A CONSTANT FACTOR APPROXIMATION FOR MINIMUM M\-EDGE-CONNECTED K-SUBGRAPH
WITH METRIC COSTS*

MOHAMMADALI SAFARI T AND MOHAMMAD R. SALAVATIPOUR *

Abstract. In the (k, A)-subgraph problem, we are given an undirected g@pk (V, E) with edge costs and two positive integérand A
and the goal is to find a minimum cost simpleedge-connected subgraph@fwith at leastk nodes. This generalizes several classical problems,
such as the minimum cogt-Spanning Tree problem d¢&-MST (which is a(k, 1)-subgraph), and minimum cost-edge-connected spanning
subgraph (which is &V (G)|, A)-subgraph). The only previously known results on this pob[12, 4] show that thé€k, 2)-subgraph problem
has anO(log? n)-approximation (even for 2-node-connectivity) and that (th, \)-subgraph problem in general is almost as hard as the densest
k-subgraph problem [12]. In this paper we show that if the extggts are metric (i.e. satisfy triangle inequality), likethe k-MST problem, then
there is arO(1)-approximation algorithm fofk, A)-subgraph problem. This essentially generalizesk#\ST constant factor approximability to
higher connectivity.

1. Introduction. Network design is a central topic in combinatorial optinti@a, approximation algorithms, and
operations research. A fundamental problem in networkggieisi to find a minimum cost subgraph satisfying some
given connectivity requirements between vertices. Hera hgtwork we mean an undirected graph together with non-
negative costs on the edges. For example, with a conngatadguirement\ = 1 between all the vertices, we have
the classical minimum spanning tree problem. For larganesbf), i.e. finding minimum cosh-edge-connected
spanning subgraphs, the problem is APX-hard. These ar@éaspases of the more general edge-connectivity surviv-
able network design problem (SNDP) or Steiner network, iictvive have an edge-connectivity requirement gf
between every pait, v of vertices. Even for this general setting there is a 2-axipration algorithm by Jain [11].

A major line of research in this area has focused on probleitis @@nnectivity requirements where one has
another parametér, and the goal is to find a subgraph satisfying the connegtigfjuirements with a lower bourid
on the total number of vertices. The most well-studied probin this class is the minimuispanning tree problem,
a.k.a.k-MST. In this problem, we have to find a minimum cost connestdagraph spanning at ledstvertices. The
approximation factor for this problem was improved fref by Ravi et al. [14], taD(log? k) by Awerbuch et al. [1],
to O(logn) by Rajagopalan and Vazirani [13], then to a constant by Blual.€[3], and recently to 2 by Garg [10].
The algorithm of [10] can be used to obtain a constant appration for the slightly more general setting in which
we have a set of nodés, called terminals, and the goal is to find a minimum cost cotetesubgraph containing
at leastk terminals. This is known as thie Steiner tree problem. The problemfTSP, in which one has to find a
minimum cost TSP tour containing at leastodes, can be approximated using very similar techniqguendiéethat in
all these problems, the input graph is assumed to be congldithe edge cost function is metric, i.e. satisfies triangle
inequality. Most of these problems are motivated from thpplications in vehicle routing or profit maximization with
respect to a given fixed budget. For example, suppose thaaweabattery operated robot and the goal is to find the
minimum battery charge required to travel a sequence ofatienodes in a given graph such that the total length of
the tour can be travelled in a single battery charge. Seq far Similar problems.

Recently, Lau et al. [12] considered a very natural commaregaization of both thé-MST problem and the
minimum cost\-edge-connected spanning subgraph problem, which thigddhle (%, \)-subgraph problem. In this
problem, we are given a gragh = (V, E) with a (not necessarily metric) cost function £ — R™ on the edges,
two positive integerg and)\; the goal is to find a minimum cost simpleedge-connected subgraph@fwith at least
k vertices. We should emphasize that the solution must belsjriimt is, we are not allowed to pick an edge more
than once. Otherwise, a 4-approximate solution can be ctadpay taking a 2-approximateMST solution7’, and
then taking\ copies ofT" since)/2 times the cost of &-MST is a lower bound for the cost of an optimum solution
(details given in the next section). It is easy to observettiex k, \)-subgraph problem contains, as special cases, the
minimum cost\-edge-connected spanning subgraph problem (it becomégth@)|, \)-subgraph problem), and the
k-MST problem (which becomes tff&, 1)-subgraph problem). Lau et al. [12] presented®ivg? n)-approximation

*A preliminary version of this paper appeared in the Progegiof the 11th Intl. Workshop on Approximation Algorithntg Combinatorial
Optimization Problems (APPROX) 2008.

TDepartment of Computer Engineering, Sharif University e€Ahology, Tehran, Iran. email: msafari@sharif.ac.ir.sMaf this work was done
while the author was a postdoctoral fellow at the Departneér@omputing Science of the University of Alberta and waspsrted by Alberta
Ingenuity.

tDepartment of Computing Science, University of Albertapreaton, Alberta T6G 2E8, Canada. email: mreza@cs.ualbarta he author
was supported by NSERC and an Alberta Ingenuity New Faculgré

1



for (k,2)-subgraph and showed that for arbitrary values\p{k, \)-subgraph is almost as hard as thelensest
subgraph problem. In thke-densest subgraph problem, one has to find a subgraphwitides in a given grap@&
that has the largest number of edges. Despite considertdahess, the best known approximation algorithm for this
problem has ratiaD(ni) by Bhaskara et al. [8]. Chekuri and Korula [4] have recerdlyd independently of [12])
shown that an algorithm similar to the one in [12] yields@fiog® n)-approximation for thék, 2)-subgraph problem
even if we seek a 2-node-connected subgraph.

In light of the result of [12] on the hardness @f, \)-subgraph for arbitrary values ofand general costs, it is
natural to try to obtain good approximation algorithms fog tlass of graphs where the edge cost function is metric.
Remember that the constant factor approximation algostfonk-MST andk-TSP are on graphs with metric cost
function. The main result of this paper is the following the:

THEOREM 1.1. Given a (complete) grapy’ with metric costs on the edges and two positive integels there
is anO(1)-approximation algorithm for finding &k, \)-subgraph inG.

Our algorithm is combinatorial and uses ideas from ChergyahVetta [6] for metric-cost subset node-connectivity
problem as well as the algorithm fbfSteiner tree [7, 10, 14]. The constant factor we obtainlaikeely large (hnamely
450), however, most of our efforts have been made to shovitthgiroblem has a constant factor approximation rather
than trying to obtain the best possible ratio.

The rest of the paper is organized as follows. We start by st&fieitions and preliminary bounds used throughout
the paper. For ease of exposition, we first present an atgotitat finds a\-edge-connected subgraph with at least
k — \/7 nodes whose cost ©(0PT). In Section 3 we show how to extend this solution to a feasblation to
the (k, \)-subgraph problem while keeping the total cost still bowhdg O(opPT). We finish the paper with some
concluding remarks.

2. Preliminaries. As mentioned earlier, we assume we are given a g@ps (V, E), with a cost function
c: E — RT on the edges that satisfies triangle inequality, and twatipeshtegers: and\. We assume thaf is a
complete graph as this is a natural assumption when the wostién is metric. For every subgraphC G, we use
¢(F) to denote the total cost of the edgesArand|F| denotes the number of vertices i ThroughoutG* C G
denotes the optimum solution aneT = ¢(G™*) denotes the optimum solution cost. We will use two lower lutsuon
oPTIin the analysis of our algorithm. These lower bounds werel eselier in [6] for the problem of minimum cost
subsetk-node-connected subgraph. The first lower bound comes fnencdst of a minimum spanning tree Gf,
which we callT*. Considering the cut-constraint IP formulation of MSTsitiasy to see th%\tzeeT* c. < OPT. To
see this observe that by the well-known results of Nashi&xils and Tutte (see [15]) anyedge-connected graph has
/2 edge-disjoint spanning trees. 3¢2 times the cost of MST of/* is no more tharoPT. The second lower bound
comes from the minimum cost subgraph that has minimum degieast\. Note that in a\-edge-connected subgraph,
every vertex has degree at least-or anyA-edge-connected subgraphC G and any vertex. € F' let S, (F') be the
set of A nearest neighbors afin F' ands,, (F) bezvesum cuy- Clearly, for anyA-edge-connected subgraphC G
and any vertex. € F we haves, (G) < s,(F). We often use5,, ands,, instead ofS,,(G) ands, (G), respectively,
unless the graph is different frofa. It is easy to see th%ZueG* Su < %ZUEG* $4(G*) < OPT. Thus, ifT* is a
minimum spanning tree a&*, then we obtain the following two lower bounds fopPT: (i) % > wer~ Su < OPT, and
(i) 3> .cr. ce < OPT, and in particular:

% 7 sut % > ce < 20PT. (2.1)

ueT™* ecT*

In our algorithm we will use these two lower bounds frequgmtften without referring to them.

We present an algorithm for a modified version of the problemtich along withG, k&, and\, we are also given
a vertexr € G as the root which belongs to the optimum soluti@h and among all the vertices i@* it has the
smallest value,,. Clearly, if we can solve this rooted version, then we caretrgry vertex as the root and return the
minimum solution among all as the final answer.

Ravi et al. [14] showed that any-approximation fork-MST implies a2«-approximation fork-Steiner tree.
Therefore, together with Garg’s algorithm [10], we have approximation fork-Steiner tree. In fact, we can have
a 4-approximation algorithm for the rooted version of thelggem, in which a specific vertexis given as the root
and the goal is to find a minimum cost Steiner tree rootedaantaining at least terminals. Our algorithm will use
the best known approximation algorithm for finding a minimaost rooted:-Steiner tree problem; let us denote the



approximation ratio of this algorithm ky(by the argument above, we know thet 4). We denote this approximaﬁon
algorithm by ST-Algorithm.

Although we use similar lower bounds for the optimum as byrijlam and Vetta [6], we also use several hew
ideas. Roughly speaking, the algorithm of [6] for the subseibde-connected subgraph builds a “cheap” cycle
containing all the terminals, then makiesther cycles parallel to that (called tracks) by takingtheearest neighbors
of terminals. They make a “thick” cycle by making connectimiween different tracks to ensure high connectivity.
One major difficulty in our case is that we do not have a givérof@odes that need to be in the final solution. To
overcome this, we use an approximate algorithm fokth&ST problem. Informally, we start from such a tree and then
make it “thick” by adding some of the nodes.$y for some vertices of the tree to obtain the required connectivity.
However, it appears that we cannot obtain the required cdivitg while bounding the cost. To overcome this
difficulty our main algorithm works in two phases. In the fitase we obtain a-edge-connected subgraph with
k — O()\) nodes whose cost is within a constant factor of optimum gl in Section 3). Then in the second phase
using a different algorithm we show how to augment this gtagibtain a %k, \)-graph while keeping the cost(oPT)
(presented in Section 4).

3. Obtainingalow cost (k— \/7, \)-subgraph. Observe that to have-edge-connectivity while being a simple
graph, we must havé > X + 1. We start by presenting an algorithm that returns-edge-connected subgraph
(containing rootr) that has at leagt — \/7 nodes and whose cost is within constant factooef. Our algorithm is
influenced by [6] for the minimum cost subgenhode-connected subgraph problem.

3.1. Overview of the Algorithm. The main idea of the algorithm is as follows. We first find a pattover a set

Vi, C V of sizek (containing root’) having the following properties:
(R c(Pr) = > cp, cle) isO(OPT/A), and
(R2)>",ep, v = O(OPT).

Note that these two are essentially the same as the bound igikequation (2.1). If we were to make a clique
out of the nodes irf,, U {v} for eachv € V4 and then for each edgey € P, add an arbitrary matching between the
nodes inS,, andS, we would obtain a\-edge-connected subgraph. The trouble is, we cannot bbenzbst of edges
of these cliques. However, if we could prove a property gjasithan (R2), such s ., s, = O(0PT/)), then we
could bound the total cost of the edges of such clique®@fyPT). We cannot prove this stronger property but we can
show one can select a subset of nodefofhat satisfies a property close to this stronger one. By glyefelecting
a subset;, C V; and anothel C V; — V45, we shortcut over the nodes notlifj to obtain another patk, (from P;)
with the following stronger properties:

(R2-new)A >~ v, 5o + D per 5o = O(OPT),
(R3)[Va UTU (Uyev, So) | =k —A/T.

For now suppose we have obtained pBttand thenP, as well as sef which satisfy properties mentioned above.
Our final graph will contain all the nodd$ U 7 U (U,cy, Sv). By (R3) there are at leagt— \/7 nodes in this
solution. For eaclv € V, we form a(\ + 1)-clique onS, U {v} to getA-edge connectivity among the vertices in
Sy U {v}. Each nodea: € I will be assigned to a node € V> and becomes connected to all the nodes of the clique
on S, U {v}. Using property (R2-new), we will show that the total costfifthese edges is at moS{oprT). Next,
we need to establish-edge connectivity among these cliques. For that, for eedgeuv € P, we add (up to)\
edges between the two + 1)-cliques corresponding te andv; the number of edges added will be less thah S,
andsS, have nodes in common. Roughly speaking, the total cost ofath@ost)\ edges between the cliques will be
O(\) times the cost of the edges ik plus the sum ok, values of the nodes df; since using triangle inequality
c(Py) < ¢(Py), using (R1) and (R2-new) it follows that the cost of match@upes will be no more tha@(opT).
Therefore we will have a solution within constant factortoé bptimum that has, according to property (R3% \/7
vertices.

Many details are skipped over in this overview and are erpldin the next subsection.

3.2. Detailsof the Algorithm. We build a pathP; in G and then another path, in two phases:

3.2.1. Phase 1: Path P; with exactly k vertices satisfying properties (R1) and (R2).. Create a new graph
G'(VUV', E') from G by hanging a new (dummy) vertex (in V') from each vertex € G and letE’ = FU{uu'|u €
V'}. Each edgew’ € E’ has weights,,. For every other edge i’ (that also exists if¥) we multiply its weight by
A. Next we compute an approximate (rootéédpteiner tree with terminal sét’ = {v'|v € V(G)} and root’ (copy
of r) using the ST-Algorithm. Let us call this trgé&.



4 CLAIM 3.1.The cost off” is at mos#pOoPT.

Proof. Consider the optimum solutio* of the (k, \)-subgraph problem i/ and letT* be a MST ofG* (we
assume that € T7*). ThenT*U{uu' € G'|u € T*} is clearly a Steiner tree i@’ containing at least terminals with
total cost at mostopPT (using bound (2.1) fof ™). Note that for each edge € G’ (corresponding to edgee G):
ce = Ace. The lemma follows by observing that the ST-Algorithm (keBteiner tree) has approximation ragid]

Without loss of generality, we can assume tfiathas exactlyk terminals, as if it has more, then we can safely
delete them. LeTy C G be the tree obtained froffi’ C G’ by deleting the dummy nodes (i.e. the node¥1i) and
Vo be the vertex set df. Note that by Claim 3.1:

A Z Ce + Z Su < 4pOPT. (3.2)

ecTy wu' €T’

Thus, the cost of edges @ is at most4poPT/A = O(0PT/)). We should also point out th&f, might have
some vertices € V (and therefore € T”) butv’ ¢ T'. We obtain a pati?, = (V4, E1) C G from T}, with the
following properties: (i)V; C V, (i) ¢(P1) < 2¢(Tp), and (iii) for every vertexw € V4, the corresponding vertex
v' € G belongs tdl”, thus|V;| = k. This will ensure thaf; has exactlyk nodes and satisfies properties (R1) and
(R2). To do this, we duplicate every edg€l@fand do an Eulerian walk dfy; now shortcut over every vertexc Ty
with o' ¢ T'; also shortcut over repeated nodes. It is easy to see thatedefawith a path”; whose cost is at most
2¢(Tp) and every vertex € Py has its copy’ in T”; so it hask vertices and by Equation (3.1) satisfies both (R1) and
(R2). Thus:

LEMMA 3.2. We can compute a patfy, = (V4, E7) such thatl; C Vj, |Vi| = k, ande(Pr) < 2¢(Tp); i.e. Py
satisfies both (R1) and (R2).

3.2.2. Phase 2: Path P, satisfying properties (R2-new) and (R3). Next we compute two disjoint sets of ver-
ticesV, C V; andl C Vi and a path?, over Vs (by shortcutting over nodes not Iry). Our idea in computings is
to keepO(k/\) vertices of P, whoseS,, neighborhoods are mostly disjoint and thejrvalues are small, in order to
establish the stronger (R2-new).

Suppose that we have an ordering of the verticeB,oBayv, = r,va, ..., v, such thak,, < s,, < ... <s,,.
Note that although has the smallest, value among all the verticas € G*, it is not necessarily the case .
Foreachl < i < k, letpu;, = Sii. We call S,, the ball ofv;. We also define the core &,,, denoted byB,,, to
be the set of nodes ifi,, with distance at mostu; to v;. By a simple averaging argument, one can easily show that
|B,;| > A/2. We partition the nodes dP; into two sets oBctiveandinactivenodes using the following procedure to
cluster the balls. Initially, all the nodes & are active and we hawg = () (S will contain the centers of active balls).
For eachl < i <k, if v; is active and there is ng; € S (with j < 7) such that;; < 4u; + 2u; then addy; to S
and make all the nodes i), inactive except; itself (the bound:;; < 4u; + 24, is chosen to ensure that the cores of
the active nodes i§ are disjoint and is also used in the proof of a technical lerfatex). Note that,, might include
some vertices not i’;. So at the end, for every two active nodgsv; € S (with j < i) we havec;; > 4p; + 2p;
andB,, N B,;, = (. Also, for every active node; € S, ball S, only contains inactive nodes. Now for every value of
1 <4 < k such that; is active buty; ¢ S, there exists g < i such thaw; € S andc;; < 4p; + 2p5. Letj* be the
smallest such index and defipg) = j*, meaning that; is assigned to bal§, . . So each active nodg is either the
center of an active ball (and it belongs§ or is assigned to a bafl,,(;) with p(i) € S, and all the remaining nodes
(that are inside the balls with centersS are inactive. Thus:

CLAIM 3.3.The coresB,,,v; € S, are pairwise disjoint andB,,,| > %

For every value of, consider the union of active nodesand their ballS,, (if v; € S), forall j < i, and define
this set of verticed/;. More precisely, for each active node (j < 7) defineS; = S, U {v;}if v; € S, and
Sy, = {v;} otherwise. Then

activev;, j<i

Leti* < k — \/7 be the smallest index such tHat-| > k£ — A\/7. Itis easy to see from the definition bf and
the choice of* that:
LEMMA 3.4.k — 2 < |U;-

<k+%2.



The solution of our algorithm will be a graptf on vertex seUU;-. Let V; be the set of active nodes Bwith
index at mosi* and! be the set of active nodes not$hwith index at most*. Note that
OBSERVATION 3.5. From the definitions of, U;-, V5, andI:
(i) Vo, I C Vi and they are disjoint, and
(ii) Every nodev; € P, withi < i*isin U;-.
We compute a pat, = (15, F2) from Py by simply shortcutting over vertices @f, that are not inl;. Using
triangle inequality:

C(PQ) S C(Pl). (33)

Also, using the definition o4, I, andU;., and Lemma 3.4, property (R3) is satisfied. Soon, we will shwat
P, and[ also satisfy (R2-new). We need the following technical lesrtmprove this:

LEMMA 3.6. For everyv; € S, withi > 2, (that is every node i5 except the root = v;) and every node
vj € Py with¢,,,; < 2p; such thaty; became inactive once we addedo S: p; < 2pu;.

Proof. If 7 < j (i.e. v; was considered beforg) then clearlys,, < s,, and therefore,; < ;. Now suppose that

i > j. It means thav; was an active node but not  at the timev; was examined. This can happen only if there is
¢ < jwithv, € S and

Cu v, < 4;“/] + 2. (34)

On the other hand, sinag was not inactivated by,:

Cogvy > Ak + 2e. (3.5)
Using triangle inequality:
C’U,;’U[ S C’Ui’Uj + C’Uj’U[' (3.6)

Combining (3.4), (3.5), and (3.6), together with the asstionpthatc,,,;, < 2u; implies that: 4u; + 2, <
Coivg < Cuu; + Coju, < 203 + 4pj + 20, thereforeu; < 24; as wantedl

Now we are ready to prove property (R2-new) féy and . More specifically we prove the following Lemma
which implies (R2-new):

LEMMA 3.7.0%" cv, So + 7> ,cr S0 < (2 +28p)OPT.

Remark: The constant 7 in this lemma may look arbitrary at the momlemiyever we use this bound in the
analysis of the algorithm later.

Proof.

First we show thahs, < 20pPTand then we prove that

A Z Sy + 7ZSU < 28pOPT. 3.7)
vEVa2, vFT vel
Suppose that], vy, v5, ..., v) are the vertices of the optimum solution whefe= v; = r. Without loss of

generality and using the assumptlon that= r has the smallest,, value among all the nodes in the optimum
solution we may assume that < s,, < ... < s,/. From the second lower bound given fopT in the previous
section:) ; ;< s, < 20PT. Thus, usmg the fact thakit> A+ 1

Asy < Z Sy, < 20PT. (3.8)

1<i<k

In order to prove (3.7) we show::



A Z Sv+7ZSU§7ZSU. (3.9)

veVa, v#Tr vel veP;

Note that this, together with Observation 3.5(i), Lemma a@ritl Equation (3.1) implies Equation (3.7). To prove
(3.9), for every vertex € Vo — {vy,v;« } we find at Ieast} distinct inactive vertices € P, — I whoses,, value is at
least. This implies that the sum of, values of the nodes i, — {v1,v;- } is less than that those &%, — I by a
factor ofQ2(\). We explain the details below.

We define a one-to-one mappingrom some of the vertices i (i.e. a subset of/;~) to the vertices of;. For
the technical reason thii | might be larger thai (recall thatk — % <|H|<k+ %) we define our mapping from
the vertices irU;« — 5,,. instead and deal with the nodesSp,, separately. More precisely, |&F be the set of nodes
Ui — Sy, and|H| = ¢. By definition ofi* and Lemma 3.4¢ < k — % We define our one-to-one mappindgrom
the vertices infl to verticesv,, . . ., v, of P; in the following way in two rounds:

Round 1: Forallv € H N P, mapw to itself (regardless of whetheris active or not).
Round 2: Every (inactive)y € H — P; (which must belong to som§,, with v; € S) is mapped to the first vertex
v; € P; to which no other vertex off is mapped to previously.

First we note that the above mapping is well defined (becawsaumber of nodes off is at most/) and is
one-to-one. Also every vertex € P, with 1 < i < i* belongs toH (by definition of H and Observation 3.5(ii)) and
is mapped to itself (in Round 1). Moreover, active vertiaes]i (regardless of whether they areia or I) map to
themselves; so no inactive node is mapped to an active nagle. v prove that for every inactive vertexe H, if it
belongs to some corB,, for an active vertex; € H NS with 2 < i < i* — 1 (that is an active node ith — {v1, v}}),
thenv is mapped to an inactive vertex with s, > ‘”2’1’ . For this we have two cases:

Casel (v € P): Inthis caser € H N P; and so maps to itself (i.a: = v;) in Round 1; it suffices to show that
Sy; > S;‘ . If j > ithen clearly iss,, > % If j <1, it means that; was de-activated when addingto S; in this
case note that, ., < 2u; (by definition of coreB,,); so using Lemma 3.6 (noting that we assurged i < i* — 1):
pi < 2p; whichimpliess,, < 2s,,.

Case2 (v ¢ Py): Inthis cases € H — P, is mapped in Round 2. Note that since B,,, (2 < i < i* — 1) and
each node;s with 1 <’ < i* is mapped to itself in Round 1, therefarg(the image ofv) must come aftev;-, i.e.
J >i* +1 > i which impliess,, < 2s,,.

Thus, we have shown:

CLAIM 3.8. For every active node € V, — {v1, v;- } the images of the at leasd/2 (inactive) nodes im3,, are
distinct inactive vertices, € P, withi < ¢ < k — \/7, whoses,, value is at leass, /2.

Therefore:

MY s kY s=4 Y )\-%—1—7251}

vEVa—{v1,v;x } vel vEVe—{v1,v;% } vel

<7 Y LTI s,

vEVe—{v1,v;x } vel

ST D sutTY s

v, isinactive, vel
1<i<k—X\/T

S s, (3.10)

1<i<k—M\/7

o> o

IN

where the second last inequality follows from Claim 3.8 drallast inequality follows from the fact that the nodes
in I are active and have index at mast< k£ — \/7. Foruv;«, noting that™* < k — % we have:

Ao SAsu, L, ST D s, (3.12)
k—)\/7<i<k

Therefore, using (3.10) and (3.11):



~

Compute pathP; (as in Lemma 3.2) and then path and set/ (as in Corollary 3.9).
Let H be an empty graphH{ will eventually be a graph on vertex g6t-).
foreach active nodey; with i < i* not already added té¢/ do
if v; € Sthen
| Add v; and everyu € S, to H as well as every edgev, with u,v € S,,, U {v;}
else
| Addu; to H and every edgeu;, with u € S,,(;)
end
end
10 foreach edgev;v; € P> do
11 | Add an arbitrary matching of size— |S,, N S,,| from S,, — S, t0 S,, — S,, in H
12 end
13 returnd

© 00 N O U~ W N P

FiG. 3.1.Algorithm 1, which returns #k — \/7, \)-subgraph whose cost is within a constant factor of minimost @, \)-subgraph

A Z sv+7st§ Z 7Sy, + Z 78y, < Z 7Sy, -

VEVa,v#T vel 1<i<k—\/7 k—\/7<i<k 1<i<k

This, together with the bound proved in Lemma 3.2 fgr implies Equation (3.9), and completes the proof of
Lemma.
|

COROLLARY 3.9. We can compute a path, = (12, F2) and setl C V; with Vo C V3 andV, N T = ), such
that: ¢(P2) < 2¢(Tp), and P, and [ satisfy properties (R2-new) and (R3).

3.2.3. Phase 3: Obtaininga (k — A/7, \)-subgraph from P, and I. The next steps of the algorithm would be
to make a(\ + 1)-clique overS,, U {v;} for eachv; € V> which are precisely thoseg € S with ¢ < i*. For each
active nodey; € I, we connect; to all the X vertices inS ;). It is easy to observe that each bél, with v; € V>
together with all the active nodes assigned to it will form-adge-connected subgraph. The final step is to make
good connectivity between these balls. For that, we look/atyeedgev;v; € P; note that bothy;,v; € S. Let
a = |S,,NS,,|. We add an arbitrary matching (of size- a) between the\ — a vertices inS,, — S,; andS,, — S.,.

The full description of the algorithm, is given in Figure 3vthile Figure 3.2 illustrates the approximate Steiner
tree computed, the balls around the active nodes, and sothe eflges added to make the grapédge-connected.

3.3. Analysisof Algorithm. Itis easy to see thdf contains exactly those active nodeswith i < i* as well as
all the nodes inJ, s ;< Sv;; Which is exactly the se;.. Thus, by Lemma 3.4:

LEMMA 3.10.k — 2 < |H| < k + &.

In the remaining of this subsection we show tliathas the required connectivity while its cost is bounded by
O(oPT).

LEMMA 3.11.SolutionH returned by Algorithm 1 is--edge-connected.

Proof. For everyv € H, let us define the hub far, denoted by:(v), to be (i)v itself if v € S, (i) p(7) if v =v;
is an active node but not if, and (iii) v, € S if v is the first vertex added t§ with v € S,,. Observe that the set
of hub nodes are precisely the nodesiwith index at most*, which is the same as the set of nodeg’of First it is
easy to see that eacthas\-edge connectivity to its hub (for case (iii) we have maddgue out ofi(v) and all the
vertices in its ball including, and for case (iip is adjacent to\ vertices in the cligue made from the ball iofv)).
So it is enough to show that we haxeedge-connectivity between the hub vertices. For any twacaat vertices
v;,v; € Py, the matching edges added between the balls; @indv; (together with possible nodes 8}, N S,,)
establish\-edge-connectivity betweer andwv;. By transitivity, we have\-edge-connectivity between any pair of
nodesv;, v; € P».

LEMMA 3.12.The cost of edges ¢f added in line 11 is at mo§pOPT.



8 @ Other vertices

QO active nodes without balls <= Matching edges
ball edges

B active nodes with balls = steiner tree edges

Added in Line 7

Added in Line 11

FI1G. 3.2.A sample showing how the edges between the balls of actiwes moel added and how the active nodes without a ball are coatec
to the balls of other active nodes.

Proof. Consider an arbitrary vertex € . Since degree of; is at most two, there are at most two other nodes,
saywv;, v, With v;v; € P, andv;ve € P>. Note thatv;, vj, v, € S. For any edgery with z € S, andy € S, that
we add inline 11c,, < czy, + Cu0; + Coyy- As the matching added between the balls,odndv; has size at most
A, the cost of this matching is at most,,.; + s, + s.,. Similarly, the cost of matching added between the vertices
of S,, andS,, is at most\c,,,, + s, + s,,. Therefore, the total cost of all the edges added in line Hi imost:
ADeep, Ce + 222, cp, Sv;- Using Equation (3.1) and noting thei C V4 ande(P,) < 2¢(Tp) (by Corollary 3.9),
the total cost of the edges added in line 11is at@ast, ., cc +2>_, cp Sv; < 8pOPT. O

LEMMA 3.13.The cost of edges &f added in lines 5 and 7 is at mo&t + 28p)OPT.

Proof. We consider the following cases:

Case 1 First consider an active node ¢ S with ¢ < * (i.e. v; € I); soi > 2 and we have added vertex
v; to H plus every edgew; with u € S,;) in line 7. Let us assumg(i) = j*. Note thate,,, < Cuvje F Copoyn -
So the total cost of edges added at line 7 (for adding verte® H) is at most\c,,.,. + s,,.. By definition of j*:
Covpe < 41 + 2p5-. Noting thats, . < s,, (and thereforey;- < 1;), the total cost of edges added fgris at most
6L + S, < 75y,

Case 2 Now consider an active nodg € S for which we add all the vertices if,, U {v;} to H and make a
(A+1)-clique on these vertices in line 5. For any two verticeg € S, U{v; }: cay < €,z + Coy- SiNce each vertex
x is incident with\ edges in this clique, the total cost of the edges of the clisja¢ most\ Zyesw Cojy = ASy;.

Thus, the total cost of the edges added in lines 5 and 7 is at s, Asy, +
3.7 is bounded by2 + 28p)opPT. O

THEOREM 3.14. Algorithm 1 (in Figure 3.1) returns a (simple) graph of sizeleastk — % which is \-edge-
connected and has cost at m@3t+ 36p)OPT.

Proof. By Lemma 3.10 and Lemma 3.1H is a A-edge-connected graph with at ledst- % nodes. Using
Lemmas 3.12 and 3.13(H) < 8p0PT+ (2 + 28p)OPT = (2 + 36p)OPT.

vie1 150, Which by Lemma

4. Fromsizek — \/7tosizek. As mentioned in the previous section, gratcomputed by Algorithm 1 has at
leastk — \/7 vertices and has non-empty intersection with (at least root- belongs to both). IfH| > k then we
are done. Otherwise, in this section we show how to augreatlow cost to have at leastvertices without loosing
its edge-connectivity. For every vertexe G\ H, let the distance of to H, denoted byi(u, H), be the cost of the
cheapest edge fromto a vertex infH. Our construction in this section is based on the following temmas.

LEMMA 4.1.If there is a vertex, € G\ H with |S,, U H| > k then we can augmeti to a (k, \)-subgraph with
an additional cost ohs,, + Ad(u, H) + c¢(H).



1 Hy:

2 If there is a vertexs € G\ H with the smalless,, + d(u, H) value such thatS,, U H| > k then augment
H to Hy using Lemma 4.1.

3 Otherwise letH; = H.

4 Hs:
5 Find a minimum weight matching/ of sizek — |H| betweenG\H andH,
6 AugmentH to H, according to Lemma 4.2.

7 return either offf; or H, that has at leagt nodes and the least cost.

FIG. 4.1.Algorithm 2, which augment# (the result of Algorithm 1) to have at leastvertices

Proof. Consider such a vertexe G\ H. We addu andS,, to H to get a total of at leagt vertices. To establish
-edge-connectivity, we first build a cliqgue around verti¢e$ U S,,. This costs at mosts,,. If S, N H # ) then
u and S, have\-edge-connectivity td4. Otherwise, lety be the closest neighbor afin /. We connect: to the
nearest\ neighbors ofv in H. For any such neighbay of v, ¢, < ¢y + ¢yy. Therefore, the cost of adding these
edges is at moskc,, + ¢(H) = Ad(u, H) + ¢(H) and the total cost of the findk, \)-graph obtained is at most
Ad(u, H) 4+ 2¢(H) 4+ Asy,. O

LEMMA 4.2.Let M be a matching of size— | H| from G\ H to H. Then we can augme#ff to a(k, A)-subgraph
with an additional cost oAc(M) + 2¢(H ), wherec(M ) andc(H ) denote the cost of edges of matchigand graph
H, respectively.

Proof. LetU be the set of vertices i\ H that participate in\/. For everyu € U we connect: to the A nearest
neighbors ofM (u). This costs at mostd(u, M (u)) + s ) (H), by triangle inequality. Thus, the total cost of the
edges added is at most:

S (i, M()) + 3y (H)) < Ae(M) + 2¢(H)
uelU

where the inequality follows from the fact that,ci; Sy () (H) counts every edge dff at most twice and, therefore,
its cost is at most twice as much as the costiof]

Using these two lemmas, we compute two different graghs> H andH, O H that are\-edge-connected and
return whichever has at leastnodes and the least cost. The description of the algorithgiven in Figure 4.1. In
what follows we show that we either have a matching fiG¥ to H of sizek — |H| and cosO(oPT/)\) or there is
avertexu € G\ H with d(u, H) + s, = O(0PT/\). Consequently, we can apply one of the above two lemmas and
obtain a(k, A)-subgraph with small cost.

Figure 4.2 shows how graptig and H, are built from expanding/. To perform line 5 of the algorithm, we can
use any minimum cost (bipartite) matching algorithm (seéd)[1

LeEmMA 4.3.If H; # H then it is\-edge connected and has at le&stertices. AlsoH, is A-edge-connected
and has at least vertices.

Proof. By the description of Algorithm 2 (in Figure 4.1), H; # H then while buildingH; we have added at
leastk — |H| new vertices sincéS,, U H| > k; so in this caseéH;| > k. For Hy, we add the vertices di and
|U| = k — |H|, so|Hz| = k. For A-edge-connectivity, note thd was originallyA\-edge-connected. lfl; # H
we have added a vertextogether withS,,. The vertices inS,, U {u} form a clique, so ara-edge-connected among
themselves. Also, if, N H = ), v is A\-edge connected to some vertex H by the\ edges added betweerand
the A nearest neighbors ef (in H). By transitivity, this implies the\-edge connectivity of{;. For the connectivity
of H,, every new vertex. € U is connected to at leastvertices inH which makes it\-edge connected to all the
vertices inH. O

LEMMA 4.4.1f H is the solution of Algorithm 1, then the solution of Algonitf2 has cost at mostax{120PT+
3c(H),130PT+ 2¢(H)}.

Proof.

We prove this by considering the following two cases.

Casel: |G*\H| < \/3
In this case we show that cost B, is O(0OPT). Every vertexu € G*\ H is connected, ili7*, to at leas2)\/3 vertices



10

" G\H

FIG. 4.2.ConstructingH; (in the left picture) and{ (in the right picture)

in G* N H and (by a simple averaging argument) the distanaetofat least\ /3 of them is at mosss,, (G*) /A (recall
thats, (G™) is the sum of distances fromto its A closest neighbors i&'*). Therefore there is a matchidd between
G*\H andG* N H such that{(u, M (u)) < 3s,(G*)/A foreveryu € G*\H, and|M| = |G*\H| > k — |H| = | M|,

where)M is the matching we find in the algorithm. Sing€ is a minimum weight matching:

~ 3 N 60PT
(M) <) €5 D su(G7) < (4.1)
ueG*\H

where we use the lower bound®f, .\ 7 5u(G*) < 3°, - su(G*) < 20PT. Therefore, according to Lemma 4.2,
c(Hs) < c¢(H)+ Ae(M) +2¢(H) < 3C(H) + 60PT.

Case2: |G*\H| > \/3
In this case (again by an averaging argument) there is & &6t\ /6 vertices inG*\ H such thats,, < 120PT/\ for
eachu € U (Otherwise, the remaining at least6 vertices would have total value more tham\/6 x 120PT/\ >
20PT which is a contradiction). If every vertex if is connected, irG*, to at leasR\/6 vertices inG* N H then,
with an argument similar to the previous case and by usingrham.2, we can upper bound the costiéf by:
¢(Hs2) < 120PT+ 3¢(H),

Otherwise, letu € U be a vertex such thaf, has more thad\/6 > \/7 vertices inG*\ H. In this case we
show thatc(H7) = O(oPT) (note that in this casél; # H). First note that\s,, < 120pPTas each vertex € U
hass, < 120PT/\. Furthermore, sincél N G* is non-empty (here we use the assumption thia¢longs to bott/
andG«), u must have distance at masbT/\ to some vertex € H (because there are at leastdge disjoint paths
betweernu andv and the cost of each is at leagt, by the triangle inequality). Now using Lemma 4.1, and thevabo
facts that\s,, < 120pPTandd(u, H) < OPT/J, it follows thatH; costs at most30PT+ 2¢(H) U

Combining the two Algorithms 1 (in Figure 3.1) and 2 (in Figut.1), and using Lemmas 4.4 and 4.3, and
Theorem 3.14 we have an algorithm that returnsedge-connected subgraph on at |dagéertices with cost at most
max{120PT+ 3¢(H ), 130PT+ 2¢(H)} < 3(24 36p)OoPT+ 120PT= (18 + 108p)OPT. Thus, we have the following
theorem which is essentially Theorem 1.1:

THEOREM 4.5. There is a polynomial time algorithm for th@&, \)-subgraph problem on graphs with metric
edge costs which has approximation factor at mast- 108p, with p < 4 being the best approximation factor for the
k-Steiner tree problem.

5. Concluding Remarks. In this paper, we proved that thé&, \)-subgraph problem with metric costs has a
polynomial timeO(1)-approximation algorithm. However, the approximatiofcraf our algorithm is relatively large
(namely 450). Although it is very likely that one can achi@reapproximation ratio close to 100 using the same
algorithm by fine tuning the parameters, getting a small @onidactor approximation seems to be challenging. Our
algorithm does not seem to work for vertex-connectivityuiegments. It is an interesting open question whether one
can obtain a constant factor approximation for this vaoiati

For general cost functions, the only known results on thidbfam (that we are aware of) are the papers [12, 4]
which prove that thék, 2)-subgraph problem (on general graphs) Bi#g” n)-approximation, even if we require



2-node-connectivity in the solution (instead of 2-edgereectivity). Even for the special case bf= 3, there isido
known non-trivial approximation algorithm or lower bourtth(dness result).

6. Acknowledgments. We thank anonymous referees whose comments improved therjagion of the paper.

The second author also thanks Joseph Cheriyan for soma thigcussions on the problem.

(1]
(2]
(3]
(4

(5]
(6]

(7]
(8]

El
[20]

[11]
[12]

[13]
[14]

[15]

REFERENCES

B. Awerbuch, Y. Azar, A. Blum and S. Vempalblew approximation guarantees for minimum-weight k-tree$arize-collecting salesmen
SIAM J. Computing 28(1):254-262, 1999.

A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, andWinkoff, Approximation Algorithms for Orienteering and Discounf@dward
TSR SIAM J. on Computing 28(1):254-262, 1999. Earlier versiofroc of STOC 1995.

A. Blum, R. Ravi, and S. Vempal# constant-factor approximation algorithm for theMST problemJ. Comput. Syst. Sci. 58(1): 101-108,
1999. Earlier in Proceedings of the 28th Annual ACM Sympwsan the Theory of Computing (STOC '96), pp. 442-448.

C. Chekuri and N. KorulaPrunning 2-connected graphin Proceedings of the 28th Conference on Foundations dafv8cd Technology
and Theoretical Computer Science (FSTTCS), 2008

C. Chekuri, N. Korula, and M. Palmproved Algorithms for Orienteering and Related Problem$roc of ACM-SIAM SODA, 2008.

J. Cheriyan and A Vettepproximation algorithms for network design with metristpSIAM J. Discr. Math. 21(3): 612—-636, 2007. Earlier
version in Proceedings of the thirty-seventh annual ACM pgsium on Theory of computing (STOC) 2005, 167-175.

F. Chudak, T. Roughgarden, and D. P. Williamsépproximate MSTs and Steiner trees via the primal-dual otetind Lagrangean relax-
ation, Math. Program. 100(2):411-421, 2004.

A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and AayaraghavanDetecting High Log-Densities - a@(n1/4) Approximation for
Densest:-Subgraph In Proceedings of the 42th ACM Symposium on Theory of ComgutSTOC 2010).

U. Feige, G. Kortsarz and D. Peleghe dense k-subgraph probledlgorithmica, 29(3): 410-421, 2001. Preliminary versiarthe Proc.
34-th IEEE Symp. on Foundations of Computer Science (FO@$P@-701, 1993.

N. Garg, A 3-Approximation for the minim tree spannikgvertices In Proceedings of the 37th Annual Symposium on Foundatadns
Computer Science (FOCS), 302-309, 1996.

N. Garg,Saving an epsilon: a 2-approximation for the k-MST problargraphs In Proceedings of the thirty-seventh annual ACM sympo-
sium on Theory of computing (STOC), 396 - 402, 2005.

K. Jain,A factor 2 approximation algorithm for the generalized Steiner netmroblemy Combinatorica, 21:39-60, 2001.

L. Lau, S. Naor, M. Salavatipour, and M. Singburvivable Network Design with Degree or Order Constrai@abmitted to SIAM J. on
Computing. Earlier version in Proceedings of the thirtyeth annual ACM symposium on Theory of computing (STOC),7200

S. Rajagopalan and V. Vaziraiipgarithmic approximation of minimum weightrees unpublished manuscript, 1995.

R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkramtd, & S. RaviSpanning trees short or smaBlAM Journal on Discrete Mathematics,
9(2):178-200, 1996.

A. Schrijver, Combinatorial Optimization, Spring@003.



