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Abstract
We study variants of the capacitated vehicle routing problem. In the multiple depot capacitated
k-travelling repairmen problem (MD-CkTRP), we have a collection of clients to be served by one
vehicle in a fleet of k identical vehicles based at given depots. Each client has a given demand that
must be satisfied, and each vehicle can carry a total of at most Q demand before it must resupply
at its original depot. We wish to route the vehicles in a way that obeys the constraints while
minimizing the average time (latency) required to serve a client. This generalizes the Multi-depot
k-Travelling Repairman Problem (MD-kTRP) [9, 16] to the capacitated vehicle setting, and while
it has been previously studied [15, 17], no approximation algorithm with a proven ratio is known.

We give a 42.49-approximation to this general problem, and refine this constant to 25.49
when clients have unit demands. As far as we are aware, these are the first constant-factor
approximations for capacitated vehicle routing problems with a latency objective. We achieve
these results by developing a framework allowing us to solve a wider range of latency problems,
and crafting various orienteering-style oracles for use in this framework. We also show a simple
LP rounding algorithm has a better approximation ratio for the maximum coverage problem
with groups (MCG), first studied by Chekuri and Kumar [10], and use it as a subroutine in our
framework. Our approximation ratio for MD-CkTRP when restricted to uncapacitated setting
matches the best known bound for it [16]. With our framework, any improvements to our oracles
or our MCG approximation will result in improved approximations to the corresponding k-TRP
problem.
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1 Introduction

In many vehicle routing scenarios, minimizing response time is a much more important
objective than minimizing the distances vehicles travel. Minimizing response time is commonly
required in emergency response management, routing package delivery vehicles, school-bus
routing, and repairman routing, and is broadly referred to as the travelling repairman problem
(TRP).

Many variations of this problem have been studied in both the Operations Research and
approximation algorithms community. In this paper (like [10]), we consider the following
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version (and some interesting special cases), which we call the multiple-depot capacitated
k-travelling repairmen problem (MD-CkTRP). It has also been referred to as the multiple
depot cumulative capacitated vehicle routing problem with multiple trips [15, 17].

We are given a collection of k identical vehicles with capacity Q, that are initially located
at k depots (roots) R = {r1, r2, . . . , rk}, a set of clients C = {c1, c2, . . . , cn}, a function
w : C → Z>0 specifying the demand of each client, and an undirected metric d(u, v) over
the vertices u, v ∈ R ∪ C. We must find a routing for the vehicles to serve all clients in C,
minimizing the average service time (or latency) over all clients in C, subject to the following
constraints:
1. Each client must be completely served in one trip (called unsplit delivery).
2. Each vehicle can serve a total of at most Q demand, before it must return to its depot to

resupply.
We define a walk to be a sequence of distinct nodes traversed in a given order, and possibly
ending back at the starting node (when a walk does end back at its starting node, we call
this a tour1). A capacitated walk is a sequence of 0 or more tours rooted at ri, followed by
an additional walk from ri, where each tour/walk contains at most Q demand. A sequence
of only tours rooted at the same node form a flower.

A feasible solution to MD-CkTRP is a collection Fi (1 ≤ i ≤ k) of capacitated walks, one
for each vehicle that starts at a depot ri, and where each client c belongs to exactly one Fi.
The latency of a client c that belongs to a walk rooted at ri is the sum of the lengths of the
edges traversed by the i’th vehicle before visiting c.

This general problem models many scenarios in package delivery management, where
serving clients requires carrying a specific-sized package in a vehicle with limited space. One
can further generalize the model to the case where vehicles have non-uniform capacities, and
where each client c has a service delay δ(c), which is added to the latency of c and every client
served after c by that vehicle. We call this latter version MD-kTRP with service delays.

Another problem for which we propose a new (improved) approximation algorithm is the
Maximum Coverage Problem with Groups (MCG). The MCG appears as a key subroutine
in various approximation algorithms, including the framework we develop. The problem
is the following: suppose we are given a collection of elements I, a collection of subsets
S = {S1, S2, . . . , Sm} of I, and a partition of S into groups G1, G2, . . . G`. The objective is
to pick a collection of subsets from S maximizing the size of their union, such that at most
one subset from each group is picked.

This problem can be approximated directly via LP-rounding if |S| is polynomially
bounded in I (e.g. with pipage rounding [1]). It is special case of submodular function
optimization subject to matroid constraints [6], but in those settings the algorithm has a
running time that is polynomial in |S| while the version we consider can have |S| exponentially
large in |I|; in this case we are instead given an implicit representation of S. In such
settings, suppose we were given an oracle A(i, θ) that takes as input a group index i and
a weight function θ : I → {0, 1}, and returns some subset Sj ∈ Gi such that

∑
e∈Sj θ(e)

is maximized. Call A a (1/ρ)-approximate oracle if it returns a subset Sj ∈ Gi such that∑
e∈Sj θ(e) ≥

1
ρ maxS′∈Gi

∑
e∈S′ θ(e) (i.e. the returned subset covers at least a 1

ρ -fraction of
the optimal number of elements). In this paper, we focus on approximating MCG for which
|S| can be exponential in |I| and we have access to an oracle A as above; this version will
be useful in our approximation algorithms for MD-CkTRP. We will therefore never state S

1 This differs slightly from the typical definition of a tour, since a tour here must be composed of exactly
one cycle.
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explicitly, instead only giving the oracle A and the groups Gi defining the input instance.
For the approximation we develop, we will require a weighted version of A; that is, the

input θ will instead be a function returning any non-negative value. Many oracles (including
the ones we present) can be converted to this form with only a small loss in approximation
using standard techniques, such as scaling weights and duplicating elements.

1.1 Related Work
The special case of k = 1 and Q = ∞ for the MD-CkTRP is the Minimum Latency or
Travelling Repairman problem, which has been studied extensively [4, 3, 9, 13, 19]. This case
is known to be APX-hard in general metrics [5], and the 3.59-approximation of Chaudhuri et
al. [9] is the best known for this case. The special case where the metric is an edge-weighted
tree is also known to be NP-hard [18], and a PTAS for this was only recently found [19].

For the uncapacitated k-vehicle situation where r1 = r2 = · · · = rk and Q = ∞, an
8.497-approximation was known [11]; this was recently improved to 7.183 [16]. For the
multi-depot uncapacitated case, Chekuri and Kumar [10] proved a 24-approximation.2 This
was recently improved to 8.497 by Post and Swamy [16]. This improvement came from using
a time-index configuration LP that was introduced in [8] for the single vehicle case, while
extending it to the multi-vehicle setting and introducing an LP rounding algorithm.

The MCG was first considered by Chekuri and Kumar [10] in the context of their
approximation for the MD-kTRP. They developed the first approximation for the problem
given a (1/ρ)-approximate oracle, obtaining a simple greedy 1/(ρ+ 1)-approximation. The
submodular maximization problem with matroid constraints generalizes MCG: the instance
can be represented by a monotone submodular function f(S) denoting the number of elements
covered by the set S, and a partition matroidM over the sets in S that define the groups.
It was shown in [6] how to obtain a (1− 1/e)-approximation for this problem with running
time polynomial in |S| and |I|. When S is not given explicitly and |S| is exponentially large
in |I|, the result of Chekuri and Kumar [10] is currently the best known.

To the best of our knowledge, no approximation algorithm for any capacitated variant
of the travelling repairmen problem has been developed. Our specific problem has been
studied in the operations research community, but only heuristic solutions are currently
known [15, 17].

1.2 Our Results
We solve the capacitated variant of the travelling repairmen problem by building off of and
extending the techniques used previously for the multi-depot travelling repairmen problem
and for capacitated vehicle routing. Our algorithm uses ideas from both [10] and [16],
in particular the greedy combinatorial algorithm of [10], coupled with a new LP-based
approximation algorithm for the MCG inspired by [16]. One feature of our algorithm is
that if we restrict it to the case of Q = ∞ (i.e. the uncapacitated setting), we obtain an
approximation ratio matching the best known bound for that setting [16].

To achieve this, we develop a modular framework (Theorem 5) that uses a user-provided
oracle as a subroutine to solve different versions of the multi-depot travelling repairmen
problem. The exact problem we solve is captured by a collection of feasible walks, which are
separated over using the provided oracle as a black-box. Given such an oracle, we can build

2 The approximation ratio was stated in [10] to be 12, but due to a technical issue in their analysis, they
were off by a factor of 2.
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O(1)-approximation algorithms for the various latency problems we consider. We obtain the
following results with this approach:

I Theorem 1. There is a 25.49-approximation to the unit-demand capacitated multi-depot
k-TRP.

I Theorem 2. There is a 42.49-approximation to the unsplit-delivery capacitated multi-depot
k-TRP.

We show a simple LP-rounding gives an improved approximation for MCG, which we use
as a subroutine in our framework:

I Theorem 3. There is a (1− e−1/ρ)-approximation to the MCG given a (1/ρ)-approximate
oracle.

Theorems 1 and 2 are the first (constant) approximations for the MD-CkTRP, and
also extend to more general cases where we have non-uniform vehicles capacities. We may
additionally add service delays δ(c) at each client with an extra +0.5 loss in the ratio. These
extensions are covered in Section 5. The framework we develop to prove Theorems 1 and 2
is presented as Theorem 5. The algorithm we give to prove that theorem finds progressively
longer rooted flowers from each depot that cover a large number of clients, where the length
of these flowers is bounded against a rooted walk. Suppose that C is the set of clients to
be served/covered by a walk from ri, and B is a given budget on the length of the walk
(depending on our problem, walks might be capacitated). The single-depot orienteering
problem (SD-OP) is to find such a walk with total cost at most B starting at ri that covers
as many (distinct) clients of C as possible.

We can generalize the notion of capacitated walks/tours by giving a set Wi that contains
all ri-rooted walks vehicle i is allowed to traverse for the given problem. A capacitated
walk/tour is then a walk/flower built using only walks from Wi. We call these Wi-restricted
walks/flowers. Our approach centres around a black-box algorithm to (approximately) solve
the SD-OP problem over the set of walksWi; that is, only walks inWi are considered feasible
for vehicle i.

IDefinition 4. A (1/ρ, γ)-approximation to theWi-restricted SD-OP problem is an algorithm
that finds a walk of cost ≤ γB covering at least a 1/ρ-fraction of the number of clients on an
optimal walk.

If this black-box returns a flower rather than a walk, but with cost still bounded by the
optimal walk, then we call this a (1/ρ, γ)-flower approximation. We use this algorithm as an
oracle to find interesting walks/flowers over the sets Wi defined by the problem. With this,
we obtain the following result:

I Theorem 5. Let Wi be the set of all ri-rooted walks that can be feasibly traversed by
vehicle i. Then for constants ρ, γ, there is an O(1)-approximation algorithm to the Wi-
restricted multi-depot k-TRP, if we have a Wi-restricted (1/ρ, γ)-flower approximation to the
Wi-restricted SD-OP.

When Wi is the set of all possible walks from depot ri, we are solving the uncapacitated
multi-depot k-TRP (MD-kTRP), studied in [10, 16]. If we restrict Wi to only capacitated
walks (with capacity Q), we are solving the unsplit MD-CkTRP variant. Using Theorem 5,
we can find a constant-factor approximation to the MD-CkTRP given an oracle satisfying
definition 4 that returns flowers. We give oracles for the unit-demand and unsplit-delivery
cases in Section 4, which when combined with Theorem 5 yields Theorems 1 and 2.
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We start by proving Theorem 3 in Section 2. We then proceed to prove Theorem 5 in
Section 3, by showing how to combine ideas from [10], [9], and [16] to create a combinatorial
approximation algorithm for the problem, which requires solving an MCG instance as a
subroutine. Many of the proofs omitted in this extended abstract appear in the full version
of the paper.

An alternative approach for approximating latency problems that avoids explicitly solving
an MCG instance was introduced and expanded in [8, 16]. They solve a time-indexed
configuration LP directly for the multi-depot latency problem, and use randomized rounding
to obtain the final collection of tours. Our approach is in fact equivalent to theirs for
that specific problem; the combination of our greedy algorithm and MCG LP yields their
time-indexed LP. By writing the configuration LP for a more general covering problem
(namely MCG) and using that as a subroutine in our latency algorithm we feel that the
approach becomes more easily adaptable to different problems beyond latency. In a sense,
we unify and generalize the combinatorial algorithm of [10] and the LP rounding algorithm
of [16] in a framework using MCG rounding.

2 A (1− e−1/ρ)-Approximation for MCG

We can express an instance of the MCG as an integer configuration program. For item e ∈ I
and group Gi, let xie be a binary variable indicating whether item e is being covered by a set
from group Gi or not. For a set S ∈ S, let zS be a binary variable indicating whether set S
is chosen to form a part of the solution. The linear relaxation of the configuration program
is given as (LP) (and its dual as (DP)).

max
∑
e,i

xie (LP)

s.t.
∑
i

xie ≤ 1 ∀e (αe) (1)∑
S∈Gi

zS ≤ 1 ∀i (βi) (2)

∑
S∈Gi:S3e

zS ≥ xie ∀e, i (θie) (3)

x, z ≥ 0.

min
∑
e

αe +
∑
i

βi (DP)

s.t. αe + θie ≥ 1 ∀e, i (4)∑
e∈S

θie ≤ βi ∀i, S ∈ Gi (5)

α, β, θ ≥ 0.

For every set S ∈ Gi we use θi(S) to denote
∑
e∈S θ

i
e. As stated before, we assume we are

given a approximate weighted oracle A(i, θ); that is, for each group i, given θie on elements it
will find a set S in group Gi such that θi(S) ≥ 1/ρmaxS′∈Gi θi(S′).
A will become our approximate separation oracle for the dual. Solving an exponential

size LP approximately using such an oracle is a standard technique following from the work
of Carr and Vempala [7]. We briefly describe how to obtain a good solution following the
more recent presentation in [12].

Define the polytope P(υ, a) = {(α, β, θ) : (4), (5),
∑
e αe + a

∑
i βi ≤ υ}. With our ρ-

approximate (weighted) oracle A, given some υ and point (α, β, θ), we can certify that either
(α, ρβ, θ) ∈ P(υ, 1), or give a hyperplane certifying that (α, β, θ) /∈ P(υ, ρ), as follows. For
each i, run A with element weights θie. If the returned set S has weight θ(S) > βi, then
since θi(S) ≥ (1/ρ) maxS′∈Gi θi(S′), we return the constraint (5) corresponding to i, S as
the separating hyperplane. The other constraints can be checked trivially. If no constraint

ISAAC 2016
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is violated, we must have (α, ρβ, θ) ∈ P(υ, 1), and so the ellipsoid algorithm will certify
in polynomial time that either P(υ, ρ) = ∅, or give a point (α, ρβ, θ) ∈ P(υ, 1). Note that
P(OPTLP , 1) defines the collection of optimum solutions for (DP), and so OPTLP is the
smallest υ such that P(υ, 1) 6= ∅; we can determine this value by binary search on υ.

Suppose we run the ellipsoid algorithm with input OPTLP − ε for any ε > 0. This yields
a certificate showing P(OPTLP − ε, ρ) = ∅, consisting of polynomially-many separating
hyperplanes, including the inequality

∑
e αe + ρ

∑
i βi ≤ OPTLP − ε. Consider the dual

polytope of P(υ, a): Q(υ, a) = {(x, z) : (1),
∑
S∈Gi zS ≥ a, (3),

∑
e,i x

i
e ≥ υ}. By duality, the

certificate corresponds to a point (x, z) ∈ Q(OPTLP − ε, ρ) with polynomially-many non-zero
variables. Note that (x/ρ, z/ρ) is a feasible (approximate) solution to (LP); further, (x, z)
is almost a feasible solution with objective value OPTLP − ε that only violates (2).3 This
property will be crucial to our rounding scheme.

2.1 Rounding a Solution

To round the solution (x/ρ, z/ρ), we adapt the ideas used by Ageev and Svirendenko [1] for
proving an integrality gap for the standard Maximum Coverage problem. Observe that (LP)
is equivalent to the following linear program:

max
∑
e

min
(

1,
∑
S3e

zS

)
(LP2)

s.t.
∑
S∈Gi

zS ≤ 1 ∀i (6)

zS ∈ [0, 1].

Constraints (1) and (3) have been rewritten as the minimum in the objective, and so given
a fractional solution (x/ρ, z/ρ) to (LP), we can obtain a solution z/ρ to (LP2) of equal
objective value (i.e. at least OPTLP /ρ). (LP2) is now in pipage rounding form as defined
by [1], and so we can apply their pipage rounding algorithm to obtain an integer solution z̄.
We now just need to bound the integrality gap.

Let L(z) =
∑
e min(1,

∑
S3e zS). We will define a function F (z) that is both ε-convex

on the input z/ρ (as defined in [1]) and satisfies the following F/L lower bound condition.
Suppose that, for an optimal (fractional) solution ž, our sub-optimal solution z/ρ has the
property that F (z/ρ) ≥ L(ž)/α for some α. Let F ∗ be the value of an optimal integer
solution to (LP2); if L and F are coincident on binary inputs, then L(ž) ≥ F ∗, and so this
new condition would imply we have an α-approximation after pipage rounding. We claim
that the function F (z) =

∑
e(1−

∏
S3e(1− zS)) satisfies these conditions.

I Lemma 6. F (z) satisfies the F/L lower bound condition.

I Lemma 7. F (z/ρ) is ε-convex.

We can therefore apply pipage rounding on the fractional solution z/ρ, using the function
F to guide the algorithm. This yields a deterministic (1− e−1/ρ)-approximation to the MCG
problem.

3 We omit the ε for the remainder of this discussion for clarity.
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3 Proof of Theorem 5

We present the framework by generalizing and modifying the combinatorial algorithm of
Chekuri and Kumar [10] to suit our redefined problem. The key subroutine of their algorithm
is an approximation for the MCG, which they use to determine a set of tours to “stitch”
together for routing vehicles from each depot. Their algorithm uses an oracle as a black-box
to solve an orienteering-style problem in order to find “good” tours to use in their MCG
instance. In [10] these tours are built from an `-MST, using the algorithm from [9]; we will
instead use the user-provided black-box oracle for this task and show that we still obtain a
good approximation.

Recall we are given as input a set of clients C, a set of k depots R, a vehicle initially
located at each depot, and a metric distance function d. We wish to find Wi-restricted walks
for each vehicle i starting at their respective depots that collectively visit all clients, and
minimize the total latency of all walks. The latency of a walk W that starts at root r and
visits clients c1, c2, . . . cm is given by

∑m
i=1 dW (r, ci), where dW is the distance along the walk

between two points.
The computation is split up into phases, with each phase given a budget with which to

cover as many clients as possible. The latency of the clients we cover in this phase can then
be bounded by the total budget we have spent in this phase and all prior phases. Let j ≥ 1
be the current phase, and let Cuj be the set of uncovered clients at the start of phase j. Let
τ > 1 be some global constant to be chosen later, U ∈ [0, 1) be a number chosen uniform
randomly, and b = τU .

We define the multi-depot group orienteering problem (MD-GOP) as follows: given a
subset of clients C ′ to be visited and a hard budget B, find for each depot ri ∈ R a walk of
total length at most B such that all walks returned collectively cover as many (distinct) clients
in C ′ as possible. We define C(C ′, B) to be some algorithm that solves the Wi-restricted
version of this problem approximately. C is a Wi-restricted (1/ρ, γ)-flower approximation if
it finds a collection of k flowers rooted at the depots ri, such that each costs at most γB and
together they cover at least a 1

ρ -fraction of the vertices covered by an optimum MD-GOP
(walk) solution. Note that for the case of uncapacitated vehicles, a flower is simply a single
tour. Given this subroutine, the algorithm for phase j is as follows:

function Do-Phase(j)
Run C(Cuj , bτ j) with clients Cuj and budget bτ j .
Traverse the returned flower for each ri in either direction, chosen uniformly at random.
Remove all covered clients from Cuj .

end function

We build a bi-criteria (1 − e−1/ρ, γ)-flower approximation algorithm C, given a user-
provided oracle A as per the Theorem, using our MCG approximation (Theorem 3). Let
SW be the set of vertices contained in the walk W . Let WB

i be the set of walks in Wi of
length at most B. Let Gi = {SW : W ∈ WB

i } be the group of all Wi-restricted walks of
total length at most B. This forms a valid MCG instance, whose solution yields a collection
of k walks, each of cost at most B that collectively cover as many clients as possible.

This instance can be approximately solved as follows. Using A, we can find flowers in Gi
covering as many new clients as possible, relative to the optimal walk. Since A finds a flower
covering at least a 1/ρ-fraction of the optimal number of new clients, by Theorem 3 the final
solution covers a (1− e−1/ρ)-fraction of the optimal number of clients, exceeding the budget
for each flower by a factor of γ. Thus, C is a (1− e−1/ρ, γ)-flower approximation.

ISAAC 2016
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3.1 Analysis
We now prove that we have a constant-factor approximation to the Wi-restricted multi-depot
k-TRP, thus completing the proof of Theorem 5. Fix an optimal solution OPT , and let Oj
denote the set of clients in OPT that have latency ≤ bτ j . Let Cvj be the clients we have
visited by the end of phase j. We define Cv0 to be the empty set.

I Lemma 8. At the end of phase j, we have covered at least (1− e−1/ρ)|Oj − Cvj−1| clients.

Let nOPTj be the number of clients in OPT whose latency is more than bτ j , and let nj
be the number of clients that were left uncovered at the end of phase j. For j ≤ 0, we define
nOPTj and nj to be n. Let Bj be the budget of phase j; for j ≥ 1 this is bτ j , and for j ≤ 0
we define it to be 0. For notational convenience, define ∆j = Bj −Bj−1.

I Lemma 9. For all j, nj ≤ e−1/ρnj−1 + (1− e−1/ρ)nOPTj .

I Lemma 10. In expectation, the latency of our solution is at most:

γ(τ + 1)
2(τ − 1)

∑
j≥1

Bj(nj−1 − nj) = γ(τ + 1)
2(τ − 1)

∑
j≥1

nj−1∆j . (OUR-UB)

I Lemma 11. In expectation, the latency of OPT is at least:

ln τ
τ − 1

∑
j≥1

nOPTj−1 ∆j . (OPT-LB)

Proof of Theorem 5. By summing Lemma 9 over all j, we see that

∑
j≥1

∆jnj−1 ≤ e−1/ρ

∑
j≥1

∆jnj−2 + (e1/ρ − 1)
∑
j≥1

∆jn
OPT
j−1


= τe−1/ρ

∑
j≥1

∆jnj−1 + (1− e−1/ρ)(τ − 1)
ln τ

ln τ
τ − 1

∑
j≥1

∆jn
OPT
j−1

=⇒ (OUR-UB) ≤ γ(τ + 1)(1− e−1/ρ)
2 ln(τ)(1− τe−1/ρ)

(OPT-LB).

Our algorithm is therefore a γ(τ+1)(1−e−1/ρ)
2 ln(τ)(1−τe−1/ρ) -approximation for any constant 1 < τ < e1/ρ,

satisfying the requirements of the theorem. J

3.2 An Uncapacitated Oracle
We now give a (1, 2 + ε)-approximate oracle A for the uncapacitated multi-depot k-TRP
(i.e. Wi is all possible walks from ri). This oracle is used in [10] and earlier works for
single-depot latency problems. First we describe an unweighted oracle (i.e. each node is
assigned θie ∈ {0, 1}; we later describe how to extend it to the weighted version).

Using the algorithm in [9] for finding an `-MST, we find a tree that covers at least as
many clients as the optimal ri-rooted walk with budget B, and costs at most (1 + ε) times
the optimal walk (see Theorem 1 in [9]).4 Since the optimal walk costs at most B, we find
the largest ` such that the returned `-MST has cost at most B + ε. Such a tree will cover at

4 The ε can be dropped by applying arguments made in [9].
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least as many clients as the optimal walk. Double the edges of this tree, and convert to a
tour by shortcutting past repeated vertices.

For the case that we have weights on the nodes, at a loss of at most 1− ε′ on the total
weight of nodes we can cover, we can reduce the problem to the unweighted case by scaling
and discarding nodes with very small weight (so that maxe θie

mine′ θie′
∈ O(n2)) and then duplicating

vertices. This gives a (1− ε′, 2 + ε)-approximate (weighted) oracle A (for any ε, ε′ > 0).
This leads to the following result for the uncapacitated MD-kTRP, which matches the

current-best given in [16].

I Corollary 12. There is an 8.497-approximation to the uncapacitated multiple depot k-TRP
(τ ≈ 1.405).

4 Capacitated Oracles and Proofs of Thms. 1 and 2

Previously, we showed that to solve the MD-CkTRP, we can use Theorem 5 and restrict Wi

to only capacitated ri-rooted walks. We thus need to find an oracle that can solve the related
orienteering problem over this set of walks. Using standard techniques as before, we can
reduce the weighted version of the problem (with weights on the nodes) to the unweighted
version, which we present below.

The problem the oracle must solve is the following, which we call the unsplit capacitated
orienteering problem (U-COP). We are given a collection of clients C, a root node r, a budget
B, a vehicle capacity Q, a client demand function w : C → Z>0, and an undirected distance
metric d. We wish to find an r-rooted capacitated walk of total length at most B, where
r must be re-visited after serving at most Q client demand, and we wish to cover as many
clients as possible. Call the optimal number of clients `OPT , and let d(W ) denote the length
of the walk W with respect to the metric d, and similarly for flowers and tours.

We give a (1, 10 + ε)-flower approximation algorithm, where the flower we find has total
cost at most (10+ ε)B and collectively covers `OPT clients, respecting the capacity constraint.
We also consider a special case where w(c) = 1 for all c ∈ C ′; we call this the unit-demand
capacitated orienteering problem (1-COP). With this demand constraint, we can improve the
above ratio to (1, 6 + ε).

An optimum solution to either problem consists of a sequence of tours (each visiting at
most Q demands) followed by at most one walk of total demand at most Q. If we convert
that last walk to a tour by returning to the root, we obtain a capacitated flower of cost at
most 2B. We will restrict our attention to finding such flowers.

The algorithms for 1-COP and U-COP are very similar, so we describe both simultaneously.
If there is a difference between the two algorithms, we place the difference for U-COP in
(parentheses). It will be useful to consider the input metric as the complete graph G = (V,E)
with V = C ∪ {r} and edge costs cG(uv) = d(u, v) for all uv ∈ E.
1. Let G∗ be a new graph obtained from G by adding a “terminal” client c′ to each c ∈ C

and edge cc′ between client c and its new terminal client; the cost of these new edges will
be 1

Qd(r, c)w(c) (for U-COP, use 2
Qd(r, c)w(c)). Let GT be the “terminal” graph obtained

from the metric completion of G∗, with all non-terminal client vertices removed.
2. Using the `-MST approximation of Chaudhuri et al. [9], find a tree of cost at most 3B+ ε

(5B + ε) in GT that covers as many terminals as possible. Doubling this tree produces a
tour; call this tour O.

3. Convert O back into a tour in G∗ that visits the same number of terminal clients of no
greater cost (always possible since GT is the metric completion of G∗). Prune away the
terminals and short-cut to obtain a new tour O′ in G.
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4. Let G′ be a unit-weighted complete graph containing r and w(c) copies of each client
c ∈ C; let Ωc denote the copies of c in G′ (so |Ωc| = w(c)). If clients u, v were distance
cG(uv) apart in G, then for all vertices i ∈ Ωu, j ∈ Ωv, cG′(ij) = cG(uv). Define edge
costs to r similarly. For each i, j ∈ Ωc, let cG′(ij) = 0.5

5. Convert O′ into a split-delivery, capacitated flower as follows. Map O′ onto G′ without
increasing the cost while covering

∑
c∈O′ w(c) clients (possible by construction). Number

the vertices of this tour in the order they are visited, and pick a random offset R in the
range [1, Q]. Walk along the tour starting at R, and cut away a strip of the tour every Q
vertices (short-cutting past r). Add an edge at each end of a strip back to r, to make
each strip an r-rooted tour. 6

6. For the 1-COP, return this capacitated flower. For the U-COP, we can “unsplit” our
solution as follows. Note that if some client’s delivery is split, it will be covered by at
most two tours; remove any such c from both tours and place it in its own separate tour.
Return the resulting capacitated flower.

We now prove the above procedure is in fact a good approximation for both problems.
Consider a fixed optimal capacitated walk WOPT of cost OPT which covers a set of clients
COPT ; let `OPT = |COPT |. Let TSPOPT be an optimal TSP tour that covers the clients
COPT , and let FOPT be an optimal capacitated flower; one must exist with cost at most
2OPT .

We utilize two classic results in capacitated vehicle routing.

I Lemma 13. The following inequalities hold for the 1-COP and U-COP:

d(TSPOPT ) ≤ d(FOPT ) ≤ 2OPT (7)
2
Q

∑
c∈COPT

d(c, r) ≤ d(FOPT ) ≤ 2OPT. (8)

(8) can be strengthened for the case where w(c) is any integer ≥ 1:

I Lemma 14. We have the following additional inequality for the U-COP:

2
Q

∑
c∈COPT

d(r, c)w(c) ≤ d(FOPT ) ≤ 2OPT. (9)

For each set of clients H define SH = 1
Q

∑
c∈H d(r, c)w(c); by (9), SCOPT ≤ B. Note that

WOPT can be converted into a walk in G∗ of cost at most B + 2SCOPT ≤ 3B (for U-COP,
B + 4SCOPT ≤ 5B) that visits COPT and the corresponding terminal clients. We can further
convert WOPT into a walk that visits only terminal clients (and so a walk in GT ), of no
greater cost, that covers `OPT terminals. Thus, the `-MST approximation of Chaudhuri et
al. [9] will find a tree of cost at most 3B + ε (5B + ε) in GT that covers `OPT terminals.7
From this and by construction, the tour O′ must have cost at most 6B − 2SO′ (10B − 4SO′).

The expected cost of the extra edges added in step 5 is 2SO′ , so some offset R exists
such that we pay at most this amount. Thus, we can cut up O′ into smaller tours covering
at most Q demand, with total cost 6B (10B − 2SO′), yielding a (1, 6 + ε)-approximation

5 This construction was first described in [2], and can be used to prove Inequality 9.
6 If Q is not poly-bounded, note there is a simple poly-time algorithm to do this that avoids explicitly
building the graph and trying more than |V | values of R.

7 We omit the ε from the rest of the discussion for clarity.
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to the 1-COP. For the U-COP, the cost of the extra tours in step 6 is also 2SO′ , yielding a
(1, 10 + ε)-approximation. Extending these results to the weighted case, we get (1− ε′, 6 + ε)-
approximation for 1-COP and (1− ε′, 10 + ε)-approximation for U-COP.

Proof of Theorems 1 and 2. Combining Theorem 5 with the (1−ε′, 6+ε)-approximation for
1-COP yields a 25.49-approximation to the unit-demand MD-CkTRP; similarly, combining
Theorem 5 with the (1− ε′, 10 + ε)-approximation for U-COP yields a 42.49-approximation
to the MD-CkTRP (τ ≈ 1.616). J

5 Extensions to MD-CkTRP

We briefly consider two extensions to our problem - non-uniform vehicle capacities, and
service delays. In the first case, suppose vehicle i has capacity Qi. Adjust the definition of
Wi to be all walks of capacity ≤ Qi instead of Q; note that the approximation guarantees of
our oracles do not depend on the capacity of the vehicle. Thus, our results extend to vehicles
with non-uniform capacities.

To handle service delays, suppose each client c has a service time δ(c) ≥ 0, which adds
to the time a vehicle must spend traversing its walk (we assume δ(ri) = 0 for each root
ri). We still wish to minimize the total latency of all clients visited. Define a new metric
d′(u, v) = d(u, v) + δ(u)+δ(v)

2 . Solve the MD-CkTRP for the new instance (with metric d′).
The latency of each node u in the solution returned will be the sum of the edge-lengths, plus
the sum of the delays of all the nodes visited before u, plus δ(u)/2. Thus, at an extra loss
of +0.5 in the approximation, the solution will be a solution for the corresponding problem
with service delays.

6 Concluding Remarks

We presented a general framework to obtain a constant approximation algorithm for the
capacitated multi-depot k-TRP, using bi-criteria approximation algorithms for orienteering
style problems, giving the first constant approximations for MD-CkTRP. A consequence of
this approach is if our oracles for single-depot (or multi-depot) orienteering are improved,
we would have improved approximations for multi-depot (capacitated and uncapacitated)
k-TRP.
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