
Approximation Algorithms for Min-Sum
k-Clustering and Balanced k-Median

Babak Behsaz1, Zachary Friggstad1, Mohammad R. Salavatipour1?, and Rohit
Sivakumar1

Department of Computing Science, University of Alberta
{behsaz,zacharyf,mreza,rohit2}@ualberta.ca

Abstract. We consider two closely related fundamental clustering prob-
lems in this paper. In the Min-Sum k-Clustering problem, one is given
a metric space and has to partition the points into k clusters while min-
imizing the total pairwise distances between the points assigned to the
same cluster. In the Balanced k-Median problem, the instance is the same
and one has to obtain a partitioning into k clusters C1, . . . , Ck, where
each cluster Ci has a center ci, while minimizing the total assignment
costs for the points in the metric; here the cost of assigning a point j to
a cluster Ci is equal to |Ci| times the distance between j and ci in the
metric.

In this paper, we present an O(logn)-approximation for both these prob-
lems where n is the number of points in the metric that are to be served.
This is an improvement over the O(ε−1 log1+ε n)-approximation (for any
constant ε > 0) obtained by Bartal, Charikar, and Raz [STOC ’01]. We
also obtain a quasi-PTAS for Balanced k-Median in metrics with con-
stant doubling dimension.

As in the work of Bartal et al., our approximation for general metrics
uses embeddings into tree metrics. The main technical contribution in
this paper is an O(1)-approximation for Balanced k-Median in hierar-
chically separated trees (HSTs). Our improvement comes from a more
direct dynamic programming approach that heavily exploits properties
of standard HSTs. In this way, we avoid the reduction to special types
of HSTs that were considered by Bartal et al., thereby avoiding an ad-
ditional O(ε−1 logε n) loss.

1 Introduction

One of the most ubiquitous problems encountered in computing science is clus-
tering. At a high level, a clustering problem arises when we want to aggregate
data points into groups of similar objects. Often, there are underlying metric dis-
tances d(u, v) between data points u, v that quantify their similarities. Ideally,
we want to cluster the objects into few clusters while ensuring that the distances
within a cluster are small.

? Supported by NSERC.

2

In this paper, we focus on two closely related problems, which are referred
to in the literature as Min-Sum k-clustering (MSkC) and Balanced k-Median
(BkM). In both problems, we are given a metric space over a set of n points V ,
which we assume is given as a graph G = (V,E) with metric distances d(u, v)
between any two vertices u, v ∈ V . In the MSkC problem the goal is to partition
the points V into k clusters C1, . . . , Ck to minimize the sum of pair-wise distances
between points assigned to the same cluster:

∑k
i=1

∑
{j,j′}⊆Ci

d(j, j′).

This problem (MSkC) was first introduced by Sahni and Gonzalez [14] and is
the complement of the Max k-Cut problem. Bartal et al. [4] gave anO(ε−1 logε n)-
approximation for any constant ε > 0, for the case of Hierarchically Separated
Trees (HSTs), which in turn (using the O(log n) bound for approximating metrics
using HSTs [8]), gives an O(ε−1 log1+ε n)-approximation for general metrics. To
do this, Bartal et al. introduced BkM, where the input is the same as MSkC and
the goal is to select k points c1, . . . , ck ∈ V as the centers of the clusters and par-
tition the nodes V into clusters C1, . . . , Ck to minimize

∑k
i=1 |Ci|

∑
v∈Ci

d(v, ci).
The multiplier |Ci| on the contribution of d(v, ci) to the objective function pe-
nalizes clusters for being too large, hence the term balanced. As observed in [4],
it is easy to show that an α-approximation for either MSkC or BkM implies a
2α-approximation for the other problem in metric graphs. The approximation
of [4] for MSkC was obtained by presenting such an approximation for BkM.

1.1 Related Work

The facility location interpretation of the BkM leads to a natural generalization
of the problem. In this generalization, we are given a set of clients C ⊆ V and
a set of facilities F ⊆ V . We need to choose k facilities from F to open and
the clients in C must be served by these k facilities. In other words, the set
of clients must be partitioned into k clusters and the center assigned to each
partition must be chosen from F . Note that C and F can have common vertices.
The special case that C = F = V is the original problem we defined. We often
use the term “facility” to refer to the center of a cluster in BkM and the points
assigned to that center are the “clients” that get served by that facility.

The O(ε−1 log1+ε n)-approximation of [4] stands as the best approximation
for both MSkC and BkM after thirteen years. They also describe a bicriteria
O(1)-approximation (for BkM) that uses O(k) clusters. Fernandez de la Vega et

al. [9] gave a (1+ ε)-approximation for MSkC with running time of O(n3k2ε
−k2

).
BkM and MSkC have been further studied in more restricted settings. BkM

can be solved in time nO(k) by “guessing” the center locations and their ca-
pacities, and then finding a minimum-cost assignment from the clients to these
centers [10]. This yields a 2-approximation for MSkC when k is regarded as a
constant. Furthermore, Indyk gives a PTAS [11] for MSkC when k = 2.

The factor-2 reduction between BkM and MSkC fails to hold when the dis-
tances are not in a metric space. Indeed, one can still solve non-metric instances
of BkM in nO(k) time, however no n2−ε-approximation is possible for non-metric
MSkC for any constant ε > 0 and any k ≥ 3 [12]. An O(

√
log n)-approximation

3

for non-metric MSkC for k = 2 is known as this is just a reformulation of the
Minimum Uncut problem [1].

These problems have been studied in geometric spaces as well. For point
sets in Rd and a constant k Schulman [15] gave an algorithm for MSkC that
either outputs a (1 + ε)-approximation, or a solution that agrees with the op-
timum clustering on (1 − ε)-fraction of the points but may have a much larger
than optimum cost. Finally, Czumaj and Sohler [7] have developed a (4 + ε)-
approximation algorithm for MSkC for the case when k = o(log n/ log log n) and
constant ε.

Perhaps the most well studied related problem is the classical k-Median prob-
lem where one has to find a partition of the point set into k sets C1, . . . , Ck, each
having a center ci while minimizing the total sum of distances of the points to
their respective center. Some of the most recent results, following a long line of
research, are [13, 5, 17], which bring down the approximation ratio to 2.592 + ε.
It is worth pointing out that both MSkC and BkM seem significantly more diffi-
cult than the classical k-median problem. For instance, for the case of k-median
if one is given the set of k centers the clustering of the points is immediate as
each point will be assigned to the nearest center point; this has been used in a
simple local search algorithm that is proved to have approximation ratio 3 + ε
[2]. However, for the case of BkM, even if one is given the location of k centers
it is not clear how to cluster the points optimally.

1.2 Results and Techniques

Our two primary results are O(log n)-approximation algorithms for both BkM
and MSkC, improving over their previous O(ε−1 log1+ε n)-approximations for
any constant ε > 0 [4], and a quasi-polynomial time approximation scheme
(QPTAS) for BkM in metrics with constant doubling dimension (a.k.a. doubling
metrics). Note that this includes Euclidean spaces of constant dimension. Before
this work, there were no results known for Euclidean metrics apart from what
was known about general metrics.

Similar to the approximation in [4], our improved O(log n)-approximation
for general metrics uses Hierarchically Separated Trees (HSTs), defined formally
in Section 2. Specifically, we give a deterministic constant-factor approximation
for BkM on HSTs. As is well-known, an arbitrary metric can be probabilistically
embedded into an HST with the expected stretch of each edge being O(log n) [8],
thus our algorithm leads immediately to a randomized, polynomial time algo-
rithm that computes a solution with expected cost O(log n) times the optimum
solution cost.

The approximation in [4] relied on slightly non-conventional HSTs where
the diameters of the subtrees drop by an O(logε n)-factor instead of the usual
O(1) factor. One can obtain such HSTs with O(1

ε log n/ log log n) height which
was necessary in order to ensure that their algorithm runs in polynomial time.
Our dynamic programming approach is quite different and requires a few ob-
servations about the structure of optimal solutions in 2-HSTs. In this way, we
avoid dependence on the height of the tree in the running time of our algorithm,

4

thereby obtaining a polynomial-time, constant-factor approximation for 2-HSTs
and ultimately, a O(log n)-approximation in general metrics.

Our second result, which is a QPTAS for BkM, is essentially a dynamic
programming algorithm which builds on the hierarchical decomposition of a
metric space with constant doubling dimensions. We start this by presenting a
QPTAS for BkM for the case of a tree metric and show how this can be extended
to metrics with constant doubling dimensions. This result strongly suggests that
the problem is not APX-hard and therefore should have a PTAS.

For our algorithms we consider a special case of the BkM problem in which
each cluster has a type based on rounding up the size of the cluster to the nearest
power of (1 + ε) for some given constant ε > 0; we call this the ε-Restricted
Balanced k-median (RBkM) problem. Here each cluster has one of the types
0, 1, . . . , dlog1+ε ne, where n denotes the number of clients, i.e., n = |C|. A cluster
that is of type i can serve at most (1 + ε)i clients and the cost of serving each
client j in a type i cluster with center (facility) c is (1 + ε)i · d(c, j) (regardless
of how many clients are served by the facility). We sometimes refer to (1 + ε)i

as the capacity or the multiplier of the center (facility) of the cluster. We also
say that the center of the cluster and all the clients of that cluster are of type i.
It is not hard to see that an α-approximation algorithm for this version results
in a ((1 + ε)α)-approximation algorithm for the BkM problem.

Section 2 outlines our approach for the general O(log n)-approximation, in-
cluding specific definitions of the HSTs we use. The dynamic programming ap-
proach for HSTs appears in Section 3. We present the QPTAS for BkM in dou-
bling metrics in Section 4.

2 An O(logn)-Approximation for General BkM

As noted earlier, our O(log n)-approximation uses embeddings into tree metrics.
In particular, we use the fact that an arbitrary metric can be probabilistically
approximated by Hierarchically Separated Trees with O(log n) distortion. We
begin by listing some properties of µ-HSTs that we use in our algorithm.

Definition 1. For µ > 1, a µ-Hierarchical Well Separated Tree (µ-HST) is a
metric space defined on the leaves of a rooted tree T . Let the level of an internal
node in the tree be the number of edges on the path to the root. Let ∆ denote the
diameter of the resulting metric space. For a vertex u ∈ T , let ∆(u) denote the
diameter of the subtree rooted at u. Then the tree has the following properties:

– All edges at a particular level have the same weight.
– All leaves are at the same level.
– For any internal node u at level i, ∆(u) = ∆ · µ−i.

By this definition, any two leaf nodes u and v with a least common ancestor
w are at distance exactly ∆(w) from each other. If T is a µ-HST then we let
dT (u, v) denote the distance between u and v in T . It follows from [8] that for any
integer µ > 1, any metric can be probabilistically embedded into µ-HSTs with

5

stretch O(µ·logµ n). Furthermore, we can sample a µ-HST from this distribution
in polynomial time.

In an instance of BkM on µ-HSTs T , only the leaf nodes of T correspond
to clients and all the cluster centers must be leaf nodes of T . We use this in a
standard way to get a randomized O(log n)-approximation for BkM and MSkC.

Note: Our techniques guarantee a PTAS for µ-HSTs for any constant µ by
solving the ε-RBkM problem exactly for appropriately small values of ε, but it
is enough to describe a 2-approximation for BkM in 2-HSTs to get an O(log n)-
approximation in general metrics. Thus, we focus on this case for simplicity.

3 Dynamic Programming for BkM in 2-HSTs

Recall that in ε-RBkM, the capacity of each facility (or the size of each cluster)
is rounded up to the nearest power of 1 + ε. For ease of exposition, we focus
on the 1-RBkM problem (i.e. where all cluster sizes are powers of two) and
present an exact algorithm for this problem on 2-HSTs. Clearly, this implies a
2-approximation for the BkM problem on such graphs. In this section we simply
use RBkM to refer to 1-RBkM. We prove the following:

Theorem 1. RBkM instances in 2-HSTs can be solved in polynomial time.

To solve RBkM exactly on 2-HSTs using Dynamic Programming, we start by
demonstrating the existence of an optimal solution with certain helpful proper-
ties. Let T = (V,E) denote the 2-HST rooted at a vertex r ∈ V . For any vertex
v ∈ V , let Tv denote the subtree of T rooted at v. It is obvious that Tv itself
is a 2-HST. A client (or facility) is said to be located in the subtree Tv if its
corresponding vertex in the tree belongs to Tv. In the same vein, a client (or
facility) is located outside Tv if it is located in the subtree T\Tv.

We say that a facility at location vf serves a client at location vc if vc is part
of the cluster with center vf . We emphasize that only the leaf nodes of a 2-HST
are clients and we can only open facilities at leaf nodes. We say that a facility
at vf is of type i if it is open with capacity 2i. Thus, each client v being served
by vf is being served with cost 2i · d(vf , v).

The following two lemmas are helpful in narrowing our search for the opti-
mum solution.

Lemma 1. In an optimal solution, each open facility serves its collocated client.

Lemma 2. For every optimal solution and for each vertex v, there is at most
one type i of facility in Tv that serves clients located outside Tv. Also, any other
facility in Tv has type at least i.

We record a few more simple observations before describing our recurrence.

Observation 1 In an optimal solution to RBkM with two vertices u, v ∈ V
such that Tu and Tv are disjoint, there cannot exist two facilities fu and fv and
clients cu and cv in the subtrees rooted at u and v, respectively, such that fu
serves cv and fv serves cu.

6

If this were not the case, we can reduce the cost by swapping the clients and
having fu serving to cu and fv serving to cv to get a cheaper solution.

Observation 2 For any feasible solution to RBkM and a vertex v in the tree,
if u,w ∈ Tv are two clients served by two facilites fu, fw 6∈ Tv then the cost of
pairing u with fu and w with fw is the same as the cost of pairing u with fw
and w with fu.

This is because for every vertex v ∈ T , all clients and facilities in Tv are equidis-
tant from v by Definition 1. For the next observation, recall that all the leaves
in T are located at the same level.

Observation 3 For a facility with multiplier mf located at vf and a client
located at vc, let vlca denote their least common ancestor. Then the cost of serving
vc at vf is 2 ·mf · d(vf , vlca).

This will be helpful in our algorithm because, in some sense, it only keeps
track of the distance between vf and vlca for a client vc served by vf . For an
edge e between vf and vlca, we call 2 ·mf · d(e) the actual cost of the edge e for
the (vc, vf) pair, where d(e) is the weight of e in the metric. Note that the sum
of the actual costs of edges between vf and vlca is precisely mf · d(vf , vc).

Definition 2. For a subtree Tv of T and any feasible solution to RBkM, we use
costinTv

to refer to the sum of the actual costs of edges within Tv accrued due to
all the facility-client pairs (vf , vc) where vf ∈ Tv.

Thus, for any feasible solution to RBkM, costinTr
is the cost of this solution.

Definition 3. In a partial assignment of clients to facilities, the slack of a fa-
cility f is the difference between its capacity and the number of clients assigned
to f . The slack of a subtree Tv rooted at a v is the total slack of facilities in Tv.

We first present our dynamic programming algorithm under the assumption
that the 2-HST is a full binary tree. This cannot be assumed in general, but we
present this first because it is simpler than the general case and still introduces
the key ideas behind our algorithm.

The general case is more technical and requires two levels of DP; the details
will appear in the full version of this paper. Some intuition regarding this case
is discussed at the end of this section.

3.1 The Special Case of Full Binary Trees

To define a subproblem for the DP, let us consider an arbitrary feasible solution
and focus on a subtree Tv, for v ∈ T . We start by defining a few parameters:

– kv is the number of facilities opened in the subtree Tv.
– tv denotes the type of the facility, if any, in Tv which serves clients located

outside Tv (c.f. Lemma 2). We assign a value of −1 to tv if no client in T\Tv
is served by a facility in Tv.

7

– uv is the number of clients in T\Tv that are served by facilities in Tv.
– dv is the number of clients in Tv that are served by facilities in T\Tv (and)
– o is the slack of Tv.

Each table entry is of the form A[v, kv, tv, uv, dv, o]. For a vertex v ∈ V , the value
stored in this table entry is the minimum of costinTv

over all feasible solutions with
parameters kv, tv, uv, dv, o if the cell is a non-pessimal state (defined below).

Observation 3 in the previous section provides insight on why it is sufficient
to keep track of the dv values without caring about the type or the location of
the facilities outside of Tv for calculating the cost of the solution. Our algorithm
for RBkM fills the table for all permissible values of parameters v, kv, tv, uv, dv
and o for every vertex v in a bottom-up fashion (from leaf to root). For vertices
in the same level, ties are broken arbitrarily.

Pessimal States and Base Cases An entry of the dynamic programming
table is said to be trivially suboptimal if it is forced to contain a facility that
does not cover its collocated client and is said to be infeasible when either the
number of clients to be covered or the number of facilities to be opened within
a subtree is greater than the total number of nodes in the subtree. We call an
entry of the table pessimal when it is either infeasible or trivially suboptimal. It
is easy to determine the pessimal states in the DP table at the leaf level of the
tree. For other subproblems, a cell in the table is pessimal if and only if all its
subproblems are pessimal states. For the ease of execution of our DP, we assign
a value of ∞ to these cells in our table.

Notice that, at the leaf level of a 2-HST, all the vertices are client nodes. But
some of these nodes may also have a collocated facility opened. At this stage,
the only non-pessimal subproblems are the following:

(a) Facility nodes that correspond to subproblems of the kind A[v, 1, tv, uv, 0, o]
satisfying the capacity constraint that uv + o + 1 = 2tv , where the number
1 indicates the facility’s collocated client from Lemma 1 (and)

(b) Client nodes which have subproblems of the form A[v, 0,−1, 0, 1, 0].

The value stored in these entries are zero.

The Recurrence If the vertex v has two children v1 and v2 and the values for
the dynamic program are already computed for all subproblems of Tv1 and Tv2 ,
then the recurrence we use is given as follows:

A[v, kv, tv, uv, dv, o] = min
k′,k′′,t∗1 ,t

∗
2 ,u
∗
1 ,u
∗
2 ,d
∗
1 ,d
∗
2 ,o1,o2

(A[v1, k
′, t∗1, u

∗
1, d
∗
1, o1]

+A[v2, k
′′, t∗2, u

∗
2, d
∗
2, o2]

+ 2
∑

i∈{1,2},t∗i≥0

2t
∗
i · u∗i · d(v, vi)), (1)

8

where the subproblems in the above equation satisfy the following “consistency
constraints”:

Type consistency: We consider two cases for the type tv assuming that uv > 0.
If uv = 0, the problem boils down to the case where tv = −1.

1. If tv = −1, then no facility in Tv serves clients located in T\Tv. Therefore,
all the clients served by facilities in Tv1 are located within Tv1 or in Tv2 .
Similarly, for the subtree Tv2 , every client served by a facility in Tv2 is either
located in Tv1 or in Tv2 . But it is clear from Observation 1 that an optimal
solution cannot simultaneously have a facility in Tv1 serving a client in Tv2
and a facility in Tv2 serving a client in Tv1 . Hence, min(tv1 , tv2) = tv = −1.

2. If tv ≥ 0, then there exists at least one client in T\Tv that will be served by
a facility in Tv. Without loss of generality, if one of the two subtrees, say Tv1
has a type tv1 = −1, then the type of the other subtree tv2 must be equal to
the type of the facility leaving its parent, tv. Otherwise, if both the values
tv1 and tv2 are non-negative, Lemma 2 implies that min(tv1 , tv2) = tv.

Slack consistency: The slack of Tv comes from the combined slack of facilities
in both its subtrees, Tv1 and Tv2 . Therefore, o = o1 + o2.

Consistency in the number of facilities : kv is the number of facilities
opened in Tv. Since these facilities belong to either of the two subtrees Tv1 and
Tv2 , we have that kv = k′ + k′′.

Flow consistency: u∗1 + u∗2 + dv = d∗1 + d∗2 + uv. This constraint ensures that
the subproblems we are looking at are consistent with the uv and dv values in
hand. More specifically, note that u∗1 is the number of clients in T\Tv1 served by
facilities in Tv1 and that these u∗1 clients can either be located in Tv2 or in the
subtree T\Tv. Let us denote by u∗1a, the number of such clients in T\Tv and by
u∗1b, the number of clients in Tv2 served by facilities in Tv1 . Likewise, let u∗2a be
the number of clients in T\Tv and u∗2b, the number of clients in Tv1 which are
served by facilities in Tv2 . It is easy to see that u∗1a+u∗1b = u∗1 and u∗2a+u∗2b = u∗2.
Also, by accounting for the clients in T\Tv served by facilities in Tv we see

uv = u∗1a + u∗2a (2)

Out of the d∗1 clients in Tv1 and d∗2 clients in Tv2 which are served by facilities
located outside their respective subtrees, dv of these clients are served by facilities
in T\Tv, while the remaining clients d∗1 + d∗2 − dv must either be served by the
u∗1b facilities situated in Tv1 and u∗2b situated in Tv2 . Hence,

d∗1 + d∗2 = dv + u∗1b + u∗2b (3)

Summing up the Equations (2) and (3) and from the observation that u∗1a+u∗1b =
u∗1 and u∗2a + u∗2b = u∗2, we get the flow constraint stated above.

The last term in Equation (1) gives the sum of actual costs of the edges
between v and its children for the client-facility pairs where the facility is inside
one of the two subtrees Tv1 or Tv2 . From Definition 2, this value is equal to the

9

difference, costinTv
− (costinTv1

+ costinTv2
).

The optimal RBkM solution is the minimum value from among the entries
A[r, k,−1, 0, 0, o] for all values of o. Note that the number of different values each
parameter can take is bounded by the number of nodes in the tree (we assume k
is at most the number of leaves, or else the problem is trivial) and the number of
recursive calls made to compute a single entry is also polynomially-bounded, so
these values can be computed in polynomial time using dynamic programming.

Intuition Behind General HSTs

In HSTs that are not necessarily binary, we still computes the values A as
described in the binary case. However, computing these values for subproblems
rooted at a verticex v with multiple children u1, . . . , u` requires a more sophis-
ticated approach. For this, we use an “inner” dynamic programming algorithm
that, for each 0 ≤ i ≤ k, tracks the movement of clients between {Tu1

, . . . , Tui
}

and
{
Tui+1

, . . . , Tu`

}
, as well as movement in and out of Tv. Using observations

like in the binary case, we only have to keep track of the number of clients from
a constant number of types.

4 QPTAS for Doubling Metrics

In this section we consider the generalization of BkM where C and F are not
necessarily equal and present a QPTAS for it when the input metric has con-
stant doubling dimension. We also assume that ε > 0 is a fixed constant (error
parameter) and present an exact algorithm for ε-RBkM which clearly implies a
(1 + ε)-approximation for BkM.

For simplicity of explanation, we will describe the QPTAS only for tree met-
rics and defer the details for doubling metrics to the full version of this paper. At
a high level, the extension to doubling metrics uses similar ideas as our QPTAS
in trees, modified appropriately to work with the hierarchical decomposition of
doubling metrics described by by Talwar [16].

4.1 A QPTAS for Tree Metrics

In this section, we present an exact quasi-polynomial time algorithm for the ε-
RBkM problem on trees. Without loss of generality, we assume the tree is rooted
at an arbitrary vertex r. We repeatedly remove leaves with no client or facility
until there is no such leaf in the tree. We also repeatedly remove internal vertices
of degree two with no client or facility by consolidating their incident edges into
one edge of the total length. Also, it is not hard to see that by introducing
dummy vertices and zero length edges, we can convert this modified rooted tree
into an equivalent binary tree1 in which the clients and facilities are only located
on distinct leaves. In other words, each leaf has either a client or a facility. The

1 A tree in which every node other than the leaves has two children.

10

number of vertices and edges in this binary tree remains linear in the size of the
original instance.

Let p = dlog1+ε ne. In a solution for the ε-RBkM problem, we say a client or
facility has type i if it belongs to a type i cluster for some 0 ≤ i ≤ p. We first
observe a structural property in an optimal solution of an instance of ε-RBkM.
We think of the clients get connected to facilities (the center of the cluster) to
get some service. Having said this, we prove that there is an optimal solution in
which type i clients either enter or leave a subtree but not both. In other words,
in this solution, there are no two clients of the same type such that one enters the
subtree to get connected to a facility and one leaves the subtree to get connected
to a facility. To see this, let Tv be the subtree rooted at an arbitrary vertex v,
and assume clients j1 and j2 have the same type, j1 is not in Tv but enters this
subtree to be served by facility i1, and client j2 is in Tv but leaves this subtree
to be served by a facility i2. Then, it is not hard to see that because j1 and
j2 have the same type, if we send j1 to i2 and j2 to i1, we get another feasible
clustering with no more cost. Therefore, starting from an optimal solution, one
can transform it to a new optimal solution satisfying the above property. We
now present a dynamic programming to compute the optimal solution for the
given instance of ε-RBkM in quasi-polynomial time.

The Table The table in our dynamic programming algorithm captures “snap-
shots” of solutions in a particular subtree which includes the information of how
many clients of each type either enter or leave this subtree. The subproblems
have the form (v, k′,Q), where v is a vertex of the tree, k′ ≤ k, and Q is a vector
of length p+ 1 of integers; we describe these parameters below. We want to find
the minimum cost solution to cover all the clients in Tv, the subtree rooted at
v, such that:

1. There are at most 0 ≤ k′ ≤ k open facilities in Tv. These facilities serve
clients inside or outside Tv.

2. The clients in Tv are covered by the facilities inside Tv or outside Tv.
3. Q is a p+ 1 dimensional vector. The ith component of this vector qi deter-

mines the number of type i clients that enter or leave Tv. When 0 ≤ qi ≤ n,
qi is the number of type i clients that enter Tv and when −n ≤ qi ≤ 0, |qi|
is the number of type i clients that leave Tv.

In a partial solution for the subproblem, the types of clients in Tv and the at
most k′ facilities to be opened in Tv must be determined. Each client must be
assigned to an open facility of the same type in Tv or sent to v to be serviced
outside, and each client shipped from outside to v must be assigned to a facility
of its type inside Tv. The cost of a partial solution accounts for the cost of sending
a client in Tv to a facility inside or to v (i.e., distance to the facility of v times
(1 + ε)i where i is the type client) plus, for the clients shipped from outside of
Tv to v, the cost of sending them from v to their designated facility in Tv (i.e.
the distance from v to the facility times (1 + ε)i where i is the type client).
We keep the value of a minimum cost partial solution in table entry A[v, k′,Q].

11

After filling this table, the final answer will be in the entry A[r, k,0] where 0 is
a vector with p+ 1 zero components.

Base Case 1: There is a client on v. Then, for each 0 ≤ j ≤ p, we do as follows.
We form a vector Q with p+ 1 components such that the ith component qi = 0
for all i 6= j and qi = −1 for i = j. Then, we set A[v, 0,Q] = 0. We set all other
entries of the form A[v, ., .] to infinity.
Base Case 2: There is a facility on v. Then, for each type 0 ≤ j ≤ p and for
each integer (1+ ε)j−1 < t ≤ (1+ ε)j , we do as follows. We form a vector Q with
p+ 1 components such that the ith component qi = 0 for all i 6= j and qi = t for
i = j. We set A[v, 1,Q] = 0 and all other entries of the form A[v, ., .] to infinity.
Recursive Case: Consider a subtree rooted at a vertex v with two children
v1 and v2. We say the subproblem corresponding (v, k′,Q) is consistent with
subproblems (v1, k

′
1,Q1) and (v2, k

′
2,Q2) if k′1 + k′2 ≤ k′ and Q1 + Q2 = Q.

To find the value of a subproblem (v, k′,Q), we initialize A[v, k′,Q] = ∞
and enumerate over all subproblems for its children v1 and v2. For each pair of
consitent subproblems (v1, k

′
1,Q1) and (v2, k

′
2,Q2), we update the entry to the

minimum of its current value and:

2∑
i=1

(A[vi, k
′
i,Qi] +

p∑
j=0

|q(i)j | · (1 + ε)j · d(vi, v)),

where q
(i)
j is the jth component of Qi.

Note that the size of the DP table is O(np+3) and we can compute each entry
in time nO(p), therefore:

Theorem 2. There is a QPTAS for the BkM problem on tree metrics.

5 Conclusion

In this paper, we have given an O(log n)-approximation for BkM and MSkC in
general metrics and also a quasi-PTAS for BkM in doubling metrics. Of course,
the most natural open problem is to determine if either of these problems ad-
mits a true constant-factor approximation in arbitrary metric spaces. A PTAS
for BkM in doubling dimension metrics or even Euclidean metrics seems quite
plausible but even obtaining a constant-factor approximation in such cases is an
interesting open problem. Perhaps one direction of attack would be to consider
LP relaxation for the problem. It can be shown that the most natural configu-
ration based LP (where we would have a variable xi,C for every possible facility
location i and a set C of clients assigned to it) is equivalent to the natural LP re-
laxation. One of the difficulties of using LP for BkM is that most of the standard
rounding techniques that have been used successfully for facility location or the
k-median problem (such as filtering, clustering, etc) do not seem to work for the
BkM due to the multiplier of cluster sizes. For example, the bicriteria approxima-
tion of [4] relies on a correspondence between BkM and a variant of capacitated
k-median on a semi-metric space. They then used a Lagrangian relaxation and

12

a primal-dual method to solve the capacitated k-median; the end result though
opens O(k) centers. Chuzhoy and Rabani [6] presented a better approximation
for capacitated k-median where there are at most k locations of centers while
up to O(1) centers may be open at each location. Adapting their algorithm to
work for the semi-metric space resulting from the work of [4] breaks down at a
technical point. In particular, where one has to combine two solutions obtained
from the primal-dual method with k1 < k < k2 number of centers. If one could
overcome this technical difficulty then it could lead to a O(1)-approximation for
MSkC and BkM on general metrics. Overall, it would be interesting to see if the
standard LP relaxation has a constant integrality gap.

References

1. A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√
logn)-

approximation algorithms for Min UnCut, Min-2CNF Deletion, and directed cut
problems. In Proc. of STOC, 2005.

2. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, V. Pandit. Local
Search Heuristics for k-Median and Facility Location Problem. SIAM Journal on
Computing, 33:544-562, 2004

3. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic appli-
cation. In Proc. of FOCS, 1996.

4. Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-Clustering in
metric spaces. In Proc. of STOC, 2001.

5. J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An Improved Ap-
proximation for k-median, and Positive Correlation in Budgeted Optimization. In
Proc. of SODA, 2015.

6. J. Chuzhoy and Y. Rabani. Approximating k-median with non-uniform capacities
In Proc. of SODA, 2005.

7. A. Czumaj and C. Sohler. Small space representations for metric min-sum k-
clustering and their applications. In Proc. STACS, 2007.

8. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. In Proc. of STOC, 2003.

9. W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Yuval Rabani. Approxi-
mation schemes for clustering problems. In Proc. STOC, 2003.

10. N. Guttman-Beck and R. Hassin. Approximation algorithms for min-sum p-
clustering. Discrete Applied Mathematics, 89:125–142, 1998.

11. P. Indyk. A sublinear time approximation scheme for clustering in metric spaces.
In Proc. of FOCS, 1999.

12. V. Kann, S. Khanna, J. Lagergren, and A. Panconessi. On the hardness of max
k-cut and its dual. In Israeli Symposium on Theoretical Computer Science, 1996.

13. S. Li and O. Svensson. Approximating k-median via pseudo-approximation. In
Proc. of STOC, 2013.

14. S. Sahni and T. Gonzalez, P -Complete Approximation Problems, J. of the ACM
(JACM), v.23 n.3, p.555-565, July 1976

15. L.J. Schulman. Clustering for edge-cost minimization. In Proc. of STOC, 2000.
16. K. Talwar, Bypassing the embedding: algorithms for low dimensional metrics. In

Proc. of STOC, 2004.
17. C. Wu, D. Xu, D. Du, and Y. Wang. An improved approximation algorithm for

k-median problem using a new factor-revealing LP http://arxiv.org/abs/1410.4161

