
Noname manuscript No.
(will be inserted by the editor)

Minimizing Latency of Capacitated k-Tours?

Christopher S. Martin ·
Mohammad R. Salavatipour

the date of receipt and acceptance should be inserted later

Abstract We study variants of the capacitated vehicle routing problem. In
the multiple depot capacitated k-travelling repairmen problem (MD-CkTRP),
we have a collection of clients to be served by one vehicle in a fleet of k identical
vehicles based at given depots. Each client has a given demand that must be
satisfied, and each vehicle can carry a total of at most Q demand before it must
resupply at its original depot. We wish to route the vehicles in a way that obeys
the constraints while minimizing the average time (latency) required to serve
a client. This generalizes the Multi-depot k-Travelling Repairman Problem
(MD-kTRP) [9,17] to the capacitated vehicle setting, and while it has been
previously studied [16,18], no approximation algorithm with a proven ratio is
known.

We give a 42.49-approximation to this general problem, and refine this
constant to 25.49 when clients have unit demands. As far as we are aware,
these are the first constant-factor approximations for capacitated vehicle rout-
ing problems with a latency objective. We achieve these results by developing
a framework allowing us to solve a wider range of latency problems, and craft-
ing various orienteering-style oracles for use in this framework. We also show a
simple LP rounding algorithm has a better approximation ratio for the max-
imum coverage problem with groups (MCG), first studied by Chekuri and
Kumar [10], and use it as a subroutine in our framework. Our approximation
ratio for MD-CkTRP when restricted to uncapacitated setting matches the
best known bound for it [17]. With our framework, any improvements to our
oracles or our MCG approximation will result in improved approximations to
the corresponding k-TRP problem.

? A preliminary version of this paper appeared in Proceedings of ISAAC 2016.

Supported by Alberta Innovates Technology Futures

Supported by NSERC

Department of Computing Science, University of Alberta, Edmonton, Canada
E-mail: csmartin@ualberta.ca · E-mail: mrs@ualberta.ca

2 C. S. Martin and M. R. Salavatipour

Keywords approximation · k-travelling repairmen · capacitated · latency ·
group coverage

CR Subject Classification F.2.2 Nonnumerical Algorithms and Problems

1 Introduction

In many vehicle routing scenarios, minimizing response time is a much more
important objective than minimizing the distances vehicles travel. Minimiz-
ing response time is commonly required in emergency response management,
routing package delivery vehicles, school-bus routing, and repairman routing,
and is broadly referred to as the travelling repairman problem (TRP).

Many variations of this problem have been studied in both the Opera-
tions Research and approximation algorithms community. In this paper (like
[10]), we consider the following version (and some interesting special cases),
which we call the multiple-depot capacitated k-travelling repairmen problem
(MD-CkTRP). It has also been referred to as the multiple depot cumulative
capacitated vehicle routing problem with multiple trips [16,18].

We are given a collection of k identical vehicles with capacity Q, that
are initially located at k depots (roots) R = {r1, r2, . . . , rk}, a set of clients
C = {c1, c2, . . . , cn}, a function w : C → Z>0 specifying the demand of each
client, and an undirected metric d(u, v) over the vertices u, v ∈ R ∪ C. We
must find a routing for the vehicles to serve all clients in C, minimizing the
average service time (or latency) over all clients in C, subject to the following
constraints:

1. Each client must be completely served in one trip (called unsplit delivery).
2. Each vehicle can serve a total of at most Q demand, before it must return

to its depot to resupply.

We define a walk to be a sequence of distinct nodes traversed in a given order,
and possibly ending back at the starting node (when a walk does end back at
its starting node, we call this a tour1). A capacitated walk is a sequence of 0
or more tours rooted at ri, followed by an additional walk from ri, where each
tour/walk contains at most Q demand. A sequence of only tours rooted at the
same node form a flower.

A feasible solution to MD-CkTRP is a collection Fi (1 ≤ i ≤ k) of capa-
citated walks, one for each vehicle that starts at a depot ri, and where each
client c belongs to exactly one Fi. The latency of a client c that belongs to a
walk rooted at ri is the sum of the lengths of the edges traversed by the i’th
vehicle before visiting c.

This general problem models many scenarios in package delivery man-
agement, where serving clients requires carrying a specific-sized package in a
vehicle with limited space. One can further generalize the model to the case

1 This differs slightly from the typical definition of a tour, since a tour here must be
composed of exactly one cycle.

Minimizing Latency of Capacitated k-Tours? 3

where vehicles have non-uniform capacities, and where each client c has a ser-
vice delay δ(c), which is added to the latency of c and every client served after
c by that vehicle. We call this latter version MD-kTRP with service delays.

Another problem for which we propose a new (improved) approximation
algorithm is the Maximum Coverage Problem with Groups (MCG). The MCG
appears as a key subroutine in various approximation algorithms, including the
framework we develop. The problem is the following: suppose we are given a
collection of elements I, a collection of subsets S = {S1, S2, . . . , Sm} of I, and
a partition of S into groups G1, G2, . . . G`. The objective is to pick a collection
of subsets from S maximizing the size of their union, such that at most one
subset from each group is picked.

This problem can be approximated directly via LP-rounding if |S| is poly-
nomially bounded in I (e.g. with pipage rounding [1]). It is special case of
submodular function optimization subject to matroid constraints [6], but in
those settings the algorithm has a running time that is polynomial in |S| while
the version we consider can have |S| exponentially large in |I|; in this case we
are instead given an implicit representation of S. In such settings, suppose we
were given an oracle A(i, θ) that takes as input a group index i and a weight
function θ : I → {0, 1}, and returns some subset Sj ∈ Gi such that

∑
e∈Sj θ(e)

is maximized. Call A a (1/ρ)-approximate oracle if it returns a subset Sj ∈ Gi
such that

∑
e∈Sj θ(e) ≥

1
ρ maxS′∈Gi

∑
e∈S′ θ(e) (i.e. the returned subset cov-

ers at least a 1
ρ -fraction of the optimal number of elements). In this paper, we

focus on approximating MCG for which |S| can be exponential in |I| and we
have access to an oracle A as above; this version will be useful in our approx-
imation algorithms for MD-CkTRP. We will therefore never state S explicitly,
instead only giving the oracle A and the groups Gi defining the input instance.

For the approximation we develop, we will require a weighted version of
A; that is, the input θ will instead be a function returning any non-negative
value. Many oracles (including the ones we present) can be converted to this
form with only a small loss in approximation using standard techniques, such
as scaling weights and duplicating elements.

1.1 Related Work

The special case of k = 1 and Q = ∞ for the MD-CkTRP is the Minimum
Latency or Travelling Repairman problem, which has been studied extensively
[4,3,9,13,20]. This case is known to be APX-hard in general metrics [5], and
the 3.59-approximation of Chaudhuri et al. [9] is the best known for this case.
The special case where the metric is an edge-weighted tree is also known to
be NP-hard [19], and a PTAS for this was only recently found [20].

For the uncapacitated k-vehicle situation where r1 = r2 = · · · = rk and
Q = ∞, an 8.497-approximation was known [11]; this was recently improved
to 7.183 [17]. For the multi-depot uncapacitated case, Chekuri and Kumar [10]

4 C. S. Martin and M. R. Salavatipour

proved a 24-approximation.2 This was recently improved to 8.497 by Post and
Swamy [17]. This improvement came from using a time-index configuration
LP that was introduced in [8] for the single vehicle case, while extending it to
the multi-vehicle setting and introducing an LP rounding algorithm.

The MCG was first considered by Chekuri and Kumar [10] in the context
of their approximation for the MD-kTRP. They developed the first approx-
imation for the problem given a (1/ρ)-approximate oracle, obtaining a simple
greedy 1/(ρ+ 1)-approximation. The submodular maximization problem with
matroid constraints generalizes MCG: the instance can be represented by a
monotone submodular function f(S) denoting the number of elements covered
by the set S, and a partition matroid M over the sets in S that define the
groups. It was shown in [6] how to obtain a (1 − 1/e)-approximation for this
problem with running time polynomial in |S| and |I|. When S is not given ex-
plicitly and |S| is exponentially large in |I|, the result of Chekuri and Kumar
[10] is currently the best known.

To the best of our knowledge, no approximation algorithm for any capa-
citated variant of the travelling repairmen problem has been developed. Our
specific problem has been studied in the operations research community, but
only heuristic solutions are currently known [16,18].

1.2 Our Results

We solve the capacitated variant of the travelling repairmen problem by build-
ing off of and extending the techniques used previously for the multi-depot
travelling repairmen problem and for capacitated vehicle routing. Our al-
gorithm uses ideas from both [10] and [17], in particular the greedy combinat-
orial algorithm of [10], coupled with a new LP-based approximation algorithm
for the MCG inspired by [17]. One feature of our algorithm is that if we re-
strict it to the case of Q = ∞ (i.e. the uncapacitated setting), we obtain an
approximation ratio matching the best known bound for that setting [17].

To achieve this, we develop a modular framework (Theorem 4) that uses
a user-provided oracle as a subroutine to solve different versions of the multi-
depot travelling repairmen problem. The exact problem we solve is captured
by a collection of feasible walks, which are separated over using the provided
oracle as a black-box. Given such an oracle, we can build O(1)-approximation
algorithms for the various latency problems we consider. We obtain the fol-
lowing results with this approach:

Theorem 1 There is a 25.49-approximation to the unit-demand capacitated
multi-depot k-TRP.

Theorem 2 There is a 42.49-approximation to the unsplit-delivery capacit-
ated multi-depot k-TRP.

2 The approximation ratio was stated in [10] to be 12, but due to a technical issue in their
analysis, they were off by a factor of 2. We provide the corrected analysis in the appendix.

Minimizing Latency of Capacitated k-Tours? 5

We show a simple LP-rounding gives an improved approximation for MCG,
which we use as a subroutine in our framework:

Theorem 3 There is a (1−e−1/ρ)-approximation to the MCG given a (1/ρ)-
approximate oracle.

Theorems 1 and 2 are the first (constant) approximations for the MD-
CkTRP, and also extend to more general cases where we have non-uniform
vehicles capacities. We may additionally add service delays δ(c) at each client
with an extra +0.5 loss in the ratio. These extensions are covered in Section
5. The framework we develop to prove Theorems 1 and 2 is presented as
Theorem 4. The algorithm we give to prove that theorem finds progressively
longer rooted flowers from each depot that cover a large number of clients,
where the length of these flowers is bounded against a rooted walk. Suppose
that C is the set of clients to be served/covered by a walk from ri, and B is
a given budget on the length of the walk (depending on our problem, walks
might be capacitated). The single-depot orienteering problem (SD-OP) is to
find such a walk with total cost at most B starting at ri that covers as many
(distinct) clients of C as possible.

We can generalize the notion of capacitated walks/tours by giving a setWi

that contains all ri-rooted walks vehicle i is allowed to traverse for the given
problem. A capacitated walk/tour is then a walk/flower built using only walks
from Wi. We call these Wi-restricted walks/flowers. Our approach centres
around a black-box algorithm to (approximately) solve the SD-OP problem
over the set of walks Wi; that is, only walks in Wi are considered feasible for
vehicle i.

Definition 1 A (1/ρ, γ)-approximation to the Wi-restricted SD-OP problem
is an algorithm that finds a walk of cost ≤ γB covering at least a 1/ρ-fraction
of the number of clients on an optimal walk.

If this black-box returns a flower rather than a walk, but with cost still
bounded by the optimal walk, then we call this a (1/ρ, γ)-flower approxima-
tion. We use this algorithm as an oracle to find interesting walks/flowers over
the sets Wi defined by the problem. With this, we obtain the following result:

Theorem 4 Let Wi be the set of all ri-rooted walks that can be feasibly tra-
versed by vehicle i. Then for constants ρ, γ, there is an f(ρ, γ)-approximation
algorithm to the Wi-restricted multi-depot k-TRP, if we have a Wi-restricted
(1/ρ, γ)-flower approximation to the Wi-restricted SD-OP, where f(ρ, γ) =
γ(τ+1)(1−e−1/ρ)
2 ln(τ)(1−τe−1/ρ)

for any constant 1 < τ < e1/ρ.

When Wi is the set of all possible walks from depot ri, we are solving
the uncapacitated multi-depot k-TRP (MD-kTRP), studied in [10,17]. If we
restrict Wi to only capacitated walks (with capacity Q), we are solving the
unsplit MD-CkTRP variant. Using Theorem 4, we can find a constant-factor
approximation to the MD-CkTRP given an oracle satisfying definition 1 that

6 C. S. Martin and M. R. Salavatipour

returns flowers. We give oracles for the unit-demand and unsplit-delivery cases
in Section 4, which when combined with Theorem 4 yields Theorems 1 and 2.

We start by proving Theorem 3 in Section 2. We then proceed to prove
Theorem 4 in Section 3, by showing how to combine ideas from [10], [9], and
[17] to create a combinatorial approximation algorithm for the problem, which
requires solving an MCG instance as a subroutine.

An alternative approach for approximating latency problems that avoids
explicitly solving an MCG instance was introduced and expanded in [8,17].
They solve a time-indexed configuration LP directly for the multi-depot la-
tency problem, and use randomized rounding to obtain the final collection of
tours. Our approach is in fact equivalent to theirs for that specific problem; the
combination of our greedy algorithm and MCG LP yields their time-indexed
LP. By writing the configuration LP for a more general covering problem
(namely MCG) and using that as a subroutine in our latency algorithm we feel
that the approach becomes more easily adaptable to different problems beyond
latency. In a sense, we unify and generalize the combinatorial algorithm of [10]
and the LP rounding algorithm of [17] in a framework using MCG rounding.

2 A (1 − e−1/ρ)-Approximation for MCG

We can express an instance of the MCG as an integer configuration program.
For item e ∈ I and group Gi, let xe be a binary variable indicating whether
item e is being covered by a set or not. For a set S ∈ S, let zS be a binary
variable indicating whether set S is chosen to form a part of the solution. The
linear relaxation of the configuration program is given as (LP) (and its dual
as (DP)).

max
∑
e

xe (LP)

s.t. xe ≤ 1 ∀e (αe) (1)∑
S∈Gi

zS ≤ 1 ∀i (βi) (2)

∑
S:S3e

zS ≥ xe ∀e (θe) (3)

x, z ≥ 0.

min
∑
e

αe +
∑
i

βi (DP)

s.t. αe + θe ≥ 1 ∀e (4)∑
e∈S

θe ≤ βi ∀i, S ∈ Gi (5)

α, β, θ ≥ 0.

For every set S ∈ Gi we use θ(S) to denote
∑
e∈S θe. As stated before,

we assume we are given a approximate weighted oracle A(i, θ); that is, for
each group i, given θe on elements it will find a set S in group Gi such that
θ(S) ≥ 1/ρmaxS′∈Gi θ(S

′).
A will become our approximate separation oracle for the dual. Solving an

exponential size LP approximately using such an oracle is a standard technique
following from the work of Carr and Vempala [7]. We briefly describe how to
obtain a good solution following the more recent presentation in [12].

Minimizing Latency of Capacitated k-Tours? 7

Define the polytope P(υ, a) = {(α, β, θ) : (4), (5),
∑
e αe + a

∑
i βi ≤ υ}.

With our ρ-approximate (weighted) oracle A, given some υ and point (α, β, θ),
we can certify that either (α, ρβ, θ) ∈ P(υ, 1), or give a hyperplane certi-
fying that (α, β, θ) /∈ P(υ, ρ), as follows. For each i, run A with element
weights θe. If the returned set S has weight θ(S) > βi, then since θ(S) ≥
(1/ρ) maxS′∈Gi θ(S

′), we return the constraint (5) corresponding to i, S as
the separating hyperplane. The other constraints can be checked trivially. If
no constraint is violated, we must have (α, ρβ, θ) ∈ P(υ, 1), and so the el-
lipsoid algorithm will certify in polynomial time that either P(υ, ρ) = ∅, or
give a point (α, ρβ, θ) ∈ P(υ, 1). Note that P(OPTLP , 1) defines the collection
of optimum solutions for (DP), and so OPTLP is the smallest υ such that
P(υ, 1) 6= ∅; we can determine this value by binary search on υ.

Suppose we run the ellipsoid algorithm with input OPTLP − ε for any
ε > 0. This yields a certificate showing P(OPTLP − ε, ρ) = ∅, consisting of
polynomially-many separating hyperplanes, including the inequality

∑
e αe +

ρ
∑
i βi ≤ OPTLP − ε. Consider the dual polytope of P(υ, a): Q(υ, a) =

{(x, z) : (1),
∑
S∈Gi zS ≤ a, (3),

∑
e xe ≥ υ}. By duality, the certificate corres-

ponds to a point (x, z) ∈ Q(OPTLP − ε, ρ) with polynomially-many non-zero
variables. Note that (x/ρ, z/ρ) is a feasible (approximate) solution to (LP);
further, (x, z) is almost a feasible solution with objective value OPTLP − ε
that only violates (2).3 This property will be crucial to our rounding scheme.

2.1 Pipage Rounding

There are many ways to round a solution to a linear program; pipage rounding
is one technique first introduced by Ageev and Sviridenko [1]. This is a gen-
eral rounding scheme that works with linear programs of a specific form. We
briefly describe this approach, before showing how to apply it to round our
approximate solution while maintaining a good approximation ratio.

We wish to approximately solve a generalized version of the following bi-
partite matching problem: given a bipartite graph H = (U ∪ W,E), vertex
capacities pv, and a poly-time computable function F (x) defined over the vec-
tors x = (xe : e ∈ E), xe ∈ [0, 1], pick a collection of edges from E such that
each vertex v has at most pv edges incident with it, maximizing the value of
F (x). If we pick edge e for our collection, then we set xe = 1, and xe = 0
otherwise. Note that with pv = 1 for all v and F (x) =

∑
e∈E xe, this becomes

the maximum bipartite matching problem.

3 We omit the ε for the remainder of this discussion for clarity.

8 C. S. Martin and M. R. Salavatipour

This general problem can be expressed as an integer program. The relaxed
version, where a solution may be a rational vector, is as follows:

max F (x) (PIPE-LP)

s.t.
∑
e∈δ(v)

xe ≤ pv ∀v ∈ (U ∪W) (6)

x ∈ [0, 1].

Note that F (x) may not be a linear function, so as written this may not be
a linear program and so may not be solvable using standard techniques. For
our purposes however, will assume that some fractional solution x has been
provided.

Let F ∗ be the value of an optimal integer solution to (PIPE-LP), and x a
fractional solution to (PIPE-LP). The pipage rounding algorithm transforms
the solution x into an integral solution x̄ which, given some conditions on F ,
will have the property that F (x̄) ≥ F (x). If, for an optimal fractional solution
x̌, we also had F (x̌) ≥ F ∗/α, then we would have an α-approximate solution
to the original problem.

The algorithm. The pipage rounding algorithm is an iterative procedure,
where in each step we convert a fractional solution x to a new solution x′ with
at least one less fractional component. The algorithm terminates when x = x̄
is integral.

In each step, if we do not terminate, then x has some non-integral entry.
Consider the bipartite subgraph Hx of H, where edge e ∈ E is in Hx if and
only if xe is non-integral. Let R be a cycle in Hx, or, if no cycle exists, a path
whose endpoints have degree 1 in Hx. In either case, since Hx is bipartite the
cycle/path R can be represented as the union of two matchings M1 and M2.
We will compute a new solution x(ε, R) using these matchings; if e ∈ M1,
then xe(ε, R) = xe + ε; otherwise if e ∈M2, then xe(ε, R) = xe − ε; otherwise
xe(ε, R) = xe.

Let ε1 be the smallest ε we can subtract such that some e ∈ M1 becomes
0 or e ∈ M2 becomes 1, and let ε2 be the smallest ε we can add such that
some e ∈ M1 becomes 1 or e ∈ M2 becomes 0. Let x1 = x(−ε1, R), and
x2 = x(ε2, R). Set x′ = x1 if F (x1) > F (x2), and x′ = x2 otherwise. This
concludes one iteration of the algorithm.

In order for a solution returned by this algorithm to have the property that
F (x̄) ≥ F (x), we require that in each step F (x′) ≥ F (x). This latter inequality
holds when F (x(ε, R)), for ε ∈ [−ε1, ε2], is maximized at either endpoint of the
interval. We call this the ε-convexity condition.4

Definition 2 The function F is ε-convex if, for any step of the pipage round-
ing algorithm and for ε ∈ [−ε1, ε2], F (x(ε, R)) is maximized at either −ε1 or
ε2.

4 Note that any F that is a linear function of x satisfies this condition.

Minimizing Latency of Capacitated k-Tours? 9

Bounding the integrality gap. To bound the integrality gap of (PIPE-LP)
for an arbitrary F , we can use the following technique. Suppose we are given
a second poly-time computable function L(x), defined over the same set of
vectors x as F , and where the following conditions hold:

Condition 1 For binary x, L(x) = F (x).

Condition 2 For any optimal fractional solution x̌, F (x̌) ≥ L(x̌)/α.

These are called the F/L lower bound conditions. If (PIPE-LP) is poly-time
solvable when the objective is to maximize L(x) instead of F (x), then since
L(x̌) ≥ F ∗ (by condition 1), by condition 2 we would then have F (x̌) ≥ F ∗/α,
as desired.

2.2 Rounding a Solution to MCG

To round the solution (x/ρ, z/ρ), we apply pipage rounding by adapting the
ideas used by Ageev and Svirendenko [1] for proving an integrality gap for the
standard Maximum Coverage problem. Observe that (LP) is equivalent to the
following linear program:

max
∑
e

min

(
1,
∑
S3e

zS

)
(LP2)

s.t.
∑
S∈Gi

zS ≤ 1 ∀i (7)

zS ∈ [0, 1].

Constraints (1) and (3) have been rewritten as the minimum in the objective,
and so given a fractional solution (x/ρ, z/ρ) to (LP), we can obtain a solution
z/ρ to (LP2) of equal objective value (i.e. at least OPTLP /ρ). (LP2) is now in
pipage rounding form as described previously, and so we can apply the pipage
rounding algorithm to obtain an integer solution z̄.

We now bound the integrality gap. Let L(z) =
∑
e min(1,

∑
S3e zS). We

will define a function F (z) that is both ε-convex on the input z/ρ and satisfies
the F/L lower bound conditions. Suppose that, for an optimal (fractional) solu-
tion ž, our sub-optimal solution z/ρ has the property that F (z/ρ) ≥ L(ž)/α
for some α. Let F ∗ be the value of an optimal integer solution to (LP2); if
L and F are coincident on binary inputs, then L(ž) ≥ F ∗, and so this new
condition would imply we have an α-approximation after pipage rounding. We
claim that the function F (z) =

∑
e(1−

∏
S3e(1−zS)) satisfies these conditions.

Lemma 1 F (z) satisfies the F/L lower bound conditions.

Proof Clearly for binary z, L(z) = F (z). We now show some α exists such that
for any optimal solution ž, F (z/ρ) ≥ L(ž)/α. Let ne be the number of sets in

10 C. S. Martin and M. R. Salavatipour

S which contain e. Using the arithmetic-geometric mean inequality, and the
fact that the solution z only violates constraints (2),

1−
∏
S3e

(1− zS/ρ) ≥ 1−

(
1− 1

ρne
min(1,

∑
S3e

zS)

)ne
≥ 1−

(
1− 1

ρne

)ne
min(1,

∑
S3e

zS)

≥ (1− e−1/ρ) min(1,
∑
S3e

zS).

Thus, F (z/ρ) ≥ (1−e−1/ρ)L(z). But since L(z) ≥ OPTLP , then L(z) ≥ L(ž),
and so F (z/ρ) ≥ (1− e−1/ρ)L(ž). ut

Lemma 2 F (z/ρ) is ε-convex.

Proof Since the groups Gi define a partition over S, the bipartite graph used
during the pipage rounding algorithm is in fact a forest, with each tree having
height 1. This implies that in each step of the pipage rounding algorithm, the
chosen R must be a path of length at most 2. Rewriting F ((z/ρ)(ε, R)) as a
function of ε, we then have either a linear or quadratic function. Since for all
e, ze/ρ ∈ [0, 1], then this quadratic will have a non-negative main term, and
so F (z/ρ) is ε-convex. ut

We can therefore apply pipage rounding on the fractional solution z/ρ,
using the function F to guide the algorithm. This yields a deterministic (1−
e−1/ρ)-approximation to the MCG problem.

3 Proof of Theorem 4

We present the framework by generalizing and modifying the combinatorial
algorithm of Chekuri and Kumar [10] to suit our redefined problem. The key
subroutine of their algorithm is an approximation for the MCG, which they use
to determine a set of tours to “stitch” together for routing vehicles from each
depot. Their algorithm uses an oracle as a black-box to solve an orienteering-
style problem in order to find “good” tours to use in their MCG instance. In
[10] these tours are built from an `-MST, using the algorithm from [9]; we will
instead use the user-provided black-box oracle for this task and show that we
still obtain a good approximation.

Recall we are given as input a set of clients C, a set of k depots R, a vehicle
initially located at each depot, and a metric distance function d. We wish to
find Wi-restricted walks for each vehicle i starting at their respective depots
that collectively visit all clients, and minimize the total latency of all walks.
The latency of a walk W that starts at root r and visits clients c1, c2, . . . cm
is given by

∑m
i=1 dW (r, ci), where dW is the distance along the walk between

two points.

Minimizing Latency of Capacitated k-Tours? 11

The computation is split up into phases, with each phase given a budget
with which to cover as many clients as possible. The latency of the clients we
cover in this phase can then be bounded by the total budget we have spent in
this phase and all prior phases. Let j ≥ 1 be the current phase, and let Cuj be
the set of uncovered clients at the start of phase j. Let τ > 1 be some global
constant to be chosen later, U ∈ [0, 1) be a number chosen uniform randomly,
and b = τU .

We define the multi-depot group orienteering problem (MD-GOP) as fol-
lows: given a subset of clients C ′ to be visited and a hard budget B, find
for each depot ri ∈ R a walk of total length at most B such that all walks
returned collectively cover as many (distinct) clients in C ′ as possible. We
define C(C ′, B) to be some algorithm that solves the Wi-restricted version of
this problem approximately. C is a Wi-restricted (1/ρ, γ)-flower approxima-
tion if it finds a collection of k flowers rooted at the depots ri, such that each
costs at most γB and together they cover at least a 1

ρ -fraction of the vertices

covered by an optimum MD-GOP (walk) solution. Note that for the case of
uncapacitated vehicles, a flower is simply a single tour. Given this subroutine,
the algorithm for phase j is as follows:

function Do-Phase(j)
Run C(Cuj , bτ j) with clients Cuj and budget bτ j .
Traverse the returned flower for each ri in either direction, chosen uni-

formly at random.
Remove all covered clients from Cuj .

end function

We build a bi-criteria (1−e−1/ρ, γ)-flower approximation algorithm C, given
a user-provided oracle A as per the Theorem, using our MCG approximation
(Theorem 3). Let SW be the set of vertices contained in the walk W . Let WB

i

be the set of walks in Wi of length at most B. Let Gi = {SW : W ∈ WB
i } be

the group of all Wi-restricted walks of total length at most B. This forms a
valid MCG instance, whose solution yields a collection of k walks, each of cost
at most B that collectively cover as many clients as possible.

This instance can be approximately solved as follows. Using A, we can find
flowers in Gi covering as many new clients as possible, relative to the optimal
walk. Since A finds a flower covering at least a 1/ρ-fraction of the optimal
number of new clients, by Theorem 3 the final solution covers a (1 − e−1/ρ)-
fraction of the optimal number of clients, exceeding the budget for each flower
by a factor of γ. Thus, C is a (1− e−1/ρ, γ)-flower approximation.

3.1 Analysis

We now prove that we have a constant-factor approximation to theWi-restricted
multi-depot k-TRP, thus completing the proof of Theorem 4. Fix an optimal
solution OPT , and let Oj denote the set of clients in OPT that have latency
≤ bτ j . Let Cvj be the clients we have visited by the end of phase j. We define
Cv0 to be the empty set.

12 C. S. Martin and M. R. Salavatipour

Lemma 3 At the end of phase j, we have covered at least (1 − e−1/ρ)|Oj −
Cvj−1| clients.

Proof Let Aj be all clients covered after phase j, and let Rj denote Oj−Cvj−1.
Note that at stage j there is a collection of paths (each of lengths at most
bτ j rooted at some depot) that that can cover Rj . Thus by Theorem 3 and
using our approximate oracle A, we have |Aj | ≥ (1− e−1/ρ)|Rj |, yielding the
lemma. ut

Let nOPTj be the number of clients in OPT whose latency is more than

bτ j , and let nj be the number of clients that were left uncovered at the end of
phase j. For j ≤ 0, we define nOPTj and nj to be n. Let Bj be the budget of

phase j; for j ≥ 1 this is bτ j , and for j ≤ 0 we define it to be 0. For notational
convenience, define ∆j = Bj −Bj−1.

Lemma 4 For all j, nj ≤ e−1/ρnj−1 + (1− e−1/ρ)nOPTj .

Proof From Lemma 3, it follows that nj ≤ nj−1 − (1 − e−1/ρ)|Oj − Cvj−1|.
Since |Oj | = n− nOPTj and |Cvj−1| = n− nj−1, we can expand this expression
and derive the result. ut

Lemma 5 In expectation, the latency of our solution is at most:

γ(τ + 1)

2(τ − 1)

∑
j≥1

Bj(nj−1 − nj) =
γ(τ + 1)

2(τ − 1)

∑
j≥1

nj−1∆j . (OUR-UB)

Proof For a client c covered in phase j by vehicle i, its latency in our solution
is at most the sum of the lengths of all flowers chosen for vehicle i in rounds
1 ≤ j′ ≤ j. Note however that the last flower is traversed in a random direction,
so in expectation the additional latency c incurs in round j is 1/2 the total
length of the flower picked in round j. This implies the expected latency of c
is at most

γbτ j

2
+

j−1∑
j′=1

γbτ j
′
≤ γ(τ + 1)

2(τ − 1)
bτ j .

We can now upper-bound the total expected latency of all clients in our solu-
tion by

γ(τ + 1)

2(τ − 1)

∑
j≥1

Bj(nj−1 − nj) =
γ(τ + 1)

2(τ − 1)

∑
j≥1

nj−1∆j . (OUR-UB)

We obtain the right-hand side by re-arranging the summation, noting that
∆1 = B1 and n0 = n. ut

Lemma 6 In expectation, the latency of OPT is at least:

ln τ

τ − 1

∑
j≥1

nOPTj−1 ∆j . (OPT-LB)

Minimizing Latency of Capacitated k-Tours? 13

Proof Since nOPTj is the number of clients with latency > bτ j , we can initially
lower-bound the total latency of OPT with∑

j≥0

bτ j(nOPTj − nOPTj+1) =
1

τ

∑
j≥1

nOPTj−1 ∆j . (8)

The left-hand side is derived by rounding the latency of each client down to the
nearest bτ j .5 The right-hand side is obtained by rearranging the summation.
We can improve this bound using the random value b = τU : suppose client c
is visited in OPT with latency latOPTc = dτ j , where 1 ≤ d < τ . If we choose
U such that b ≤ d, then c’s latency will be rounded on the left-hand side of
(8) down to bτ j . Otherwise, b > d, so the latency of c will be rounded down
to bτ j−1. Over all uniform-random choices of U , the expected latency of c in
our solution due to this rounding is∫ logτ d

0

bτ jdU +

∫ 1

logτ d

bτ j−1dU = τ j−1

(
τ

∫ logτ d

0

τUdU +

∫ 1

logτ d

τUdU

)

= dτ j−1
(
τ − 1

ln τ

)
= latOPTc · τ − 1

τ ln τ
.

In expectation then, the rounding in (8) is a factor τ ln τ
τ−1 away from OPT , and

so in expectation over all choices of U the following is also a lower bound on
OPT :

ln τ

τ − 1

∑
j≥1

nOPTj−1 ∆j . (OPT-LB)

ut

Proof (Proof of Theorem 4) By summing Lemma 4 over all j, we see that

∑
j≥1

∆jnj−1 ≤ e−1/ρ
∑
j≥1

∆jnj−2 + (e1/ρ − 1)
∑
j≥1

∆jn
OPT
j−1


= τe−1/ρ

∑
j≥1

∆jnj−1 +
(1− e−1/ρ)(τ − 1)

ln τ

ln τ

τ − 1

∑
j≥1

∆jn
OPT
j−1

=⇒ (OUR-UB) ≤ γ(τ + 1)(1− e−1/ρ)
2 ln(τ)(1− τe−1/ρ)

(OPT-LB).

Our algorithm is therefore a γ(τ+1)(1−e−1/ρ)
2 ln(τ)(1−τe−1/ρ)

-approximation for any constant

1 < τ < e1/ρ, satisfying the requirements of the theorem. ut
5 There is an annoying detail hidden here - this lower bound only holds if no client has

latency less than b in OPT . However, by scaling distances we can ensure this is always the
case.

14 C. S. Martin and M. R. Salavatipour

3.2 An Uncapacitated Oracle

We now give a (1, 2 + ε)-approximate oracle A for the uncapacitated multi-
depot k-TRP (i.e. Wi is all possible walks from ri). This oracle is used in
[10] and earlier works for single-depot latency problems. First we describe an
unweighted oracle (i.e. each node is assigned θe ∈ {0, 1}); we later describe
how to extend it to the weighted version.

Using the algorithm in [9] for finding an `-MST, we find a tree that covers
at least as many clients as the optimal ri-rooted walk with budget B, and
costs at most (1 + ε) times the optimal walk (see Theorem 1 in [9]). Since
the optimal walk costs at most B, we find the largest ` such that the returned
`-MST has cost at most (1+ε)B. Such a tree will cover at least as many clients
as the optimal walk. Double the edges of this tree, and convert to a tour by
shortcutting past repeated vertices.

For the case that we have weights on the nodes, at a loss of at most 1− ε′
on the total weight of nodes we can cover, we can reduce the problem to the
unweighted case by scaling and discarding nodes with very small weight (so
that maxe θe

mine′ θe′
∈ O(n2)) and then duplicating vertices. This gives a (1−ε′, 2+ε)-

approximate (weighted) oracle A (for any ε, ε′ > 0).
This leads to the following result for the uncapacitated MD-kTRP, which

matches the current-best given in [17].

Corollary 1 There is an 8.497-approximation to the uncapacitated multiple
depot k-TRP (τ ≈ 1.405).

4 Capacitated Oracles and Proofs of Thms. 1 and 2

Previously, we showed that to solve the MD-CkTRP, we can use Theorem 4
and restrict Wi to only capacitated ri-rooted walks. We thus need to find an
oracle that can solve the related orienteering problem over this set of walks.
Using standard techniques as before, we can reduce the weighted version of
the problem (with weights on the nodes) to the unweighted version, which we
present below.

The problem the oracle must solve is the following, which we call the unsplit
capacitated orienteering problem (U-COP). We are given a collection of clients
C, a root node r, a budget B, a vehicle capacity Q, a client demand function
w : C → Z>0, and an undirected distance metric d. We wish to find an r-
rooted capacitated walk of total length at most B, where r must be re-visited
after serving at most Q client demand, and we wish to cover as many clients
as possible. Call the optimal number of clients `OPT , and let d(W) denote the
length of the walk W with respect to the metric d, and similarly for flowers
and tours.

We give a (1, 10 + ε)-flower approximation algorithm, where the flower
we find has total cost at most (10 + ε)B and collectively covers `OPT cli-
ents, respecting the capacity constraint. We also consider a special case where

Minimizing Latency of Capacitated k-Tours? 15

w(c) = 1 for all c ∈ C ′; we call this the unit-demand capacitated orienteering
problem (1-COP). With this demand constraint, we can improve the above
ratio to (1, 6 + ε).

An optimum solution to either problem consists of a sequence of tours (each
visiting at most Q demands) followed by at most one walk of total demand
at most Q. If we convert that last walk to a tour by returning to the root, we
obtain a capacitated flower of cost at most 2B. We will restrict our attention
to finding such flowers.

The algorithms for 1-COP and U-COP are very similar, so we describe
both simultaneously. If there is a difference between the two algorithms, we
place the difference for U-COP in (parentheses). It will be useful to consider
the input metric as the complete graph G = (V,E) with V = C ∪ {r} and
edge costs cG(uv) = d(u, v) for all uv ∈ E.

1. Let G∗ be a new graph obtained from G by adding a “terminal” client c′

to each c ∈ C and edge cc′ between client c and its new terminal client; the
cost of these new edges will be 1

Qd(r, c)w(c) (for U-COP, use 2
Qd(r, c)w(c)).

Let GT be the “terminal” graph obtained from the metric completion of
G∗, with all non-terminal client vertices removed.

2. Using the `-MST approximation of Chaudhuri et al. [9], find a tree of cost
at most 3B + ε (5B + ε) in GT that covers as many terminals as possible.
Doubling this tree produces a tour; call this tour O.

3. Convert O back into a tour in G∗ that visits the same number of terminal
clients of no greater cost (always possible since GT is the metric completion
of G∗). Prune away the terminals and short-cut to obtain a new tour O′

in G.
4. Let G′ be a complete graph containing r and w(c) copies of each client
c ∈ C; let Ωc denote the copies of c in G′ (so |Ωc| = w(c)). If clients
u, v were distance cG(uv) apart in G, then for all vertices i ∈ Ωu, j ∈ Ωv,
cG′(ij) = cG(uv). Define edge costs to r similarly. For each i, j ∈ Ωc, let
cG′(ij) = 0.6

5. Convert O′ into a split-delivery, capacitated flower as follows. Map O′ onto
G′ without increasing the cost while covering

∑
c∈O′ w(c) clients (possible

by construction). Number the vertices of this tour in the order they are
visited, and pick a random offset R in the range [1, Q]. Walk along the tour
starting at R, and cut away a strip of the tour every Q vertices (short-
cutting past r). Add an edge at each end of a strip back to r, to make each
strip an r-rooted tour. 7

6. For the 1-COP, return this capacitated flower. For the U-COP, we can
“unsplit” our solution as follows. Note that if some client’s delivery is split,
it will be covered by at most two tours; remove any such c from both tours
and place it in its own separate tour. Return the resulting capacitated
flower.

6 This construction was first described in [2], and can be used to prove Inequality 11.
7 If Q is not poly-bounded, note there is a simple poly-time algorithm to do this that

avoids explicitly building the graph and trying more than |V | values of R.

16 C. S. Martin and M. R. Salavatipour

We now prove the above procedure is in fact a good approximation for
both problems. Consider a fixed optimal capacitated walk WOPT of cost OPT
which covers a set of clients COPT ; let `OPT = |COPT |. Let TSPOPT be an
optimal TSP tour that covers the clients COPT , and let FOPT be an optimal
capacitated flower; one must exist with cost at most 2OPT .

We utilize two classic results in capacitated vehicle routing.

Lemma 7 The following inequalities hold for the 1-COP and U-COP:

d(TSPOPT) ≤ d(FOPT) ≤ 2OPT (9)

2

Q

∑
c∈COPT

d(c, r) ≤ d(FOPT) ≤ 2OPT. (10)

Proof (9) holds trivially, since an optimal capacitated walk can be no cheaper
than an optimal uncapacitated walk that visits the same clients (i.e. shortcut
each occurrence of r).

(10) was first shown in [15]. Let C ′j denote the clients covered by the jth

tour in FOPT . It follows that

d(Cj) ≥ 2 max
c∈Cj

d(c, r) ≥ 2

∑
c∈Cj d(c, r)

|Cj |
≥ 2

Q

∑
c∈Cj

d(c, r).

We then have

d(FOPT) =
∑
j

d(Cj) ≥
2

Q

∑
c∈COPT

d(c, r),

as desired. ut

(10) can be strengthened for the case where w(c) is any integer ≥ 1:

Lemma 8 We have the following additional inequality for the U-COP:

2

Q

∑
c∈COPT

d(r, c)w(c) ≤ d(FOPT) ≤ 2OPT. (11)

Proof This result takes inspiration from [2]. Build a new unit-weight graph G′

containing r and w(c) copies of each client c ∈ C. Let Ωc denote the copies of
c in G′ (so |Ωc| = w(c)). Duplicate the edges of G for each copy of a client;
that is, if clients u, v were distance d(u, v) apart in G, then for all vertices
i ∈ Ωu, j ∈ Ωv, dG′(i, j) = d(u, v). Define distances to r similarly. For each
i, j ∈ Ωc, let d(i, j) = 0.

Note that FOPT can be converted into a feasible flower in this new unit-
weight graph that covers

∑
c∈COPT w(c) vertices, by simply visiting all copies

of a client c when that client is visited and then going back to the root at the
end, of total cost at most 2OPT . We can now apply (10) to this tour (since in
the proof of (10), we did not make use of the fact that the flower was optimal).
Collapsing the sum yields the lemma. ut

Minimizing Latency of Capacitated k-Tours? 17

For each set of clientsH define SH = 1
Q

∑
c∈H d(r, c)w(c); by (11), SCOPT ≤

B. Note that WOPT can be converted into a walk in G∗ of cost at most
B + 2SCOPT ≤ 3B (for U-COP, B + 4SCOPT ≤ 5B) that visits COPT and
the corresponding terminal clients. We can further convert WOPT into a walk
that visits only terminal clients (and so a walk in GT), of no greater cost, that
covers `OPT terminals. Thus, the `-MST approximation of Chaudhuri et al.
[9] will find a tree of cost at most 3B + ε (5B + ε) in GT that covers `OPT

terminals.8 From this and by construction, the tour O′ must have cost at most
6B − 2SO′ (10B − 4SO′).

The expected cost of the extra edges added in step 5 is 2SO′ , so some offset
R exists such that we pay at most this amount. Thus, we can cut up O′ into
smaller tours covering at most Q demand, with total cost 6B (10B − 2SO′),
yielding a (1, 6+ε)-approximation to the 1-COP. For the U-COP, the cost of the
extra tours in step 6 is also 2SO′ , yielding a (1, 10+ε)-approximation. Extend-
ing these results to the weighted case, we obtain a (1−ε′, 6+ε)-approximation
for 1-COP and (1− ε′, 10 + ε)-approximation for U-COP for any ε′, ε > 0.

Proof (Proof of Theorems 1 and 2) Combining Theorem 4 with the (1 −
ε′, 6 + ε)-approximation for 1-COP yields a 25.49-approximation to the unit-
demand MD-CkTRP; similarly, combining Theorem 4 with the (1− ε′, 10+ ε)-
approximation for U-COP yields a 42.49-approximation to the MD-CkTRP
(τ ≈ 1.616). ut

5 Extensions to MD-CkTRP

We briefly consider two extensions to our problem - non-uniform vehicle ca-
pacities, and service delays. In the first case, suppose vehicle i has capacity
Qi. Adjust the definition of Wi to be all walks of capacity ≤ Qi instead of Q;
note that the approximation guarantees of our oracles do not depend on the
capacity of the vehicle. Thus, our results extend to vehicles with non-uniform
capacities.

To handle service delays, suppose each client c has a service time δ(c) ≥ 0,
which adds to the time a vehicle must spend traversing its walk (we assume
δ(ri) = 0 for each root ri). We still wish to minimize the total latency of

all clients visited. Define a new metric d′(u, v) = d(u, v) + δ(u)+δ(v)
2 . Solve

the MD-CkTRP for the new instance (with metric d′). The latency of each
node u in the solution returned will be the sum of the edge-lengths, plus the
sum of the delays of all the nodes visited before u, plus δ(u)/2. Thus, at an
extra loss of +0.5 in the approximation, the solution will be a solution for the
corresponding problem with service delays.

8 We omit the ε from the rest of the discussion for clarity.

18 C. S. Martin and M. R. Salavatipour

6 Concluding Remarks

We presented a general framework to obtain a constant approximation al-
gorithm for the capacitated multi-depot k-TRP, using bi-criteria approxima-
tion algorithms for orienteering style problems, giving the first constant ap-
proximations for MD-CkTRP. A consequence of this approach is if our oracles
for single-depot (or multi-depot) orienteering are improved, we would have
improved approximations for multi-depot (capacitated and uncapacitated) k-
TRP. In particular, it seems that the results in Section 4 could be improved.
One possible direction for that improvement would be to use ideas from [14]
for maximum coverage with knapsack constraints with exponential number of
sets. Each set corresponds to one tour of total demand Q and the constraint
that the total lengths of all tours picked is no more than the given budget B.

Acknowledgements: We would like to thank anonymous referees for their
suggestions and comments.

References

1. A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms
with proven performance guarantee. Journal of Combinatorial Optimization, 8(3):307–
328, 2004.

2. Kemal Altinkemer and Bezalel Gavish. Heursitics for unequal weight delivery problems
with a fixed error guarantee. Operations Research Letters, 6(4):149–158, 1987.

3. Aaron Archer and Anna Blasiak. Improved approximation algorithms for the minimum
latency problem via prize-collecting strolls. 21st ACM SODA, pages 429–447, 2010.

4. Aaron Archer, Asaf Levin, and David P Williamson. A faster, better approximation
algorithm for the minimum latency problem. SIAM Journal on Computing, 37(5):1472–
1498, 2008.

5. A. Blum, P. Chalasani, B. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan.
The minimum latency problem. 26th ACM STOC, pages 163–171, 1994.

6. Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM J. Comput.,
40(6):1740–1766, 2011.

7. B. Carr and S. Vempala. Randomized meta-rounding. In Proceedings of STOC, 2000.
8. Deeparnab Chakrabarty and Chaitanya Swamy. Facility location with client laten-

cies: Linear-programming based techniques for minimum-latency problems. 15th IPCO,
pages 92–103, 2011.

9. Kamalika Chaudhuri, Godfrey Brighten, Satish Rao, and Kunal Talwar. Paths, trees,
and minimum latency tours. 44th IEEE-FOCS, pages 36–45, 2003.

10. Chandra Chekuri and Amit Kumar. Maximum coverage problem with group budget
constraints and applications. Approximation, Randomization, and Combinatorial Op-
timization, Algorithms and Techniques, pages 72–83, 2004.

11. Jittat Fakcharoenphol, Chris Harrelson, and Satish Rao. The k-traveling repairman
problem. 14th ACM-SIAM SODA, pages 655–664, 2003.

12. Zachary Friggstad and Chaitanya Swamy. Approximation algorithms for regret-bounded
vehicle routing and applications to distance-constrained vehicle routing. In Proceedings
of STOC, pages 744–753, 2014.

13. Michel Goemans and Jon Kleinberg. An improved approximation ratio for the minimum
latency problem. Mathematical Programming, 82(1-2):111–124, 1998.

14. Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi. Run-
ning errands in time: Approximation algorithms for stochastic orienteering. Math. Oper.
Res., 40(1):56–79, 2015.

Minimizing Latency of Capacitated k-Tours? 19

15. M. Haimovich and A. H. G Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10(4):527–542, 1985.

16. Jens Lysgaard and Sanne Wohlk. A branch-and-cut-and-price algorithm for the cumu-
lative capacitated vehicle routing problem. European Journal of Operational Research,
236(3):800–810, 2014.

17. Ian Post and Chaitanya Swamy. Linear-programming based approximation algorithms
for multi-vehicle minimum latency problems. 26th ACM-SIAM SODA, pages 512–531,
2015.

18. Juan Carlos Rivera, H. Murat Afsar, and Christian Prins. A multistart iterated local
search for the multitrip cumulative capacitated vehicle routing problem. Computational
Optimization and Applications, 61(1):159–187, 2015.

19. René Sitters. The minimum latency problem is NP-hard for weighted trees. IPCO,
2337:230–239, 2002.

20. René Sitters. Polynomial time approximation schemes for the travelling repairman and
other minimum latency problems. 25th ACM-SIAM SODA, 2014.

A Corrected Analysis of MD-kTRP Algorithm from [10]

The analysis given in Section 3.1 does not appear to improve significantly over the analysis
given in [10], despite the increased complexity, since they claim a 12-approximation for the
uncapacitated multi-depot k-TRP using `-MST as a subroutine (we achieve 11.89). We re-
derive the approximation ratio for their algorithm using the same ideas and tools in this
section, and show that it is in fact a 24-approximation. The difference arises from a small
miscalculation made in their paper.

The algorithm of [10] is similar to the one presented in Section 3. Computations are
done in phases, and in each phase j we are given a set of uncovered clients Cu

j and a budget

2j . We use a subroutine C to find a tour of cost ≤ 2j rooted at each depot, and which
cumulatively cover as many clients in Cu

j as possible.

The algorithm for phase j is the following:

function Do-Phase(j)
for p = 1, 2 do

Run C(Cu
j , 2

j) with clients Cu
j and budget 2j .

Append the returned tours to our solution.
Remove all covered clients from Cu

j .
end for

end function

We define C similar to how we did in Section 3, with the exception that we no longer
need to specially define the sets Wi; since we are dealing with the uncapacitated problem,
Wi becomes all possible walks from ri. Thus, our oracle for the MCG instance can be the
`-MST oracle described in Section 3.2 (also what is used in [10]).

For the purpose of analysis, we require that j ≥ 1. As in Section 3.1, we will define nj to
be the number of clients we do not cover by the end of phase j, and similarly nOPT

j will be

the number of clients in a fixed optimal solution which have latency ≥ 2j . We define nj≤0

and nOPT
j≤0 to be n.

We can bound what we cover in each iteration, and what we have left to cover after
each iteration, using the following two lemmas, which are proven in a similar way to Lemma
3 and Lemma 4. We only need to take into account that in each iteration we find 2 tours
per depot instead of one, and explicitly use the `-MST based uncapacitated oracle:

Lemma 9 (Lemma 4 in [10]) At the end of phase j, we have covered at least 3
4
|Oj−Cv

j−1|
clients.

Lemma 10 (Lemma 5 in [10]) nj ≤ 1
4
nj−1 + 3

4
nOPT
j .

20 C. S. Martin and M. R. Salavatipour

In our solution, any client covered in phase j has latency bounded by 4
∑

i≤j 2i, since
we must traverse any tour we buy in a previous iteration as well as the one we bought in
phase j.9 Summing this for all clients and using the definition of nj , we can bound the total
latency for our solution by

4
∑
j≥1

2jnj−1. (LAT-UB)

This bound is primarily where we differ from [10]. The bound they present is 4
∑

j 2jnj ,
using an equivalent definition of nj . This implies that each client has latency bounded by
4
∑

i<j 2i, which does not include the tours bought when the client was visited.
The cost of an optimum solution is bounded from below by

∑
j≥0

2j(nOPT
j − nOPT

j+1),

which by re-arranging the summation and noting that 2j − 2j−1 = 2j−1, is equivalent to

nOPT
0 +

∑
j≥1

2j−1nOPT
j . (OPT-LB)

We can now use Lemma 10 to bound the cost of our solution against the optimum
solution. Each step is derived by re-arranging sums.∑

j≥1

2jnj−1 ≤
1

4

∑
j≥1

2jnj−2 +
3

4

∑
j≥1

2jnOPT
j−1

=
1

2

∑
j≥0

2jnj−1 +
3

4

∑
j≥0

2j+1nOPT
j

=
1

2

n+
∑
j≥1

2jnj−1

 +
3

4
(4(OPT-LB)− 2n)

≤
1

2

∑
j≥1

2jnj−1 + 3(OPT-LB)

=⇒ (LAT-UB) ≤ 24(OPT-LB).

We thus have a 24-approximation to the uncapacitated multi-depot k-TRP.

9 We drop the ε here for convenience, but it can be also dropped from the final approx-
imation ratio due to arguments in [9].

