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Abstract Scheduling problems where the machines can be represented as the
edges of a network and each job needs to be processed by a sequence of ma-
chines that form a path in this network have been the subject of many research
articles (e.g. flow shop is the special case where the network as well as the se-
quence of machines for each job is a simple path). In this paper we consider
one such problem, called Generalized Path Scheduling (GPS) problem, which
can be defined as follows. Given a set of non-preemptive jobs J and identical
machines M ( |J | = n and |M | = m ). The machines are ordered on a path.
Each job j = {Pj = {lj , rj}, pj} is defined by its processing time pj and a
sub-path Pj from machine with index lj to rj (lj , rj ∈M , and lj ≤ rj) speci-
fying the order of machines it must go through. We assume each machine has
a queue of infinite size where jobs can sit in the queue to resolve conflicts.
Two objective functions, makespan and total completion time, are considered.
Machines can be identical or unrelated. In the latter case, this problem gen-
eralizes the classical Flow shop problem (in which all jobs have to go through
all machines from 1 to m in that order).

Generalized Path Scheduling has been studied (e.g. see [11,4]). In this pa-
per, we present several improved approximation algorithms for both objectives.
For the case of number of machines being sub-logarithmic in the number of
jobs we present a PTAS for both makespan and total completion time. The
PTAS holds even on unrelated machines setting and therefore, generalizes the
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result of Hall [9] for the classic problem of Flow shop. For the case of iden-
tical machines, we present an O( logm

log logm )-approximation algorithms for both

objectives, which improve the previous best result of [4]. We also show that
the GPS problem is NP-hard for both makespan and total completion time
objectives.

Keywords Approximation Algorithms · Path Scheduling · Flow shop · Job
Shop

1 Introduction

Scheduling problems are well-studied over the last several decades due to their
applications in various fields (from Operations Research, to Computer Sci-
ence). One of the most classical scheduling problem is Job Shop: Given a set
J of n jobs and a set M of m machines. Each job j consists of a sequence
of λj operations O1,j , O2,j , . . . , Oλj ,j . The amount of time that job j takes to
complete its operation Oi,j on machine Mi ∈ M is denoted as pi,j . The goal
of the problem is to find a feasible schedule that satisfies all constraints, while
trying to optimize some objective function. In a feasible schedule, no machine
can process more than one job at any time and each job can be run on at
most one machine at any time. More constraints can be added depending on
specific interests. For example, one can enforce that operations of a job need
to be processed in a specific order (known as precedence constraints), so an
operation cannot be processed until all its preceding operations are finished.
The scheduling problems have drawn much attention because of their wide
applications in many day-to-day situations. As an example, think of the given
machines as routers and jobs as messages to be sent from one router to another
through a specified path. A good scheduling algorithm can be applied here to
send all messages efficiently.

In this paper we consider a variant of job-shop that we call Generalized
Path Scheduling. This problem in the most general setting of unrelated ma-
chines generalizes Flow shop and it has been studied by [4,11] among others.

Definition 1 (Generalized Path Scheduling) Given a set of non-preemptive
jobs J and identical machines M ( |J | = n and |M | = m ) that form a path
(edges representing the machines), each job j has a processing time pj and a
sub-path Pj of machines from machine lj to rj (lj ≤ rj) specifying the order of
machines it must go through. Each machine has a queue where jobs can wait
in before being processed on that machine. We consdier minimizing makespan
(largest completion time) and/or total completion time (also called min-sum).

If we have unrelated machines but all the jobs have to go through all
the machines in the same order then we have the classic Flow shop problem
[19]. Authors of [4] introduced a more general setting in which the network
of machines is a general graph (instead of a path) and each job has a path
(sequence of machines) in this graph to go through. Several special cases of
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this problem have been studied before (see below). The two objective functions
makespan and total completion time that we consider in this paper have been
studied extensively in the literature. Let Cj be the completion time of job j (the
time when j finishes its last operation) in a given schedule. The makespan of
the scehdule is defined as Cmax := max{C1, . . . , Cn}, and the total completion
time is defined as

∑n
j=1 Cj . The latter is also referred as the min-sum objective

in this work.
The span of a job j, λj = rj − lj + 1, is the number of machines on the

path of j. The length of job j, Lj = pj · λj , is the minimum total time that
job j needs to be completed. We say job j is delayed on machine i if the start
time of j on i is strictly greater than its arrival time. The completion time Cj
of job j is then equal to its length plus the total amount of time it has been
delayed. Let C be the largest congestion over all machines (the maximum
total running time of jobs that use machine i over all machines) and D be the
maximum length over all jobs. Then clearly, both C and D are lower bounds
for the makespan of the optimal schedule. This trivial lower bound has been
used in many earlier works in design of algorithms and proving lower bounds
for various scheduling problems.

1.1 Related work

One of the most general version of scheduling problem is the job shop schedul-
ing with unrelated machines. The first polynomial time approximation al-

gorithm for this problem is an O( log2(mλmax)
log log(mλmax)

)-approximation (λmax is the

maximum span) for the makespan objective, given by [19]. Later, [8] improves
the result by a O(log log(mλmax)) fator, this is also the best known result
for this problem. If the amount of time that every job takes to be processed
on any machine is the same, then we get the packet routing problem when
machines are edges of a graph. Leighton et al. [14,15] show that there always
exist a schedule of length O(lb), where lb = max{C,D} is the trivial con-
gestion/dilation lower bound for makespan objective. Later, the authors in
[10] present a constructive algorithm that finds a schedule of length at most
8.84(C +D). However, the algorithms for the unit-processing time case seem
hard to be adapted to the general processing time case and the approxima-
bility of non-unit processing time for jobs is still open even for special cases
where the network of machines form a simple structure such as a tree or even
a path.

Li et al. [16] show that if there is an α-approximation w.r.t. the lower bound
lb = max{C,D} for the makespan objective, then there is a 2eα-approximation
algorithm for the min-sum objective. This provides a framework of converting
the makespan objective to the min-sum objective without affecting the ap-
proximation ratio asymptotically. Acyclic job shop is a special case of the job
shop problem, where each job can have at most one operation on each machine.
Feige et al. [3] give an O(log lb log log lb)-approximation for the makespen ob-
jective of this problem. They also show the upper bound is nearly tight by
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proving the existence of instances of shortest makespan Ω( lb log lblog log lb ) even when
machines are identical. The GPS problem considered in this paper is a special
case of the acyclic job shop, where the machines are identical and form a path.

The best known result for the GPS problem is due to [4], they present an
O(min{log nλmax, log pmax})-approximation for (the more general problem of)
acyclic job shop with identical machines, under both the makespan and min-
sum objective. However, many special cases of GPS problem can actually be
solved exactly in polynomial time or have an O(1)-approximation algorithms.
For example, if the network of the machines form a rooted tree and all the job
paths have to go through the root of the tree, then the problem becomes the
junction tree problem studied in [4], for which they present a 4-approximation
for makespan and 8e-approximation for min-sum. For the special case of GPS
where all jobs have the same processing time, [12,1] show that the greedy
furthest-to-go gives the optimal makespan. Conversely, [1] shows shortest-to-
go gives optimal min-sum for unit-processing time case. Moreover, authors of
[11] show that furthest-to-go algorithm computes the optimal makespan on
non-nested instances for general processing times; non-nested means span of
no job is completely within span of another. If all jobs need to be processed
on all (identical) machines from left to right, then the problem becomes the
proportionate flow shop. It is straitforward that any fixed priority rule would
give optimal solution for the makespan objective; for the (weighted) min-sum
objective, [18] gives an exact algorithm that runs in O(n2) time. Bi-directional
version of the problem, where there are jobs moving from left to right and right
to left , can be dealt with by interleaving the uni-directional algorithms

If m = O(1), then many scheduling problems admit better approximation
ratios. For example, [17] gives a PTAS for the open shop makespan minimiza-
tion problem, [19] gives a (2+ε)-approximation algorithm for job shop, and [9]
gives a PTAS for the flow shop. Note that all the results discussed are based
on the fact that m is fixed. Hall [9] introduces the notion of outline scheme,
which is used in a couple of our algorithms in a fundamental way.

The scheduling problems where networks of machines have other specific
structures have been the subjects of many researches. For example, when the
machines form a grid, [13] shows that by applying the furthest-to-go algorithm
vertically and horizontally one can get a 3-approximation for the makespan for
unit processing time case. Same approximation ratio applies to the rooted tree
network, where jobs can either go vertically upward, vertically downward, or
upward-downward. When the network of machines is a star and jobs start/end
at leaves, [4] gives a 1.796-approximation for the min-sum objective, and a
7.279-approximation for the general processing time case.

1.2 Our Results

We study GPS with both makespan and min-sum objectives and present sev-
eral approximation algorithms and hardness results.
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Theorem 1 There is a PTAS for GPS with makespan objective when m =

O( log1/6 n
log logn ).

This result actually holds even on unrelated machines setting and therefore,
generalizes the result of Hall [9] for the classical problem of flow shop. We use
this result as a subroutine to prove the following for general values of m:

Theorem 2 For GPS with makespan objective there is an O( logm
log logm )-

approximation.

This improves the O(min{log nλmax, log pmax})-approximation of [4]. We ob-
tain similar results for the min-sum objective. First we introduce a variant of
the GPS problem, called the segmented GPS problem and we give a PTAS for
it for when m = O(log1/6 n/ log log n). We then use this to prove the following:

Theorem 3 There is a PTAS for GPS with min-sum objective when m =

O( log1/6 n
log logn ).

Theorem 4 For GPS with min-sum objective there is an O( logm
log logm )-

approximation.

This improves the result of [4]. Finally, we show GPS is NP-hard under both
objectives.

Theorem 5 The Generalized Path Scheduling problem (under both
makespan and min-sum objective) is NP-hard.

2 A PTAS for the makespan objective when m is sub-logarithmic

In this subsection we prove Theorem 1. For this theorem, we assume we have
unrelated machine setting (while our other results work with identical ma-
chine setting), hence Theorem 1 generalize the result of Hall [9] for the classic
flow shop problem. The algorithm is built based on outline scheme and linear
program. Similar techniques have been used in [9,17] to design PTAS for the
flow shop and open shop problems when m = O(1). The general framework
is to break the jobs (based on their processing times) into large and small
jobs. It can be shown that the number of large jobs cannot be too large and
we can guess (enumerate) their schedule on the machines with good accuracy.
For small jobs we find a good schedule using a Linear Programming (LP)
relaxation and rounding with small error.

2.1 The outline scheme

Since we are assuming we have unrelated machines, we use pij to denote pro-
cessing time of job j on machine i.
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Definition 2 An outline scheme partitions all feasible solutions into classes
(outlines), such that solutions that get grouped together share some common
characteristics.

The outline scheme should suggest a natural way to obtain a good schedule.
Our goal is to show that: 1O The number of outlines is polynomially bounded.
2O For each outline, we can generate a schedule such that the makespan of

the schedule is approximately (1 + ε) as good as the optimal schedule in this
outline. Since the optimal schedule must be contained in one of those outlines,
by enumerating all of them, we are guaranteed to find a nearly good schedule.
Suppose we have an upper bound T on the length of the optimal schedule
T ∗. Such an upper bound can be obtained by using a naive algorithm that
simply processes operations starting from M1 and move to the next machine
if all operations on the current machine are finished. Therefore T ≤ mT ∗ is
always a valid upper bound. Then we partition the time line from 0 to T
into κ intervals of size δ = T

κ , and we refer to interval [(k − 1)δ, kδ) as the
k-th δ-interval, 1 ≤ k ≤ κ. Values of δ and κ are to be determined. Also, we
classify the jobs into big and small jobs. The big jobs are those with maximum
processing time (over their span of machines) at least γ, and small jobs are
those with maximum processing time < γ. The value of γ will be specified
later. Then we are ready to formally define the outline scheme. Each outline
consists of:

– The δ-interval in which each operation of a big job begins.
– For each machine and δ-interval, the approximate (rounded up to the near-

est multiple of γ) amount of time allocated to the operations of small jobs
that begin in that δ-interval.

Therefore, the outline specifies which δ-interval each operation of each big
job should begin in, and how much small-jobs-time is allocated for each δ-
interval on each machine. The reason that we label jobs as big and small is
because we cannot afford to guess too much detail on every job. Instead, for
the small jobs, whose order of scheduling do not impact the overall makespan
significantly, we can schedule them approximately by using an LP. How many
outlines do we need to guess? Suppose the number of big jobs is L, then the
number of possible assignments of big-job operations to δ-intervals is at most
κmL. And observe that the number of possible assignments of small-jobs-time
to intervals is at most ( δγ + 1)mκ.

Therefore, the number of outlines is bounded by: κmL(δ/γ + 1)mκ. For a
given outline, we introduce a Linear Program to determine the assignment of
small-job operations to δ-intervals. Let J1, J2, . . . , Jn′ be the small jobs, and
job Ji is to be processed on machines Mi1 , . . . ,Miλi

(recall λi ≤ m is the span
of job Ji) in the specified order. Then we construct an LP with the following
variables:

xj,(t1,t2,...,tλj ), j = 1, . . . , n′, 1 ≤ t1 ≤ t2 ≤ · · · ≤ tλj ≤ κ,

where xj,(t1,t2,...,tλj ) = 1 means that job Jj is assigned to δ-interval t1 on

machine Mj1 , t2 on machine Mj2 , and so on. We use αk1 , α
k
2 , . . . , α

k
m to denote
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∑
t1,t2,...,tλj

xj,(t1,t2,...,tλj )
= 1, j = 1, . . . , n′,

∑
{j|M1∈Pj}

p1jxj,(...,k,... ) ≤ αk1 , k = 1, . . . , κ,

∑
{j|M2∈Pj}

p2jxj,(...,k,... ) ≤ αk2 , k = 1, . . . , κ,

. . .∑
{j|Mm∈Pj}

pmjxj,(...,k,... ) ≤ αkm, k = 1, . . . , κ,

x ≥ 0 .

Fig. 1: The LP to assign small jobs. Recall that pij is the processing time of
job j on machine i, and Pj is the path of machines for job j.

the amount of time (for small jobs) assigned (by outline) to the k-th δ-interval
on machines M1,M2, . . . ,Mm, respectively. We want to find a basic feasible
solution against the constraints in Fig. 1. The first and last constraints ensure
that the operations of all small jobs are assigned to some δ-intervals, and all
constraints in the middle ensure that the small-job-time in the solution in each
interval on each machine is no more than the value described by the outline.
Observe that the LP has n′ + mκ constraints and at most n′κm variables.
A basic feasible solution (bfs) of this LP is guaranteed to have at most n′ +
mκ positive variables. Also, each job must have at least one positive variable
associated with it, this is because of the first constraint of the LP. Thus, a
job that receives fractional assignment must have at least one more positive
variable. Combining with the fact that the bfs has at most n′ + mκ positive
variables, we know that such a solution can have at most mκ jobs that actually
receive fractional assignments and the remaining small jobs will have unique
integral assignment to δ-intervals. Let’s just ignore the small jobs that received
fractional assignments. They will be appended to the end of the schedule with
a cost of at most (mκ + m − 1)γ. For the remaining jobs (big jobs + small
jobs with integral assignments), we describe a two-step algorithm to construct
a schedule based on their assignments to δ-intervals.

In the first step, we greedily schedule each machine independently. For a
machine Mi, we order the operations assigned to each δ-interval such that
the longest operation is the last (for analysis purposes). More precisely, let
I be the indices k such that there are some operations assigned to the kth
δ-interval in the first step schedule. Then we schedule the operations in the
order of their indices in I where operations in kth δ-interval start at time σk
and end at time τk, where σk = max{(k−1)(δ+γ),max1≤h≤k−1,h∈I{τh}}, τk
becomes well-defined once we defined σk. Another way to view the first step
schedule is that: for machine Mi, all operations assigned in the first δ-interval
get scheduled first as a block with no idle time in between, followed by the
operations in the second δ-interval, and so on. Within each block, we schedule
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the largest operation the last. Therefore, jobs in each block do not overlap,
and they are not scheduled before the specified starting time.

Let Σ be the optimal schedule in a fixed outline, and let T̃ be its length.
We focus on a specific machine Mi. Let sk and (tk) denote the start time and
(end time) of the first and (last) operations during the kth δ-interval in Σ.
Then using a simple induction we can show:

Lemma 1 For all k, σk ≤ sk + (k − 1)γ, and τk < tk + kγ.

Proof First observe that for any k ∈ I, τk − σk < tk − sk + γ. This is because
jobs in each block get scheduled with no idle time in the first step schedule,
and the additional γ comes from rounding up the small-job-time to the nearest
multiple of γ.

We prove the first inequality in the lemma by induction. With the smallest
k ∈ I, we have σk = (k − 1)(δ + γ), which is at most sk + (k − 1)γ. Then,
inductively:
σk = max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{τh}}

= max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{σh + (τh − σh)}}
≤ max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{sh + (h− 1)γ + (th − sh + γ)}}
≤ (k − 1)γ +max{(k − 1)δ,max1≤h≤k−1,h∈I{sh + (th − sh)}}
≤ sk + (k − 1)γ.

Since τk − σk < tk − sk + γ, we have τk < tk + kγ, which completes the
proof.

Corollary 1 The makespan of the first step schedule is at most T̃ + κγ.

However, notice that the first-step schedule is very likely an infeasible schedule,
because we only focus on each machine individually, so the operations of a job
might get processed on different machines at the same time (overlaps). The
second step of the algorithm is to remove the potential overlaps of operations
by delaying the operations on Mi by 2(i − 1)(δ + γ) units of time, for i =
2, . . . ,m. We will eventually show that the schedule after injecting delays on
every machine will be feasible, but before that we need to prove the following
lemma first:

Lemma 2 Consider operations inside an arbitrary kth δ-interval on a arbi-
trary machine in the first step schedule. (1) Each large operation starts pro-
cessing during [(k − 1)(δ + γ), k(δ + γ)). (2) And each small operation starts
and finishes processing during [(k − 1)(δ + γ), k(δ + γ) + γ).

Proof It is clear that all these operations start at or after (k−1)(δ+γ). Then it
remains to show that they don’t start (end) too late. We consider the following
two cases. First, suppose there exists a large operation. Observe that all large
operations are scheduled in the same δ-interval in Σ (recall Σ is the optimal
schedule in the outline) as well. Let Oj be the operation that was scheduled
the last in our algorithm (it is the largest), then it suffices to show Oj starts
before time k(δ + γ)). From Lemma 1, we know τk < tk + kγ, also there is
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some operation Oj′(pj ≥ pj′) is scheduled the last and completes at tk in Σ.
Also, Oj′ starts before time kδ. Therefore, the last operation of this interval
starts at time τk − pj < tk + kγ − pj′ < k(δ + γ). The other case is when
all operations are small (< γ). In this case , tk < kδ + γ, so by Lemma 1:
τk < tk + kγ < k(δ + γ) + γ.

Lemma 3 After delaying the operations on Mi by 2(i − 1)(δ + γ) units, for
i = 2, . . . ,m, the resulting schedule is feasible.

Proof The schedule we obtained from first step is conflict-free in each interval,
but it is still likely infeasible because there might be a job starting on a machine
before its previous operation finishes on the previous machine (the job starts
before it becomes available). In step two, we delay operations in M2 by 2(δ+γ),
jobs in M3 by 4(δ + γ), and so on. So the makespan of the schedule increases
by at most 2(m − 1)(δ + γ). And we show that the schedule after injecting
delays is feasible. Consider an arbitrary job j, and two consecutive operations
of j on machines Mi and Mi+1, call them Oj,i, and Oj,i+1. It suffices to prove
that these two operations are scheduled in order and do not overlap.

First consider the case when j is a big job. Suppose Oj,i is assigned to the
kth δ-interval and Oj,i+1 is assigned to the lth δ-interval (l ≥ k). By Lemma
2, the difference of their starting time is at least (l − k − 1)(δ + γ), i.e. in the
worst case Oj,i+1 starts on Mi+1 (δ + γ) units before Oj,i starts on Mi in the
first step schedule. Note that operations on Mi+1 are delayed by 2(δ+γ) more
units relative to operations on Mi in step two, so once the delays have been
injected, Oj,i and Oj,i+1 will be scheduled in order and do not overlap.

Another case is when j is a small job, and we still use Oj,i and Oj,i+1

to denote the two consecutive operations of j. And suppose Oj,i is assigned
to kth δ-interval and Oj,i+1 is assigned to the lth δ-interval (l ≥ k). Again
by Lemma 2, after the delays have been injected, Oj,i will complete before
(k+2(i−1))(δ+γ)+γ, and Oj,i+1 will start at or after time (2i+k−1)(δ+γ).
Since (2i + k − 1)(δ + γ) > (k + 2(i − 1))(δ + γ) + γ, Oj,i and Oj,i+1 will be
scheduled in order and do not overlap.

Combining previous lemmas, we obtain the following theorem:

Theorem 6 For a given δ, and γ and an outline with an associated optimal
schedule of length T̃ , we can generate a feasible schedule of length:

T̃ + κγ + 2(m− 1)(γ + δ) + (mκ+m− 1)γ

Proof The additive κγ follows from Corollary 1, second term 2(m− 1)(γ + δ)
follows from Lemma 3, and (mκ + m − 1)γ comes from the fractional small
jobs that get appended at the end.

2.1.1 The PTAS

In this section, we show that the algorithm that we obtain from previous
section is a PTAS for the GPS makespan minimization problem. Let δ = Tε

u ,
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and γ = Tε2

uv . The value of u and v will be specified later. So the additive error
from Theorem 6 becomes:

Error = κγ + 2(m− 1)(γ + δ) + (mκ+m− 1)γ

=
u

ε
· Tε

2

uv
+ 2(m− 1)

(
Tε(v + ε)

uv

)
+
(mu
ε

+m− 1
) Tε2
uv

=

[
3mε+ 2mv + (m+ 1)u− 3ε− 2v

uv

]
εT

Moreover, recall that T is the upper bound of T̃ , suppose T = βT̃ , such β

is at most m. Let L be the number of large jobs, then L is at most mT̃
γ = muv

βε2 ,
therefore the total possible number of assignments of large operations to δ-
intervals is at most κmL. The number of small-job-time that we assign to each
δ-interval is δ

γ + 1 = v
ε + 1 (because we round it up to multiple of γ), so the

number of possible assignments of small-job-time each machine during each
interval is at most (vε + 1)mκ. Therefore, the total number of outlines is at
most: (u

ε

)m2uv/ε2 (v
ε

+ 1
)mu/ε

Assuming u = 4(m − 1)β and v = 2(m + 1)β + (3
2 )ε, then the additive error

becomes:

Error =

[
3mε+ 4m(m+ 1)β + 3mε+ 4(m+ 1)(m− 1)β − 3ε− 4(m+ 1)β − 3ε

8(m+ 1)(m− 1)β2 + 6(m− 1)βε

]
· εβT̃

=

[
8(m+ 1)(m− 1)β + 6(m− 1)ε

8(m+ 1)(m− 1)β2 + 6(m− 1)εβ

]
· εβT̃ = εT̃

Therefore, we can guarantee the additive error is at most εT̃ .

Runtime: The runtime is given by the number of outlines that we need to
consider multiplied by the time needed to solve an individual outline. First
note that the number of outlines is (m/ε)O(m6/ε2). For each outline, we need
to find a basic feasible solution for the associated LP; recall that the LP has
n + mu

ε constraints and at most num

εm variables. By using the LP solver from
[22], we can solve the LP in time O(N3.5), where N is the input size. Therefore

the total runtime is O(N3.5(m/ε)O(m6/ε2)). Suppose m = O( log1/6 n
log logn ), the total

runtime becomes:

O(N3.5m(m6)) = O

N3.5

(
log1/6 n

log log n

)logn/ log6 logn
 = O(N3.5n).

Thus, the runtime is polynomial, which completes the proof of Theorem 1.
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3 An O( logm
log logm

)-approximation for makespan objective

In this Section we prove Theorem 2. Consider the special case of the GPS
problem (with identical machines) where there are h machines, called terminal
machines, such that any job j has to start/end at one of the h machines. We
show how an ρ-approximation for this special case can be used to derive an
O(ρ loghm)-approximation for general case of GPS.

For a given instance of GPS, we select h machines that equally partition
the path of machines into h − 1 segments, call these h machines level 1. For
all the jobs whose span crosses these h machines (i.e. uses machines in more
than two segments), we group them into group G1. So all the jobs in J −G1

have their span entirely within one segment and those that fall into different
segments, can be scheduled independently (as their paths do not overlap).
For each segment, we again select h machines (to partition that segment into
equal segments) and all the jobs in J − G1 that pass any one of the second
level terminal machines (h2 many) form group G2. And we do this recursively.
Eventually, we have partitioned the jobs into O(loghm) groups. Also, by losing
a constant factor, we can assume that jobs among a group have to start/finish
at one of the terminal machines.1 Suppose we have a ρ-approximation for a
single group of jobs, then if we schedule all groups sequentially, we obtain an
O(ρ loghm)-approximation for the general case. We will show below that we

can set h = O(log1/6m/ log logm) and will have ρ = O(1).

3.1 Instances with h terminal machines

In this section, we show how one can extend the idea of the PTAS in Section
2 to solve the instances with h terminal machines. Similarly, suppose we have
an upper bound T on the makespan of the optimal schedule, and we partition
the time line from 0 to T into κ intervals of size δ = T

κ . The definition of a
job being big or small is slightly different. Suppose the h terminal machines
partition the machines into h− 1 equal-size segments (except the last one). A
job j is big if the time it takes to travel a segment is ≥ γ (i,e, pj× segment
size ≥ γ). Otherwise, we say the job is small. Each outline should specify:

– The δ interval in which a big job starts running on a terminal machine.
– For each terminal machine and δ-interval, how much time is allocated to

small jobs that begins in that δ-interval, rounded up to the nearest multiple
of γ.

Suppose the number of big jobs is L, the number of guesses of the starting
time interval of all big jobs is at most κhL; also, the number of possible assign-
ments of small-job-time to δ-intervals is at most (δ/γ + 1)hκ. So the number

1 This is because for instances where there is a machine that is used by all jobs it is a
special case of the junction tree problem studied in [4]. Therefore we can use their two-stage
algorithm and in ≤ 2OPT time send all the jobs to their first terminal machines, and once
all the jobs reach their last terminal machines on their paths, spend another ≤ 2OPT time
to deliver them to their final destinations.
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of outlines is at most: khL(δ/γ + 1)hκ. For the small jobs, we again construct
an LP as in Section 2 and find a basic feasible solution of it. Then we have
at most hκ jobs that actually receive fractional assignments, we can ignore
them for now and append them at the end of the schedule with a cost at most
(hκ+ h− 1)γ.

For all big jobs and small jobs with integral assignments, we schedule them
according to their assignments to δ-intervals in two steps. In the first step, we
schedule each segment independently. For a fixed segment, let Mi be the first
machine (a terminal machine) of this segment. We order the jobs assigned to
each δ-interval according to their processing times and send them based on
faster first. Let σk be the time when the first job in the kth δ-interval begins
on the first machine of the segment, and let τk be the time when the last job
in the kth δ-interval finishes on the last machine of the segment.

Let Σ be the optimal schedule in the outline that we are focusing on, say
the makespan of Σ is T̃ . Similarly, we define sk and (tk) to be the start time
(end time) of the first (last) job during the kth δ-interval of Σ on the same
segment. Then we show the following

Lemma 4 For all k, σk ≤ sk + (k − 1)δ, and τk < tk + kγ

Proof One important observation is that ∀k, τk − σk < tk − sk + γ. This is
given by the fact that faster first algorithm gives optimal solution for flowshop
with identical machines. That is, if we consider the jobs that traverse a specific
segment during a specific δ-interval, view it as an instance of flowshop with
identical machines. The schedule defined by faster first is no worse than the
optimal schedule. The additive γ comes from the rounding error. The rest of
proof is analogous to the proof of Lemma 1, hence omitted here.

Then we can conclude the makespan of the schedule obtained from the
first step is at most T̃ + κγ. However, this schedule is likely to be infeasible
because we schedule each segment independently without caring about their
consistency. The second step is to inject delays to jobs so that the jobs in the
resulting schedule are processed in order. We delay operations on the second
terminal machine by 2(δ+ γ), delay operations on the third terminal machine
by 4(δ + γ), and so on. So eventually, if we consider two adjacent terminal
machines, operations on the later one are delayed by 2(δ+ γ) units relative to
the previous terminal machine. And we need to show:

Lemma 5 After delaying the operations on the ith terminal machine Mhi by
2(i−1)(δ+γ) units of time, for i = 2, . . . , h. The resulting schedule is feasible.

Proof Consider an arbitrary job j and its operations traveling two adjacent
terminal machines Mhi and Mhi+1 . Observe that all operations of job j in the
segment starting with machine Mhi must be scheduled in order because we
schedule them based on faster first. So it remains to show that after injecting
the delays, j doesn’t start on Mhi+1

before all previous operations are finished.
The rest of proof is analogous to the proof of Lemma 3.
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Therefore, the final schedule is of length at most T̃ + κγ + 2(h − 1)(δ +

γ) + (hκ + h − 1)γ. For sufficiently small δ = O(Tεh ) and γ = O(Tε
2

h2 ), the

additive error becomes εT̃ . Moreover, the total number of outlines is O(h(h
6)).

Suppose h is sub-logarithmic, say h = log1/6m
log logm , then runtime becomes polyno-

mially bounded. This implies a O(ρ loghm) = O( logm
log logm )-approximation for

the general problem, which completes the proof of Theorem 2.

4 Approximations for min-sum objective

In this section, we study the approximability of the min-sum objective and
prove Theorem 3. Proof of Theorem 4 uses Theorem 3. The ideas of designing
approximation algorithms for the min-sum objective using algorithms for the
min-max (makespan) variants have been used extensively for various problems
such as scheduling and vehicle routing problems (to name a few see e.g. [2,16,
20,4]). Here we borrow ideas from [20], which designs a PTAS for minimum-
latency traveling repairman problem on Euclidean metrics by reducing it to a
variant of min-max version of it. This technique is used to design algorithms for
many other problems, see [5,21] for an example. First we introduce a variant
of GPS called segmented GPS and present a PTAS for it when m is sub-
logarithmic using ideas of Theorem 1. Then in Section 4.1, we use it as a
subroutine to design a PTAS for the min-sum objective GPS problem for sub-
logarithmicm. Finally, in Section 4.2, we present anO( logm

log logm )-approximation
for min-sum GPS with general m.

4.1 A PTAS for Min-Sum GPS when m is sub-logarithmic

In this section we prove Theorem 3. In order to do so we first define an inter-
esting variant of the GPS problem called the segmented GPS as follows.

Definition 3 (segmented GPS) An instance of segmented GPS is given by
a set of m identical machines that form a path, and also a set of n jobs each
needs to be processed on a sub-path. Also, for some constant π, given bounds
B1 ≤ B2 ≤ · · · ≤ Bπ such that Bi/Bi−1 = η where η is a constant, and given
numbers n1 ≤ n2 ≤ · · · ≤ nπ = n. A feasible solution is a schedule such that at
least ni jobs are finished within the first Bi units of time for all i ∈ {1, . . . , π},
and the length of the schedule is at most Bπ. We say an algorithm gives an
α-approximation if for any feasible instance it finds a schedule that finishes at
least ni jobs within αBi units of times, for all 1 ≤ i ≤ π.

We can prove the following similar to Theorem 1.

Theorem 7 There is a PTAS for segmented GPS when m = O( log1/6 n
log logn ).

The algorithm adapts the idea of outline scheme. Intuitively, we again partition
the time line from 0 to Bπ into polynomially many δ-intervals, and we use the
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notion of big and small to classify jobs so that we can afford to fully guess the
assignment of big jobs to δ-intervals. For small jobs, we guess approximately
the amount of time that is allocated for them on each δ-interval and each
machine, and we then assign small jobs by an LP.

However, we define δ w.r.t. B1 instead of Bπ. This gives us better precision
so that the additive error at the end depends on B1, so is relatively small. Also,
at the same time, the number of δ intervals doesn’t blow up, the number is
at most ηπ+1 (which is a constant since both η, π are constants) times what
we used to have. Moreover, for the same reason, we define γ w.r.t. B1. The
number of large jobs L is also ηπ+1 (which is a constant) times what we used
to have.

More precisely, let δ = B1ε
u and γ = B1ε

2

uv , as before, u = O(m) and
v = O(m) are functions of m to be specified later. The number of δ-intervals is

κ ≤ ηπ+1B1

δ = uηπ+1

ε . An outline specifies the δ-interval in which an operation
of a big jobs begins in, and amount of time that is allocated to small job in
each interval on each machine, rounded to nearest multiple of γ. Therefore, the
total number of outlines is κmL( δγ + 1)mκ = O(m(m6)), which is polynomially
bounded as m is sub-logarithmic.

Assume we know the assignment of big jobs. As before, we process the
operations assigned to each δ-intervals s.t. the longest operation is the last.
Then, for each bound Bi, we know the number of large jobs nli that are finished
before Bi. Therefore, when we assign small jobs, we modify the LP in Figure.
1 by adding π extra constraints to ensure that x values that fall in the first
Bi units of time is at least nsi = ni − nli (see Figure. 2 for the full LP).

∑
t1,t2,...,tλj

xj,(t1,t2,...,tλj )
= 1, j = 1, . . . , n′,

∑
{j|M1∈Pj}

pjxj,(...,k,... ) ≤ αk1 , k = 1, . . . , κ,

∑
{j|M2∈Pj}

pjxj,(...,k,... ) ≤ αk2 , k = 1, . . . , κ,

... ∑
{j|Mm∈Pj}

pjxj,(...,k,... ) ≤ αkm, k = 1, . . . , κ,

∑
{j|tλj ·δ≤Bi}

xj,(...,tλj )
≥ nsi , i = 1, . . . , π,

x ≥ 0.

Fig. 2: the modified LP. π new constraints are added to ensure that at least
nsi = ni − nli small jobs are finished before time Bi.
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Such LP has n′+mκ+π constraints and at most n′κm variables (recall n′ is
the number of small jobs). A basic feasible solution of this LP is guaranteed to
have at most mκ+π small jobs that actually receive fractional assignments and
the remaining small jobs will have unique integral assignment to δ-intervals.
We can simply ignore the fractional small jobs for now, because we can append
them all at the end of B1 with a cost of at most (mκ+π+m−1)γ (which is at
most εB1, based on the discussion in Section 2). Call this schedule the first-step
schedule, then it finishes at least ni jobs before time Bi, for i = 1, . . . , π, as
wanted. But it may not be feasible. In order to turn it into a feasible schedule,
we need to inject delays to machines.

Lemma 6 After delaying the operations on machine Mi by 2(i − 1)(δ + γ)
units, for i = 2, . . . ,m. The resulting schedule becomes feasible. And the delays
only stretch the schedule by a factor of (1 + ε).

Proof The proof is analogous to the proof of Lemma 1 and Theorem 6.

Theorem 7 follows immediately from the above discussion. This theorem
combined with the following implies Theorem 3:

Theorem 8 If there is a polynomial time α-approximation algorithm for
the segmented GPS problem, then there is a polynomial time (1 + ε)α-
approximation algorithm for the GPS min-sum minimization problem.

Proof of this theorem is built upon ideas of [20] for minimum latency travel-
ing repairman problem on Euclidean metrics. With a (1+ε)-factor loss, we may
assume that the makespan of the optimal schedule is polynomially bounded
in m,n. 2 The reduction is as follows. Consider the time points t1, t2, . . . , tΓ ,
where t1 = 1 and ti/ti−1 = (1 + ε)π, for some constant π that only depends on
ε (π = O(1/ε2)), and we can assume Γ = O(log(mn)). The part of schedule
between ti and ti+1 is called the ith subschedule. We call a schedule is well-
structured if each subschedule processes a subset of jobs completely. That is,
if a job j starts processing at or after time ti, it has to be finished on all its
span before ti+1. We first show that we can reduce the solution space to only
the well-structured schedules by losing an ε-factor. This allows us to deal with
each subschedule independently. Moreover, the time frame between ti and ti+1

can be further partitioned into π sub-intervals such that the ratio of the end
time and start time of each sub-interval is (1 + ε). Therefore, each subschedule
can be viewed as an instance of the segmented GPS problem. However, we
cannot afford to guess the subset of jobs to be processed on every subschedule,
but we show that, for large enough π, in the ith subschedule we can simply
re-do all the jobs that have been processed in the previous subschedules. As

2 This is a fairly standard trick. If pmax, pmin are the largest and smallest processing
times (respectively) one can assume that pmin ≥ εpmax/(mn), otherwise all jobs smaller
than εpmax/(mn) can be removed, then they can be added to any schedule of the rest of
the jobs right before a job of size pmax and this will increase the total completion time of
the schedule by at most a 1 + ε factor. With this assumption we can scale processing times
so that pmin = 1 and hence pmax ≤ mn/ε.
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a result, we don’t need to know the set of jobs to be processed on each sub-
schedule, instead, we use Dynamic Programming to enumerate the number of
job to be processed, which can be done in polynomial time. The first step is
the following lemma.

Lemma 7 There is a (1 + ε)-approximate well-structured schedule OPT ′.

Proof We prove this by showing that we can modify an optimal schedule to
satisfy the desired property and the total completion time of the modified
schedule only increases by an ε factor. Assume 0 < ε ≤ 1 and π = O(1/ε2)
is a constant depending on ε only. Let h be a random offset chosen u.a.r. in
{0, 1, . . . , π − 1}. Let

Ai = (1 + ε)(i−1)π+h, for i ≥ 0.

Consider an optimal schedule OPT (use opt to denote its value), and let
OPTi be the partial schedule restricted to the jobs that finish no later than
Ai, for i = 1, . . . , Γ = O(log(mn)). The modified schedule OPT ′ with value
opt′ is constructed by concatenating partial schedules OPTi sequentially such
that OPTi starts at time ti = cAi−1, for i = 1, . . . , Γ and some constant c.
Observe that a job j that appears in OPTi will also appear in OPTi′ for i′ > i,
the completion time of a job is defined by its first appearance.

We first prove that OPT ′ is feasible. For that, we need to show ti ≥
ti−1 +Ai−1 for all i, i.e. c/(c− 1) ≤ Ai−1/Ai−2 = (1 + ε)π. For this inequality

to hold, it’s enough to take π ≥ log c−log(c−1)
log(1+ε) = O( 1

ε ).

Next, let Cj and C ′j be the completion time of job j in OPT and OPT ′,
respectively. In order to show E[opt′] ≤ (1+ε)opt, it’s sufficient to show E[C ′j ] ≤
(1 + ε)Cj , for any job j.

For an arbitrary job j, let i′ be the first index such that Ai′ ≥ Cj . Thus,
job j is first processed by OPT ′i in OPT ′. Let (1 + ε)q−1 < Cj ≤ (1 + ε)q for
some integer q ≥ 0. Then the expected value of Ai′ over all possible values
that h can take is:

E[Ai′ ] =
1

π

π−1∑
h=0

(1 + ε)q+h =
(1 + ε)π+q−1 − (1 + ε)q

πε
<

(1 + ε)π+q

πε

Observe that the completition time of job j in OPT is Cj , and j is scheduled
by OPTi′ in OPT ′, so the completition time j in OPT ′ is C ′j = ti′ + Cj , i.e.

ti′ = C ′j − Cj . Also, recall that ti′ = cAi′−1 = cAi′
(1+ε)π , therefore,
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E[C ′j ]− Cj = E[ti′ ] =
c

(1 + ε)π
E[Ai′ ]

<
c

(1 + ε)π
· (1 + ε)π+q

πε

=
c(1 + ε)q

πε

<
c(1 + ε)

πε
Cj

The error is within an ε factor if π ≥ c(1+ε)
ε2 = O

(
1
ε2

)
, as desired. We can

assume the inequalities still hold without expectation by trying all values of
h.

So using Lemma 7 we can focus on well-struuctured solutions. The proof
of this lemma shows that solution OPT ′ is 1O well-structured ; 2O each sub-
schedule processes all jobs that appear in previous subschedules. Therefore, let
Dj be the completion time of jth job on the first subschedule that processes
at least j jobs in OPT ′, we know that

∑n
j=1Dj =

∑
j∈J C

′
j ≤ (1 + ε)opt.

Therefore, in order to find such an OPT ′, we can search for a solution among
all schedules satisfying 1O and 2O that minimizes

∑n
j=1Dj . We show this can

be done by a DP that runs in polynomial time if we have an algorithm for the
following subproblem.

Definition 4 (The subproblem) An instance of the subproblem is given by
i ∈ {1, . . . , Γ} and integers n′ ≤ n′′ ∈ {0, 1, . . . , n}. A solution is a schedule
that starts at time ti and finishes before time ti+1 that processes exactly n′′

jobs. The goal is to find a schedule that minimizes the total completion time of
jobs n′+1, . . . , n′′. For any feasible instance (i, n′, n′′), let Subi(n

′, n′′) denote
its optimal value.

We say an algorithm is (α, β)-approximation for the subproblem if for any
feasible instance (i, n′, n′′), it finds a schedule that starts at time αti and
finishes before time αti+1, and the total completion time of jobs n′+ 1, . . . , n′′

is at most αβSubi(n
′, n′′).

Lemma 8 If there is an (α, β)-approximation for the subproblem, then there
is an αβ(1 + ε) approximation for the GPS min-sum minimization problem.

Proof Suppose there is an (α, β)-approximation algorithm Alg. And let
Algi(n

′, n′′) be the value returned by Alg on instance (i, n′, n′′). For any
sequence 0 ≤ n̂1 ≤ · · · ≤ n̂Γ = n, we have

Γ∑
i=1

Algi(n̂i−1, n̂i) ≤ αβ
Γ∑
i=1

Subi(n̂i−1, n̂i)



18 Haozhou Pang, Mohammad R. Salavatipour

The solution is simply concatenating the schedules returned by Alg on
(i, n̂i−1, n̂i). The sequence of n̂i’s that minimizes the total completion time
can be found by the following DP: let Algi(n

′′) = Algi(0, n
′′). For all n′′ ≤ n

and for i = 2, . . . , Γ , let

Algi(n
′′) = min

n′≤n′′
Algi−1(n′) + Algi(n

′, n′′).

Therefore, the minimum is given by AlgΓ (n), and the DP has Γn2 entries
(Γ choices for i; n′, n′′ ≤ n). Let n∗1, . . . , n

∗
Γ be the values returned by the DP

that minimize
∑Γ
i=1 Algi(n̂i−1, n̂i), and let ni be the number of jobs finished

in OPTi. Thus, the total completion time of the solution that we find is at
most:

Γ∑
i=1

Algi(n
∗
i−1, n

∗
i ) ≤

Γ∑
i=1

Algi(ni−1, ni)

≤ αβ
Γ∑
i=1

Subi(ni−1, ni)

= αβOPT ′

≤ αβ(1 + ε)OPT

Lemma 9 If there is an α-approximation for the segmented GPS problem,
then there is an (α, 1 + ε)-approximation for the subproblem.

Proof Given an instance (i, n′, n′′) of the subproblem. We define the time

points t
(h)
i for h = 1, 2, . . . , π, such that

t
(h)
i = (1 + ε)hti

Naturally, the bounds in the segmented GPS problem is defined as Bh =

t
(h)
i − ti, and the numbers of jobs that have to be finished before every bound,
nh, can take all possible values as long as n1 ≤ · · · ≤ nπ = n′′. This create
O(nπ) instances of segmented GPS. We use the α-approximation algorithm
to solve all of them and simply return the one with smallest total completion
time over jobs n′ + 1, . . . , n′′.

Let Sub be an optimal solution of the subproblem instance and let
Subi(n

′, n′′) be its value. Consider the number of jobs that are finished be-
fore Bh, h = 1, 2, . . . , π in Sub. This is among the enumerated instances of
segmented GPS. Let Alg be the α-approximation on the enumerated in-
stance that is consistent with Sub, where consistent means the number of
jobs finished between Bi and Bi+1 in Alg is the same as in Sub, and de-
note the value of Alg by Algi(n

′, n′′). Let Alg starts at time αti, because
the makespan of Alg is at most α(ti+1 − t1), so Alg finishes before time
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αti+1 and it processes exactly n′′ jobs. Therefore, it only remains to show
Algi(n

′, n′′) ≤ α(1 + ε)Subi(n
′, n′′).

Let CAlgj and CSubj be the completion time of the jth job in Alg and

Sub, respectively. Suppose Bi−1 ≤ CSubj ≤ Bi, then we have αBi−1 ≤ CAlgj ≤
αBi = α(1 + ε)Bi−1 (since Bi/Bi−1 = (1 + ε)). Therefore, CAlgj ≤ α(1 +

ε)CSubj , for j ∈ {1, . . . , n′′}. This implies Algi(n
′, n′′) ≤ α(1 + ε)Subi(n

′, n′′),
as desired.

Theorem 8 follows from Lemmas 7, 8, and 9. Combining with the (1 + ε)-
approximation for the segmented GPS problem from Theorem 7, we obtain
a PTAS for the GPS min-sum minimization problem and hence prove The-
orem 3. The number of subproblems that we need to consider is O(Γn2) =

O(n2 log(mn)), and for each subproblem, we enumerate O(nπ) = O(n1/ε
2

)
instances of segmented GPS.

4.2 An O( logm
log logm )-approximation for Min-sum GPS

As mentioned earlier, the framework of using a min-max solver as a blackbox
to approximate a min-sum objective has been used in the past extensively. To
apply that here we first define the following variant of the problem:

Definition 5 (Throughput Maximization Given Bound B) Given an
instance of GPS and a bound B, what is the maximum number of jobs q that
can be finished before this bound? An α-approximation for this problem is an
algorithm that finishes q jobs within time αB.

For the ease of notation, we denote this problem as problem A. Then

Lemma 10 If there is an α-approximation for problem A, then there is an
O(α)-approximation for the min-sum objective.

Proof Given a black box that can approximate problem A within factor α,
we can obtain an O(α)-approximation for the min-sum objective as follows.
Let Sj be the set of jobs that finish between time 2j and 2j+1 in the optimal
schedule (regarding min-sum), and let nj = |Sj |. Therefore, by invoking the
solver for problem A, for each j, we can find a maximum set of jobs Qj with
size qj that can be scheduled within time α2j+1.

Our solution to the min-sum objective is the following: for j = 1, 2 . . . ,
schedule the jobs in Qj as suggested by the solver of problem A. Note that a
job might be scheduled multiple times in different Qj ’s, the completion time
of a job is the first time when it is completely scheduled. Consider the ith job
that finishes in our schedule, say i ∈ Sj . Then the completion time of ith job
in the optimal schedule is at least 2j . Consider the set of jobs Qj and note the
qj ≥ i. Therefore the completion time of the ith job in our schedule is at most

α
∑j+1
k=1 2k ≤ α2j+2. That is, the average completion time of our schedule is

at most 4α times the value of the optimal solution. This completes the proof.
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So it is enough to get an O( logm
log logm )-approximation for problem A (for

general m). The algorithm is similar to the one in Section 3.1, so we only

provide a sketch here. First, we select h = O( log1/6m
log logm ) terminal machines

that partition the machines into h − 1 equal size segments. Group the jobs
that cross the terminal machines together and do it recursively, we obtain
∆ = O(loghm) = O( logm

log logm ) classes of jobs. Let OPT be an optimal schedule
that completes q = q1 + · · · + q∆ jobs before given bound B, where q is the
maximum possible jobs that can be finished before time B and qi is the number
of jobs from class i. Consider the instance of problem A on a single class
of jobs. Similarly we consider the segment between two terminal machines
as the role of a single machine and define δ and γ accordingly. Then each
instance can be viewed as a special case of the segmented GPS problem when
π = 1, so the PTAS for the segmented GPS problem can be applied here.
That is, given bound B and let q∗i be the maximum number of jobs that can
be finished before B if we only consider jobs in class i, we have an algorithm
that finishes q∗i jobs before time (1 + ε)B. Note that q∗i ≥ qi. Therefore, if
we apply the PTAS on every class of jobs to obtain the q∗i many jobs from
each class i and sequentially glue them together, then we get a schedule that
finishes q∗1 + · · ·+ q∗∆ ≥ q1 + · · ·+ q∆ = q jobs before time (1 + ε)∆B, which is

a ∆ = O( logm
log logm )-approximation for problem A. Combining with the result

from Lemma 10, we get an O( logm
log logm )-approximation for min-sum objective

(for general m).

5 Hardness results

In this section, we present some hardness results for the Generalized Path
Scheduling problem for both makespan and min-sum objectives and prove
Theorenm 5. The problem that we use to prove the NP-hardness of our problem
is the 3-Partition problem, which is quite commonly used to prove NP-
hardness for different variants of scheduling problems. See [23] for an example.
Here we define the 3-Partition problem:

Definition 6 (3-Partition) Given 3t integers a1, a2, . . . , a3t and an integer
b, can we partition the 3t integers into t triples such that each triple has sum
equal to b?

Note that the 3-Partition problem is strongly NP-hard, and assuming
that each ai satisfies b/4 < ai < b/2 does not affect the NP-hardness [6].
The general idea of the reduction is that we view the 3t integers as 3t jobs
whose processing times are equal to the values of the integers. Some other jobs
are introduced to create so called gaps on the timeline of machines so that a
pre-defined bound D can be achieved if and only if we can perfectly fill the
gaps with the 3t jobs (i.e a solution to the 3-Partition instance). Details of
reduction are included in Sections 5.1 and 5.2.
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5.1 Makespan objective

Theorem 9 The Generalized Path Scheduling makespan minimization
problem is NP-hard.

Proof Suppose we are given a 3-Partition instance a1, . . . , a3t, and b. We
construct the following instance of GPS that uses n = 4t jobs and m = 4t− 2
machines. The processing times and paths of jobs are specified as follows.

We define two classes of jobs: the T-type jobs and the U-type jobs where:

T = {Ti|1 ≤ i ≤ t},
U = {Ui|1 ≤ i ≤ 3t}.

Job Ti has proc. time pTi = b and path PTi = {M2(t−i)+1),M4t−2i}; Ui has
proc. time pUi = ai and path PUi = {M2t,M2t}. And we define the bound
D = 2bt. We argue that a schedule of makespan at most D can be obtained if
and only if the 3-Partition instance has a solution.

First suppose there is a good partition into triples of the desired form.
Consider the T-type jobs on machine M2t. Job Ti will arrive at machine M2t

at time (2i − 1)b. Observe that every T-type job has length 2bt, so none of
them can be delayed, otherwise, the bound D is exceeded. More precisely, job
Ti must use machine M2t during time [(2i− 1)b, 2ib]. Therefore, there is a gap
of size b between Ti and Ti+1 on machine M2t, and we can use the t triples of
U-type jobs to fill the gaps. And the makespan of the schedule is exactly D,
as desired.

Conversely, Suppose there does not exist a good partition, then there is a
U-type job u that cannot be fitted into one of the gaps. Job u cannot delay
T-type jobs so u cannot start processing until time 2bt so the makespan is at
least D + pu > D.

5.2 Min-sum objective

Theorem 10 The Generalized Path Scheduling min-sum minimization
problem is NP-hard.

The NP-hardness proof generalizes the idea in [7], which shows the NP-
hardness of the 2-machine flowshop problem. Similar to the proof of Theorem
9, we reduce the 3-Partition problem to the GPS min-sum minimization
problem by using a class of jobs to create gaps and using some other jobs to
fill the gaps and check the existence of a solution to the 3-Partition instance.
The analysis is more involved.

Proof For a given instance of 3-Partition a1, . . . , a3t and b, we define the
parameters that are used throughout the proof as:

u = 3tb+ 1
v = u+ 3tb+ tu+ t(t− 1)u(b+ 1)/2
g = uv + b+ 1
x = 2(t+ 2)g + v
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We then construct the corresponding instance of the GPS problem. The
machines M1,M2, . . . ,Mtg+1 form a path, and we introduce four classes of
jobs:

T = {Ti|0 ≤ i ≤ t} |T | = t+ 1

X = {Xi|1 ≤ i ≤ v} |X| = v

V = {Vi|1 ≤ i ≤ (u− 3)t} |V | = (u− 3)t

W = {Wi|1 ≤ i ≤ 3t} |W | = 3t

The T-type jobs are used to create gaps. For all 0 ≤ i ≤ t, job Ti has processing
time pTi = 1 and path PTi = {M(t−i)g+1,Mtg+1}. Observe that if we ignore
the presence of other jobs, those t+ 1 many T-type jobs create t gaps of size
g − 1 on machine Mtg+1. Those gaps will be used to test the existence of a
solution to the 3-Partition instance. For the ease of notation, we denote the
last machine Mtg+1 by Ml.

However, for the gaps to be fixed, we need to ensure that every T-type job
Ti, 0 ≤ i ≤ t, is scheduled on machine Ml immediately as soon as it becomes
ready. To achieve this, we introduce another class of jobs, the X-type jobs:

For all 1 ≤ i ≤ v, job Xi has processing time pXi = x and path PXi =
{Ml,Ml}. Intuitively, the X-type jobs only run on the last machine and their
processing time x is chosen to be large enough so that any reasonable schedule
would process them at the end. Moreover, the value of v is chosen such that
if job Tt is delayed even for one unit of time, the total completion time will
exceed the pre-defined bound D.

The V-type jobs and W-type jobs are used to fill the gaps. For all 0 ≤
i ≤ (u − 3)t, job Vi has processing time pVi = v and path PVi = {Ml,Ml};
and for all 0 ≤ i ≤ 3t, job Wi has processing time pWi = v + ai and path
PWi

= {Ml,Ml}, where the ai’s come from the 3-Partition instance. The
purpose of V-type jobs and W-type jobs is that if there exists a good partition
of integers into triples, then we can fit three W-type jobs (representing the
integers) and (u− 3) V-type jobs in the gap created by Ti and Ti+1 (the gap
size is g − 1 = uv + b, sum of W-type jobs is 3v + b, and the sum of V-type
jobs is (u − 3)v). Observe that we have in total u jobs inside each gap, the
value of u is chosen to ensure that each job Ti, for 0 ≤ i ≤ t− 1, is scheduled
immediately after it becomes ready on Ml. Therefore, a delay of even one unit
of time on those u many jobs would result in exceeding the pre-defined bound
D on total completion time.

Note that the number of jobs we have is (u+ 1)t+ v + 1, and the number of
machines is tg+1 (u, v, g are all poly(tb) based on their definitions). Therefore,
the size of the instance, though large, is still polynomially bounded by tb.

Combine the V-type jobs and W-type jobs as U-type jobs, i.e. U = V ∪W .
We define the bound on the total completion time by D = T̂ + X̂ + Û , where
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T̂ =

t∑
i=0

(ig + 1) = t+ 1 +
t(t+ 1)g

2

X̂ =

v∑
i=1

(tg + 1 + ix) = v(tg + 1) +
v(v + 1)x

2

Û = 3tb+

t−1∑
i=0

 u∑
j=1

(jv + ig + 1)


= 3tb+ tu+

t(t− 1)u(b+ 1)

2
+
tu(tu+ 1)v

2

Then it only remains to show that there exists a partition of integers into
triples with sum b if and only if there exists a schedule of total completion
time at most D.

Suppose there is a good partition A1, A2, . . . , At such that Ai =
{ai1 , ai2 , ai3} and

∑3
j=1 aij = b for all i. Consider the following natural sched-

ule: all T-type jobs start running from their starting machine towards Ml since
time 0 and never wait for any other jobs. All X-type jobs start running one
by one on Ml since time tg + 1. Consider machine Ml. There are t gaps of
size g − 1 = uv + b before time tg + 1 between T-type jobs. For each gap, we
schedule (u − 3) V-type jobs and 3 W-type jobs (taken from corresponding
triple), which takes time exactly uv+ b. The feasibility of the schedule should
be straightforward to verify, because a good partition would suggest how to
fill those t gaps perfectly without conflicts.

The next step is to calculate the total completion time of the proposed
schedule. The sum of completion times of U-type jobs is:

∑
j∈U

Cj =

t−1∑
i=0

 u∑
j=1

(jv + ig + 1) + 3ai1 + 2ai2 + ai3


<

t−1∑
i=0

 u∑
j=1

(jv + ig + 1)

+ 3

3t∑
i=0

ai (1)

= Û

The first equality of (1) is because there are u many U-type jobs (u − 3
many V-type jobs and three W-type jobs) between the gap created by Ti and
Ti+1. Those u − 3 many V-type jobs start running one by one since time
(ig+ 1), and the three W-type jobs are scheduled at the end. The order of the
W-type jobs does not matter, without loss of generality, we assume the job
representing ai1 is scheduled first, followed by ai2 and ai3 , that’s why we have
the additive term 3ai1 + 2ai2 + ai3 in the equality.
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Also, note that the sum of completion times of T-type jobs is exactly T̂ ,
and the sum of completion times of X-type jobs is exactly X̂. Therefore, the
total completion time of the proposed schedule is less than T̂ + X̂ + Û = D,
as wanted.

Conversely, suppose there is a schedule with total completion time upper
bounded by D. Then we show that there must exist a good partition. The
basic idea is we show the properties that a good schedule must have, then we
are able to conclude that if a good schedule exists, it must be like the one
described in the previous discussion. Then the desired partition will be given
by the W-type jobs that are grouped in each gap.

For a job j, let S(j) denote the starting time of j on machine Ml. Without
loss of generality, we can make the following assumptions on the properties
that a good schedule should have:

Property 1 : T-type jobs are not delayed on machines M1,M2, . . . ,Mtg. This
is because all T-type jobs have the same processing time and distinct starting
machines. So assuming all T-type jobs start running at time 0, they will never
conflict with any other jobs until the last machine Ml. This implies that Ti
becomes ready on Ml at time ig, for 0 ≤ i ≤ t.

Property 2 : S(Ti) < S(Ti+1), for 0 ≤ i ≤ t. This is because all T-type jobs
have the same processing time. So if S(Tj) > S(Tj+1) for some j. We can just
swap the order of Tj and Tj+1 without changing the value of the solution.

Property 3 : Similarly, we can order the X-type jobs such that S(Xi) <
S(Xi+1), 1 ≤ i ≤ v − 1. Because all X-type jobs are identical.

Property 4 : Let Σ be a good schedule having all previous properties, then all
X-type jobs must start running at or after time tg+1 in Σ. i.e., S(Xi) ≥ tg+1,
1 ≤ i ≤ v.

Suppose Σ is a minimum total completion time schedule satisfying all
previous properties, but there is a job Xi such that S(Xi) < tg + 1 in Σ.
Consider the first such job from X and so it must be X1. Moreover, by the time
X1 finishes, all jobs are ready to be scheduled on Ml. Therefore, in order to
minimize the total completion time, we must schedule those jobs by processing
the faster jobs first. Next, we show that if such a job X1 exists, then Σ cannot
be a good schedule.

Note that the completion time of X1 is no earlier than x, and all other
X-type jobs must be scheduled at the end. So we can obtain a lower bound
lb(X) on the total completion time of X-type jobs:

lb(X) = x+

v−1∑
i=1

(x+ tg + 1 + ix) = X̂ − tg − 1
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Since S(X1) < tg + 1, jobs Tt has to wait until X1 finishes on Ml. Also,

the total completition times of jobs T0, . . . , Tt−1 is at least
∑t−1
i=0(ig + 1). So

we obtain a lower bound lb(T ) on the total completion time of T-type jobs:

lb(T ) =

t−1∑
i=0

(ig + 1) + x = T̂ + (t+ 4)g + v − 1

Also, a trivial lower bound lb(U) on the total completion time of U-type
jobs can be obtained by viewing them all as V-type jobs (ignore the ai term
of W-type jobs). Then we can schedule them one by one:

lb(U) =

tu∑
i=1

(iv) =
tu(tu+ 1)v

2

= Û −
[
3tb+ tu+

t(t− 1)u(b+ 1)

2

]
︸ ︷︷ ︸

δ

Therefore, the total completion time of Σ is at least: lb(T )+lb(X)+lb(U) =
T̂ + X̂ + Û + v− δ+ 4g− 2. Since v > δ and 4g > 2, the total completion time
exceeds the bound D, so Σ cannot be a good schedule.

Property 5 : Suppose Σ is a good scheduling with minimum total completion
time. Then 1O S(X1) = tg + 1 and 2O Ml is not idle before time tg + 1.

We first show 1O. From property 4 we know that S(X1) ≥ tg + 1. For the
sake of contradiction, suppose S(X1) > tg+ 1, then the total completion time
of X-type jobs is at least:

v∑
i=1

(tg + 2 + ix) = X̂ + v

The total completion time of T-type jobs is at least T̂ , and the lower bound
lb(U) = Û − δ (from Property 4) still holds. Adding them up, since v > δ,
the total completion time of Σ is greater than D. Hence Σ cannot be a good
schedule.

For 2O, observe that the sum of processing times on Ml over all T-type,
X-type, and U-type jobs is equal to t+1+(u−3)tv+ tb+3tv, which is exactly
tg + 1. From 1O we know that S(X1) = tg + 1. Therefore, if Ml is idle before
time tg+ 1, there will be a job j that is faster than X1 but get processed after
X1. So if we swap the order of j and X1 on Ml, we get a feasible schedule with
smaller total completion time. This contradicts with the optimality of Σ.
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Property 6 : In a good schedule Σ, on machine Ml, every T-type job Ti is
preceded by exactly iu many U-type jobs, 0 ≤ i ≤ t. i.e., there are exactly u
many U-type jobs between Ti and Ti+1.

For the sake of contradiction, suppose job Ti is preceded by less than iu
U-type jobs. Then the total processing times of jobs that start on Ml before
Ti is at most i+(iu−1)v+ tb, which is less than ig. From Property 1 we know
that Ti becomes ready on Ml at time ig. So machine Ml is idle before time ig,
so before tg + 1. This contradicts with Property 5.

Conversely, suppose job Ti is preceded by more than iu U-type jobs. Then
the total amount of jobs that start on Ml before Ti is at least i+ (iu+ 1)v =
ig − ib + v. Therefore, S(Ti) ≥ ig − ib + v, and the total completion time of
T-type jobs is at least:

t∑
i=0

(ig + 1)− ib+ v = T̂ − ib+ v

By Properties 4&5, the total completion time of X-type jobs is at least X̂.
The lower bound lb(U) = Û − δ from Property 4 still holds here. Therefore,
the total completion time of Σ is at least

T̂ + X̂ + Û − ib+ v − δ

Recall that v = u+ 3tb+ tu+ t(t− 1)u(b+ 1)/2 = u+ δ. Since u > ib, this
value exceeds D, so Σ cannot be a good schedule.

Property 7 : In a good schedule Σ, S(Ti) = ig, for 0 ≤ i ≤ t.
From Property 1, S(Ti) ≥ ig. For the sake of contradiction, suppose

S(Ti) > ig for some i. By Property 6, there are exactly u many U-type jobs
between Ti and Ti+1. So the total completion time of those u jobs is at least∑u
j=1(ig + 2 + jv). Therefore we obtain another lower bound on the total

completion time of U-type jobs:

lb(U) =

t−1∑
i=0

 u∑
j=1

(jv + ig + 1)

+ u

= Û − 3tb+ u (2)

= Û + 1

The additive u in the first equation of (2) is because all the u jobs between
Ti and Ti+1 are additionally delayed by at least one unit of time. Combining
with the lower bounds on T-type and X-type jobs, the total completion time
of Σ is at least T̂ + X̂ + Û + 1 > D, so Σ is not a good schedule.

After showing the properties that a good schedule must have, we are ready
to prove Theorem 10. Suppose there exists a good schedule Σ, then in Σ,
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job Ti starts processing on machine Ml at time ig, so there is a gap of size
g − 1 = uv + b between Ti and Ti+1. Also, there are exactly u many U-type
jobs between Ti and Ti+1, recall that V-type jobs have processing time v and
W-type jobs have processing time v+ai, where ai is between b

4 and b
2 , so there

must be exactly three W-type jobs inside each gap. These disjoint triples of
W-type jobs form the desired partition. This completes the NP-hardness proof
and concludes this section.

6 Conclusion

We have proposed two O( logm
log logm )-approximation algorithms for the GPS

problem under the makespan and min-sum objectives, and a PTAS for when m
is sub-logarithmic. The problem of getting an O(1)-approximation algorithm
for the GPS is still open for both objectives. The furthest-to-go algorithm
seems plausible as it gives the optimal solution for the non-nested instances
[11] and we do not know any example showing that the congestion/dilation
lower bound is violated by more than a small constant factor by the furthest-to-
go algorithm. It is also worth pointing out that, for the makespan objective,
if one can show every fixed priority gives O(1)-approximation for instances
in which all jobs have the same end machine, then furthest-to-go gives O(1)-
approximation for GPS. This is because for any machine Mi in a GPS instance,
if Ji is the set of jobs that use Mi, then none of the jobs in Ji will be delayed by
any job in J−Ji before machine Mi. The priority among jobs in Ji is defined by
their destinations. Therefore, if every fixed priority gives O(1)-approximation
for instances with same end machine, then the furthest-to-go algorithm gives
O(1)-approximation for the completion time of every machine, hence for the
makespan of the schedule.
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