
A CONSTANT FACTOR APPROXIMATION FOR MINIMUM λ-EDGE-CONNECTED K-SUBGRAPH
WITH METRIC COSTS ∗

MOHAMMADALI SAFARI † AND MOHAMMAD R. SALAVATIPOUR ‡

Abstract. In the (k, λ)-subgraph problem, we are given an undirected graphG = (V, E) with edge costs and two positive integersk andλ
and the goal is to find a minimum cost simpleλ-edge-connected subgraph ofG with at leastk nodes. This generalizes several classical problems,
such as the minimum costk-Spanning Tree problem ork-MST (which is a(k, 1)-subgraph), and minimum costλ-edge-connected spanning
subgraph (which is a(|V (G)|, λ)-subgraph). The only previously known results on this problem [12, 4] show that the(k, 2)-subgraph problem
has anO(log2 n)-approximation (even for 2-node-connectivity) and that the (k, λ)-subgraph problem in general is almost as hard as the densest
k-subgraph problem [12]. In this paper we show that if the edgecosts are metric (i.e. satisfy triangle inequality), like in thek-MST problem, then
there is anO(1)-approximation algorithm for(k, λ)-subgraph problem. This essentially generalizes thek-MST constant factor approximability to
higher connectivity.

1. Introduction. Network design is a central topic in combinatorial optimization, approximation algorithms, and
operations research. A fundamental problem in network design is to find a minimum cost subgraph satisfying some
given connectivity requirements between vertices. Here bya network we mean an undirected graph together with non-
negative costs on the edges. For example, with a connectivity requirementλ = 1 between all the vertices, we have
the classical minimum spanning tree problem. For larger values ofλ, i.e. finding minimum costλ-edge-connected
spanning subgraphs, the problem is APX-hard. These are special cases of the more general edge-connectivity surviv-
able network design problem (SNDP) or Steiner network, in which we have an edge-connectivity requirement ofruv
between every pairu, v of vertices. Even for this general setting there is a 2-approximation algorithm by Jain [11].

A major line of research in this area has focused on problems with connectivity requirements where one has
another parameterk, and the goal is to find a subgraph satisfying the connectivity requirements with a lower boundk
on the total number of vertices. The most well-studied problem in this class is the minimumk-spanning tree problem,
a.k.a.k-MST. In this problem, we have to find a minimum cost connectedsubgraph spanning at leastk-vertices. The
approximation factor for this problem was improved from

√
k by Ravi et al. [14], toO(log2 k) by Awerbuch et al. [1],

to O(log n) by Rajagopalan and Vazirani [13], then to a constant by Blum et al. [3], and recently to 2 by Garg [10].
The algorithm of [10] can be used to obtain a constant approximation for the slightly more general setting in which
we have a set of nodesT , called terminals, and the goal is to find a minimum cost connected subgraph containing
at leastk terminals. This is known as thek-Steiner tree problem. The problem ofk-TSP, in which one has to find a
minimum cost TSP tour containing at leastk nodes, can be approximated using very similar technique. Wenote that in
all these problems, the input graph is assumed to be completeand the edge cost function is metric, i.e. satisfies triangle
inequality. Most of these problems are motivated from theirapplications in vehicle routing or profit maximization with
respect to a given fixed budget. For example, suppose that we have a battery operated robot and the goal is to find the
minimum battery charge required to travel a sequence of at leastk nodes in a given graph such that the total length of
the tour can be travelled in a single battery charge. See [2, 5] for similar problems.

Recently, Lau et al. [12] considered a very natural common generalization of both thek-MST problem and the
minimum costλ-edge-connected spanning subgraph problem, which they called the(k, λ)-subgraph problem. In this
problem, we are given a graphG = (V,E) with a (not necessarily metric) cost functionc : E → R

+ on the edges,
two positive integersk andλ; the goal is to find a minimum cost simpleλ-edge-connected subgraph ofG with at least
k vertices. We should emphasize that the solution must be simple, that is, we are not allowed to pick an edge more
than once. Otherwise, a 4-approximate solution can be computed by taking a 2-approximatek-MST solutionT , and
then takingλ copies ofT sinceλ/2 times the cost of ak-MST is a lower bound for the cost of an optimum solution
(details given in the next section). It is easy to observe that the(k, λ)-subgraph problem contains, as special cases, the
minimum costλ-edge-connected spanning subgraph problem (it becomes the(|V (G)|, λ)-subgraph problem), and the
k-MST problem (which becomes the(k, 1)-subgraph problem). Lau et al. [12] presented anO(log2 n)-approximation
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2for (k, 2)-subgraph and showed that for arbitrary values ofλ, (k, λ)-subgraph is almost as hard as thek-densest
subgraph problem. In thek-densest subgraph problem, one has to find a subgraph withk nodes in a given graphG
that has the largest number of edges. Despite considerable attempts, the best known approximation algorithm for this
problem has ratioO(n

1

4 ) by Bhaskara et al. [8]. Chekuri and Korula [4] have recently (and independently of [12])
shown that an algorithm similar to the one in [12] yields anO(log2 n)-approximation for the(k, 2)-subgraph problem
even if we seek a 2-node-connected subgraph.

In light of the result of [12] on the hardness of(k, λ)-subgraph for arbitrary values ofλ and general costs, it is
natural to try to obtain good approximation algorithms for the class of graphs where the edge cost function is metric.
Remember that the constant factor approximation algorithms for k-MST andk-TSP are on graphs with metric cost
function. The main result of this paper is the following theorem:

THEOREM 1.1. Given a (complete) graphG with metric costs on the edges and two positive integersk, λ, there
is anO(1)-approximation algorithm for finding a(k, λ)-subgraph inG.

Our algorithm is combinatorial and uses ideas from Cheriyanand Vetta [6] for metric-cost subset node-connectivity
problem as well as the algorithm fork-Steiner tree [7, 10, 14]. The constant factor we obtain is relatively large (namely
450), however, most of our efforts have been made to show thatthe problem has a constant factor approximation rather
than trying to obtain the best possible ratio.

The rest of the paper is organized as follows. We start by somedefinitions and preliminary bounds used throughout
the paper. For ease of exposition, we first present an algorithm that finds aλ-edge-connected subgraph with at least
k − λ/7 nodes whose cost isO(OPT). In Section 3 we show how to extend this solution to a feasiblesolution to
the (k, λ)-subgraph problem while keeping the total cost still bounded by O(OPT). We finish the paper with some
concluding remarks.

2. Preliminaries. As mentioned earlier, we assume we are given a graphG = (V,E), with a cost function
c : E → R

+ on the edges that satisfies triangle inequality, and two positive integersk andλ. We assume thatG is a
complete graph as this is a natural assumption when the cost function is metric. For every subgraphF ⊆ G, we use
c(F ) to denote the total cost of the edges inF and|F | denotes the number of vertices inF . Throughout,G∗ ⊆ G
denotes the optimum solution andOPT= c(G∗) denotes the optimum solution cost. We will use two lower bounds on
OPT in the analysis of our algorithm. These lower bounds were used earlier in [6] for the problem of minimum cost
subsetk-node-connected subgraph. The first lower bound comes from the cost of a minimum spanning tree ofG∗,
which we callT ∗. Considering the cut-constraint IP formulation of MST, it is easy to see thatλ2

∑

e∈T∗ ce ≤ OPT. To
see this observe that by the well-known results of Nash-Williams and Tutte (see [15]) anyλ-edge-connected graph has
λ/2 edge-disjoint spanning trees. Soλ/2 times the cost of MST ofG∗ is no more thanOPT. The second lower bound
comes from the minimum cost subgraph that has minimum degreeat leastλ. Note that in aλ-edge-connected subgraph,
every vertex has degree at leastλ. For anyλ-edge-connected subgraphF ⊆ G and any vertexu ∈ F letSu(F ) be the
set ofλ nearest neighbors ofu in F andsu(F ) be

∑

v∈Su(F ) cuv. Clearly, for anyλ-edge-connected subgraphF ⊆ G

and any vertexu ∈ F we havesu(G) ≤ su(F ). We often useSu andsu instead ofSu(G) andsu(G), respectively,
unless the graph is different fromG. It is easy to see that12

∑

u∈G∗ su ≤ 1
2

∑

u∈G∗ su(G
∗) ≤ OPT. Thus, ifT ∗ is a

minimum spanning tree ofG∗, then we obtain the following two lower bounds forOPT: (i) 1
2

∑

u∈T∗ su ≤ OPT, and
(ii) λ

2

∑

e∈T∗ ce ≤ OPT, and in particular:

1

2

∑

u∈T∗

su +
λ

2

∑

e∈T∗

ce ≤ 2OPT. (2.1)

In our algorithm we will use these two lower bounds frequently, often without referring to them.
We present an algorithm for a modified version of the problem in which along withG, k, andλ, we are also given

a vertexr ∈ G as the root which belongs to the optimum solutionG∗ and among all the vertices inG∗ it has the
smallest valuesu. Clearly, if we can solve this rooted version, then we can tryevery vertex as the root and return the
minimum solution among all as the final answer.

Ravi et al. [14] showed that anyα-approximation fork-MST implies a2α-approximation fork-Steiner tree.
Therefore, together with Garg’s algorithm [10], we have a 4-approximation fork-Steiner tree. In fact, we can have
a 4-approximation algorithm for the rooted version of the problem, in which a specific vertexr is given as the root
and the goal is to find a minimum cost Steiner tree rooted atr containing at leastk terminals. Our algorithm will use
the best known approximation algorithm for finding a minimumcost rootedk-Steiner tree problem; let us denote the



3approximation ratio of this algorithm byρ (by the argument above, we know thatρ ≤ 4). We denote this approximation
algorithm by ST-Algorithm.

Although we use similar lower bounds for the optimum as by Cheriyan and Vetta [6], we also use several new
ideas. Roughly speaking, the algorithm of [6] for the subsetk-node-connected subgraph builds a “cheap” cycle
containing all the terminals, then makesk other cycles parallel to that (called tracks) by taking thek nearest neighbors
of terminals. They make a “thick” cycle by making connectionbetween different tracks to ensure high connectivity.
One major difficulty in our case is that we do not have a given set of nodes that need to be in the final solution. To
overcome this, we use an approximate algorithm for thek-MST problem. Informally, we start from such a tree and then
make it “thick” by adding some of the nodes inSu for some verticesu of the tree to obtain the required connectivity.
However, it appears that we cannot obtain the required connectivity while bounding the cost. To overcome this
difficulty our main algorithm works in two phases. In the firstphase we obtain aλ-edge-connected subgraph with
k−O(λ) nodes whose cost is within a constant factor of optimum (presented in Section 3). Then in the second phase
using a different algorithm we show how to augment this graphto obtain a(k, λ)-graph while keeping the costO(OPT)
(presented in Section 4).

3. Obtaining a low cost (k−λ/7, λ)-subgraph. Observe that to haveλ-edge-connectivity while being a simple
graph, we must havek ≥ λ + 1. We start by presenting an algorithm that returns aλ-edge-connected subgraph
(containing rootr) that has at leastk − λ/7 nodes and whose cost is within constant factor ofOPT. Our algorithm is
influenced by [6] for the minimum cost subsetk-node-connected subgraph problem.

3.1. Overview of the Algorithm. The main idea of the algorithm is as follows. We first find a pathP1 over a set
V1 ⊆ V of sizek (containing rootr) having the following properties:
(R1)c(P1) =

∑

e∈P1
c(e) isO(OPT/λ), and

(R2)
∑

v∈P1
sv = O(OPT).

Note that these two are essentially the same as the bound given in Equation (2.1). If we were to make a clique
out of the nodes inSv ∪ {v} for eachv ∈ V1 and then for each edgeuv ∈ P1 add an arbitrary matching between the
nodes inSu andSv we would obtain aλ-edge-connected subgraph. The trouble is, we cannot bound the cost of edges
of these cliques. However, if we could prove a property stronger than (R2), such as

∑

v∈P1
sv = O(OPT/λ), then we

could bound the total cost of the edges of such cliques byO(OPT). We cannot prove this stronger property but we can
show one can select a subset of nodes ofP1 that satisfies a property close to this stronger one. By carefully selecting
a subsetV2 ⊆ V1 and anotherI ⊆ V1 − V2, we shortcut over the nodes not inV2 to obtain another pathP2 (fromP1)
with the following stronger properties:
(R2-new)λ

∑

v∈V2
sv +

∑

v∈I sv = O(OPT),
(R3) |V2 ∪ I ∪

(
⋃

v∈V2
Sv

)

| ≥ k − λ/7.
For now suppose we have obtained pathP1 and thenP2 as well as setI which satisfy properties mentioned above.

Our final graph will contain all the nodesV2 ∪ I ∪
(
⋃

v∈V2
Sv

)

. By (R3) there are at leastk − λ/7 nodes in this
solution. For eachv ∈ V2 we form a(λ + 1)-clique onSv ∪ {v} to getλ-edge connectivity among the vertices in
Sv ∪ {v}. Each nodeu ∈ I will be assigned to a nodev ∈ V2 and becomes connected to all the nodes of the clique
onSv ∪ {v}. Using property (R2-new), we will show that the total cost ofall these edges is at mostO(OPT). Next,
we need to establishλ-edge connectivity among these cliques. For that, for everyedgeuv ∈ P2, we add (up to)λ
edges between the two(λ+ 1)-cliques corresponding tou andv; the number of edges added will be less thanλ if Su

andSv have nodes in common. Roughly speaking, the total cost of the(at most)λ edges between the cliques will be
O(λ) times the cost of the edges inP2 plus the sum ofsv values of the nodes ofP2; since using triangle inequality
c(P2) ≤ c(P1), using (R1) and (R2-new) it follows that the cost of matchingedges will be no more thanO(OPT).
Therefore we will have a solution within constant factor of the optimum that has, according to property (R3),k− λ/7
vertices.

Many details are skipped over in this overview and are explained in the next subsection.

3.2. Details of the Algorithm. We build a pathP1 in G and then another pathP2 in two phases:

3.2.1. Phase 1: Path P1 with exactly k vertices satisfying properties (R1) and (R2).. Create a new graph
G′(V ∪V ′, E′) fromG by hanging a new (dummy) vertexu′ (in V ′) from each vertexu ∈ G and letE′ = E∪{uu′|u ∈
V }. Each edgeuu′ ∈ E′ has weightsu. For every other edge inG′ (that also exists inG) we multiply its weight by
λ. Next we compute an approximate (rooted)k-Steiner tree with terminal setV ′ = {v′|v ∈ V (G)} and rootr′ (copy
of r) using the ST-Algorithm. Let us call this treeT ′.



4 CLAIM 3.1. The cost ofT ′ is at most4ρOPT.
Proof. Consider the optimum solutionG∗ of the(k, λ)-subgraph problem inG and letT ∗ be a MST ofG∗ (we

assume thatr ∈ T ∗). ThenT ∗∪{uu′ ∈ G′|u ∈ T ∗} is clearly a Steiner tree inG′ containing at leastk terminals with
total cost at most4OPT (using bound (2.1) forT ∗). Note that for each edgee′ ∈ G′ (corresponding to edgee ∈ G):
ce′ = λce. The lemma follows by observing that the ST-Algorithm (fork-Steiner tree) has approximation ratioρ.

Without loss of generality, we can assume thatT ′ has exactlyk terminals, as if it has more, then we can safely
delete them. LetT0 ⊆ G be the tree obtained fromT ′ ⊆ G′ by deleting the dummy nodes (i.e. the nodes inV ′) and
V0 be the vertex set ofT0. Note that by Claim 3.1:

λ
∑

e∈T0

ce +
∑

u:u′∈T ′

su ≤ 4ρOPT. (3.1)

Thus, the cost of edges ofT0 is at most4ρOPT/λ = O(OPT/λ). We should also point out thatV0 might have
some verticesv ∈ V (and thereforev ∈ T ′) but v′ 6∈ T ′. We obtain a pathP1 = (V1, E1) ⊆ G from T0 with the
following properties: (i)V1 ⊆ V0, (ii) c(P1) ≤ 2c(T0), and (iii) for every vertexv ∈ V1, the corresponding vertex
v′ ∈ G′ belongs toT ′, thus|V1| = k. This will ensure thatP1 has exactlyk nodes and satisfies properties (R1) and
(R2). To do this, we duplicate every edge ofT0 and do an Eulerian walk ofT0; now shortcut over every vertexv ∈ T0

with v′ 6∈ T ′; also shortcut over repeated nodes. It is easy to see that we are left with a pathP1 whose cost is at most
2c(T0) and every vertexv ∈ P1 has its copyv′ in T ′; so it hask vertices and by Equation (3.1) satisfies both (R1) and
(R2). Thus:

LEMMA 3.2. We can compute a pathP1 = (V1, E1) such thatV1 ⊆ V0, |V1| = k, andc(P1) ≤ 2c(T0); i.e. P1

satisfies both (R1) and (R2).

3.2.2. Phase 2: Path P2 satisfying properties (R2-new) and (R3). Next we compute two disjoint sets of ver-
ticesV2 ⊆ V1 andI ⊆ V1 and a pathP2 overV2 (by shortcutting over nodes not inV2). Our idea in computingV2 is
to keepO(k/λ) vertices ofP1 whoseSu neighborhoods are mostly disjoint and theirsu values are small, in order to
establish the stronger (R2-new).

Suppose that we have an ordering of the vertices ofP1, sayv1 = r, v2, . . . , vk, such thatsv2 ≤ sv3 ≤ . . . ≤ svk .
Note that althoughr has the smallestsu value among all the verticesu ∈ G∗, it is not necessarily the case inP1.
For each1 ≤ i ≤ k, let µi =

svi
λ . We callSvi the ball ofvi. We also define the core ofSvi , denoted byBvi , to

be the set of nodes inSvi with distance at most2µi to vi. By a simple averaging argument, one can easily show that
|Bvi | ≥ λ/2. We partition the nodes ofP1 into two sets ofactiveandinactivenodes using the following procedure to
cluster the balls. Initially, all the nodes ofP1 are active and we haveS = ∅ (S will contain the centers of active balls).
For each1 ≤ i ≤ k, if vi is active and there is novj ∈ S (with j < i) such thatcij ≤ 4µi + 2µj then addvi to S
and make all the nodes inSvi inactive exceptvi itself (the boundcij ≤ 4µi +2µj is chosen to ensure that the cores of
the active nodes inS are disjoint and is also used in the proof of a technical lemmalater). Note thatSvi might include
some vertices not inP1. So at the end, for every two active nodesvi, vj ∈ S (with j < i) we havecij > 4µi + 2µj

andBvi ∩Bvj = ∅. Also, for every active nodevi ∈ S, ballSvi only contains inactive nodes. Now for every value of
1 ≤ i ≤ k such thatvi is active butvi 6∈ S, there exists aj < i such thatvj ∈ S andcij ≤ 4µi + 2µj. Let j∗ be the
smallest such index and definep(i) = j∗, meaning thatvi is assigned to ballSvj∗ . So each active nodevi is either the
center of an active ball (and it belongs toS) or is assigned to a ballSp(i) with p(i) ∈ S, and all the remaining nodes
(that are inside the balls with centers inS) are inactive. Thus:

CLAIM 3.3. The coresBvi , vi ∈ S, are pairwise disjoint and|Bvi | > λ
2 .

For every value ofi, consider the union of active nodesvj and their ballSvj (if vj ∈ S), for all j ≤ i, and define
this set of verticesUi. More precisely, for each active nodevj (j ≤ i) defineS′

vj = Svj ∪ {vj} if vj ∈ S, and
S′
vj = {vj} otherwise. Then

Ui =
⋃

activevj , j≤i

S′
vj . (3.2)

Let i∗ ≤ k − λ/7 be the smallest index such that|Ui∗ | ≥ k − λ/7. It is easy to see from the definition ofUi and
the choice ofi∗ that:

LEMMA 3.4. k − λ
7 ≤ |Ui∗ | ≤ k + 6λ

7 .



5The solution of our algorithm will be a graphH on vertex setUi∗ . Let V2 be the set of active nodes inS with
index at mosti∗ andI be the set of active nodes not inS with index at mosti∗. Note that

OBSERVATION 3.5. From the definitions ofS, Ui∗ , V2, andI:
(i) V2, I ⊆ V1 and they are disjoint, and
(ii) Every nodevi ∈ P1 with i ≤ i∗ is inUi∗ .

We compute a pathP2 = (V2, E2) from P1 by simply shortcutting over vertices ofP1 that are not inV2. Using
triangle inequality:

c(P2) ≤ c(P1). (3.3)

Also, using the definition ofV2, I, andUi∗ , and Lemma 3.4, property (R3) is satisfied. Soon, we will showthat
P2 andI also satisfy (R2-new). We need the following technical lemma to prove this:

LEMMA 3.6. For everyvi ∈ S, with i ≥ 2, (that is every node inS except the rootr = v1) and every node
vj ∈ P1 with cvivj ≤ 2µi such thatvj became inactive once we addedvi to S: µi ≤ 2µj .

Proof. If i < j (i.e. vi was considered beforevj ) then clearlysvi ≤ svj and thereforeµi ≤ µj . Now suppose that
i > j. It means thatvj was an active node but not inS at the timevi was examined. This can happen only if there is
ℓ < j with vℓ ∈ S and

cvjvℓ ≤ 4µj + 2µℓ. (3.4)

On the other hand, sincevi was not inactivated byvℓ:

cvivℓ > 4µi + 2µℓ. (3.5)

Using triangle inequality:

cvivℓ ≤ cvivj + cvjvℓ . (3.6)

Combining (3.4), (3.5), and (3.6), together with the assumption that cvivj ≤ 2µi implies that: 4µi + 2µℓ <
cvivℓ ≤ cvivj + cvjvℓ ≤ 2µi + 4µj + 2µℓ; thereforeµi ≤ 2µj as wanted.

Now we are ready to prove property (R2-new) forP2 andI. More specifically we prove the following Lemma
which implies (R2-new):

LEMMA 3.7.λ
∑

v∈V2
sv + 7

∑

v∈I sv ≤ (2 + 28ρ)OPT.
Remark: The constant 7 in this lemma may look arbitrary at the moment,however we use this bound in the

analysis of the algorithm later.
Proof.
First we show thatλsr ≤ 2OPT and then we prove that

λ
∑

v∈V2,v 6=r

sv + 7
∑

v∈I

sv ≤ 28ρOPT. (3.7)

Suppose thatv′1, v
′
2, v

′
3, . . . , v

′
k are the vertices of the optimum solution wherev′1 = v1 = r. Without loss of

generality and using the assumption thatv′1 = r has the smallestsv′
i

value among all the nodes in the optimum
solution we may assume thatsr ≤ sv′

2
≤ . . . ≤ sv′

k
. From the second lower bound given forOPT in the previous

section:
∑

1≤i≤k sv′
i
≤ 2OPT. Thus, using the fact thatk ≥ λ+ 1:

λsr <
∑

1≤i≤k

sv′
i
≤ 2OPT. (3.8)

In order to prove (3.7) we show::



6

λ
∑

v∈V2,v 6=r

sv + 7
∑

v∈I

sv ≤ 7
∑

v∈P1

sv. (3.9)

Note that this, together with Observation 3.5(i), Lemma 3.2, and Equation (3.1) implies Equation (3.7). To prove
(3.9), for every vertexv ∈ V2 − {v1, vi∗} we find at leastλ2 distinct inactive verticesu ∈ P1 − I whosesu value is at
least sv2 . This implies that the sum ofsv values of the nodes inV2 − {v1, vi∗} is less than that those ofP1 − I by a
factor ofΩ(λ). We explain the details below.

We define a one-to-one mappingπ from some of the vertices inH (i.e. a subset ofUi∗ ) to the vertices ofP1. For
the technical reason that|H | might be larger thank (recall thatk − λ

7 ≤ |H | ≤ k + 6λ
7 ) we define our mapping from

the vertices inUi∗ − Svi∗ instead and deal with the nodes inSvi∗ separately. More precisely, let̃H be the set of nodes
Ui∗ − Svi∗ and|H̃ | = ℓ. By definition ofi∗ and Lemma 3.4:ℓ ≤ k − λ

7 . We define our one-to-one mappingπ from
the vertices inH̃ to verticesv1, . . . , vℓ of P1 in the following way in two rounds:
Round 1: For allv ∈ H̃ ∩ P1 mapv to itself (regardless of whetherv is active or not).
Round 2: Every (inactive)v ∈ H̃ − P1 (which must belong to someSvi with vi ∈ S) is mapped to the first vertex

vj ∈ P1 to which no other vertex of̃H is mapped to previously.
First we note that the above mapping is well defined (because the number of nodes of̃H is at mostℓ) and is

one-to-one. Also every vertexvi ∈ P1 with 1 ≤ i ≤ i∗ belongs toH̃ (by definition ofH̃ and Observation 3.5(ii)) and
is mapped to itself (in Round 1). Moreover, active vertices in H̃ (regardless of whether they are inV2 or I) map to
themselves; so no inactive node is mapped to an active node. Next we prove that for every inactive vertexv ∈ H̃ , if it
belongs to some coreBvi for an active vertexvi ∈ H̃ ∩S with 2 ≤ i ≤ i∗−1 (that is an active node inV2−{v1, v∗i }),
thenv is mapped to an inactive vertexvj with svj ≥ svi

2 . For this we have two cases:
Case 1 (v ∈ P1): In this casev ∈ H̃ ∩ P1 and so maps to itself (i.e.v = vj) in Round 1; it suffices to show that

svj ≥ svi
2 . If j ≥ i then clearly issvj ≥ svi

2 . If j < i, it means thatvj was de-activated when addingvi to S; in this
case note thatcvjvi ≤ 2µi (by definition of coreBvi); so using Lemma 3.6 (noting that we assumed2 ≤ i ≤ i∗ − 1):
µi ≤ 2µj which impliessvi ≤ 2svj .

Case 2 (v 6∈ P1): In this casev ∈ H̃ − P1 is mapped in Round 2. Note that sincev ∈ Bvi (2 ≤ i ≤ i∗ − 1) and
each nodevi′ with 1 ≤ i′ ≤ i∗ is mapped to itself in Round 1, thereforevj (the image ofv) must come aftervi∗ , i.e.
j ≥ i∗ + 1 > i which impliessvi ≤ 2svj .

Thus, we have shown:
CLAIM 3.8. For every active nodev ∈ V2 − {v1, vi∗} the images of the at leastλ/2 (inactive) nodes inBv are

distinct inactive verticesvi ∈ P1 with i ≤ ℓ ≤ k − λ/7, whosesvi value is at leastsv/2.
Therefore:

λ
∑

v∈V2−{v1,vi∗}

sv + 7
∑

v∈I

sv = 4
∑

v∈V2−{v1,vi∗}

λ

2
· sv
2

+ 7
∑

v∈I

sv

< 7
∑

v∈V2−{v1,vi∗}

λ

2
· sv
2

+ 7
∑

v∈I

sv

≤ 7
∑

vi is inactive,
1≤i≤k−λ/7

svi + 7
∑

v∈I

sv,

≤
∑

1≤i≤k−λ/7

7svi , (3.10)

where the second last inequality follows from Claim 3.8 and the last inequality follows from the fact that the nodes
in I are active and have index at mosti∗ ≤ k − λ/7. Forvi∗ , noting thati∗ ≤ k − λ

7 , we have:

λsvi∗ ≤ λsvk−λ/7
≤ 7

∑

k−λ/7<i≤k

svi (3.11)

Therefore, using (3.10) and (3.11):



7
Compute pathP1 (as in Lemma 3.2) and then pathP2 and setI (as in Corollary 3.9).1

LetH be an empty graph (H will eventually be a graph on vertex setUi∗ ).2

foreach active nodevi with i ≤ i∗ not already added toH do3

if vi ∈ S then4

Add vi and everyu ∈ Svi toH as well as every edgeuv, with u, v ∈ Svi ∪ {vi}5

else6

Add vi toH and every edgeuvi, with u ∈ Sp(i)7

end8

end9

foreach edgevivj ∈ P2 do10

Add an arbitrary matching of sizeλ− |Svi ∩ Svj | fromSvi − Svj to Svj − Svi in H11

end12

returnH13

FIG. 3.1.Algorithm 1, which returns a(k − λ/7, λ)-subgraph whose cost is within a constant factor of minimum cost(k, λ)-subgraph

λ
∑

v∈V2,v 6=r

sv + 7
∑

v∈I

sv ≤
∑

1≤i≤k−λ/7

7svi +
∑

k−λ/7<i≤k

7svi ≤
∑

1≤i≤k

7svi .

This, together with the bound proved in Lemma 3.2 forP1, implies Equation (3.9), and completes the proof of
Lemma.

COROLLARY 3.9. We can compute a pathP2 = (V2, E2) and setI ⊆ V1 with V2 ⊆ V1 andV2 ∩ I = ∅, such
that: c(P2) ≤ 2c(T0), andP2 andI satisfy properties (R2-new) and (R3).

3.2.3. Phase 3: Obtaining a (k − λ/7, λ)-subgraph from P2 and I . The next steps of the algorithm would be
to make a(λ + 1)-clique overSvi ∪ {vi} for eachvi ∈ V2 which are precisely thosevi ∈ S with i ≤ i∗. For each
active nodevi ∈ I, we connectvi to all theλ vertices inSp(i). It is easy to observe that each ballSvi with vi ∈ V2

together with all the active nodes assigned to it will form aλ-edge-connected subgraph. The final step is to make
good connectivity between these balls. For that, we look at every edgevivj ∈ P2; note that bothvi, vj ∈ S. Let
a = |Svi ∩ Svj |. We add an arbitrary matching (of sizeλ− a) between theλ− a vertices inSvi − Svj andSvj − Svi .

The full description of the algorithm, is given in Figure 3.1, while Figure 3.2 illustrates the approximate Steiner
tree computed, the balls around the active nodes, and some ofthe edges added to make the graphλ-edge-connected.

3.3. Analysis of Algorithm. It is easy to see thatH contains exactly those active nodesvi with i ≤ i∗ as well as
all the nodes in

⋃

vi∈S,i≤i∗ Svi ; which is exactly the setUi∗ . Thus, by Lemma 3.4:

LEMMA 3.10.k − λ
7 ≤ |H | ≤ k + 6λ

7 .
In the remaining of this subsection we show thatH has the required connectivity while its cost is bounded by

O(OPT).
LEMMA 3.11.SolutionH returned by Algorithm 1 isλ-edge-connected.
Proof. For everyv ∈ H , let us define the hub forv, denoted byh(v), to be (i)v itself if v ∈ S, (ii) p(i) if v = vi

is an active node but not inS, and (iii) vℓ ∈ S if vℓ is the first vertex added toS with v ∈ Svℓ . Observe that the set
of hub nodes are precisely the nodes inS with index at mosti∗, which is the same as the set of nodes ofP2. First it is
easy to see that eachv hasλ-edge connectivity to its hub (for case (iii) we have made a clique out ofh(v) and all the
vertices in its ball includingv, and for case (ii)v is adjacent toλ vertices in the clique made from the ball ofh(v)).
So it is enough to show that we haveλ-edge-connectivity between the hub vertices. For any two adjacent vertices
vi, vj ∈ P2, the matching edges added between the balls ofvi andvj (together with possible nodes inSvi ∩ Svj )
establishλ-edge-connectivity betweenvi andvj . By transitivity, we haveλ-edge-connectivity between any pair of
nodesvi, vj ∈ P2.

LEMMA 3.12.The cost of edges ofH added in line 11 is at most8ρOPT.
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active nodes with balls

active nodes without balls matching edges

ball edges

steiner tree edges

Other vertices

Added in Line 7

Added in Line 11

FIG. 3.2.A sample showing how the edges between the balls of active nodes are added and how the active nodes without a ball are connected
to the balls of other active nodes.

Proof. Consider an arbitrary vertexvi ∈ P2. Since degree ofvi is at most two, there are at most two other nodes,
sayvj , vℓ, with vivj ∈ P2 andvivℓ ∈ P2. Note thatvi, vj , vℓ ∈ S. For any edgexy with x ∈ Svi andy ∈ Svj that
we add in line 11:cxy ≤ cxvi + cvivj + cvjy. As the matching added between the balls ofvi andvj has size at most
λ, the cost of this matching is at mostλcvivj + svi + svj . Similarly, the cost of matching added between the vertices
of Svi andSvℓ is at mostλcvivℓ + svi + svℓ . Therefore, the total cost of all the edges added in line 11 isat most:
λ
∑

e∈P2
ce + 2

∑

vi∈P2
svi . Using Equation (3.1) and noting thatV2 ⊆ V0 andc(P2) ≤ 2c(T0) (by Corollary 3.9),

the total cost of the edges added in line 11 is at most2λ
∑

e∈T0
ce + 2

∑

vi∈T0
svi ≤ 8ρOPT.

LEMMA 3.13.The cost of edges ofH added in lines 5 and 7 is at most(2 + 28ρ)OPT.
Proof. We consider the following cases:
Case 1: First consider an active nodevi 6∈ S with i ≤ i∗ (i.e. vi ∈ I); so i ≥ 2 and we have added vertex

vi to H plus every edgeuvi with u ∈ Sp(i) in line 7. Let us assumep(i) = j∗. Note thatcuvi ≤ cuvj∗ + cvivj∗ .
So the total cost of edges added at line 7 (for adding vertexvi to H) is at mostλcvivj∗ + svj∗ . By definition ofj∗:
cvivj∗ ≤ 4µi + 2µj∗ . Noting thatsvj∗ ≤ svi (and thereforeµj∗ ≤ µi), the total cost of edges added forvi is at most
6λµi + svi ≤ 7svi .

Case 2: Now consider an active nodevi ∈ S for which we add all the vertices inSvi ∪ {vi} to H and make a
(λ+1)-clique on these vertices in line 5. For any two verticesx, y ∈ Svi ∪{vi}: cxy ≤ cvix+ cviy. Since each vertex
x is incident withλ edges in this clique, the total cost of the edges of the cliqueis at mostλ

∑

y∈Svi
cviy = λsvi .

Thus, the total cost of the edges added in lines 5 and 7 is at most
∑

vi∈V2
λsvi +

∑

vi∈I 7svi which by Lemma
3.7 is bounded by(2 + 28ρ)OPT.

THEOREM 3.14. Algorithm 1 (in Figure 3.1) returns a (simple) graph of size at leastk − λ
7 which isλ-edge-

connected and has cost at most(2 + 36ρ)OPT.
Proof. By Lemma 3.10 and Lemma 3.11,H is a λ-edge-connected graph with at leastk − λ

7 nodes. Using
Lemmas 3.12 and 3.13:c(H) ≤ 8ρOPT+ (2 + 28ρ)OPT= (2 + 36ρ)OPT.

4. From size k− λ/7 to size k. As mentioned in the previous section, graphH computed by Algorithm 1 has at
leastk − λ/7 vertices and has non-empty intersection withG∗ (at least rootr belongs to both). If|H | ≥ k then we
are done. Otherwise, in this section we show how to augmentH at low cost to have at leastk vertices without loosing
its edge-connectivity. For every vertexu ∈ G\H , let the distance ofu to H , denoted byd(u,H), be the cost of the
cheapest edge fromu to a vertex inH . Our construction in this section is based on the following two lemmas.

LEMMA 4.1. If there is a vertexu ∈ G\H with |Su ∪H | ≥ k then we can augmentH to a (k, λ)-subgraph with
an additional cost ofλsu + λd(u,H) + c(H).
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H1:1

If there is a vertexu ∈ G\H with the smallestsu + d(u,H) value such that|Su ∪H | ≥ k then augment2

H toH1 using Lemma 4.1.
Otherwise letH1 = H .3

H2:4

Find a minimum weight matchingM of sizek − |H | betweenG\H andH ,5

AugmentH to H2 according to Lemma 4.2.6

return either ofH1 orH2 that has at leastk nodes and the least cost.7

FIG. 4.1.Algorithm 2, which augmentsH (the result of Algorithm 1) to have at leastk vertices

Proof. Consider such a vertexu ∈ G\H . We addu andSu to H to get a total of at leastk vertices. To establish
λ-edge-connectivity, we first build a clique around vertices{u} ∪ Su. This costs at mostλsu. If Su ∩ H 6= ∅ then
u andSu haveλ-edge-connectivity toH . Otherwise, letv be the closest neighbor ofu in H . We connectu to the
nearestλ neighbors ofv in H . For any such neighbory of v, cuy ≤ cuv + cvy. Therefore, the cost of adding these
edges is at mostλcuv + c(H) = λd(u,H) + c(H) and the total cost of the final(k, λ)-graph obtained is at most
λd(u,H) + 2c(H) + λsu.

LEMMA 4.2. LetM be a matching of sizek−|H | fromG\H toH . Then we can augmentH to a(k, λ)-subgraph
with an additional cost ofλc(M) + 2c(H), wherec(M) andc(H) denote the cost of edges of matchingM and graph
H , respectively.

Proof. LetU be the set of vertices inG\H that participate inM . For everyu ∈ U we connectu to theλ nearest
neighbors ofM(u). This costs at mostλd(u,M(u)) + sM(u)(H), by triangle inequality. Thus, the total cost of the
edges added is at most:

∑

u∈U

(λd(u,M(u)) + sM(u)(H)) ≤ λc(M) + 2c(H)

where the inequality follows from the fact that∪u∈USM(u)(H) counts every edge ofH at most twice and, therefore,
its cost is at most twice as much as the cost ofH .

Using these two lemmas, we compute two different graphsH1 ⊇ H andH2 ⊇ H that areλ-edge-connected and
return whichever has at leastk nodes and the least cost. The description of the algorithm isgiven in Figure 4.1. In
what follows we show that we either have a matching fromG\H toH of sizek − |H | and costO(OPT/λ) or there is
a vertexu ∈ G\H with d(u,H) + su = O(OPT/λ). Consequently, we can apply one of the above two lemmas and
obtain a(k, λ)-subgraph with small cost.

Figure 4.2 shows how graphsH1 andH2 are built from expandingH . To perform line 5 of the algorithm, we can
use any minimum cost (bipartite) matching algorithm (see [15]).

LEMMA 4.3. If H1 6= H then it isλ-edge connected and has at leastk vertices. Also,H2 is λ-edge-connected
and has at leastk vertices.

Proof. By the description of Algorithm 2 (in Figure 4.1), ifH1 6= H then while buildingH1 we have added at
leastk − |H | new vertices since|Su ∪ H | ≥ k; so in this case|H1| ≥ k. ForH2, we add the vertices ofU and
|U | = k − |H |, so |H2| = k. For λ-edge-connectivity, note thatH was originallyλ-edge-connected. IfH1 6= H
we have added a vertexu together withSu. The vertices inSu ∪ {u} form a clique, so areλ-edge-connected among
themselves. Also, ifSu ∩H = ∅, u is λ-edge connected to some vertexv ∈ H by theλ edges added betweenu and
theλ nearest neighbors ofv (in H). By transitivity, this implies theλ-edge connectivity ofH1. For the connectivity
of H2, every new vertexu ∈ U is connected to at leastλ vertices inH which makes itλ-edge connected to all the
vertices inH .

LEMMA 4.4. If H is the solution of Algorithm 1, then the solution of Algorithm 2 has cost at mostmax{12OPT+
3c(H), 13OPT+ 2c(H)}.

Proof.
We prove this by considering the following two cases.
Case 1: |G∗\H | ≤ λ/3

In this case we show that cost ofH2 isO(OPT). Every vertexu ∈ G∗\H is connected, inG∗, to at least2λ/3 vertices
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sv(H)

H
G\H

v

su

u u1

u2

u3

uk−|H|
sM(u1)

(H)

H
G\H

M(u1)

FIG. 4.2.ConstructingH1 (in the left picture) andH2 (in the right picture)

in G∗∩H and (by a simple averaging argument) the distance ofu to at leastλ/3 of them is at most3su(G∗)/λ (recall
thatsu(G∗) is the sum of distances fromu to itsλ closest neighbors inG∗). Therefore there is a matching̃M between
G∗\H andG∗ ∩H such thatd(u, M̃(u)) ≤ 3su(G

∗)/λ for everyu ∈ G∗\H , and|M̃ | = |G∗\H | ≥ k− |H | = |M |,
whereM is the matching we find in the algorithm. SinceM is a minimum weight matching:

c(M) ≤ c(M̃) ≤ 3

λ

∑

u∈G∗\H

su(G
∗) ≤ 6OPT

λ
, (4.1)

where we use the lower bound of
∑

u∈G∗\H su(G
∗) ≤ ∑

u∈G∗ su(G
∗) ≤ 2OPT. Therefore, according to Lemma 4.2,

c(H2) ≤ c(H) + λc(M) + 2c(H) ≤ 3C(H) + 6OPT.
Case 2: |G∗\H | > λ/3

In this case (again by an averaging argument) there is a setU of λ/6 vertices inG∗\H such thatsu ≤ 12OPT/λ for
eachu ∈ U (Otherwise, the remaining at leastλ/6 vertices would have totals value more thanλ/6 × 12OPT/λ ≥
2OPT which is a contradiction). If every vertex inU is connected, inG∗, to at least2λ/6 vertices inG∗ ∩ H then,
with an argument similar to the previous case and by using Lemma 4.2, we can upper bound the cost ofH2 by:
c(H2) ≤ 12OPT+ 3c(H),

Otherwise, letu ∈ U be a vertex such thatSu has more than4λ/6 > λ/7 vertices inG∗\H . In this case we
show thatc(H1) = O(OPT) (note that in this caseH1 6= H). First note thatλsu ≤ 12OPT as each vertexu ∈ U
hassu ≤ 12OPT/λ. Furthermore, sinceH ∩ G∗ is non-empty (here we use the assumption thatr belongs to bothH
andG∗), u must have distance at mostOPT/λ to some vertexv ∈ H (because there are at leastλ edge disjoint paths
betweenu andv and the cost of each is at leastcuv by the triangle inequality). Now using Lemma 4.1, and the above
facts thatλsu ≤ 12OPT andd(u,H) ≤ OPT/λ, it follows thatH1 costs at most13OPT+ 2c(H)

Combining the two Algorithms 1 (in Figure 3.1) and 2 (in Figure 4.1), and using Lemmas 4.4 and 4.3, and
Theorem 3.14 we have an algorithm that returns aλ-edge-connected subgraph on at leastk vertices with cost at most
max{12OPT+3c(H), 13OPT+2c(H)} ≤ 3(2+ 36ρ)OPT+12OPT= (18+ 108ρ)OPT. Thus, we have the following
theorem which is essentially Theorem 1.1:

THEOREM 4.5. There is a polynomial time algorithm for the(k, λ)-subgraph problem on graphs with metric
edge costs which has approximation factor at most18 + 108ρ, with ρ ≤ 4 being the best approximation factor for the
k-Steiner tree problem.

5. Concluding Remarks. In this paper, we proved that the(k, λ)-subgraph problem with metric costs has a
polynomial timeO(1)-approximation algorithm. However, the approximation ratio of our algorithm is relatively large
(namely 450). Although it is very likely that one can achievean approximation ratio close to 100 using the same
algorithm by fine tuning the parameters, getting a small constant factor approximation seems to be challenging. Our
algorithm does not seem to work for vertex-connectivity requirements. It is an interesting open question whether one
can obtain a constant factor approximation for this variation.

For general cost functions, the only known results on this problem (that we are aware of) are the papers [12, 4]
which prove that the(k, 2)-subgraph problem (on general graphs) hasO(log2 n)-approximation, even if we require



112-node-connectivity in the solution (instead of 2-edge-connectivity). Even for the special case ofλ = 3, there is no
known non-trivial approximation algorithm or lower bound (hardness result).
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