
Approximation Algorithms for Non-Uniform Buy-at-Bulk Network Design

C. Chekuri∗ M. T. Hajiaghayi† G. Kortsarz‡ M. R. Salavatipour§

Abstract

We consider approximation algorithms for non-uniform
buy-at-bulk network design problems. The first non-
trivial approximation algorithm for this problem is due to
Charikar and Karagiozova (STOC’ 05); for an instance on
h pairs their algorithm has an approximation guarantee of
exp(O(

√
log h log log h)) for the uniform-demand case, and

log D · exp(O(
√

log h log log h)) for the general demand
case, where D is the total demand. We improve upon this
result, by presenting the first poly-logarithmic approxima-
tion for this problem. The ratio we obtain is O(log3 h ·
min{logD, γ(h2)}) where h is the number of pairs and γ(n)
is the worst case distortion in embedding the metric induced
by a n vertex graph into a distribution over its spanning
trees. Using the best known upper bound on γ(n) we obtain
an O(min{log3 h·logD, log5 h log log h}) ratio approxima-
tion. We also give poly-logarithmic approximations for some
variants of the singe-source problem that we need for the
multicommodity problem.

1 Introduction

Buy-at-bulk network design problems arise in settings
where economies of scale and/or the availability of capac-
ity in discrete units result in concave or sub-additive cost
functions on the edges. One of the main application areas
is in the design of telecommunication networks. The typ-
ical scenario is that capacity (or bandwidth) on a link can
be purchased in some discrete units u1 < u2 < . . . < ur

with costs c1 < c2 < . . . < cr such that the cost per band-
width decreases c1/u1 > c2/u2 > . . . > cr/ur. The ca-
pacity units are sometimes referred to as cables or pipes.
The cables induce a monotone concave (or more generally
a sub-additive) function f : R+ → R+ where f(b) is the

∗Dept. of Computer Science, University of Illinois, Urbana-Champaign.
Email: chekuri@cs.uiuc.edu. This work was done while the author
was at Lucent Bell Labs.

†Department of Computer Science, Carnegie Mellon University. Email:
hajiagha@cs.cmu.edu.

‡Department of Computer Science, Rutgers University-Camden. Email:
guyk@crab.rutgers.edu.

§Department of Computing Science, University of Alberta. Email:
mreza@cs.ualberta.ca. Supported by NSERC and a faculty start-up
grant.

minimum cost of cables of total capacity at least b. A ba-
sic problem that needs to be solved in this setting the fol-
lowing: given a set of bandwidth demands between pairs of
vertices, install sufficient capacity on the links of an underly-
ing network topology so as to be able to route the demands.
Formally, we are given an undirected graph G = (V, E) on
n vertices that represents the network topology and a set of
h demand pairs T = {s1t1, s2t2, . . . , shth}. Pair i has a
non-negative demand di. Routing of the demands consists
of finding a feasible multicommodity flow for the pairs in
which for 1 ≤ i ≤ h, di flow is sent from si to ti. The ob-
jective is to minimize the cost of the flow. The cost of the
flow is given by

∑
e f(xe) where xe is the total flow on edge

e. In this paper we consider a more general problem where
the function f can vary depending on the edge; that is for
each edge e ∈ E there is a given monotone sub-additive cost
function fe : R+ → R+. The goal is again to find a min-
imum cost feasible multicommodity flow for the demands;
the cost of the flow in the more general setting is

∑
e fe(xe).

We refer to this problem as MC-BB.
We refer to the simpler case where fe is the same for all

edges as the uniform problem and the general case as the
non-uniform problem. An instance is called a single-source
instance if all the pairs have a common source s; we use
SS-BB to refer to such instances. A typical telecommuni-
cations problem with discrete capacity units gives rise to a
uniform problem. However non-uniform cases arise often
for several reasons including the following. First, not all
capacity units are available at all links due to various con-
straints. Second, when designing networks incrementally,
existing links can have different quantities of spare capacity
available and this leads to non-uniformity.

For algorithmic purposes it is convenient to approximate
each function fe by a collection of simple piece-wise linear
functions of the form a + bx. We replace an edge e with
cost function fe by a a collection of parallel edges, one for
each of the simpler linear functions. We can find such a re-
duction1 to preserve the value of the solutions to the network
design problems to within a factor that is arbitrarily close to

1For discrete cable types Andrews and Zhang [3] pointed out this re-
duction and subsequently Meyerson et al. [21] used it for arbitrary con-
cave functions. Given a function f : R+ → R+, and a fixed ε ≥ 0,
for integer i ≥ 0 let gi : R+ → R+ be a linear function defined by
gi(x) = f(ai) + f(ai)/ai · x where a = (1 + ε). It can be verified that
if f is monotone and sub-additive then for all x ≥ 1, 1

2+ε
mini gi(x) ≤

f(x) ≤ mini gi(x).

2. This allows us to reformulate the buy-at-bulk network de-
sign problem as a two-cost network design problem. In the
two-cost network design problem we are given two separate
edge-weight functions c : E → R+ and � : E → R+. For
an edge e ∈ E, we let ce and �e denote the cost and length
of e. We think of ce as the fixed cost of e and �e as the in-
cremental or flow-cost of e. Thus for xe > 0, a flow of xe

on e costs ce + �exe. Now consider the problem of routing
the demands for the given pairs. A feasible solution consists
of a set of edges E′ ⊆ E and a routing of flow in G[E′] for
each given pair. We observe that it is optimal for each pair
to route all its flow along a shortest path in G[E′] where the
length of the path is computed using the function �. This also
shows that unsplittable routing of the flow for each pair does
not cost more than a factor of 2 in buy-at-bulk network de-
sign. We can now formalize the network design problem as:
find E′ ⊆ E to minimize the following cost measure.

min
E′⊆E

c(E′) +
h∑

i=1

di · �E′(si, ti)

In the above objective function, �E′(u, v) is the shortest
�-path in G[E′] and c(E′) =

∑
e∈E′ ce. In the rest of the

paper we restrict our attention to the two-cost network design
problem and the objective function above. The first term in
the total cost (i.e. c(E′)) is referred to as the fixed cost and
the second term (which involves lengths) is referred to as the
incremental cost. Note that the reformulation of the problem
in this way allows us to avoid an explicit reference to flow.

We also consider variations of MC-BB and SS-BB that
require only a subset of pairs to be connected. Let T =
{s1t1, s2t2, . . . , shth}. For a subset T ′ ⊆ T we let OPT(T ′)
denote the value of an optimum solution that connects the
pairs in T ′. In the density problem, we seek to find a sub-
set of pairs T ′ such that OPT(T ′)/|T ′| is minimized. A re-
lated problem is obtained when for a given integer parameter
k ≤ h we seek to find T ′ ⊆ T with |T ′| = k such that
OPT(T ′) is minimized. We use den-MC-BB and den-SS-BB
to refer to the density problems and k-MC-BB and k-SS-BB
for the k versions. Although these variants have been consid-
ered in the context of simpler network design problems be-
fore, they have been recently studied in [16] for two-cost net-
work design. In [16], the problem k-SS-BB is referred to as
the buy-at-bulk k-Steiner tree problem and the k-MC-BB is
referred to as the buy-at-bulk k-multicommodity flow prob-
lem.

The MC-BB problem contains as special cases classic
NP-hard connectivity problems such as the Steiner tree prob-
lem and its gener alization, the Steiner forest problem. We
therefore focus on polynomial time approximation algo-
rithms. For MC-BB the only previously known non-trivial
approximation ratio is due to Charikar and Karagiazova [6].
They gave a simple and elegant algorithm and showed that it
achieves a log D · exp(O(

√
log h log log h)) approximation

In this paper we obtain the first poly-logarithmic approxima-
tion.

Theorem 1.1 There is a polynomial time algorithm for
MC-BB with an O(min{log3 h log D, log5 h log log h}) ap-
proximation ratio.

We remark that the O(log5 h log log h)-approximation al-
gorithm uses an LP rounding based algorithm as a sub-
routine while the O(log3 h·log D)-approximation is a greedy
combinatorial algorithm. Note that for very large values of
D (e.g. exponential in h) our approximation ratio is inde-
pendent of D. More specifically, our algorithm achieves an
O(γ(h2) log3 h)-approximation where γ(n) is the worst case
upper bound on the distortion in embedding a finite metric
induced by a n vertex weighted undirected graph into a prob-
ability distribution over its spanning trees. It is known that
γ(n) = O(log2 n log log n) [10] and that γ(n) = Ω(log n)
[1]. An algorithm for den-SS-BB is an important component
in proving the above theorem.

Theorem 1.2 There is a polynomial time O(log2 h)-
approximation for den-SS-BB.

As a byproduct, using this theorem, we obtain the follow-
ing which improves one of the results in [16].

Corollary 1.3 There is an O(log2 h · log D)-approximation
for k-SS-BB.

This paper combines results first obtained in [16, 17] and
subsequent work in [7].

Related Work: We briefly discuss related work. Buy-
at-bulk network design problems have been considered in
both Operation Research and Computer Science literatures
in the context of flows with concave costs. Salman et al.
[22] were perhaps the first to consider approximation algo-
rithms, in particular for the single-source version. For the
uniform case of MC-BB, Awerbuch and Azar [4] gave a
simple reduction to the problem of minimizing the distor-
tion in approximating a finite metric by random tree met-
rics; using the best known distortion result [11] yields an
O(log n)-approximation. Some special cases of the prob-
lem admit constant factor approximation algorithms. Kumar
et al. [19] and Gupta et al. [12] obtain constant factor ap-
proximation algorithms for the rent-or-buy problem where
f(x) = min{µx, M}. Constant-factor approximations are
known also for the uniform single-source case via random-
ized combinatorial algorithms [14, 13] and an LP rounding
approach [23]. For SS-BB, an O(log h) randomized approx-
imation was given first by Meyerson, Munagala and Plotkin
[21]. In [8], the algorithm of [21] was derandomized using
an LP relaxation - this also established an O(log h) integral-
ity gap for the relaxation. Andrews [2] showed that constant
factor approximations are unlikely for the multicommodity
versions: he showed an Ω(log1/4−ε n) factor hardness of ap-
proximation for the uniform case and an Ω(log1/2−ε n) fac-
tor for the non-uniform case. Chuzhoy et al. [9] showed an

2

Ω(log log n) hardness for SS-BB. These hardness results are
based on the assumption that NP �⊆ ZPTIME(npolylog(n)).

Although the O(log h) algorithm [21] for SS-BB is rel-
atively simple, it seemed that obtaining a poly-logarithmic
approximation for MC-BB was more challenging. As we
mentioned already, in a recent work, Charikar and Kara-
giozova [6] gave an (log D · exp(O(

√
log h log log h)))-

approximation algorithm. They posed two open problems:
(i) obtaining a poly-logarithmic approximation for the unit-
demand case, and (ii) obtaining an approximation algorithm
with ratio independent of D. In this paper we resolve both.

1.1 Overview of Algorithmic Ideas

We briefly outline the high level ideas behind our algo-
rithm for MC-BB. The algorithm follows a greedy scheme
in an iterative fashion. In each iteration it finds a partial so-
lution that connects a subset of the pairs that remain at the
beginning of the iteration. The connected pairs are then re-
moved. The density of the partial solution is the ratio of the
total cost of the partial solution to the number of pairs in the
solution. For some fixed constant a, the algorithm guarantees
that the density of the partial solution it computes is at most
O(loga h) ·OPT′/h′ where h′ is the number of remaining ter-
minals and OPT′ is the cost of an optimum solution for them.
Using standard set-cover type analysis, this scheme yields an
O(loga+1 h)-approximation.

The key insight in computing a low-density partial solu-
tion is to show the existence of one with a very restricted
structure. The structure allows us to find a near-optimal par-
tial solution in polynomial time. The restricted structure of
interest is what we call a junction-tree. Given a subset A of
the pairs, a junction tree for A rooted at r is a tree T contain-
ing the end points of all pairs in A such that for each pair in
A, the unique path in T for the pair contains r. The cost of
the junction-tree T is

∑
e∈E(T)

ce +
∑

siti∈A

di · (�T (r, si) + �T (r, ti)).

In other words the pairs in A connect via the junction r. Note
that if the set A and r are known, a junction-tree is essen-
tially an instance of the single-source problem SS-BB. We
prove that given an instance of MC-BB there is always a low
density partial solution that is a junction-tree. We give two
different proofs; one achieves a better bound (by a logarith-
mic factor) for the uniform case while the other achieves a
bound independent of D for the general case.

We can thus focus on finding a junction-tree of lowest
density. Note that we can assume knowledge of the root of
the tree. This problem can be seen to be closely related to the
problem den-SS-BB. We present two different methods to
compute a low density junction tree. For arbitrary demands
we use an LP relaxation to solve the problem approximately.
In particular we use the LP relaxation for SS-BB proposed
in [8]. Using the O(log h) upper bound on its integrality gap

we obtain an O(log2 h)-approximation for den-SS-BB and
by a slight modification a similar ratio for finding the best
density junction-tree. For the case that D is polynomial in
h, we present a greedy algorithm, that is simple and efficient
to implement. Putting together these ingredients gives us the
poly-logarithmic approximation for MC-BB.

Organization: In the next section we present some notation
used throughout the rest of the paper. Section 3 describes
our two proofs of the existence of low-density junction trees.
In Section 4 we present the approximation algorithm for ar-
bitrary demands based on an LP rounding based algorithm
for den-SS-BB. Section 5 describes a greedy approximation
algorithm for MC-BB with polynomially bounded demands.
Finally, we discuss some open problems.

2 Preliminaries

Let T denote the set of source-sink pairs in the given in-
stance and h = |T |. The variable h′ is used to denote the
number of uncovered pairs remaining at some stage of the
algorithm. If all demands di are equal then, by scaling down
the demands, we can assume they are all equal to 1. For this
reason we refer to it as a unit-demand instance.

For an optimum solution for the given instance, the to-
tal cost, fixed cost, and incremental cost is denoted by OPT,
OPTc, and OPT�, respectively. Note that by definition OPT =
OPTc + OPT�. For a subset E′ ⊆ E, the distance �E′(u, v)
is the distance between u, v in the graph induced by E′. If
the graph G[E′] induced by E′ contains an si to ti path,
we say that E′ routes or covers the pair si, ti. The num-
ber of pairs routed in G[E′] is denoted by T (E′). Assume
T ′ = T (E′) ⊂ T does not contain all the source-sink pairs
and that G[E′] routes all the pairs of T ′ but no other pair. The
fixed cost and incremental cost of E′ are c(E′) =

∑
e∈E′ ce

and R(E′) =
∑

i:siti∈T ′ di ·�E′(si, ti), respectively. The to-
tal cost of partial solution E′ is ψ(E′) = c(E′)+R(E′). The
total density of partial solution E′ is ψ(E′)/|T ′|. We also
define the fixed cost density and incremental cost density of
solution E′ as c(E′)/|T ′| and R(E′)/|T ′|, respectively.

We may drop some of the parameters in our notation if
they can be deduced from the context. Unless specified dif-
ferently all log’s are in base 2. We use the following propo-
sition (see e.g., [18]).

Proposition 2.1 Suppose that an algorithm works in itera-
tions and in iteration i it finds and adds to the partial (in-
feasible) solution a subset Ei ⊆ E that covers a new subset
Ti ⊆ T of pairs. Let ui be the number of uncovered pairs be-
fore iteration i. If for every i, ψ(Ei)/|T (Ei)| ≤ f(h) · OPT

ui

then the total cost of the solution output by the algorithm is
at most f(h) · (1 + lnh) · OPT.

3

3 Two junction tree lemmas

In this section we prove the existence of low-density junc-
tion trees. We give two proofs, one that yields a bound that
is independent of D and another one that yields a stronger
bound for unit-demands and polynomially bounded D.

3.1 A lemma for arbitrary demands

In this subsection, we prove the existence of a low-
density junction tree such that the density does not depend
on D. This will be used to develop an O(γ(h2) · log3 h)-
approximation for MC-BB with general demands.

Lemma 3.1 Given an instance of MC-BB on h pairs there
exists a junction-tree of density O(γ(h2)) · OPT

h .

We establish the bound on the density via a useful fact
- there is an O(γ(h2))-approximate solution to the MC-BB
where the set of edges chosen induces a forest. We require
the following Lemma and Theorem.

Lemma 3.2 Given an instance of MC-BB on G = (V, E)
there is an optimum solution E∗ ⊆ E such that the num-
ber of vertices in G[E∗] of degree more than 2 is at most
min(n, h2).

Theorem 3.3 Given an instance of MC-BB on G = (V, E)
there is an O(γ(h2))-approximate solution E′ ⊆ E such that
G[E′] is a forest.

Proof. Consider an optimum solution E∗. Without loss of
generality we assume the G[E∗] is connected. Recall that
the cost of the solution is c(E∗) +

∑
i di · �E∗(si, ti). From

the definition of γ(n), there is a probability distribution over
the spanning trees of G with the following property: for any
pair of vertices uv, their expected distance in a tree chosen
from the distribution is at most γ(n) times their distance in
G. Using linearity of expectation, this implies the existence
of a tree T in G[E∗] such that

∑
i

di · �T (si, ti) ≤ γ(n) ·
∑

i

di · �E∗(si, ti).

Since the edges of T are a subset of those in E∗, it follows
the E(T) is a γ(n)-approximation to the optimal solution
E∗. We can use Lemma 3.2 to improve the bound to γ(h2)
when h is small compared to n. �

We now work with the approximate forest guaranteed in
the proof of Theorem 3.3. We can assume without loss of
generality that any internal vertex of the forest is either a
terminal or a vertex of degree more than 2, otherwise we
can remove the vertex of degree 2 and merge the two edges
incident to the vertex into a single edge. This transformation
can be done without affecting the essential properties of the
solution, including its cost. In the transformed instance the
total number of vertices is Θ(h).

Proof of Lemma 3.1. For simplicity we assume that the
forest solution guaranteed by Theorem 3.3 consists of single
tree T . From the above discussion we can assume that T
has Θ(h) vertices. From T we obtain a collection of rooted
subtrees T1, T2, . . . , Ta with roots r1, r2, . . . , ra. These sub-
trees have the following properties: (i) any edge e ∈ E(T)
is in at most O(log h) of the subtrees, and (ii) for every
pair siti there is exactly one index ρ(i) such that both si, ti
are in Tρ(i); further rρ(i) is the least common ancestor of
si and ti in Tρ(i). Let Tj denote the set of pairs siti such
that ρ(i) = j. Thus the sets Tj , j = 1, . . . , a partition T .
Note that each subtree Tj is a junction-tree for Tj . We now
claim that one of these subtrees is the desired one. Since
the subtrees partition the pairs, it is sufficient to prove that
the total cost of the junction-trees is O(γ(h2))OPT. The to-
tal cost of the junction-trees is composed of the fixed cost
of the edges and the incremental cost of the pairs. Since an
edge of T is in at most O(log h) subtrees, the total fixed cost
of the subtrees is O(log h)

∑
e∈E(T) ce. From Theorem 3.3,

this is at most O(log h)OPTc. The incremental cost of a pair
siti in Tρ(i) is the same as its incremental cost in T . Thus
the total incremental cost of the pairs in the junction-trees
is the same as that of T . From Theorem 3.3 the incremen-
tal cost of the pairs in T is O(γ(h2))OPT�. Using the fact
that γ(n) = Ω(log n) we obtain that the total cost of all the
junction trees is O(γ(h2)) · (OPTc + OPT�).

We now construct the subtrees with the required prop-
erties using a simple recursive procedure. Given T we
pick a centroid r1, that is a vertex whose removal results
in connected components the largest of which has at most
2|V (T)|/3 vertices. Such a centroid always exists. The pro-
cedure adds the tree T rooted at r1 to the collection. It then
removes r1 from T and applies the procedure recursively to
each of the resulting connected components. The output of
the procedure consists of T1 along with all the trees returned
by the recursive calls. Note that the pairs that have r1 on their
path do not participate in any of the recursive calls since they
are separated on the removal of r1. This ensures that each
pair siti has exactly one subtree which has both si and ti,
and further the root of the subtree is on their unique path.
The depth of the recursion is O(log h) since the number of
vertices in the trees is decreasing by a factor of 2/3 in each
level. Further, it can be seen that any edge e ∈ E(T) is in
at most one of the trees output at each level of the recursion.
Thus the subtrees output by the recursive procedure satisfy
the two desired properties and this finishes the proof. �

3.2 A lemma for D polynomial in h

In this subsection we give a different proof for the exis-
tence of junction trees which yields a better bound if D is
polynomial in n. For this case we can reduce the problem to
the uniform case by duplicating sources and sinks. We prove
that there is a junction tree of density O(log h) · OPT

h . In fact,
this lemma can also be applied for arbitrary D. The density

4

of the junction tree resulting is O(log h) OPT
D . This does not

seem very useful for very large D as Proposition 2.1 implies
that the ratio will contain a log D factor.

Lemma 3.4 Given an instance of MC-BB with unit demands
there is a junction-tree of density O(log h) OPT

h . For the gen-
eral case with total demand D, there exists a junction-tree of
density O(log h) · OPT

D .

We first restrict our attention to the uniform demand
case and prove the existence of a junction-tree of density
O(log h) OPT

h . Given an arbitrary instance we can obtain a
unit-demand instance by duplicating the terminals. From the
argument for the unit-demand case it follows that there is a
junction-tree of density O(log D) OPT

D . We later show that
we can prove a stronger bound of O(log h) OPT

D .
We prove the lemma using several claims. Consider an

optimum solution E∗ to the given instance and let G∗ =
G[E∗]. Let OPTc and OPT� be the fixed and incremental cost
of E∗. Let L =

∑
i �E∗(si, ti)/h be the average length of

the pairs in the optimum solution (i.e. the incremental den-
sity of E∗). In the following we assume the knowledge of
E∗ and hence we only prove the existence of the junction
tree. We give an algorithm to decompose G∗ into connected
vertex-disjoint induced subgraphs G1 = G[V1], . . . , Gk =
G[Vk] and also associate with each Gi a subset of pairs T ′

i

with both end points in Gi. This decomposition has several
properties that we describe next. Let T ′ = �iT ′

i be the set
of pairs that are preserved in the decomposition.

Claim 3.5 There is a decomposition of G∗ into connected
vertex-disjoint induced subgraphs G1 = G[V1], . . ., Gk =
G[Vk] and associated disjoint subsets of the pairs T ′

1 , . . . , T ′
k

such that:

1. The total number of preserved pairs |T ′| ≥ h/8.

2. For 1 ≤ i ≤ k, the diameter of Gi is at most ∆ =
2 log h · L.

3. For each pair sjtj in T ′
i , �Gi(sj , tj) ≤ 2L.

4. For 1 ≤ i ≤ h, Gi has low fixed cost density, that is,
c(Gi)/|T ′

i | ≤ 8OPTc/h.

Proof. First we prune the pairs whose shortest paths are large
compared to L. The claim below follows from a simple av-
eraging argument.

Claim 3.6 The number of pairs sjtj such that �E∗(sj , tj) ≥
2L is at most h/2.

We restrict attention to those h/2 pairs sjtj such that
�E∗(sj , tj) ≤ 2L. For each pair sjtj we fix a shortest �-path
Qj in G∗. For a subgraph H of G and a vertex u ∈ V (H)
we let BH(u, r) be the set of all vertices in H at �-distance
at most r from u; we call this the sphere with center u and
radius r. We abuse notation and use BH(u, r) also to de-
note the graph induced by the vertices and the edges of the

sphere. A pair sjtj is said to touch a sphere if any ver-
tex of Qj belongs to the sphere. A pair sjtj that touches
is inside the sphere if all the vertices of path Qj are in the
sphere. Let gH(u, r) be the number of pairs that are in-
side BH(u, r) and let g′H(u, r) be the number of pairs that
touch BH(u, r). We drop H when the graph in question is
clear. We obtain the decomposition from G∗ as follows. For
i ≥ 1 let ri = i · 4L. Pick an arbitrary source v and con-
sider the graphs B(v, ri) for i ≥ 1. Let j be the least index
such that g(u, rj) ≥ g′(u, rj) (note that a pair which touches
sphere B(v, ri) will be inside of sphere B(v, ri+1)). We set
G1 = B(u, j · 4L). We now recurse on the graph G∗ − G1

after we remove all pairs that touch G1. The recursion stops
when there are no pairs left in the graph. Note that a pair
that touches G1 but is not inside G1 is not retained in the
decomposition. Such a pair is said to be lost.

Claim 3.7 The radius of G1 is at most (log h · L); so the
diameter is at most ∆ = 2 logh · L.

Proof. Recall that G1 = B(u, rj) therefore it is sufficient
to prove that j ≤ log h. From the choice of j it follows that
for each i < j: g(u, ri) < g′(u, ri). We note that a pair that
touches B(u, ri) is inside B(u, ri+1) because we assumed
the distance between every pair is at most 2L; thus for i < j:
g(u, ri+1) ≥ 2g(u, ri). The total number of pairs is h/2 and
hence j ≤ log h. �

Claim 3.8 The number of lost pairs in the overall decompo-
sition is at most h/4.

Proof. When G1 is created the pairs that are lost are those
that touch G1 but are not inside. By construction the num-
ber of these pairs is at most the number of pairs inside G1.
Thus we can charge the lost pairs to those retained in G1. By
Claim 3.6 there were a total of at least h/2 pairs. �

Now discard every subgraph (sphere) Gi for which the
fixed cost density is larger than 8OPTc/h and let S =
{G1, . . . , Gk} be the set of remaining subgraphs; S′ is the
set of discarded subgraphs. Observe that:

∑
Gj∈S′

8OPTc · T ′
j

h
≤

∑
Gj∈S′

c(Gj) ≤ OPTc.

The last inequality follows as the subgraphs are vertex-
disjoint and therefore edge-disjoint. This implies that the
number of pairs in the subgraphs discarded (i.e. in S′) is
at most h/8. Therefore:

Claim 3.9 The number of pairs in the subgraphs in S is at
least h/8.

Claims 3.6 to 3.9 show the existence of the desired de-
composition.

�

Assuming the existence of a decomposition with the
above properties we show that there is a junction-tree of den-
sity O(log h) OPT

h . In each Gi pick an arbitrary vertex vi and

5

let Ti be a shortest path tree in Gi rooted at vi. Let Ei be the
edge-set of Ti. Note that E′ = ∪iEi is a partial solution for
the pairs in T ′ and E′ ⊆ E∗. By the diameter guarantee, the
distance from any vertex in Gi to vi is at most ∆. Note that
Ti is a candidate junction-tree for the pairs in Gi. We claim
that one of these junction trees has the desired density. To
prove this we compute the total cost of these k junction-trees
as:

k∑
i=1

c(Ei) +

∑
sjtj∈T ′

i

[�Ei(sj , vi) + �Ei(tj , vi)]

≤
k∑

i=1

c(Ei) + 2∆
k∑

i=1

|T ′
i |

≤ c(E∗) + (4 log h) · Lh ≤ OPTc + 4 log h · OPT�.

The number of pairs in T ′ is at least h/8 (by Claim 3.5)
and hence one of the trees has density no more than 8(OPTc+
4 log h · OPT�)/h = O(log h) OPT

h .
We now consider the case of arbitrary D and claim that for

the unit-demand instance obtained by duplicating pairs, there
exists a junction-tree of density O(log h) OPT

D . To obtain this
bound we mimic the proof for the unit-demand case except
that we claim a diameter bound of O(log hL) in each of the
Gi in place of O(log DL). To obtain this bound we mod-
ify the choice of v in creating each sphere Gi (see proof of
Claim 3.5). Instead of picking an arbitrary source point, we
pick a source v to be the one with the largest demand before
the duplications among the remaining pairs. This ensures
that the index j in the proof of Claim 3.7 remains O(log h)
since maxj dj/D ≥ 1/h.

4 Approximation Algorithm for arbitrary de-
mand MC-BB

In this section, we give an algorithm with poly-
logarithmic approximation ratio that is independent of the
value of demands. We follow the outline described in Sub-
section 1.1. We use Lemma 3.1 and in addition show
(in Corollary 4.3) how we can find in polynomial time
a junction tree of density O(log2 h) times the optimum
density. This allows us to find a junction tree of den-
sity O(γ(h2) log2 h) OPT

h . Then we remove the pairs that
are connected and iterate in a greedy fashion. This re-
sults in an approximation ratio of O(γ(h2) log3 h); using a
bound of O(log2 n log log n) on γ(n) from [10], we get an
O(log5 h log log h)-approximation ratio for MC-BB. We use
an LP relaxation to obtain an approximate junction tree and
this is explained in Subsection 4.1. Using a similar approach
but using Lemma 3.4 instead of Lemma 3.1 gives an approx-
imation ratio of O(log3 h logD); we also obtain this ratio
using a greedy combinatorial algorithm that is presented in
Section 5.

4.1 Algorithms for den-SS-BB and min-
density junction tree

We give an O(log2 h)-approximation algorithm for
den-SS-BB and for min-density junction-tree. Our tool
here is the LP formulation for SS-BB and an upper bound
of O(log h) on its integrality gap that was shown in
[8]. In SS-BB we seek to connect the terminals T =
{t1, t2, . . . , th} to the source s.

We describe an LP formulation for SS-BB from [8]. For
ti ∈ T , let Pi denotes the set of directed paths from the root
s to ti. We assume that the terminals are at distinct vertices
and hence Pi ∩ Pj = ∅ for i �= j. For e ∈ E, a variable
x(e) ∈ [0, 1] indicates whether e is chosen in the tree or not.
For p ∈ ∪iPi a variable f(p) ∈ [0, 1] indicates whether p is
used to connect a terminal to the root. We use �(p) to denote∑

e∈p �e. The LP assigns fractional capacities to edges such
that one unit of flow can be shipped from the root s to each
terminal ti. We can view the flow going to different terminals
as separate commodities. However, since the flow belonging
to separate commodities is non-aggregating, there is no need
to explicitly refer to commodities.

LP-SS min
∑

e∈E cex(e) +
∑h

i=1 di

∑
p∈Pi

�(p)f(p)

∑
p∈Pi|e∈p f(p) ≤ x(e) e ∈ E, 1 ≤ i ≤ h∑

p∈Pi
f(p) ≥ 1 1 ≤ i ≤ h

x(e), f(p) ≥ 0 e ∈ E, p ∈ ∪iPi

LP-SS can be solved in polynomial time even though it
has exponential number of variables. One can use an equiva-
lent compact formulation or use the ellipsoid method on the
dual. We omit the details. We now obtain a formulation for
den-SS-BB from the above as follows. For each terminal ti,
we have an additional variable yi that indicates whether ti
is chosen in the solution or not. To obtain a formulation for
density, we normalize the sum

∑
i yi to 1.

LP-SSD min
∑
e∈E

cex(e) +
h∑

i=1

di

∑
p∈Pi

�(p)f(p)

∑h
i=1 yi = 1∑

p∈Pi|e∈p f(p) ≤ x(e) e ∈ E, 1 ≤ i ≤ h∑
p∈Pi

f(p) ≥ yi 1 ≤ i ≤ h

x(e), f(p), yi ≥ 0 e ∈ E, p ∈ ∪iPi, 1 ≤ i ≤ h

Proposition 4.1 LP-SSD is a valid relaxation for
den-SS-BB.

Theorem 4.2 There is an O(log2 h)-approximation for
den-SS-BB.

Proof Sketch. Consider an optimum solution to LP-SSD.
We obtain disjoint subsets of the terminals T1, T2, . . . , Tp as

6

follows. Let ymax = maxi yi. For 0 ≤ a ≤ 2logh�, let
Ta = {tj | ymax/2a+1 < yj ≤ ymax/2a}. Thus p = 1 +
2log h� = O(log h). It is easy to see that there is an index b
such that

∑
tj∈Tb

yj = Ω(1/ logh). From this we also have

that 2b/(ymax|Tb|) = O(log h). We now solve an SS-BB
instance on Tb. We claim that the resulting solution is an
O(log2 h)-approximation to den-SS-BB.

We now prove the claim. Let α be the value of the opti-
mum solution to LP-SSD on the given instance. We observe
that a feasible solution to LP-SS on the terminal set Tb is
obtained if we scale up, by a factor of β = 2b+1/ymax, the
given optimum solution to LP-SSD. The cost of this scaled
solution to LP-SS is at most βα. Since the integrality gap of
LP-SS is O(log h), we obtain an integral solution that con-
nects each terminal in Tb to the root such that cost of the
solution is O(log h) · βα. The density of this solution is
hence O(log h) · βα/|Tb| which, by our earlier observation,
is O(log2 h)α. From Proposition 4.1, α is a lower bound
on the density of the optimum integral solution. Thus the
integrality gap of LP-SSD is O(log2 h) yielding the desired
approximation. �

Min-density junction trees: We can recast the problem
of computing a min-density junction tree as a special case
of the following generalization of den-SS-BB. In this gen-
eralization, the terminal set T is partitioned into subsets
T1, T2, . . . , Tp; we seek a minimum density tree such that for
1 ≤ j ≤ p, the tree either includes all of Tj , or no terminal
from Tj . For junction-trees it suffices to consider the case
when each Tj is a set of cardinality 2; each Tj corresponds to
the end-points of a pair from the MC-BB instance. It is easy
to adapt the formulation LP-SSD for this generalization. We
modify LP-SSD by adding the following set of constraints.

yi = yi′ ti, ti′ ∈ Tj for some 1 ≤ j ≤ p.

The rounding remains the same and it is easy to check the
desired constraint holds and that the ratio is O(log h log p).
This yields the following.

Corollary 4.3 Given a set of h pairs, there is an O(log2 h)-
approximation for computing the min-density junction-tree.

5 A Greedy Approximation Algorithm for
Polynomial-demand MC-BB

In this section we describe a greedy combinatorial al-
gorithm for MC-BB that has an approximation ratio for
O(log3 h log D). Note that when D is polynomially bounded
in h, the ratio is O(log4 h) which is better than the ratio of
O(log5 h log log h) that we obtain (for arbitrary D) in Sec-
tion 4.

5.1 The approximation algorithm

The algorithm mainly uses a recent result [16] regard-
ing shallow-light trees (described below). The instance to
shallow-light k-Steiner problem is a graph G(V, E), with
edge-weight function c : E → R+ and edge-length func-
tion � : E → R+, a collection T of terminals containing
a root s, a number k, and a diameter bound L. The goal is
to find an s-rooted k-Steiner tree that has �-diameter at most
L, and among all such subtrees, find the one with minimum
c-cost. A (ρ1, ρ2)-approximation algorithm for the shallow-
light k-Steiner problem finds an s-rooted k-Steiner tree with
diameter at most ρ1 · L and cost at most ρ2 · B with B be-
ing the optimum cost for a k-Steiner tree of diameter L. The
following theorem is from [16].

Theorem 5.1 [16] There exist two universal constants c1, c2

and a polynomial time algorithm A for which the following
holds. Consider an instance of shallow-light k-Steiner as
described above and let h = |T | be the number of terminals.
Then A produces a Steiner tree rooted at s containing k/8
or more other terminals with cost-density (with respect to c)
at most c2 log3 h · OPT/h′ and diameter (with respect to �)
at most c1 log h · L, where OPT is the cost of an optimum
k-Steiner tree with diameter bounded by L.

Since we use the algorithm of Theorem 5.1 frequently,
we refer to it in this paper as the KSLT algorithm. The main
procedure in our algorithm is Procedure Jnc-Tree that tries
to find a low density junction tree. This procedure works
in rounds and every round is divided into two phases: the
sources phase and the sinks phase. The sources phase gradu-
ally builds a tree Fs by attaching new sources into the tree at
low density in iterations. After the sources phase ends a sin-
gle iteration of the sinks phase takes place, in which we try to
add to the tree, at low density, some of the sinks correspond-
ing to sources that belong to Fs. If the single iteration in the
sinks phase is a success then Jnc-Tree finds a partial solu-
tion of low density routing a subset of the pairs. Otherwise,
part of the pairs are temporarily discarded and a new round
of Jnc-Tree is performed restricted to undiscarded pairs. We
show that eventually we find a low density junction tree be-
fore all the pairs are discarded. For a subtree F obtained by
calling KSLT, T (F) is the set of terminals in F . Let T ′ be
the set of remaining (unrouted) pairs of the original instance.

Procedure Jnc-tree (T ′)

1. Let T ′′ ← T ′ and h′ = |T ′|

2. While T ′′ �= ∅ Do

(a) let s be an arbitrary source of a pair in T ′′.
/* Phase 1: sources phase starts here*/

(b) LowDens ← true; Fs ← s; ks ← 1; j ← 1
/* Fs is the Steiner tree found so far */

(c) repeat

7

i. j ← j + 1
ii. Find a Steiner tree F j

s rooted at s by call-
ing KSLT with parameter k = ks/200�
and diameter bound L = 4 log h · OPT�/h′

/* By definition |T (F j
s)| ≥ ks/1600 */

iii. If c(F j
s)/|T (F j

s)| ≤ 32c2 · log3 h · OPTc/h′

then /* A successful iteration */
Fs ← Fs ∪ F j

s

ks ← T (Fs) /* ks always
counts the number of sources in Fs */

Contract all of F j
s into s

iv. Else LowDens ← False /* A failed
iteration */

(d) until LowDens = False

(e) Let X(Fs) be the set of terminals in Fs and Ys be
their sinks
/* Phase 2: sinks phase starts here*/

(f) Obtain Ft by calling KSLT with s as the root, Ys

as terminals, k = ks/100�, and L = 4OPT�/h′.

(g) If c(Ft)/|T (Ft)| ≤ 16c2 · log3 h · OPTc/h′ then
return E(Fs)∪E(Ft) as the junction-tree and stop.

(h) Else, discard from T ′′ all the pairs whose sources
are in X(Fs).

5.2 Analysis of the algorithm

We may assume (by duplicating vertices) that all the
sources are different and all sinks are different (hence h′ at
the same time is the number of uncovered pairs, the number
of remaining sources and the number of remaining sinks).
We show that every call to Jnc-Tree finds a low density junc-
tion tree. Consider one call to Jnc-Tree with parameter T ′

(and h′ = |T ′|). Assume that OPTc and OPT� are the fixed
and incremental costs of the optimal solution to the original
instance, respectively. Let S be the set of spheres (i.e. sub-
graphs G1, . . . , Gk) computed in the decomposition for the
proof of Lemma 3.4. We call a sphere (subgraph) Gi good
if at most a fraction 1/4 of the source-sink pairs of Gi are
discarded by the algorithm. A pair that belongs to a good
sphere at the time of being considered is called a good pair
and the rest are called bad. A source is good if it belongs to
a good pair. Note that a good sphere may become bad during
the course of the algorithm as some of its pairs are discarded.
Accordingly, all its remaining pairs become bad. One round
of Jnc-Tree is one iteration of the while loop. For every round
of Jnc-Tree, trees Fs and Ft are the trees obtained at the end
of the sources phase and sinks phases, respectively. We call a
round of Jnc-Tree a bad round if the number of good sources
in Fs is at most �ks/50�. That is, at most �ks/50� of sources
of Fs belong to good spheres of S. The rest of the rounds
are called good rounds. A good sphere Gi ∈ S that inter-
sects Fs is called sparse with respect to Fs if Fs contains at
most half of the original sources of Gi. A good round is a

sparse round if among all good sources in Fs, at least half of
them belong to good spheres that are sparse with respect to
Fs. Other good rounds are dense rounds. By this definition,
every round is either: (i) a bad round, or (ii) a good sparse
round, or (iii) good dense round. We later show that there are
no good sparse rounds at all. Only bad rounds or good dense
rounds exist. We also show that if a round is good and dense,
then the sinks phase cannot fail and so Jnc-Tree finds a junc-
tion tree, whose density is shown to be low. Thus, it remains
to show that not all rounds of Jnc-Tree are bad. This is the
first thing we prove. Note that as long as at least one source
remains undiscarded, Jnc-Tree will start a new round. The
only way for Jnc-Tree to fail is if all sources are discarded.

Lemma 5.2 Every call to Jnc-Tree finds a junction tree with
density is at most O(log3 h · (OPTc + opt�)/h′).

Note that Lemma 5.2 only bounds the density of every
subtree returned. To get the final ratio we use Proposi-
tion 2.1. For general D, Proposition 2.1 implies that an ad-
ditional factor of O(log D) is incurred.

Corollary 5.3 The approximation ratio of the greedy algo-
rithm is O(log3 h · log D).

We now end this section by presenting the proof of
Lemma 5.2. First we need a series of lemmas.

Lemma 5.4 In every call to Jnc-Tree, either the procedure
finds a junction-tree and returns or there is at least one good
round before all the pairs are discarded from T ′′.

Proof. Suppose by contradiction that all the rounds are bad
and we continue until all the pairs are discarded from T ′′.
Let ki denote the number of pairs discarded in round i. This
implies that

∑
i ki = h′. By property 1 of Claim 3.5, the

number of sources (pairs) in S is at least h′/8�. Note that
initially, all sources of S are good. Since we assumed each
round is bad, in round i at most �ki/50� good sources are
discarded among the total of ki discarded sources. Recall
(from proof of Lemma 3.4) that T ′

i is the number of pairs
inside the sphere Gi. From each sphere Gi ∈ S, the first
T ′

i /4 sources selected are good and the remaining become
bad (this happens when the number of undiscarded pairs in

Gi goes below 3T ′
i

4). That is, the number of good pairs that
become bad is at most 3 times the number of good pairs
that are discarded. Thus the total number of good pairs dis-
carded and the number of good pairs that become bad is at
most

∑
i 4� ki

50� ≤
∑

i
4ki

50 = 4h′
50 < h′

10 . Therefore at least
h′/8 − h′/10 = h′/40 good pairs remain, and so the Pro-
cedure Jnc-Tree could not have removed all sources as some
good sources remain. Hence, there must be a good round. �

Lemma 5.5 There are no good and sparse rounds.

Proof. We proceed by contradiction. Consider the first
good round and assume it is a sparse round and let q be

8

the last successful iteration at line 2c before the single failed
(q + 1)th iteration. Therefore Fs =

⋃q
i=1 F i

s . Let S′ ⊆ S
be the collection of all the good sparse (with respect to Fs)
spheres that belong to S and remained after all the previ-
ous (bad) rounds. If some Gi has no intersection with Fs

then it is not included in S′. Using property 2 of Claim 3.5
and since each of Gi ∈ S′ intersects Fs it follows that all
the vertices of V (S′) =

⋃
Gi∈S′ V (Gi) are within distance

2 log n · OPT�/h′ of some vertex u ∈ Fs. Since all spheres
in S′ are sparse, at most half the sources of the pairs in each
Gi ∈ S′ are actually in Fs (by the definition of a sparse
round). Also, at most T ′

i /4 of the sources of Gi are dis-
carded (or else Gi would not be good anymore). Therefore,

at least C =
∑

Gi∈S′
T ′

i

4 sources remain (undiscarded) that
do not belong to Fs. First we show that C ≥ ks/200�. By
the definition of a good round, the number of good sources
in Fs is at least ks/50�. By the definition of a sparse good
round at least 1/2 of them are by sparse spheres. Hence, the
number of good sources in Fs that come from sparse spheres
(i.e., from spheres in S′) is at least ks/100�. Since for each
Gi ∈ S′, the number of sources of Gi that intersect Fs is
no more than T ′

i /2, it follows that C ≥ ks/200�. Consider
the failed iteration q + 1. Let E(S′) be the set of edges of
the spheres in S′ and compute the shortest path tree rooted
at s (the root of F q

s) which is obtained by taking the shortest
path from s to every vertex in every Gi ∈ S′. We obtain
a tree with diameter at most 4 log n · OPT�/h′ (since every
vertex in Gi is at distance at most 2 log n · OPT�/h′ from
the root) and by C ≥ ks/200�, it contains at least ks

200�
new sources. Let Hq+1

s denote this tree. Thus in iteration
j = q + 1 of the repeat loop in Phase 1, there is a Steiner
tree Hq+1

s (over E(S′)) with ks

200� sources with diameter at
most D = 4 logn · OPT�/h′. By property 4 of Claim 3.5,
and since the graphs Gi ∈ S′ are disjoint, the fixed cost den-

sity of Hq+1
s is at most

P
Gi∈S′ c(Gi)

P
Gi∈S′ T ′

i /4 ≤ 32 OPTc

h′ . By The-

orem 5.1, the density of the Steiner tree returned by KSLT
algorithm is at most a factor c2 log3 h larger than the fixed
cost density of Hq+1

s . Thus the fixed cost density of the tree
F q+1

s that the algorithm finds is at most 32c2 · log3 h · OPTc

h′ .
Hence, the fixed cost density of F q+1

s is no larger than
32c2 · log3 h · OPTc

h′ . Thus the round should not have failed.
�

Lemma 5.6 If a round is good and dense, the sinks phase
finds a low density tree and so Jnc-Tree finds a partial solu-
tion.

Proof. If a round is good, there are at least ks/50� good
sources in Fs. If it is a good and dense round then at least
ks/100� good sources of Fs belong to dense good spheres.
Let H be the set of these good sources (good sources in
dense spheres). Define S′ ⊆ S to be the set of good dense
spheres that intersect Fs. For every si ∈ H , its distance
to ti in E(S′) is at most 2OPT�/h′ (by property 3 of Claim
3.5). Thus, this is also a bound on the distance from the

root of F q
s (i.e. s) to ti. Hence, after E(S′) is added, the

shortest path tree from s to all the sinks of si ∈ H has
radius 2OPT�/h′. This gives a tree with diameter at most
4OPT�/h′ which is the appropriate bound. The fixed cost
density of this tree is at most

∑
Gi∈S′ c(Gi)/|H |. Since all

Gi ∈ S′ are dense,
∑

Gi∈S′ T ′
i /2 ≤ |H |. This implies

that
P

Gi∈S′ c(Si)

|H| ≤
P

Gi∈S′ c(Gi)
P

Gi∈S′ T ′
i /2 ≤ 16.OPTc/h′, where the

last inequality follows form property 4 of Claim 3.5. There-
fore, there is a Steiner tree containing s and the sinks of H
with diameter bound 4OPT�/h′ and fixed cost density at most
16OPTc/h′. By Theorem 5.1, the density of the returned tree
is bounded by 16 · c2 · log3 h ·optC/h′ which implies that the
round is good. �

Proof of Lemma 5.2. By Lemma 5.4, before Jnc-Tree dis-
cards all sources, there must be at least one good round. By
Lemma 5.5, the good round must be dense. By Lemma 5.6
such a round must succeed. Thus the procedure always finds
a junction tree. Now we bound its density.

In Phase 1, the fixed cost density of Fs is at most
O(log3 h · OPTc/h′). This is explained as follows. Since
every new tree added to Fs has density at most O(log3 h ·
OPTc/h′) This bounds the density of Fs as well. But this is
only with respect to the number of sources ks in Fs which
can be different from the number of pairs covered. However,
the number of pairs covered is at least (ks/100)/8 = ks/800
(see Theorem 5.1). Thus the fixed cost density of Ft with
respect to covered pairs is bounded by 800 · O(log3 h ·
OPTc/h′) = O(log3 h · OPTc)/h′.

Now we bound the incremental-cost density. First con-
sider Phase 1 (sources phase). By the property of Theo-
rem 5.1, the diameter of each Steiner tree F i

s found in each
iteration i is at most c1 · log hL = 4c1 · log2 h · OPT�/h′.
Thus the total diameter of Fs, denoted by rs, is at most
rs ≤ 4c1 · q · log2 h · OPT�/h′, where q is the last suc-
cessful iteration. Since in every iteration of the repeat loop,
the number of new sources covered is at least (ks/200)/8
(see Theorem 5.1 and Line 2(c)ii in Jnc-tree) the number of
sources in Fs is multiplied at least by 1601/1600 at every
iteration. Thus the number of iterations (and therefore q) is
in O(log h). Thus rs = O(log3 h · OPT�/h′). The diameter
of Ft is at most O(log h · OPT�/h′) by the bound L passed to
KSLT in Phase 2. In total the diameter is O(log3 h·OPT�/h′).
Hence, if we cover q pairs using Fs and Ft then the total
incremental-cost density is at most q ·O(log3 h · OPT�/h′)/q
which is O(log3 h · OPT�/h′). �

6 Discussion and Future Work

It turns out that the junction tree Lemma 3.1 can be im-
proved. The following lemma whose proof combines aspects
of Lemmas 3.1 and 3.4, and relies on Bartal’s hierarchical
decomposition [5], was suggested by Harald Racke.

Lemma 6.1 Given an instance of MC-BB on h pairs there
exists a junction-tree of density O(log h) · OPT

h .

9

Using the above lemma, the O(log5 h log log h)-
approximation ratio for general demand MC-BB is improved
to O(log4 h). The proof of Lemma 6.1 will appear in the
full version of this paper. To improve the ratio beyond this,
one needs to exploit the interaction between the algorithm
for computing the minimum density tree and the proof of the
existence of small density trees. An O(log h)-approximation
for den-SS-BB is possible. For the uniform case it may
be that the shallow-light tree theorem (Theorem 5.1) can
be improved yielding an improved result for MC-BB with
polynomial demands.

A related question is to obtain a bound on the integrality
gap of an LP formulation for MC-BB. Such a formulation is
a straightforward extension of the formulation for the single-
source problem from [8]. We believe that a poly-logarithmic
upper bound can be established on the integrality gap. We
note that the trick used in Section 4.1 can be used with the
LP relaxation to obtain bounds for den-MC-BB. However we
cannot extend it to k-MC-BB for a simple but subtle techni-
cal reason; the difficult case is when the (approximate) solu-
tion for the minimum density solution has many more than
k pairs connected. This is not surprising; as noted in [15],
a poly-logarithmic bound for k-MC-BB would imply a sub-
stantial improvement for the k−dense subgraph problem.

Related to the two-cost network design problem is a bud-
geted version; given a bound L, we seek to find a subset of
edges E′ ⊆ E of minimum cost c(E′) such that �(si, ti) ≤ L
for 1 ≤ i ≤ h. An (α, β) bi-criteria approximation for this
problem is one that yields a solution of cost αOPT and guar-
antees that �(si, ti) ≤ βL for 1 ≤ i ≤ h. As a byproduct of
Theorem 1.1 we can obtain such an algorithm where α and
β are poly-logarithmic in h. Such poly-logarithmic approxi-
mations were known previously [20] only for diameter type
guarantees; that is, instances in which all pairs of vertices of
a given subset S ⊆ V are included.

Acknowledgments: We thank Harald Racke for generously
suggesting the proof of Lemma 6.1. The second author
thanks Kamal Jain and Kunal Talwar for some initial dis-
cussions on the MC-BB problem.

References

[1] N. Alon, R. Karp, D. Peleg and D. West. A graph theoretic
game and its application to the k-server problem. SIAM J. on
Computing, 24(1):78–100, 1995.

[2] M. Andrews. Hardness of buy-at-bulk network design. Proc.
of IEEE FOCS, 115–124, 2004.

[3] M. Andrews and L. Zhang. The access network design prob-
lem. Algorithmica, 197–215, 2002. Preliminary version in
Proc. of IEEE FOCS, 1998.

[4] B. Awerbuch and Y. Azar. Buy-at-bulk network design. Proc.
of IEEE FOCS, 542–547, 1997.

[5] Y. Bartal. Probabilistic approximation of metric spaces and
its algorithmic applications. Proc. of IEEE FOCS, 184–193,
1996.

[6] M. Charikar and A. Karagiozova. On non-uniform multicom-
modity buy-at-bulk network design. Proc. of ACM STOC,
176–182, 2005.

[7] C. Chekuri. Approximation Algorithms for Non-Uniform
Buy-at-Bulk Network Design Problems. Manuscript, Febru-
ary 2006.

[8] C. Chekuri, S. Khanna and J. Naor. A Deterministic Approxi-
mation Algorithm for the Cost-Distance Problem. Short paper
in Proc. of ACM-SIAM SODA, 232–233, 2001.

[9] J. Chuzhoy, A. Gupta, J. Naor and A. Sinha. On the Approx-
imability of Some Network Design Problems. Proc. of ACM-
SIAM SODA, 943–951, 2005.

[10] M. Elkin, Y. Emek, D. Spielman and S. Teng. Lower stretch
spanning trees. Proc. of ACM STOC, 494–503, 2005.

[11] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound
on approximating arbitrary metrics by tree metrics. JCSS,
69:485–497, 2004. Preliminary version in Proc. of ACM
STOC, 2003.

[12] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approx-
imation via cost-sharing: a simple approximation algorithm
for the multicommodity rent-or-buy problem. Proc. of IEEE
FOCS, 606–615, 2003.

[13] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better
approximation algorithms for network design. Proc. of ACM
STOC, 365–372, 2003.

[14] S. Guha, A. Meyerson and K. Munagala. A constant factor
approximation for the single sink edge installation problem.
Proc. of ACM STOC, 383–388, 2001.

[15] M. Hajiaghayi, K. Jain. The Prize-Collecting Generalized
Steiner Tree Problem via a new approach of Primal-Dual
Schema. Proc. of ACM-SIAM SODA, 631–640, 2006.

[16] M. Hajiaghayi, G. Kortsarz and M. Salavatipour. Approxi-
mating Buy-at-Bulk and Shallow-light k-Steiner trees, In pro-
ceedings of APPROX 2006, LNCS 4110, pp 153-163, 2006.

[17] M. Hajiaghayi, G. Kortsarz and M. Salavatipour. Polylogarith-
mic Approximation Algorithm for Non-Uniform Multicom-
modity Buy-at-Bulk. Manuscript, November 2005. ECCC
Report TR06-008, 2006.

[18] D. S. Johnson. Approximation algorithms for combinatorial
problems. Journal of Computer and System Sciences. Vol 9,
256–278,1974.

[19] A. Kumar, A. Gupta, and T. Roughgarden. A constant-factor
approximation algorithm for the multicommodity rent-or-buy
problem. Proc. of IEEE FOCS, 333–342, 2002.

[20] M. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D.
Rosenkrantz, H. B. Hunt. Bicriteria network design. Jour-
nal of Algorithms, 28(1):142–171, 1998.

[21] A. Meyerson, K. Munagala, and S. Plotkin. Cost-Distance:
Two Metric Network Design. Proc. of IEEE FOCS, 383–388,
2000.

[22] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy
at bulk network design: Approximating the single-sink edge
installation problem. Proc. of ACM-SIAM SODA, 619–628,
1997.

[23] K. Talwar. The single-sink buy-at-bulk LP has constant inte-
grality gap. Proc. of IPCO, 475–486, LNCS, 2002.

10

