not need to be edge-disjoint
but each cluster will pay for the edges it uses separately. In other words, each edge is
allowed to be used by multiple clusters but each of them needs to pay the cost of the
edges they use separately. Considering this relaxed version becomes useful when we
are working on specific metrics e.g. shortest path metrics of certain graph classes such
as trees (e.g. see Figure 1). Note that in ÃR, each connected component in a feasible
solution may contain multiple clusters and the total cost that we want to minimise is∑

v∈A fv +
∑

e∈R ce · ϕ(e) where ϕ(e) is the number of clusters using the edge e. We

highlight that AR′ is a strictly more relaxed setting vs. ÃR. In AR′ the cities sending
flows to different airports can share the edges of the network and if the flow over an
edge is ≤ k (even if used to send flow to different airports) the cost of the edge is paid
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Fig. 1: a) An example tree where we assume the airport capacity is 3 and u1 and u2
have an opening cost of zero while other vertices have cost infinity; b) The solution to

ÃR. Pink vertices represent cities with an airport. Each edge is coloured to indicate
its cluster. The dashed edge is used by both clusters; c) The solution to AR′. Each
directed edge is labelled with its flow value.

for only once. This is not the case in ÃR. For instance, a feasible solution to ÃR in
this Figure 1 has two clusters, one u1, u, v and the other u2, v1, v2 and has a total cost
of 6 whereas a feasible solution to AR′ has one component with cost 5.

The AR problem has some characteristics of the Capacitated Facility Location
(CFL) problem and Network Design problem. The instance of AR is the same as
CFL with uniform capacities. However, in CFL one has to open a number of facilities
and assign each client/city to an open facility (by a direct edge) so that each facility
is assigned at most k clients and we minimise the total opening cost and connection
cost. The main difference is that in CFL each cluster forms a star (with the facility
being the centre) while in AR each cluster is a tree, whose cost might be much cheaper
than the star. In AR, the clients might share the same path to be connected to the
facility and hence reduce the total cost of forming the railroad network. AR has also
similarities to the Capacitated Vehicle Routing Problem (CVRP) and Capacitated
Minimum Spanning Tree (CMST). In CMST, the goal is to construct a minimum-
cost collection of trees covering all the input vertices, each tree spanning at most k
vertices, connected to a single root node. As discussed in [2], AR can be modelled as
CMST in general weighted (non-metric) graphs.

The following variants of AR have been studied [1, 2]. For some constant β > 1,
ARβ refers to the bicriteria version of AR, where airport capacity is allowed to be
violated by a factor of β (also known as resource augmentation). AR∞ is a relaxed
version where the airport capacity is dropped, or equivalently, set to infinity: k = +∞.
When airport opening costs are uniform we refer to it by 1AR. Another special case
is ARP where each component is a path with both endpoints having an airport. ARP

is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) since not all the
paths need to have a common endpoint (the centralised dépôt in CVRP). The original
problem is sometimes denoted as ARF (or simply AR) where we have a general forest.

1.1 Related Work

As mentioned above, [1, 2] have studied AR and some variants of it defined above.
No true (non-trivial) approximation is known for AR in general setting. For the case
of uniform airport opening cost, for both 1AR and 1ARP , [1] show that the problems
are NP-hard in Euclidean metrics and present PTAS’s for them.
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In [2] the authors consider bicriteria approximations. They present a 4
3 · (2 + 1

p )-

approximate for AR1+p, p ∈ (0, 1] for general metrics. For Euclidean R2 they present
a QPTAS for AR1+µ, for arbitrary µ > 0 (i.e. violating the capacities by 1 + µ) and
a (2 + k

k−1 + ε)-approximation in polynomial time. To obtain the latter result they

obtain a PTAS for AR′ on Euclidean metrics and show that a solution to AR′ implies
a solution for AR at a loss of factor 2 + k

k−1 .
In CFL, we are given a weighted (metric) graph G = (V,E), a facility opening cost

function f : V → R≥0, and edge costs c : E → R≥0, and a capacity uv. The goal is to
open a set of facilities F ⊆ V , and assign each point v ∈ V to an open facility so that
each open facility v has at most uv points assigned to it while minimizing the total
opening costs plus the assignment costs of points to open facilities. The only difference
between CFL and AR is that in CFL the assignment edges in each cluster form a
star whereas in AR it forms a minimum tree spanning the nodes of that cluster. There
are constant approximation algorithms for CFL in general as well as uniform settings
[3, 4].

For CVRP and its variants there are constant-factor approximations in general
settings and QPTAS for special metrics such as Euclidean and doubling metrics and
minor-free graphs [5–8]. Another related problem is the capacitated cycle cover prob-
lem (CCCP) studied in [9]. In this problem, we are given a weighted graph G and
parameters k and γ. The goal is to find a spanning collection of cycles of size at most k
while minimizing the cost of the edges of the cycles plus γ times the number of cycles.
This problem is related to Min-Max Tree Cover and Bounded Tree Cover studied ear-
lier [10, 11]. In [9] the authors present a (2 + 2

7 )-approximation for CCCP. This also
implies a (4 + 4

7 )-approximation for uniform AR.
For CMST, Jothi and Raghavachari [12] give a 3.15-approximation algorithm for

Euclidean CMST and a (2 + γ)-approximation for metric CMST, where γ ≤ 2 is the
ratio of minimum-cost Steiner tree and minimum spanning tree. As pointed out by
[2], AR can be reduced to CMST in non-metric setting.

We refer to [2] for discussion of other related works such as capacitated-cable
facility location problem (CCFLP) [13] and sink clustering problem [14].

1.2 Contributions

Although AR (and ÃR) are similar to both CFL and CVRP, the mix of Capacitated
Facility Location and Network Design components appears to make it significantly
more difficult than both. The approximability of AR for general metrics remains
uncertain. Even for more restricted settings such as special metrics (e.g. trees) or
uniform opening costs, the approximability of the problem is open.

In this paper, we make progress on some special cases. First, we consider AR with
uniform opening cost (i.e. 1AR) on various metrics. For general metrics, we present a
simple 2-approximation algorithm for this.
Theorem 1. There is a 2-approximation for uniform AR on general metrics.

We also consider graphs of bounded treewidth and present a QPTAS for ÃR on
such metrics.
Theorem 2. There is a QPTAS for uniform ÃR on graphs of bounded treewidth
which runs in time nO(ωω·log3 n/(ε2 logω ω)). where ω is the treewidth of the input graph.
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Bicriteria: 4
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approximate for AR1+p,
p ∈ (0, 1] [2]; O(logn)
(Corollary 1.1)

PTAS for AR∞
P ;

exact for AR∞
F ;

QPTAS for AR1+µ,

µ > 0; (2 + k
k−1 + ε)-

approximate for AR
[2]

Exact algorithm for
AR′ (Theorem 3)

Uniform
airport cost

2 (Theorem 1)
PTAS for both 1ARF
and 1ARP [1]

QPTAS for ÃR
(Theorem 2)

Fig. 2: Summary of previous work and our results

Next, we consider AR′ in the general setting (i.e. with non-uniform facility opening
costs). We propose an exact algorithm for trees and graphs of bounded treewidth.
Theorem 3. AR′ can be solved in polynomial time on graphs with bounded treewidth.

Using embedding results for general metrics into tree metrics with O(log n) distor-
tion as well as embedding of graphs of bounded doubling dimension, graphs of bounded
highway dimension, and minor-free graphs into graphs with polylogarithmic treewidth
as well as O(1)-reduction from AR to AR′ ([2]) we obtain the following corollary.
Corollary 1.1. There is a polynomial time O(log n)-approximation for AR on gen-
eral graphs, a QPTAS for AR′ and therefore a quasi-polynomial O(1)-approximation
for AR for graphs with bounded doubling dimension, graphs of bounded highway
dimension, and minor-free graphs.

We also show that at a factor 2 loss, we can reduce the general AR problem to
the case that facilities have cost 0 or +∞, we denote this case by 0/+∞ AR. In other
words, the special case of the problem that all facilities (to be opened) are given to
us and we simply have to build clusters of size at most k each of which has one of the
open facilities. Even for this special case, a good approximation remains elusive.
Theorem 4. Given an instance G for AR, we can build an instance G′ for 0/+∞ AR
such that any α-approximate solution to 0/+∞ AR implies a 2α-approximate solution
for AR on G.

A summary of previous and our results appear in Figure 2. In the next section, we
prove Theorem 1. Then in Section 3 we prove Theorem 2 and in Section 4 we prove
Theorem 3 and Corollary 1.1. We present the proof of Theorem 4 in Section 5.

2 Algorithm for Uniform AR in General Metric

In this section, we prove Theorem 1. Since each facility (airport) is trivially serving
its own city, we refer to the remaining capacity k − 1 (to serve other clients) as k for
simplicity. We assume opening a facility at each vertex costs a uniform value f . Given
an instance G we first define a modified instance G̃ for each input graph G. The graph
G̃ is obtained by adding a dummy node r to G and connecting r to all the vertices
v ∈ V with an edge of cost cvr = f . We first define the MSTσ

r problem and prove the
following lower bound.

5



Definition 1. In the MSTσ
r problem, we are given a graph G = (V,E) with a vertex

r ∈ V . The task is to find the minimal cost of the spanning tree of the input graph,
while ensuring that the degree of vertex r in the solution is σ.
Lemma 2.1. If σ is the number of components in an optimum solution to AR on G
then the cost of an optimal solution to the MSTσ

r problem on G̃ is a lower bound on
the optimal solution to AR on G.

Proof. Consider an optimal solution ξ to AR on G. Say there are σ components in ξ.
After adding into ξ a dummy node r and connecting r to the vertices that are open
facilities with an edge of cost f , we obtain a spanning tree T for G̃ of the same cost,
where the vertex r has a degree of σ. Namely, this is a feasible solution to MSTσ

r .
Therefore, an optimal solution to MSTσ

r on G̃ cannot cost more than the optimal
solution to AR on G.

Our algorithm first guesses the number of components in the optimal solution. We
do this by enumerating all possibilities. Say there are σ components in the optimal
solution for some integer σ ≤ n. Note that we know σ ≥

⌈
n
k

⌉
for certain, as otherwise

there must exist some cities that are not getting served. Our algorithm is as follows.
Construct the instance G̃. Solve the MSTσ

r problem on instance G̃. After removing
the dummy vertex r, we obtain a set T = {T1, T2, . . . Tσ} of σ connected components
(i.e. trees). Note that we can solve the MSTσ

r problem using the technique of matroid
intersection [15].

Let M1 = (Ẽ, I1) represent the graphic matroid of G̃ (also known as the cycle
matroid or polygon matroid), where the ground set Ẽ is the set of edges in G̃, and
the set of independent sets I1 consists of acyclic subgraphs of G̃. That is to say, each
independent set corresponds to the edges of a forest in the underlying graph G̃. Let
M2 = (Ẽ, I2) denote the partition matroid, where the set of independent sets I2 is
defined as follows, where N(r) represents all the edges incident to the vertex r and Ṽ
is the vertex set of G̃,

I2 =
{
S ⊆ Ẽ

∣∣∣ |S ∩N(r)| ≤ σ, |S ∩ (Ẽ \N(r))| ≤ |Ṽ | − 1− σ
}
.

In other words, each independent set of this partitional matroid corresponds to the
edge set of a subgraph of G̃ with at most |Ṽ | − 1 edges, where there are at most σ
edges incident to the vertex r and at most |Ṽ | − 1− σ edges not incident to r.

Note that a feasible solution to MSTσ
r is an independent set of both matroids. The

underlying graph must form a spanning tree, so it is an independent set of M1. The
set of edges must satisfy the degree requirement for vertex r, so it is an independent
set ofM2. For each connected component Ti ∈ T , we obtain a cycle Ci in the following
way: double the edges of Ti and trace them while short-cutting whenever we encounter
a vertex that has been visited. We cut each cycle Ci into a set of disjoint subpaths
of fixed length k, except for at most one subpath per cycle that is strictly shorter
than k. Essentially, we have transformed the trees in T into a set of paths. Let Pk
denote the set of paths with length exactly k. For each path in Pk, we simply open
one of its cities as an airport. Note that |Pk| ≤

⌊
n
k

⌋
since there are at most n vertices

(other than the vertex r) in the graph. In addition, as we know σ ≥
⌈
n
k

⌉
, we have
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|Pk| ≤
⌊
n
k

⌋
≤
⌈
n
k

⌉
≤ σ. Consequently, the cost of opening these |Pk| airports is

|Pk| · f ≤ σ · f . For those subpaths of length less than k, we simply open one of its
vertices as the facility. Note that since there are |T | = σ′ ≤ σ trees Ti (hence there
are σ′ corresponding cycles Ci), we have at most σ′ such short subpaths. The current
cost is bounded by twice the edge cost of all the trees in T , as well as the facility cost
of all these subpaths, which is at most f · σ + |Pk| · f ≤ 2σ · f . Meanwhile, the cost
of the MSTσ

r solution is the edge cost of all the trees in T , plus the cost of incident
edges of r in the solution, which is at most f · σ. Thus, it is obvious that the cost is
no more than twice the cost of the MSTσ

r solution.
From the analysis above, it should be easy to see that Theorem 1 follows.

3 QPTAS for Uniform Case in Graphs of Bounded
Treewidth

In this section, our goal is to prove Theorem 2. First, recall the definition of graphs
with bounded treewidth.
Definition 2. A tree decomposition of a graph G = (V,E) is a tree T = (V ′, E′) and
a mapping Ξ : V ′ → 2V where each vertex β ∈ V ′ (also known as a bag) corresponds
to a set of vertices of G, such that

• For each vertex v in G, it must be included in at least one bag of T .
• For each edge uv in G, the pair of vertices u, v ∈ V must be included in at least one

bag of T .
• For each vertex v in G, consider the set of all the bags in T that include v. These

bags induce a connected component in T .

The width of a tree decomposition is defined as the cardinality of its largest bag
minus one. The treewidth of a graph G is the smallest w such that G has a tree
decomposition with width w. Given a graph G = (V,E) of treewidth ω, there is a tree
decomposition T = (V ′, E′) of G where T is binary, with depth h ∈ O(log n) (where
n = |V |) and treewidth not exceeding ω′ = 3ω + 2, according to [16]. For simplicity,
denote ω′ as ω instead. We assume the tree height h = δ log n for some constant δ > 0.

Our algorithm for uniform ÃR on bounded treewidth graph relies on the technique
developed in [8] for designing QPTAS for CVRP on such metrics. First, we ignore
the concept of facilities/airports, we simply pay an extra f for each cluster in our
solution (later we designate one vertex in each cluster as the facility to be opened).
For that, we define a new version of the problem which we call UAR (meaning AR
with undetermined airports).
Definition 3. (UAR) The goal is to find a set F of (not necessarily disjoint) clusters
(i.e. trees) using edges in the graph. The size of each cluster must not exceed the
capacity constraint k. Each cluster γ ∈ F has a cost of f and we want to minimise
the total cost, which is defined as

|F| · f +
∑
γ∈F

cost(γ)
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where cost(γ) denotes the railway cost of the cluster γ.
Since this is a relaxed version of the original problem (as we do not specify the

location of the facilities), its cost is a lower bound of that of the original problem. We
can think of each vertex in V to have one unit of demand which needs to be sent to an
airport to be served. We may add dummy demands to a vertex during the algorithm,
so a vertex may end up having more than one unit of demand. The size of a cluster
is defined to be the sum of demands on all its vertices, instead of just the number of
vertices. Note that a component may not include every vertex that it passes through,
as a component may be simply using the edges of a vertex to get to somewhere else,
which can also be seen as not picking up the demand of the vertex. Be mindful that,
from the perspective of demands, the size of a component is the number of demands
it includes, instead of the number of vertices. Therefore the clusters in the solution
are not necessarily edge-disjoint or vertex-disjoint, but the total number of demands
in each cluster obeys the capacity constraint.

For clarity, we refer to the vertices in T as bags, to differentiate them from the
vertices in G. For the notation β, we refer to it as the name of the bag β ∈ V (T ) as
well as the corresponding set of vertices β ⊆ V (G). For each bag β, denote the union
of vertices in all of the bags in the subtree Tβ as Cβ . Note that Cβ also denotes the
set of all bags in Tβ .

Each vertex of G may appear in multiple bags of T as tree decomposition generates
duplicates. In order to make sure the demand of a vertex does not get duplicated in
T , for every vertex v ∈ V (G), we assume that the copy/instance of v in the bag β̃
that is the closest to the root bag (we know there is a unique one and we denote this
copy of v as ṽ) has a demand of one, and the rest of the copies of v (which resides in
other bags) have demand zero.

Given an optimal solution denoted as OPT, we will demonstrate a process for
transforming it into a near-optimal solution forUAR and thereby show the existence of
such a near-optimal solution. This transformation occurs incrementally on T , moving
from the bottom to the top, one level at a time. The solution before modifying level
ℓ is denoted as OPTℓ, and after the modification as OPTℓ−1.

Overview of the approach and relation to [8]: Our goal is to show the exis-
tence of a near-optimum solution with certain structures. SupposeOPT is an optimum
solution for UAR and opt is its value. We aim to find a near-optimal solution, of cost
(1+O(ε))opt, where each vertex has at least one unit of demand, and the size of par-
tial clusters in any subtree Tβ can only be one of polylogarithmicallymany values. Two
concepts are required to describe the following data structures, namely, the notions of
partial and complete clusters. We consider a non-root bag β ∈ V (T ) and the subtree
rooted at β, Tβ . A complete cluster in Tβ is a cluster that is entirely in the graph Cβ ,
and a partial cluster is one that uses vertices both inside Cβ and outside. Similar to
[8], we first assume that the number of clusters in OPT is sufficiently large, that is,
at least λ log n for some large number λ. Otherwise, if the number of clusters in OPT
is upper-bounded by Σ = λ log n then a simple DP can solve the problem exactly (see
[17]). Given an optimal solution OPT, we will demonstrate a process for transforming
it into a near-optimal solution with certain structural properties that help us find one
using dynamic programming. This transformation occurs incrementally on T , moving
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from the bottom to the top, one level at a time. The solution before modifying level
ℓ is denoted as OPTℓ, and after the modification as OPTℓ−1. Looking at how OPTℓ

looks like, we would like to “approximately” keep the sizes of partial clusters that
extend below β in Tβ . A standard approach is to “bucket” the sizes of partial clus-
ters into buckets where each bucket contains all those sizes that are within (1 + ε) of
each other (e.g. bucket i being values in (1 + ε)i . . . [(1 + ε)i+1 − 1]. This will reduce
the complexity of the DP table to quasi-polynomial: we keep the number of partial
clusters of each bucket and try to fill in the DP table bottom-up. The problem is that
then when we are combining solutions in the DP table, since we are keeping the sizes
approximately (and sacrificing precision), we may violate the capacities unknowingly.
The idea developed in [8] was to modify OPT by reducing the sizes of the clusters (at
a small increase in the number of clusters) so that even if we scale the sizes of the new
clusters by a small number, they are still capacity-respecting. They used a technique
that was used later in [18], called adaptive rounding that we also use here to round
the sizes of partial clusters in Tβ for any bag β ∈ T . At each bag β, for clusters that
are in the same “bucket” we swap parts of them with a net effect of reducing their
sizes while having only a poly-logarithmic many possible bucket sizes at the end. We
formalize this in the following.
Definition 4. Define the threshold values {σ1, . . . , στ} where

σi =

{
i 1 ≤ i ≤ ⌈1/ε⌉
⌈σi−1 · (1 + ε)⌉ i > ⌈1/ε⌉

in such a way that the last threshold στ = k. So τ ∈ O(log k/ε).
We adapted the definitions from [8]. Consider a bag β that is situated at level ℓ.

We consider partial clusters that cross β and based on their size in Cβ we bucket them.
Bucket i contains those partial clusters whose size is in the range [σi, σi+1). Now let’s
focus on all (partial) clusters that are in bucket i of bag β. Each of these clusters has
some vertices in Cβ and some vertices outside. For a set S ⊂ β consider all the partial
clusters in bucket i that their intersection with β is S. So each of them will form a
number of connected components in Cβ where each component contains some part of
S; this defines a partition of S. We consider all those partial clusters that have the
same partition of S together (defined below).
Definition 5. For a bag β at level ℓ in T , for each set S ⊆ β and partition ℘S of
S, consider the set b℘S

S which contains the clusters that use exactly the set of vertices
S ⊆ β to span into Cβ, where ℘S denotes a partition of the set S based on connectivity
of the of those clusters in Cβ. Define the i-th bucket of b℘S

S , denoted as bi, to store
clusters in OPTℓ that have a size between [σi, σi+1) inside Cβ, where σi is the i-
th threshold value. Denote this bucket by a tuple (β, bi, S, ℘S). Denote the number of

clusters in bucket (β, bi, S, ℘S) as n
S,℘S

β,i .
Essentially, the set S represents the interface that the clusters in the bucket

(β, bi, S, ℘S) use to attach to the rest of their parts in Cβ , and ℘S is a set that describes
the connectivity between the vertices of S in Cβ . That is, each part in the partition
℘S specifies a subset of vertices of S that need to be connected below. So if u, v ∈ S
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and there is some set P ∈ ℘S such that P ⊇ {u, v}, then u and v need to be connected
in Cβ by some cluster. For simplicity, we just write ℘S as ℘.
Definition 6. A bucket b is said to be small if it contains no more than α log2 n/ε
clusters and is otherwise said to be big, for some constant α ≥ max{1, 20δ}.
Definition 7. For a big bucket (β, bi, S, ℘), define g groups where g = 2δ logn

ε , denoted

as Gβ,S,℘i,1 , Gβ,S,℘i,2 , . . . , Gβ,S,℘i,g in the following way (for simplicity assume the size of
this bucket is a multiple of g, if not add some empty clusters to achieve this). Sort the

clusters in the (padded) bucket in non-decreasing order, and put the first
nS,℘
β,i

g clusters

into Gβ,S,℘i,1 , the second
nS,℘
β,i

g into Gβ,S,℘i,2 , etc. For each group Gβ,S,℘i,j , denote the size

of its smallest cluster as hβ,S,℘,min
i,j and the size of its biggest cluster as hβ,S,℘,max

i,j .
Suppose we are considering a big bucket of β and a partial cluster Γ is in the

group j > 1 of the big bucket. We find its top (that is, the part of the cluster that
is outside of Tβ) and reassign it to another partial cluster (that is no bigger than Γ)
with the same order in the previous group (i.e., group j−1) as the order of Γ in group
j. The vertices that were originally covered by the partial clusters in the last group
are referred to as orphans. This is essentially the rounding between groups of a big
bucket that was done in [8] for the CVRP on bounded treewidth graphs. The idea
is that by this operation, the size of each cluster goes down enough such that if we
“approximate” the sizes by the size of the biggest cluster in each group, we are still
satisfying the capacity constraints. However, some vertices that were covered by the
partial clusters of the last group are now left “uncovered” (or orphan). We will use
some extra clusters to pick up (serve) the now orphan vertices.

We come up with a structure theorem that shows the existence of a near-optimal
solution with certain structures, and then provide a dynamic programming algorithm
for the UAR problem.

3.1 Structure Theorem for Graphs with Bounded Treewidth

The steps of modifying OPT to a near-optimal solution (denoted as OPT′) are largely
the same as the ones in [8]. Let’s assume we randomly choose clusters from OPT,
denoted as C, with a probability of ε. After selecting these clusters, we duplicate each
chosen one and assign both duplicates of each chosen cluster to one of the levels ℓ that
it visits1, with equal probability. These duplicated clusters are referred to as the extra
clusters. We will bound their total cost. The proof is very similar to the one in [8] and
we only need to show the part concerning the facility costs.

Recall f is the (uniform) facility opening cost, ε is the probability each cluster γ
in OPT is selected as the extra cluster, k is the capacity of each cluster, and ω is the
treewidth of G.
Lemma 3.1. The expected cost of the extra clusters sampled is 2ε · opt.

Proof. Consider an edge e in the input graph G. Let ϕ(e) denote the number of clusters
using the edge e in OPT. Let ϕ′(e) denote the number of sampled clusters using e.
Considering we have duplicated each sampled cluster, 2ϕ′(e) corresponds to the total

1If a cluster γ passes crosses bag of level ℓ, we say γ visits or crosses level ℓ.
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number of extra clusters using e in OPT′. Let T and T ′ denote the number of clusters
in OPT and sampled clusters respectively. We have

opt′ = f · (|T |+ 2|T ′|) +
∑
e∈E

c(e) · (ϕ(e) + 2ϕ′(e))

where the cost of extra clusters is f · 2|T ′|+
∑
e∈E

c(e) · 2ϕ′(e).

Using the proof in [8], we know E[ϕ′(e)] = ε · ϕ(e).2
Additionally, we know

E[|T ′|] = ε · |T |
Thus we see that the expected total cost of these extra clusters is

E

[
f · 2|T ′|+

∑
e∈E

c(e) · 2ϕ′(e)

]
= 2f · E[|T ′|] +

∑
e∈E

c(e) · 2E[ϕ′(e)]

= 2f · (ε · |T |) +
∑
e∈E

c(e) · 2(ε · ϕ(e))

= 2ε

(
f · |T |+

∑
e∈E

c(e) · ϕ(e)

)
= 2ε · opt.

We make use of the following modified definitions and lemmata from [8]. They
apply to our problem as the proofs of the lemmata are almost identical.

Denote the bags in level ℓ of T as Bℓ. Define the set Xℓ to comprise the extra
clusters assigned to bags at level ℓ. For every bag β ∈ Bℓ and its bucket (β, bi, S, ℘),

let XS,℘
β,i represent the extra clusters (using vertices in S to span into Cβ , with ℘

depicting connectivity downwards) in Xℓ whose partial clusters inside Cβ has a size

that falls within the range defined by bucket bi. For an extra cluster γ ∈ XS,℘
β,i , it covers

some partial cluster ζ ∈ Gβ,S,℘i,g (which is without its top). That is, the extra cluster
γ only picks up demands at the levels ≥ ℓ and acts as the top of ζ, in particular, this
combined cluster picks up only those demands of ζ’s vertices (which are all orphans).
Lemma 3.2. At any level ℓ, each bag β ∈ Bℓ and its big buckets (β, bi, S, ℘) satisfy,
w.h.p. ∣∣∣XS,℘

β,i

∣∣∣ ≥ ε2

δ log n
· nS,℘β,i .

Proof. The part before the union bound is very similar to the proof in [8]. That is, we
know

Pr

[∣∣∣XS,℘
β,i

∣∣∣ < 1

2
E
[∣∣∣XS,℘

β,i

∣∣∣]] ≤ 1

n5
.

2For the notations, ϕ(e) corresponds to f+(e) + f−(e) in [8], and ϕ′(e) corresponds to m+(e) +m−(e).
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where

E
[∣∣∣XS,℘

β,i

∣∣∣] = 2ε

δ log n
· nS,℘β,i .

Note that in a bag β (as a set it satisfies |β| ≤ ω + 1), the number of set of vertices
through which the clusters span into Cβ (i.e., all possible S) is O(2ω+1), for S ⊆ β (that
is, 2β ∋ S) has 2|β| ∈ O(2ω+1) possibilities. In addition, given a set S with s = |S|,
the set ℘ has Bs possibilities, where Bn denotes the n-th Bell number. Note that the
Bell numbers Bi are used to calculate the number of all the possible partitions of a set
of size i, defined in [19, 20]. For a specific bag β, set S and partition ℘, the number of
buckets (β, bi, S, ℘) is by definition the same as the number of threshold values, which
is τ ∈ O(log k/ε). Since τ ∈ O(log n/ε) and there are in total O(ωn) bags in T , we
know the total number of buckets (β, bi, S, ℘) in T is O(ωn log n/ε · 2ω+1 · Bω). Union
bound over every bucket (β, bi, S, ℘), we have

∑
all (β, bi, S, ℘)

Pr

[∣∣∣XS,℘
β,i

∣∣∣ < 1

2
E
[∣∣∣XS,℘

β,i

∣∣∣]] ≤ O

(
1

n

)
.

Lemma 3.3. For all bags β at level ℓ in T , their big buckets (β, bi, S, ℘) and partial

clusters in Gβ,S,℘i,g ⊆ bi, we can make adjustments to the extra clusters present in XS,℘
β,i

without incurring any additional cost, and introduce some dummy demands within β
when necessary, so that:

1. The partial clusters in Gβ,S,℘i,g are now incorporated into some clusters in XS,℘
β,i .

(That is, all the demands that were covered by some partial cluster in Gβ,S,℘i,g are

picked up by some cluster in XS,℘
β,i .)

2. The modified partial clusters that cover the orphans (i.e., vertices in Gβ,S,℘i,g ) have

precisely the size of hβ,S,℘,max
i,g and all clusters remain underneath the size limit of

k units of demand.
3. For each modified partial cluster in the set XS,℘

β,i , its partial clusters at a bag β′ ∈ Bℓ′

is also of one of O(log k log2 n/ε2) many sizes, where ℓ′ is any lower levels > ℓ.

Note that when we add dummy demands for some cluster γ in some bucket
(β, bi, S, ℘), we simply add these dummy demands onto the vertices in S. Using these
lemmata and a very similar proof to the one in [8], we can obtain a Structure Theorem
for our UAR problem in the case of graphs with bounded treewidth.
Theorem 5. (Structure Theorem) Consider an instance I for the UAR problem.
Denote its optimal solution as OPT, with cost opt. We can transform OPT to
another solution OPT′ so that, with high probability, OPT′ is a near-optimal solution
of cost at most (1 + 2ε)opt. Additionally, at every β in OPT′, all the clusters in Cβ
have one of O(log k log2 n/ε2) possible sizes. Consider a bucket (β, bi, S, ℘) in OPT′.
We must have

• If bi is small, the number of partial clusters in Cβ whose size falls within bi is at
most α log2 n/ε.
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• If bi is big, it has exactly g = 2δ log n/ε group sizes which are denoted as

σi ≤ hβ,S,℘,max
i,1 ≤ hβ,S,℘,max

i,2 ≤ · · · ≤ hβ,S,℘,max
i,g < σi+1

Each cluster in bi has a size of one of the h-values above.

Having this structure theorem one can design a (relatively complex) DP to compute
a near-optimum solution as guaranteed by this structure theorem. This DP builds upon
ideas of the DP in [8] but has more complexity as the clusters here do not necessarily
have a common point (like the dépôt in the CVRP problem). This will show that we

can compute a solution such as OPT′ in Theorem 5 in time nO(ωω·log3 n/(ε2 logω ω)).
We can transform the approximate solution obtained for the UAR problem into

a solution to the ÃR problem, without any increase in the cost. All we need to do is
to pick a node in each cluster to open a facility at (since we are already paying f for
each cluster, this cost is accounted for in the solution to UAR). This can be easily
done since in a solution to UAR each vertex is “covered” by a unique cluster.

3.2 Dynamic Programming for Graphs of Bounded Treewidth

The subproblem here corresponds to the problem for Cβ which is rooted at some bag
β, whose cost is the railway cost of all the clusters (partial clusters and complete ones),
plus f times the number of complete clusters. Again, for a complete cluster, we say it
is independent or stops growing.

We will come up with a dynamic programming algorithm that finds a solution with
the properties stated in the previous Structure Theorem.

We adapt the definitions of the ones in [8]. Recall that τ is the total number
of threshold values. Also recall that the bucket (β, bi, S, ℘) stores all those clusters
spanning ζ demands in Cβ , using vertices in S ⊆ β to span into Cβ and ℘ depicting
downwards connectivity, where σi ≤ ζ < σi+1, and in particular, for all 1 ≤ i ≤ ⌈1/ε⌉
this interval degenerates to simply the set {i}, by definition of the threshold values.

Note that initially, we have n demands, so the total number of clusters is bounded
by n. Throughout the algorithm, although we will add dummy/extra demands, those
are added within each cluster (hence already covered) and thus will not result in any
increase in the number of clusters.

For each bag β, set S ⊆ β and ℘, we define a vector mβ,S,℘ ∈ [n]τ where its i-th

component mβ,S,℘
i stores the cardinality of the bucket (β, bi, S, ℘), for all 1 ≤ i ≤ τ .

In particular, mβ,S,℘
i is the precise number of clusters of size i, if 1 ≤ i ≤ ⌈1/ε⌉.

As each bag β contains at most ω + 1 vertices, define dβ ∈ [n]ω+1 to be a vector
storing the numbers of demands in β, where dβ,v represents the number of demands
to be covered at the vertex v ∈ β. Note that ∥dβ∥ =

∑
v∈β dβ,v. In addition, let

oβ represent the overall demands of every vertex in the bags of Cβ . That is, oβ =∑
β̃∈Cβ

∥dβ̃∥.
Since we do not know if a bucket (β, bi, S, ℘) is small or big in advance, we also need

the following three vectors. In case bi is small (meaning its cardinality is bounded by
ξ = α log2 n/ε), all the sizes of the partial clusters therein are stored precisely, with the

help of a vector tβ,S,℘,i ∈ [n]ξ where its j-th element tβ,S,℘,ij stores the size of the j-th
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partial cluster in bi. On the other hand, in case bi is big, there will be g = 2δ log n/ε
potential cluster sizes in bi, and we will store the information in the following two
vectors. Recall that hβ,S,℘,max

i,j represents the size of the maximum partial cluster in
group j of bucket bi.

• hβ,S,℘,i ∈ [n]g is a vector that stores all those g cluster sizes, where hβ,S,℘,ij =

hβ,S,℘,max
i,j .

• lβ,S,℘,i ∈ [n]g is a vector storing the corresponding number of partial clusters that

are of one of the g sizes, with lβ,S,℘,ij representing the number of partial clusters

picking up hβ,S,℘,max
i,j demands (which is also the cardinality of Gβ,S,℘i,j , that is, group

j of the bucket).

For a given triplet
(
tβ,S,℘,i,hβ,S,℘,i, lβ,S,℘,i

)
, it is impossible that none of them are

zero vectors. Since bi is either small or big, it must be the case that either only tβ,S,℘,i

is equal to the zero vector, or the other two vectors are.
Moreover, we use the shorthand

zβ,S,℘ =
((

tβ,S,℘,1,hβ,S,℘,1, lβ,S,℘,1
)
,
(
tβ,S,℘,2,hβ,S,℘,2, lβ,S,℘,2

)
, . . . ,

(
tβ,S,℘,τ ,hβ,S,℘,τ , lβ,S,℘,τ

))
.

Just like the vector zβ,S,℘ is used for partial clusters, we define another vector z̃β,S,℘

with the same structure as zβ,S,℘, except that z̃β,S,℘ is intended for storing information
on complete clusters that pick up demands at β using vertices in S to span into Cβ
with ℘ depicting downwards connectivity. We also define t̃β,S,℘,j , h̃β,S,℘,j , l̃β,S,℘,j in a
similar way.

To make the notations more compact, we define another shorthand

pβ,S,℘ =
(
mβ,S,℘, zβ,S,℘, z̃β,S,℘

)
.

Let pβ be the vector containing all the pβ,S,℘, i.e., pβ,S,℘ for all possible combination
of the set S ⊆ β and its partition ℘. Note that there are O(2ω+1 · Bω) possibilities for
such combinations of S and ℘.

Define yβ to be a configuration/profile of clusters in Cβ that involves bag β

yβ = (oβ ,dβ ,pβ) .

Each entry A[β,yβ ] stores the cost of the cheapest solution to the subproblem at
β having its cluster profile in accordance with yβ , which consists of the cost of all the
partial and complete clusters spanning in Cβ . Eventually, we compute minyr

A[r,yr]
to obtain the final answer, where r is the root bag of the entire tree T and yr is a
configuration that does not contain any partial clusters. An argument similar to the
one for the case of trees in the previous section shows that this result corresponds to
a solution of cost bounded by opt′ ≤ (1 + 2ε)opt with other properties described in
the structure theorem.

Within each bag β, if no edge is between two vertices v, w ∈ β then we simply add
an edge vw between them and assign it a cost that is equal to the cost of the shortest
path between v and w in G.
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We calculate the table from the bottom up. Base cases: consider each leaf bag β,
roughly speaking, we will store the minimum cost of all the clusters’ edges, which lies
between the vertices within β, together with the cost of all the independent clusters,
if any. Note that all these clusters need to pick up oβ demands in total, and in more
detail, pick them up in accordance with dβ . The formal definition will be given later.

Note that we can ignore the case where β has only one child because we can make
all the non-leaf bags ϖ in T with only one child to have two children bags, by adding
another child bag which is trivially composed of some vertices in ϖ. Given that T
is binary, we can just focus on the case where a non-leaf bag β has two children β1
and β2. If Cβ1 and Cβ2 have oβ1 and oβ2 demands respectively, then Cβ has oβ =
∥dβ∥+oβ1 +oβ2 . Given A[β1,yβ1 ] and A[β2,yβ2 ], we also need to define the following
two auxiliary tables. We explain their functions here and define them formally later.

• The edge-cost table E[dβ ,yβ ,yβ1
,yβ2

] stores the cost of a set of chosen edges which
go between vertices from β and β1, also β and β2. Note that these chosen edges
merge some of the clusters in yβ1

and yβ2
to form certain clusters in yβ .

• The Boolean consistency table H[dβ ,yβ ,yβ1
,yβ2

] checks if yβ ,yβ1
,yβ2

are consis-
tent.

Note that if the configurations yβ ,yβ1
and yβ2

are consistent, it means (informally)
the clusters from yβ1

and yβ2
can be combined or augmented to form the clusters in

yβ (as well as picking up the dummy demands at the vertices in β).
Recall that yβ = (oβ ,dβ ,pβ) where pβ,S,℘ =

(
mβ,S,℘, zβ,S,℘, z̃β,S,℘

)
. Thus from

yβ we can obtain the number of independent clusters in Cβ , which we denote as ϱβ .
We define

A[β,yβ ] = min
yβ1

,yβ2
:

H[dβ ,yβ ,yβ1
,yβ2

]=True

{
A[β1,yβ1

]+A[β2,yβ2
]+f ·(ϱβ−ϱβ1

−ϱβ2
)+E[dβ ,yβ ,yβ1

,yβ2
]
}
.

The third term in the curly brackets is to account for the change in the cost of
independent clusters.

Now we can define the entries in the table for the leaves. For a leaf bag β, it has
no children so we set both yβ1

,yβ2
to the zero vector. We define

A[β,yβ ] = f · ϱβ +E[dβ ,yβ ,0,0].

where E[dβ ,yβ ,0,0] is the minimum railway cost for clusters in yβ , which pick up
demands in β in accordance with dβ .

3.2.1 Consistency Check

Continue the discussion from the previous section, recall that β is a non-leaf bag with
children β1, β2 and we have three configurations yβ ,yβ1

,yβ2
. We adapt the checking

procedure in [8] to suit our data structure. The following list is a recap of the meanings
of these three configurations.

• yβ keeps track of clusters covering demands of the vertices in Cβ = {β}∪Cβ1
∪Cβ2

.
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• yβ1 ,yβ2 keep track of clusters covering demands of the vertices in Cβ1 , Cβ2

respectively.

Denote a cluster from yβ ,yβ1
,yβ2

as γβ , γβ1
, γβ2

respectively. Recall we define |γ|
as the number of demands the cluster γ picks up. Each cluster γ in yβ that spans
down Cβ picking up demands in Cβ1

, Cβ2
can take one of the following four forms.

1. γ only covers demands at β and not the ones from Cβ1
∪ Cβ2

.
2. γ covers demands at β as well as the ones from Cβ1

.
3. γ covers demands at β as well as the ones from Cβ2

.
4. γ covers demands at β as well as the ones from Cβ1

∪ Cβ2
.

Definition 8. We say configurations yβ ,yβ1 and yβ2 are consistent if the following
holds:

• Each cluster in yβ1
corresponds to a cluster in yβ.

• Each cluster in yβ2
corresponds to a cluster in yβ.

• Each cluster in yβ has at most 2ω+1 clusters that correspond to it, from each of yβ1

and yβ2
.

• Each cluster γβ in yβ has qβ1
clusters γ1β1

, γ2β1
, . . . , γ

qβ1

β1
from yβ1

and qβ2
clusters

γ1β2
, γ2β2

, . . . , γ
qβ2

β2
from yβ2 that correspond to it, where 0 ≤ qβ1 , qβ2 ≤ 2ω+1, with

the help of a set Υγβ of edges between vertices in β, β1 and β2 to patch them up to

get γβ. Besides, γβ covers |γβ | −
qβ1∑
i=1

|γiβ1
| −

qβ2∑
j=1

|γjβ2
| dummy demands within β.

• Clusters of yβ cover all demands at β in accordance with dβ.

Recall pβ is the vector containing all the pβ,S,℘, i.e., pβ,S,℘ for all possible combi-
nations of S ⊆ β and its partition ℘, where pβ,S,℘ =

(
mβ,S,℘, zβ,S,℘, z̃β,S,℘

)
. Recall |γ|

denotes the total number of demands picked up by cluster γ. We now use pβ as argu-
ments for both of the auxiliary tables, instead of yβ . The notation pβ \ γβ represents
a new configuration obtained by removing a cluster of size |γβ | from pβ . This can be
achieved by manipulating vectors t’s and l’s. Now we define the Boolean consistency
table H for each bag β.3

H[dβ ,pβ ,pβ1
,pβ2

] =


True if yβ ,yβ1

,yβ2
are consistent

and yβ covers dβ demands

False otherwise

Base case: trivially, H[0,0,0,0] = True, since we can cover zero units of demands
with no clusters. Next, it examines all potential ways of merging yβ1

with yβ2
into yβ ,

including extending some of the clusters in order to cover those dβ dummy demands.
Recall dβ ∈ [n]ω+1 is a vector storing the numbers of demands in β, where dβ,v
represents the number of demands to be covered at v ∈ β. Define d

γβ
β ∈ [n]ω+1 to be

a vector storing the numbers of demands in β covered by γβ , where d
γβ
β,v represents

3Recall we have only defined consistency on y. The notion of consistency works on p as well since the
omitted information oβ does not affect anything.
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the number of demands covered at the vertex v ∈ β by γβ . By definition, its L1-norm
∥dγββ ∥ =

∑
v∈β d

γβ
β,v is the total number of demands in β covered by γβ .

According to Definition 8, we know it is necessary to check the existence of sub-
clusters γ1β1

, γ2β1
, . . . , γ

qβ1

β1
from yβ1 and γ1β2

, γ2β2
, . . . , γ

qβ2

β2
from yβ2 , as well as a set

of edges Υγβ for merging them. Besides, for every γβ , we need to check each part of
S (which corresponds to some element in ℘) that needs to be connected is actually
made into one part thanks to these subclusters. Consider the downwards interface set
Sγj

βi

and the connectivity set ℘γj
βi

of the subclusters γjβi
, for i = 1, j ∈ [1, qβ1 ] and

i = 2, j ∈ [1, qβ2
]. We need to check whether the partition

℘′ =

 ⋃
1≤j≤qβ1

℘γj
β1

 ∪

 ⋃
1≤j′≤qβ2

℘
γj′
β2

 (†)

matches ℘γβ , that is, to check whether the downward connectivity between the vertices
of Sγβ can be achieved by these subclusters. To be more precise, if ℘γβ ∋ Ψ and
Ψ ⊇ {u, v} (meaning the pair of vertices u, v ∈ β needs to be connected downwards),
then there needs to be a set X such that X ⊇ {u, v} and X ∈ ℘′.

Define the recurrence relation of H as follows, where 0 ≤ qβ1
, qβ2

≤ 2ω+1 and the
clusters γ1β1

, γ2β1
, . . . , γ

qβ1

β1
, γ1β2

, γ2β2
, . . . , γ

qβ2

β2
are a part of γβ .

H[dβ ,pβ ,pβ1
,pβ2

] =

∨
γβ , γ

1
β1
, γ2β1

, . . . , γ
qβ1

β1
, γ1β2

, γ2β2
, . . . , γ

qβ2

β2
,d

γβ
β :

|γβ | =
qβ1∑
i=1

|γiβ1
|+

qβ2∑
j=1

|γjβ2
|+ ∥dγββ ∥, and (†)

Ω

where the expression Ω should be

H
[
dβ − d

γβ
β , pβ \ γβ , pβ1

\ γ1β1
\ γ2β1

\ · · · \ γqβ1

β1
, pβ2

\ γ1β2
\ γ2β2

\ · · · \ γqβ2

β2

]
.

Recall 0 ≤ qβ1 , qβ2 ≤ 2ω+1. This is a shorthand way of expressing it, as it in fact
corresponds to the union of 2 entries of H and considers both the situations where γβ
is independent and where it is partial. That is, pβ \ γβ means two possibilities where
γβ is deleted from some z, or z̃ from pβ . This expression above essentially examines
whether the remaining clusters in the (modified) profile yβ (which is defined by the
new pβ) cover dβ − d

γβ
β demands in Cβ .

Recall the second auxiliary table E[dβ ,pβ ,pβ1 ,pβ2 ] is used to compute the cheap-
est cost of edges between vertices from β and β1, also β and β2 to merge the clusters at
Cβ1 and Cβ2 in order to get clusters in pβ . Initially, we set every entry of E to be +∞.
An entry E[dβ ,pβ ,pβ1 ,pβ2 ] will be computed only if the three corresponding config-
urations yβ ,yβ1 ,yβ2 are consistent, that is, only if H[dβ ,pβ ,pβ1 ,pβ2 ] = True. The
base case is to trivially set E[0,0,0,0] = 0, for it does not cost anything to conjoin
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zero cluster. For the recurrence, given a cluster γβ from yβ , recall from Definition 8,
we need to consider the clusters γ1β1

, γ2β1
, . . . , γ

qβ1

β1
from yβ1 and γ1β2

, γ2β2
, . . . , γ

qβ2

β2
from

yβ2 .
Besides, note that some of the partial clusters γ1β1

, γ2β1
, . . . , γ

qβ1

β1
from yβ1 may have

been connected in Cβ1
(the same may happen in Cβ2

for γ1β2
, γ2β2

, . . . , γ
qβ2

β2
from yβ2

).
Recall S is the set of vertices in bag β used by γ to extend into lower levels of T . Again,
we need to consider partitions of S into the form of {S1, S2, . . . } where the partial
clusters extending below using Si are all connected for each i. We also consider a set
of edges Υ℘γβ between the vertices of bag β and vertices from β1 as well as vertices
from β and vertices from β2. Set Υ

℘
γβ

is used to patch up the subclusters into a single

one. We define cost
(
Υ℘γβ

)
=
∑

e∈Υ℘
γβ

cost(e).

We define, only for entries satisfying H[dβ ,pβ ,pβ1
,pβ2

] = True,

E[dβ ,pβ ,pβ1
,pβ2

] = min
γβ , γ

1
β1
, γ2β1

, . . . , γ
qβ1

β1
, γ1β2

, γ2β2
, . . . , γ

qβ2

β2
,d

γβ
β ,Υγβ :

|γβ | =
qβ1∑
i=1

|γiβ1
|+

qβ2∑
j=1

|γjβ2
|+ ∥dγββ ∥,

γβ consists of γ1
β1
, γ2

β1
, . . . , γ

qβ1
β1

, γ1
β2
, γ2

β2
, . . . , γ

qβ2
β2

and edges in Υγβ

Θ

where Θ should be the expression{
cost

(
Υ℘γβ

)
+E

[
dβ − d

γβ
β , pβ \ γβ , pβ1

\ γ1β1
\ γ2β1

\ · · · \ γqβ1

β1
, pβ2

\ γ1β2
\ γ2β2

\ · · · \ γqβ2

β2

]}
.

3.2.2 Algorithm Efficiency

We first discuss the runtime for table A and then we talk about E and H. The runtime
analysis is very similar to that in [8], so from the analysis there, we see for a triplet of

the form (tβ,S,℘,i,hβ,S,℘,i, lβ,S,℘,i), there exists nO(log2 n/ε) possibilities. Since zβ,S,℘

contains τ ∈ O(log k/ε) such triplets, it has nO(τ log2 n/ε) = nO(log k log2 n/ε2) possibili-

ties. By definition of pβ,S,℘, we see it also has nO(log k log2 n/ε2) possibilities. Given pβ
contains O(2ω+1 · Bω) many pβ,S,℘, we know pβ has nO(2ω+1·Bω·log k log2 n/ε2) possibili-

ties. By definition of yβ , it therefore also has nO(2ω+1·Bω·log k log2 n/ε2) possibilities. The

number of possibilities is the same for yβ1 and yβ2 , so it takes nO(2ω+1·Bω·log k log2 n/ε2)

to calculate the entries of table A[β, ·] for a single bag β (according to A’s recur-
rence), assuming the other tables E and H are already computed. The time it takes
to calculate the entries across all the bags in T is the same.

For a single entry of the table E[dβ ,pβ ,pβ1 ,pβ1 ], we need to consider every

possible combinations of
(
γβ , γ

1
β1
, γ2β1

, . . . , γ
qβ1

β1
, γ1β2

, γ2β2
, . . . , γ

qβ2

β2
,d

γβ
β ,Υγβ

)
, which is

nO(2ω+1), because the possibilities for all the clusters are nO(2ω+1), and dβ has

nO(ω) possibilities, also we know Υγβ has O
(
2ω

2
)

possibilities by definition. Since

there are nO(2ω+1·Bω·log k log2 n/ε2) possibilities for (dβ ,pβ ,pβ1
,pβ1

), we know it takes

nO(2ω+1·Bω·log k log2 n/ε2) to compute the table E. From a similar analysis, we conclude
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the same runtime for the consistency table H. Therefore, our algorithm has a runtime
of nO(2ω+1·Bω·log k log2 n/ε2) = nO(2ω·Bω·log3 n/ε2), since the facility capacity k satisfies
k < n. Since Bn ≤ O((n/ lnn)

n
) the runtime is thus in nO(ωω·log3 n/(ε2 logω ω)).

4 Constant Approximation for Nonuniform-AR

4.1 AR′ in Trees

For ease of exposition, we first present the proof for the case of trees (the extension
to graphs with bounded treewidth appears in the full version). In the next section,
we will prove Theorem 3. Recall that in the relaxation AR′, we are given a graph
G = (V,E) where each vertex v ∈ V has a non-negative opening cost av and each edge
e ∈ E has a non-negative weight ce. Every edge and vertex has capacity k ∈ N+. Find
a subset of vertices Φ ⊆ V as facilities (also known as airports), and a multiset Ξ of
edges from E to get a transportation network that ensures one unit of flow from each
vertex in V can be sent to facilities in Φ, without violating the capacity constraint on
any edge or facility. The goal is to find such a network while minimising the total cost∑
v∈Φ

av +
∑
e∈Ξ

ce. First, we prove some properties in an optimum solution to AR′.

α1

vι

vj

α2

Fig. 3: A simplest example of crossing flows inAR′. The red vertices are open facilities.

Lemma 4.1. In an optimum solution, we can assume there are not any flows of
opposite directions on the same edge, as we can uncross them by redirecting each flow
and attain a lower cost.

Note that it is allowed for multiple clients to use the same edge to send their
demands in the same direction.

Proof. Without loss of generality, assume the vertices v′ and υ caused crossing flow
at edge uw. That is, the demand of v′ travels from v′ to u, crosses the edge uw from
u to w, and from w to a facility α2; and the demand of υ travels from υ to w, crosses
the edge uw from w to u, and from u to a facility α1. We can reroute so that the
demand of v′ travels from v′ to u, and then from u to the facility α1; and similarly,
the demand of υ travels from υ to w, and then from w to the facility α2. It is easy to
see such a rerouting makes the total cost decrease, for the demands of both vertices
v′ and υ now take a shorter path to be served.

Consider a tree T as the input graph. A subproblem here is defined on the subtree
Tv for each vertex v. Since we aim to obtain a flow network in T , each vertex v, as the
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v′ u w υ

α1

α2

path

pa
th

pa
th

path

Fig. 4: The crossing flow is at the edge uw

root of the subtree Tv, will be considered a portal in the corresponding subproblem.
There is thus a DP cell for each vertex v in T . Note that at each vertex v, the portal
configuration ψv simplifies to the direction and value of the flow at v

ψv = ±fv

where we use − (minus sign) to signify the flow is leaving Tv, and + (plus sign) to
signify the flow is entering Tv. fv is the absolute value of the signed integer ψv and
denotes the value of the unidirectional (integral) flow passing through the vertex v
and satisfies 0 ≤ fv ≤ n, where n is the number of vertices in T . Note that in AR′,

if an edge needs to carry a flow fv, then we need to install
⌈
fv
k

⌉
parallel edges in the

solution. At each vertex v, we also consider both of the scenarios where v is an airport
or it is not. We use a Boolean variable πυ = True (or πυ = 1) to indicate that the
portal υ is opened as an airport.

We define the DP table D as follows, for each v in T , let the entry D[v, πv, ψv]
store the cost of the optimal solution to AR′ on Tv with the amount of flow going
in/out of Tv conforming to ψv, with portal v opened as an airport if and only if πv.

At each node, we also consider its parent edge and see it as part of the subtree
Tv. For the root node ϑ, we assume its parent edge has cost 0. The result will be
minπϑ

{D[ϑ, πϑ, ψϑ = 0]} as there will be no flow entering or leaving T at the root.
Base cases: At a leaf node v, denote the parent edge of v as e. Recall fv = |ψv|.

D[v, πv, ψv] = av · πv +


ce if ψv = −1

ce ·
⌈
fv
k

⌉
if 0 ≤ ψv < +k and πv = 1

+∞ otherwise

Here ψv = −1 means there is one unit of flow going out of the leaf v (actually does
not need to open a facility at v). If 0 ≤ ψv < +k, it means v does not emit any flow
or it is absorbing flows, then we have to make sure πv = True. Note that in this case,⌈
fv
k

⌉
= 1 when 0 < ψv < +k, and

⌈
fv
k

⌉
= 0 when ψv = 0. If ψv ≥ +k then we know

it is not achievable, since a facility has capacity k and cannot absorb more flows. If
ψv < −1 then it is simply impossible, as a vertex only has one unit of demand and
cannot emit more than that. For these cases, we set the entry to +∞.
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For a node v with z children w1, w2, . . . , wz, similar to the case of uniform facility
cost on trees in the previous chapter, we define an inner DP table B. Assume we
have computed D[wj , πwj , ψwj ] for all possible πwj and ψwj , for all 1 ≤ j ≤ z. Let
B[v, πjv, ψ

j
v, j] store the cost of the optimal solution to AR′ on Tv as if the portal v

only has children w1, w2, . . . , wj . Lastly, we define D[v, πv, ψv] = B[v, πv, ψv, z].
Case 1: j = 1. Only consider the first child of v.

B[v, π1
v , ψ

1
v , 1] = min

ψw1

{
D[w1, πw1

, ψw1
] + av · π1

v + ce ·
⌈
f1v
k

⌉ ∣∣∣∣∣ η(π1
v , ψ

1
v , ψw1

) = True

}

where η(π1
v , ψ

1
v , ψw1) is a Boolean indicator function that takes into account the flow

on v’s parent edge and the edge vw1, as well as the decision about whether or not
to open the portal v as an airport. It is true if and only if all these parameters are
compatible. Recall that fv is the absolute value of ψv.

η(π1
v , ψ

1
v , ψw1

) =


True if 0 ≤ ψ1

v − ψw1 < k ∧ π1
v = True,

or if ψw1 − ψ1
v = 1

False otherwise

The case ψw1
−ψ1

v = 1 means that v does not act like an airport as it is not absorbing
any flow, and is sending its own demand elsewhere (hence unnecessary to open an
airport there).

v

w1

−µ

−(µ+ 1)

(a) Portal v is sending its demand
outside Tv

v

w1

+(ζ + 1)

+ζ

(b) Portal v is sending its demand
into Tw1

Fig. 5: Here µ and ζ are non-negative integers. The label on edge vw1 represents ψw1

and the label above v stands for ψ1
v .

The case 0 ≤ ψ1
v − ψw1

< k means the portal v is absorbing flows and v must be
opened as an airport. The other cases are impossible, either because v is absorbing
too much flow which violates its capacity limit, or because v is sending out more than
one unit of flow.
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Case 2: For 2 ≤ j ≤ z. Assume all entries of the form B[v, πj−1
v , ψj−1

v , j − 1] have
been computed. We define

B[v, πjv, ψ
j
v, j] = min

πwj
,πj−1

v ,ψwj
,ψj−1

v :

πjv ≥ πj−1
v ,

η
(
πjv, ψ

j
v, ψ

j−1
v , ψwj

)
= True

(Ω)

The expression Ω should be{
D[wj , πwj , ψwj ] +B[v, πj−1

v , ψj−1
v , j − 1] + av ·

(
πjv − πj−1

v

)
+ ce ·

⌈
f jv − f j−1

v

k

⌉}
where we define the indicator function η as follows:

η(πjv, ψ
j
v, ψ

j−1
v , ψwj

) =


True if 0 < ψjv − (ψj−1

v + ψwj
) ≤ k ∧ πjv = True,

or if ψj−1
v + ψwj

= ψjv
False otherwise

Let e denote v’s parent edge. The case ψj−1
v + ψwj = ψjv means that after taking wj

(the j-th child of v) into consideration, the flow on e whilst only considering the first
j − 1 children (which is ψj−1

v ), and the flow on the edge vwj adds up to the flow on
e while considering all the j children (which is ψjv). This means the portal v is not
absorbing any of the flow from Twj , and thus there is no need to open it as an airport
if it has not been opened. The case 0 < ψjv − (ψj−1

v +ψwj ) ≤ k means after taking wj
into consideration, the portal v is absorbing flows and needs to be opened, if it has

not been opened. Note that
⌈
fj
v−f

j−1
v

k

⌉
can be negative if f jv < f j−1

v , which means the

“load” on the parent edge of v has decreased and we pay less on the edge cost. This
exact algorithm on trees suggests we have an O(log n)-approximation algorithm for
the general metric (using metric approximation, also known as embeddings by tree
metrics).

4.1.1 Algorithm Efficiency

We will use a bottom-up approach, assuming that the relevant entries for subproblems
have already been pre-computed. At any step, checking the value for the indicator
function η takes O(1) time. To compute B[v, πjv, ψ

j
v, j], we need to consider all possible

ψwj and ψj−1
v , which is in total O(n2) possibilities. Since there are n nodes in the tree,

the time for computing the table D is in O(n4).

4.2 AR′ in Graphs with Bounded Treewidth

In this section, we prove Theorem 3. As in the case of uniform opening cost, given an
input graph G = (V,E) of treewidth ω, we can assume there is a tree decomposition
T = (V ′, E′) of G that is binary, with depth O(log |V |) and treewidth no bigger than
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ω̃ = 3ω + 2, according to [16]. For simplicity, we write ω̃ as ω. Recall that we refer to
the vertices in T as bags, to differentiate them from the vertices in G. For each bag
β, denote the union of bags in the subtree Tβ as Cβ . For the notation bag β, we refer
to it as the name of the bag in T as well as the corresponding set of vertices in G.

Consider any two adjacent bags β1, β2 in T . The coherent set of the two bags is
defined as the intersection of the two sets, β1 ∩ β2, a nonempty set containing the
vertices of a vertex-cutset in G. Thus, while considering any bag β (other than the
root bag) in T , we can first obtain the intersection of β and β’s parent bag, and use
the vertices in the intersection as portals. So when a flow in T is “jumping” to another
bag, it would cost nothing as it is essentially at the same portal, before the flow goes
elsewhere. This way we can ensure the railway cost would only arise inside each bag.

Recall that a vertex of G can potentially show up in many bags of T , we thus
assume that for any vertex v ∈ V (G), the copy of v in the bag β̃ that is the closest to
the root bag (we know there exists such a unique one) has a demand of one, and the
rest of the copies of v (in other bags) have demand zero. We denote the vertex v in
its corresponding closest-to-the-root bag β̃ as ṽ. Note that, in the perspective of the
flow network, if ṽ is not a facility then it is a source emitting one unit of demand. In
addition, if v is to be opened as a facility, only the copy of v in the bag β̃ (that is, ṽ)
will be opened. In this case, ṽ is a sink of capacity k. Note that if a portal p is not p̃,
then it can be neither a source nor a sink.

For each bag β, we define a vector Πβ where its v-th component Πvβ is a Boolean
variable saying whether the vertex v ∈ β is opened as an airport. The portal configura-
tion Ψβ of a bag β will include three signed integers

(
ϕpβ0

, ϕpβ1
, ϕpβ2

)
for each portal

p ∈ β, indicating the amounts and the directions of the demands going in or out of it.
Note that we need three such values because the portal p may send flows to (or receive
flows from) some other copies of the vertex p in β’s parent bag β0 (denote this copy
of p as pβ0) or in β’s two children bags β1 and β2 (denote these copies of p as pβ1 and
pβ2). If p does not have some of these copies (pβ0 , pβ1 and pβ2) then the corresponding
directed values of it are simply set to 0. For a directed value ϕpβi

= ±fpβi
of a portal

p ∈ β, fpβi
represents the value of the flow, and “+” means going into p ∈ β from the

copy pβi ∈ βi whereas “−” means coming out of p to the copy pβi .
We have a DP cell D[β,Πβ ,Ψβ ] for each bag β, its portal configuration Ψβ , and the

facilities to be opened within β given by Πβ . We let the entry D[β,Πβ ,Ψβ ] store the
cost of the optimal solution to AR′ on the induced subgraph G[Cβ ], where the vertices
in bag β conform to the portal configuration Ψβ , and are opened as airports according
to Πβ . The notation G[Cβ ] denotes the subgraph of G on the vertex set Cβ . Essentially,
the copy of a vertex v in bag β has signed values the same as Ψvβ =

(
ϕvβ0

, ϕvβ1
, ϕvβ2

)
,

that is, the copy v ∈ β sends/receives ϕvβi
∈ [−n,+n] units of flow to the copy vβi ∈ βi

for i = 0, 1, 2. A vertex v ∈ β is opened as an airport only if Πvβ = True. We will
discuss the consistency check later.

The final result would be minΠθ,Ψθ
{D[θ,Πθ,Ψθ]} where θ is the root bag of T ,

with ϕpθ0 set to 0 for every vertex p ∈ θ as the parent bag θ0 does not exist.
In the base case, we consider the leaf bags of T . For a leaf bag β, ϕpβ1

and ϕpβ2

need to be 0 for every vertex p ∈ β, as the children bags β1 and β2 do not exist. For a
leaf bag β, its portals are simply the vertices in the coherent set of β and β0 (β’s parent
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bag). So if there is a vertex v ∈ β such that ϕvβ0
̸= 0 then the entry D[β,Πβ ,Ψβ ]

should be set to infinity and we call the entry invalid, for v does not have a copy in
bag b0 and thus is not a portal.

Furthermore, let us consider the edge cost. To do this, we need to define a flow
network. If a vertex v ∈ β is actually ṽ, then it has a demand 1 and is a potential
facility. On the other hand, if a vertex v ∈ β is not ṽ and Πvβ = True, then the
entry D[β,Πβ ,Ψβ ] is invalid, as we can only open the copy ṽ as an airport. In the
perspective within bag β, each portal p can be a source or sink depending on Ψpβ =(
ϕpβ0

, ϕpβ1
, ϕpβ2

)
. For instance, if vertex v ∈ β receives x units of flow outside of leaf

bag β (we have ϕvβ0
= +x), then inside bag β, it must be a source of x + 1 units of

flow, where the extra one unit is its own demand. This is called a source portal for
bag β. A sink portal is defined similarly.

As in the case of trees, whether or not ṽ is opened as a facility, it has one unit
of flow to be sent to an airport or a sink portal. When ṽ is opened, it is capable of
absorbing k units of flow. On the other hand, if v is not ṽ or a sink/source portal,
then it is neither a source nor a sink inside β. For each of these ṽ’s in the bag β,
the Boolean variable Πvβ depicts whether it is opened or not opened. From a portal
configuration Ψβ , we are given the portals together with the information of the flows
going through them, we can compute the min-cost flow Fβ(Πβ ,Ψβ) in β. For each Πβ
and Ψβ , we store the cost of the flow Fβ(Πβ ,Ψβ), plus the cost of the opened facilities
into D[β,Πβ ,Ψβ ]. If there is no valid flow given Ψβ , or some copy v ̸= ṽ is opened
by vector Πβ , then we set D[β,Πβ ,Ψβ ] to +∞. The situations leading to an invalid
flow are similar to the case of trees discussed in the previous section. Since we assume
that T is binary, we can make sure that a non-leaf bag β has two children β1 and β2.
The portals of β are the union of the coherent sets of β and β’s parent bag β0, that
of β and β1, and that of β and β2. We calculate the min-cost flow Fβ(Πβ ,Ψβ) in β
according to Πβ and Ψβ , the same way as the base case. Let λ(β,Πβ ,Ψβ) denote the
sum of the cost of the flow network Fβ(Πβ ,Ψβ), and the cost of the airports opened
by Πβ . Define

D[β,Πβ , ψβ ] = λ(β,Πβ ,Ψβ) +D[β1,Πβ1
,Ψβ1

] +D[β2,Πβ2
,Ψβ2

]

where Ψβ , Ψβ1
and Ψβ2

are compatible. We say a pair of portal configurations Ψβ and
Ψβi

are compatible if the configurations of all the portals (i.e., all the vertices in the
coherent set of β and βi) therein can match up with those of their copies. For instance,
if the vertex p ∈ β has ϕpβ1

= +f then at the copy pβ1
∈ β1 we must have ϕp = −f .

For consistency check, as mentioned above, at each bag, we check if the flow is
valid and if the portal configurations between the current bag and its child (or two
children) match.

Note that we do not need to worry about the decisions on opening airports at each
bag contradicting each other, since only one copy of each vertex v ∈ V , namely the
copy ṽ, can be opened as an airport, and such a copy only exists in one of the bags.
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4.2.1 Algorithm Efficiency

For each bag β, there are O(2ω+1) possibilities for Πβ and nO(ω) possibilities for Ψβ .
Assume we calculate the table from the bottom up. For each entry of D, it needs to
do the consistency check and then find the min-cost flow, which takes O(ω3). Thus,
the runtime to fill the table is in nO(ω)2O(ω) = (2n)O(ω).

4.3 Generalisation for AR with Steiner Vertices

In this section, we describe how the algorithm above can be generalised for AR′ with
Steiner vertices with a few modifications. More generally, this algorithm can apply to
the case where the set of facilities or the set of clients is not the same as the entire
vertex set of the input graph. If a vertex v is not part of the set of facilities, it should
not be opened as a facility (after all, no facility cost has been defined for it). So the Π-
vector should not allow any copy of v to be opened. If a vertex v is not part of the set
of clients, it carries no demand, and so does any of its copies in the tree decomposition.

Note that this will be useful when we try to embed a graph into a graph with
bounded treewidth where the host graph of the input graph (via graph embedding)
may have Steiner vertices. If ∆ is the aspect ratio of G (ratio of largest to smallest
edge cost) then by standard scaling (see for e.g. [8]) one can assume that ∆ is bounded
by polynomial in n at a loss of (1 + ϵ) on optimum solution.

4.4 Extensions to Other Graph Metrics

We use the following lemma by [21] about embedding graphs of doubling dimension

D into a graph with treewidth ω ≤ 2O(D)

⌈(
4D log∆

ε

)D⌉
.

Lemma 4.2. (Theorem 9 in [21]) Let (X, d) be a metric with doubling dimension D
and aspect ratio ∆. Given any ε > 0, the metric (X, d) can be (1 + ε) probabilistically
approximated by a family of treewidth ω-metrics for

ω ≤ 2O(D)

⌈(
4D log∆

ε

)D⌉
.

We adapt Theorem 8 and its proof from [8] to get the following result.
Theorem 6. For any ε > 0 and D > 0, given an input graph G of the AR′

problem where G has doubling dimension D, there is an algorithm that finds a

(1 + ε)-approximate solution in time nO(D
D logD n/εD).

Proof. We use the algorithm A of AR′ for graphs with bounded treewidth as a subrou-
tine. We see this follows from Lemma 4.2. Essentially, we embed G into a host graph

H with treewidth ω ≤ 2O(D)

⌈(
4D log∆

ε

)D⌉
and obtain a solution OPTH by solv-

ing AR′ on H using algorithm A. Then we lift OPTH back to G. Thus, simply plug

ω ≤ 2O(D)

⌈(
4D log∆

ε

)D⌉
into the runtime of the algorithm A, which is (2n)O(ω), and
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we obtain an algorithm of runtime (2n)
O
(
2O(D)

⌈
( 4D log ∆

ε )
D
⌉)
. Since we have assumed

that the aspect ratio ∆ is polynomial in n, the runtime is nO(D
D logD n/εD), which

means the algorithm is therefore a QPTAS.

We introduce the following lemma proposed by Feldmann et al. [22] about
embedding graphs of highway dimension W into a graph with treewidth ω ∈
(log∆)O(log

2(W
ελ )/λ).

Lemma 4.3. (Theorem 1.3 in [22]) Let G be a graph with highway dimension W
of violation λ > 0, and aspect ratio ∆. For any ϵ > 0, there is a polynomial-time
computable probabilistic embedding H of G with expected distortion 1+ε and treewidth
ω where

ω ∈ (log∆)O(log
2(W

ελ )/λ).

We adapt Theorem 9 and its proof from [8] to get the following result.
Theorem 7. For any ε > 0, λ > 0 and W > 0, given an input graph G of the AR′

problem where G has highway dimension W and violation λ, there is an algorithm that

finds a (1 + ε)-approximate solution in time n
O

(
log

log2(W
ελ )· 1

λ n

)
.

Proof. Again, we reduce the problem to graphs with bounded treewidth (via embed-
ding) and use the algorithm A of AR′ as a subroutine. This follows from Lemma 4.3.

Essentially, we embed G into a host graph H with treewidth ω ∈ (log∆)O(log
2(W

ελ )/λ)

and obtain a solution OPTH by solving AR′ on H using algorithm A. Then we lift

OPTH back to G. Thus, simply plug ω ∈ (log∆)O(log
2(W

ελ )/λ) into the runtime of
the algorithm A, which is (2n)O(ω). Since we have assumed that the aspect ratio ∆

is polynomial in n, the runtime is n
O

(
log

log2(W
ελ )· 1

λ n

)
, which means the algorithm is

therefore a QPTAS.

We introduce the following lemma proposed by [23] about embedding minor-free
graphs (including planar graphs, which is a kind of K-minor-free graphs) into a
graph with treewidth OK

(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)
where ℓ is the

logarithm of the aspect ratio of the input graph.
Lemma 4.4. (Theorem 1.1 in [23]) For every fixed graph K, there exists a ran-
domised polynomial-time algorithm that, given an edge-weighted K-minor-free graph
G = (V,E) and an accuracy parameter ε > 0, constructs a probabilistic metric embed-
ding of G with expected distortion (1 + ε) into a graph of treedepth (the treedepth of a
graph is an upper bound on its treewidth)

OK
(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)
where n = |V | and ℓ = log∆ is the logarithm of the aspect ratio ∆ of the metric
induced by G.
Theorem 8. For any ε > 0, given an input graph G of the AR′ problem where G is
a minor-free graph, there exists an algorithm that finds a (1+ ε)-approximate solution

in time nOK(log8 n·(logn+log(1/ε))5/ε).
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Proof. Embed the given graph G using Lemma 4.4 into host graph H with treewidth

ω ∈ OK
(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)
and obtain a solution OPTH by solving AR′ on H using the algorithm for bounded
treewidth. Then we lift OPTH back to G. Thus, simply plug this bound on the
treewidth into the runtime of the algorithm A, which is (2n)O(ω), and we obtain an

algorithm of runtime nOK(log8 n·(logn+log(1/ε))5/ε), as we have assumed that the aspect
ratio ∆ is polynomial in n. The algorithm is therefore a QPTAS.

Theorems 6, 7, and 8 imply Corollary 1.1.

5 Proof of Theorem 4

Given an instance G for AR, without loss of generality, we assume the set of cities that
need to be connected to an airport C and potential airports (facilities) F are disjoint.4

First note that any optimum solution OPT can be turned into a solution of cost at
most 2 ·OPT where each cluster is a cycle by simply doubling the edges of each cluster
and short-cutting the resulting Eulerian walk into a cycle. So if we define cycle-AR
to be the variant of AR where the goal is to find a min-cost set of cycles each having
at most k vertices, using edges in the graph, such that each cycle C has one opened
facility, then the optimum solution of cycle-AR is within factor 2 of optimum of AR
on the same graph.

Given an instance of the general metricAR problem, say graphG, we can transform
it into another instance G′ for the 0/+∞ cycle-AR problem in the following way: For
any potential facility v, move one half of its opening cost fv onto each of its incident
edges, that is, we update the cost of each edge e incident to v from ce to ce+

1
2fv and

set v’s opening cost to zero.
Lemma 5.1. The above transformation preserves the triangle inequality.

Proof. Consider any triangle in the graph G, there are three types as depicted below.
Say there are three vertices A,B and C in the triangle, and the cost of the edges are
cAB = c, cAC = b and cBC = a. Denote their respective opening cost as fA, fB and
fC . Since G is metric, we know the following inequalities are true

a+ b ≥ c

a+ c ≥ b

b+ c ≥ a

There are three scenarios that the triangle can become in the transformed graph G′

(via the transformation mentioned above), which depends on how many vertices in
the triangle are facilities.

4If they are not, say a vertex v is a city as well as a potential airport with opening cost f , then we make
v only a city (i.e. v ∈ C and v ̸∈ F), and add another vertex v′ to the set F that overlaps/superimposes on
v, where v′ has opening cost f .
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Fig. 6: On the left is the original triangle in G. On the right is the scenario in G′

where one of the vertex is a facility.

Say only one of the vertices is a facility. Without loss of generality, assume A is
the facility. It is easy to see the following inequalities hold.

a+

(
b+

1

2
fA

)
≥ c+

1

2
fA

a+

(
c+

1

2
fA

)
≥ b+

1

2
fA(
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2
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)
+

(
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1

2
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)
≥ a
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2fC
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2fA + 1

2fB

a+ 1
2fB + 1

2fC

Fig. 7: On the left is the scenario in G′ where two of the vertex is a facility. On the
right is the scenario in G′ where all of the vertex is a facility.

Say two of the vertices are facilities. Without loss of generality, assume B and C
are the facilities. It is easy to see the following inequalities hold.(
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2
fB +

1

2
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)
+

(
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1

2
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)
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1

2
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2
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)
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1

2
fC
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Say all of the vertices are facilities. It is easy to see the following inequalities hold.(
a+

1

2
fB +

1

2
fC

)
+

(
b+

1

2
fA +

1

2
fC

)
≥ c+

1

2
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1

2
fB(
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1

2
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1

2
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)
+

(
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2
fA +

1

2
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)
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1

2
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1

2
fC(
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2
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1

2
fC

)
+

(
c+

1

2
fA +

1

2
fB

)
≥ a+

1

2
fB +

1

2
fC

We have shown any arbitrary triangle in the transformed graph G′ still obeys the
triangle inequality. Thus the transformation does not break metric.

As mentioned above, we know we can transform any solution to the general metric
AR problem on G into a solution to the 0/+∞ cycle-AR problem on G′ with no
more than twice the original cost. Let opt and opt′ denote the cost of the optimal
solution to the general metric AR problem on G and the 0/+∞ cycle-AR problem
on G′ respectively. It follows that opt′ ≤ 2opt.

v
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2
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Fig. 8: Incident edges of each potential facility before and after changes

In summary, for every input graph G to the general metric AR problem, we trans-
form the graph to G′ (in the manner mentioned above) to make it a 0/+∞ AR
instance, and then solve the cycle-AR problem on G′ to obtain a solution Ψ. It
is easy to see that, if Ψ is a solution to cycle-AR on graph G′ with cost αopt′,
then Ψ is a solution to cycle-AR on graph G with the same cost, i.e. 2α · opt, as
opt′ ≤ 2opt. Since a solution to cycle-AR on graph G can be easily transformed
into a solution to general metric AR on the same graph (simply delete an edge from
each cycle in the solution), we know Ψ can be transformed into a solution to general
metric AR on graph G with cost 2α · opt.
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6 Concluding Remarks

The special case of 0/+∞ AR (at a factor 2 loss) is equivalent to the following variant
of CCCP: given a collection R of dépôts in a metric, find a collection of cycles of
size ≤ k each containing a unique dépôt that together covers all the non-dépôt nodes.
Although there are constant-factor approximations for CVRP, we do not know of a
good approximation for this version.

Acknowledgements. We want to thank Zachary Friggstad for his comments that
improved and simplified Theorem 1. We have also talked with Mohsen Rezapour for
some initial discussions.
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