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Abstract. In this paper, we consider the Unsplittable (hard) Capaci-
tated Facility Location Problem (UCFLP) with uniform capacities and
present some new approximation algorithms for it. This problem is a
generalization of the classical facility location problem where each facil-
ity can serve at most u units of demand and each client must be served
by exactly one facility. It is known that it is NP-hard to approximate
this problem within any factor without violating the capacities. So we
consider bicriteria (α, β)-approximations where the algorithm returns a
solution whose cost is within factor α of the optimum and violates the ca-
pacity constraints within factor β. We present a framework for designing
bicriteria approximation algorithms and show two new approximation
algorithms with factors (10.173, 3/2) and (30.432, 4/3). These are the
first algorithms with constant approximation in which the violation of
capacities is below 2. The heart of our algorithms is a reduction from the
UCFLP to a restricted version of the problem. One feature of this re-
duction is that any (O(1), 1 + ε)-approximation for the restricted version
implies an (O(1), 1 + ε)-approximation for the UCFLP for any constant
ε > 0 and we believe our techniques might be useful towards finding such
approximations or perhaps (f(ε), 1 + ε)-approximation for the UCFLP
for some function f . In addition, we present a quasi-polynomial time
(1 + ε, 1 + ε)-approximation for the (uniform) UCFLP in Euclidean met-
rics, for any constant ε > 0.

Keywords: approximation algorithms, unsplittable capacitated facility loca-
tion problem, Euclidean metrics

1 Introduction

We consider the Unsplittable Capacitated Facility Location Problem (UCFLP)
with uniform capacities. In this problem, we are given a set of clients C and

? Research supported by Alberta Innovates Future Technologies, Canada. The second
author was additionally supported by NSERC.



facilities F where client j has demand dj and each facility i has capacity u and
opening cost fi. We have a metric cost function cij which denotes the cost of
serving one unit of demand of client j at facility i. The goal is to open a subset of
facilities I ⊆ F and assign each client j to exactly one open facility φ(j) to serve
its entire demand dj so that the total amount of demand assigned to each open
facility is no more than u, while minimizing the total cost of opening facilities and
connecting (serving) clients to them, i.e., minimizing

∑
i∈I fi +

∑
j∈C dj · cφ(j)j .

This problem generalizes the bin packing, the minimum makespan, and some
facility location problems. If the demands of clients can be served by multiple
open facilities, then we have the splittable version of the problem (called splittable
CFLP). If each facility can be opened multiple times then we have the so-called
soft-capacitated version. Each of these relaxations (i.e., allowing splitting the
demands of clients and/or having multiple copies of each facility) makes the
problem significantly easier as discussed below.

By a simple reduction from the partition problem, one can show that any
approximation algorithm for the uniform UCFLP violates the capacities of Ω(n)
facilities unless P=NP. Thus, research has focused on the design of bicriteria
approximation algorithms. An (α, β)-approximation for the UCFLP returns a
solution whose cost is within factor α of the optimum and violates the capacity
constraints within factor β. It should be noted that if we violate capacity of a
facility within factor β, we must pay β times its opening cost. In the context of
approximation algorithms, Shmoys, Tardos, and Aardal [9] were the first to con-
sider this problem and presented a (9, 4)-approximation algorithm. They used
a filtering and rounding technique to get an approximation algorithm for the
splittable version and used a rounding for the generalized assignment problem
(GAP) [8] to obtain their algorithm for the unsplittable version. This technique
of reducing the unsplittable version using the rounding for the GAP to the split-
table version was a cornerstone of the subsequent approximation algorithms.
Korupolu, Plaxton, and Rajaraman [5] gave the first constant factor approxima-
tion algorithm for the splittable hard capacitated version, and applied the GAP
rounding technique of [9] to get a (O(1), 2)-approximation algorithm for the
UCFLP. Applying the current best approximation algorithms for the splittable
capacitated version with non-uniform capacities (i.e., each facility has capacity
ui) [10] and uniform capacities [1], one can get factor (11, 2) and (5, 2) approx-
imation algorithms for the UCFLP with non-uniform and uniform capacities,
respectively.

Recently, Bateni and Hajiaghayi [3] modeled an assignment problem in con-
tent distribution networks by the UCFLP. In this application, it is crucial to keep
the violation of capacities as small as possible. Motivated by this strict require-
ment on capacities, the authors of [3] designed a (1+ε, 1+ε)-approximation algo-
rithm for tree metrics (for any constant ε > 0) using a dynamic programming ap-
proach. They also presented a quasi-polynomial time (1+ε, 1+ε)-approximation
algorithm (again for trees) for the non-uniform capacity case. Using Fakcharoen-
phol et al.’s improvement of Bartal’s machinery this implies a polynomial time
(O(log n), 1 + ε)-approximation algorithm for almost uniform capacities and a



quasi-polynomial time (O(log n), 1+ε)-approximation algorithm for non-uniform
case for an arbitrary constant ε > 0.

All the known constant-factor algorithms for the UCFLP violate the ca-
pacity constraints by a factor of at least 2 which is mainly due to using the
rounding algorithm for GAP [8]. Also, the algorithm of [3] (although has 1 + ε
violation) is not a constant factor approximation. We present the first constant
factor approximation algorithms with capacity violation factor less than 2. Par-
ticularly, we present two approximation algorithms with factors (10.173, 3/2)
and (30.432, 4/3) for the UCFLP. We also consider the UCFLP restricted to
Euclidean metrics and give a (1 + ε, 1 + ε)-approximation that runs in the quasi-
polynomial time.

1.1 Related Works

Perhaps the most well-studied facility location problem is the uncapacitated fa-
cility location problem (UFLP). In this problem, we do not have the capacity
constraints and we only need to decide which facilities to open; as each client
will be assigned to its closest open facility. The first constant approximation for
the UFLP was a 3.16-approximation algorithm by Shmoys, Tardos, and Aardal
[9]. The ratio for the UFLP was improved in a series of papers down to 1.488
[6]. On the negative side, a result of Guha and Khuller [4], combined with an
observation of Sviridenko implies 1.463-hardness for the UFLP.

Capacitated facility location problems have also received a lot of attention.
The solutions of the soft capacitated version have a similar structure to the
solution of uncapacitated version and this problem can be reduced to the UFLP.
For example, see [7] for a reduction. This paper gives the current best ratio, 2,
for the soft capacitated version to the best of our knowledge. Since Mahdian et
al. [7] reduce the problem to the UFLP, they give a solution that sends each
client to exactly one facility. As a result, this solution is also feasible for the
unsplittable case and is a 2-approximation for this case too. This comes from
the fact that the optimal value of splittable version is a lower-bound for the
optimal value of the unsplittable version. In contrast, there is an important
distinction between the splittable and unsplittable case in the presence of hard
capacities, because even checking the feasibility of the latter becomes NP-hard
and we need bicriteria algorithms for the latter (see discussions above). In a series
of local search algorithms, the ratio for the splittable CFLP with non-uniform
capacities decreased to 5.83 + ε [10] and with uniform capacities decreased to 3
[1]. It should be noted that all the known LP relaxations for both the splittable
and unsplittable versions have super-constant integrality gap in the general case
of the problems.

1.2 The main results and techniques

Recall that given an instance (F,C) of the UCFLP with opening costs fi, de-
mands dj , and connection costs cij , a solution is a subset I of facilities to open



along with assignment function φ : C → I. We use cf (φ) to denote the facil-
ity cost and cs(φ) to denote the service cost; thus c(φ) = cf (φ) + cs(φ) will
be the total cost. Since all capacities are uniform, by a simple scaling, we can
assume that all of them are 1 and all the client demands are at most 1. As we
explained before, we are interested in (O(1), β)-approximation algorithms for
some β < 2. We define a restricted version of the problem and show that finding
a good approximation algorithm for this restricted version would imply a good
approximation for the general version.

Definition 1. An ε-restricted UCFLP, denoted by RUCFLP(ε), instance is an
instance of the UCFLP in which each demand has size more than ε, i.e., ε <
dj ≤ 1 for all j ∈ C.

The following theorem establishes the reduction from the general instances
of the UCFLP to the restricted version. Here, the general idea is that if we
assign the large clients oblivious to small clients, we can fractionally assign the
small clients without paying too much. We use the maximum-flow minimum-cut
theorem to show this. Then we can round this fractional assignment of small
clients with the GAP rounding technique [8].

Theorem 1. If A is an (α(ε), β(ε))-approximation algorithm for the RUCFLP(ε)
with running time τ(A) then there is a (g(ε, α(ε)),max{β(ε), 1+ε})-approximation
algorithm for the UCFLP whose running time is polynomial in τ(A) and the in-
stance size, where g(ε, α(ε)) is a function of ε and α(ε), and is linear in α(ε).

Corollary 1. For any constant ε > 0, an (α(ε), 1 + ε)-approximation algorithm
for the RUCFLP(ε) yields an (O(α(ε)), 1 + ε)-approximation for the UCFLP.
Particularly, when α(ε) is a constant, we have a constant approximation for the
UCFLP with a (1 + ε) violation of capacities in polynomial time.

This reduction shows it is sufficient to consider large clients only, which may
open the possibility of designing algorithms using some of the techniques used
in the bin packing type problems. We believe that one can find an (O(1), 1 + ε)-
approximation algorithm for the RUCFLP(ε). If one finds such an algorithm,
the above corollary shows that we have an (O(1), (1 + ε))-approximation for
the UCFLP. As an evidence for this, we find approximation algorithms for the
RUCFLP(1/2) and the RUCFLP(1/3). For the RUCFLP(1/2), we present an
exact algorithm and for the RUCFLP(1/3), we present a (21, 1)-approximation
algorithm. These, together with Theorem 1 imply:

Theorem 2. There is a polynomial time (10.173, 3/2)-approximation algorithm
for the UCFLP.

Theorem 3. There is a polynomial time (30.432, 4/3)-approximation algorithm
for the UCFLP.

Finally, we give a QPTAS for Euclidean metrics. Here, we employ a dynamic
programming technique and combine the shifted quad-tree dissection of Arora
[2], some ideas from [3], and some new ideas to design a dynamic programming.



Theorem 4. There exists a (1 + ε, 1 + ε)-approximation algorithm for the Eu-
clidean UCFLP in R2 with running time in quasi-polynomial for any constant
ε > 0.

Although this theorem is presented for R2, it can be generalized to Rd for con-
stant d > 2. Due to lack of space, we defer the proof of Theorem 4 to the full
version.

The rest of this paper is organized as follows. In Section 2, we prove The-
orem 1. Next, we present approximation algorithms for the RUCFLP(1/2) and
RUCFLP(1/3), which also prove weaker versions of Theorems 2 and 3 (see the
full version for improved ratios). Finally, in Section 4, we conclude the paper.

2 Reduction to the Restricted UCFLP

In this section, we prove Theorem 1. Let L = {j ∈ C : dj > ε} be the set of
large clients and S = C\L be the set of small clients3. We call two assignment
φ1 : C1 → F1 and φ2 : C2 → F2 consistent if φ1(j) = φ2(j) for all j ∈ C1 ∩ C2.
The high level idea of the algorithm (Algorithm 1) is as follows. We first ignore
the small clients and solve the problem restricted to only the large clients by
running algorithm A of Theorem 1. We can show that given a good assignment
of large clients, there exists a good assignment of all the clients (large and small)
which is consistent with this assignment of large clients, i.e. a solution which
assigns the large clients the same way that A does, whose cost is not far from
the optimum cost. More specifically, we show there is a fractional (i.e. splittable)
assignment of small clients that together with the assignment of large clients
obtained from A gives an approximately good solution. Having this property, we
try to find a fractional assignment of small clients. To assign the small clients,
we update the capacities and the opening costs of facilities with respect to the
assignment of large clients (according to the solution of A). Then, we fractionally
assign small clients and round this fractional assignment at the cost of violating
the capacities within factor 1 + ε.

First, we formally prove the property that given assignment of large clients,
there is a feasible fractional assignment of small clients with an acceptable cost.
Note that we do not open facilities fractionally and a fractional assignment of
demands of (small) clients is essentially equivalent to splitting their demands
between multiple open facilities. We should point out that the proof of this
property is only an existential result and we do not actually find the assignment
in the proof. We only use this lemma to bound the cost of our solution. Let OPT
be an optimum solution which opens set I∗ of facilities and with assignment of
clients φ∗ : C → I∗. We use φ∗L : L → I∗ and φ∗S : S → I∗ to denote the
restriction of φ∗ to large and small clients, respectively. Here, φ−1(i) is the

3 We should point out that the definitions of L and S are with respect to a given
parameter ε. Since throughout the following sections, this parameter is the same for
all statements, in the interest of brevity, we use this notation instead of L(ε) and
S(ε).



Algorithm 1 Algorithm for the UCFLP by reduction to the RUCFLP(ε)

Require: An instance of UCFLP, an ε > 0, and the algorithm A for the RUCFLP(ε)
Ensure: A subset I ⊆ F of facilities to open and an assignment of clients φ : C → I
1: Let L = {j ∈ C : dj > ε} and S = C\L. Assign the clients in L by running A. Let
IL be the opened facilities and φL : L→ IL be the assignment found by A.

2: For i ∈ IL, set fi = 0, and set u′
i = max{0, 1−

∑
j∈φ−1

L
(i)
dj} be the new capacity

of facility i. Assign the clients in S with respect to updated opening costs and
capacities by an approximation algorithm for the splittable CFLP with non-uniform
capacities. Let IS be the new set of opened facilities and φ′

S : S → I ′S be the
assignment function, where I ′S ⊆ IS ∪ IL.

3: Round the splittable assignment φ′
S using algorithm of [8] to find an unsplittable

assignment φS : S → I ′S .
4: Let I = I ′S ∪ IL and define φ : C → I as φ(j) = φS(j) if j ∈ S and otherwise
φ(j) = φL(j). Return φ and I.

set of clients assigned to facility i by the assignment φ and for a F ′ ⊆ F ,
φ−1(F ′) = ∪i∈F ′φ−1(i).

Lemma 1. Suppose IL is a set of open facilities and φL : L → IL is an ar-
bitrary (not necessarily capacity respecting) assignment of large clients. Given
the assignment φL, there exists a feasible fractional assignment of small clients,
φ′′S : S → I ′′S such that cs(φ

′′
S) ≤ cs(φ∗) + cs(φL) and cf (φ′′S) ≤ cf (φ∗).

Proof. Let u′i = max{0, 1 −
∑
j∈φ−1

L (i) dj}, i.e., the amount of capacity left for

facility i after the assignment of large clients based on φL. We assume we open
all the open facilities in the optimum solution, I∗ (if not already open in IL).
Let I ′′S = IL ∪ I∗. To show the existence of φ′′S , first we move the demands
of small clients to the facilities in I∗ based on φ∗S and we pay cs(φ

∗
S) for this.

So now the demands of small clients are located at facilities in I∗. However,
a facility i ∈ I ′′S has only u′i residual capacity left (after commiting parts of
its capacity for the large clients assigned to it by φL) and this capacity may
not be enough to serve the demands of small clients moved to that location.
In order to rectify this, we will fractionally redistribute the demands of these
small clients between facilities (in I ′′S) in such a way that we do not violate
capacities u′i. In this redistribution, we only use the edges used in φL or φ∗L and
if an edge is used to assign large client j to facility i (in φL or φ∗L), we move
at most dj units of demands of small clients along this edge. Therefore, we pay
at most cs(φL) + cs(φ

∗
L) in this redistribution. Thus, by the Triangle Inequality,

the connection cost of the fractional assignment of small clients obtained at the
end is bounded by cs(φ

∗
S) + cs(φ

∗
L) + cs(φL) = cs(φ

∗) + cs(φL). Since we only
open facilities in the optimum solution (on top of what is already open in IL)
the extra facility cost (for assignment φ′′S) is bounded by the facility cost of the
optimum.

This process of moving the small client demands can be alternatively thought
in the following way. We start from the optimum assignment φ∗ and change the
assignment of large clients to get an assignment identical to φL for those in L.



Specifically, we change the assignment of a large client j from i′ = φ∗(j) to
i = φL(j). This switch increases the amount of demands served at i by dj and
decreases the amount of demand served at i′ by dj . After doing all these switches
we might have more demand at some facilities than their capacities, while the
total demands assigned to some facilities might be less than 1. To resolve this
problem, we try to redistribute (fractionally) the demands of small clients so
that there is no capacity violation and we use the max-flow min-cut theorem to
show that this redistribution is possible. The details of this part appear in the
full version. ut

Proof of Theorem 1. Since the cost of the optimum solution for the instance
consisting of only the large clients is clearly no more than that of the original
instance, after Step 1 of Algorithm 1, we have an assignment φL such that
c(φL) ≤ α(ε)c(φ∗L) and it violates the capacities by a factor of at most β(ε). By
Lemma 1, given φL, there is a feasible fractional assignment φ′′S for small clients
such that cs(φ

′′
S) ≤ cs(φ∗) + cs(φL) and cf (φ′′S) ≤ cf (φ∗).

In Step 2, consider the instance of the splittable CFLP consisting of the
small clients and the residual facility opening costs and capacities as defined.
We use an approximation algorithm for the splittable CFLP to find an approx-
imate splittable (i.e. fractional) assignment φ′S for small clients. Suppose that
the approximation algorithm used for the splittable CFLP has separate factors
λss, λsf , λfs, λff such that it returns an assignment with service cost at most

λsscs(φ̃S) + λsfcf (φ̃S) and with opening cost λfscs(φ̃S) + λffcf (φ̃S) for any

feasible solution φ̃S . Therefore, using Lemma 1:

cs(φ
′
S) ≤ λsscs(φ′′S) + λsfcf (φ′′S), (1)

and
cf (φ′S) ≤ λfscs(φ′′S) + λffcf (φ′′S). (2)

The current best approximation for the splittable CFLP is due to Zhang et
al. [10] with parameters λss = 1, λsf = 1, λfs = 4, and λff = 5.

In Step 3, we round the splittable assignment φ′S using the algorithm of
Shmoys and Tardos [8] for the Generalized Assignment Problem (GAP) to find
an integer assignment φS . The GAP is a scheduling problem which has similar-
ities to the UCFLP. In the GAP, we have a collection of jobs J and a set M
of machines. Each job must be assigned to exactly one machine in M . If job
j ∈ J is assigned to machine i ∈M , then it requires pij units of processing and
incurs a cost rij . Each machine i ∈ M can be assigned jobs of total processing
time at most Pi. We want to find an assignment of jobs to machines to minimize
the total assignment cost. We should point out that rij values do not necessar-
ily satisfy the triangle inequality. Shmoys and Tardos [8] show that a feasible
fractional solution of the GAP can be rounded, in polynomial time, to an in-
teger solution with the same cost that violates processing time limit Pi within
additive factor maxj∈J pij ; in worst case this can be a factor 2. We can model
(view) the unsplittable capacitated facility location problem as an instance of
the GAP in the following sense: jobs are clients, machines are facilities, pij = dj



for all i, rij = dj · cij for all i and j, and Pi = 1, and all facilities are already
open (machines are available). Therefore, if we have a fractional assignment of
clients to facilities (i.e. a splittable assignment), φ′S , then using the rounding
algorithm of [8], we can round φ′S to φS without increasing the connection cost,
i.e. cs(φS) = cs(φ

′
S), such that the capacity constraints are violated by at most

an additive factor of maxj∈S dj . Since all the jobs in S have demand at most ε,
the capacity constraints are violated by at most a factor of 1 + ε.

After combining φS and φL in Step 4, the violation of capacities is within a
factor of at most max{β(ε), (1+ε)}, because the facilities with violated capacities
in Step 1 will be removed in Step 2 and will not be used in Step 3. So it only
remains to bound the cost of this assignment:

cs(φS) = cs(φ
′
S) by rounding of [8]

≤ λsscs(φ′′S) + λsfcf (φ′′s ) by Equation (1)
≤ λss(cs(φ∗) + cs(φL)) + λsfcf (φ∗), by Lemma 1

cf (φS) ≤ (1 + ε)cf (φ′S) by rounding of [8]
≤ (1 + ε)λfscs(φ

′′
S) + (1 + ε)λffcf (φ′′S) by Equation (2)

≤ (1 + ε)λfs(cs(φ
∗) + cs(φL)) + (1 + ε)λffcf (φ∗). by Lemma 1

Therefore:

c(φ) = c(φS) + c(φL)

= cs(φS) + cf (φS) + cs(φL) + cf (φL)

≤ h1(ε)cs(φ
∗) + h2(ε)cf (φ∗) + (h1(ε) + 1)cs(φL) + cf (φL), (3)

where h1(ε) = λss + (1 + ε)λfs and h2(ε) = λsf + (1 + ε)λff . Since h1(ε) ≥ 0 for
any ε > 0: (h1(ε)+1)cs(φL)+cf (φL) ≤ (h1(ε)+1)c(φL) ≤ α(ε)(h1(ε)+1)c(φ∗L) ≤
α(ε)(h1(ε)+1)c(φ∗). Combining this with Inequality (3), we obtain that the cost
of φ is within factor:

g(ε, α(ε)) = max(h1(ε), h2(ε)) + α(ε)(h1(ε) + 1) (4)

of the optimum. ut

3 The RUCFLP(1
2
) and RUCFLP(1

3
)

In this section, we give two approximation algorithms for the RUCFLP( 1
2 ) and

RUCFLP( 1
3 ). Combined with Theorem 1 (and using Algorithm 1) these imply

two approximation algorithms for the UCFLP. We start with the simpler of the
two, namely the RUCFLP( 1

2 ).

Theorem 5. There is a polynomial time exact algorithm for the RUCFLP( 1
2).

Proof. Consider an optimal solution for a given instance of this problem with
value OPTL. Because dj >

1
2 for all j ∈ C, each facility can serve at most

one client in the optimal solution. Therefore, the optimal assignment function,



φ∗L, induces a matching M = {jφ∗L(j) : j ∈ C}. Let wij = cij .dj + fi and let
w(H) =

∑
e∈H we for any subset of edgesH ⊆ E. It follows that w(M) = OPTL.

Let M∗ be a minimum weight perfect matching with respect to weights wij .
Clearly, w(M∗) ≤ w(M) = OPTL. In addition, M∗ induces a feasible assign-
ment of clients to facilities with cost w(M∗). Thus, M∗ induces an optimal solu-
tion for the RUCFLP( 1

2 ). Since we can find a minimum weight perfect matching
in polynomial time, there is an exact algorithm for the RUCFLP( 1

2 ). ut

Corollary 2. There is a polynomial time (16.5, 3/2)-approximation algorithm
for the UCFL problem.

Proof. We run Algorithm 1, where we use the algorithm of Theorem 5 in the
first step. Substituting α(ε) = 1 and ε = 1/2, we have h1( 1

2 ) = 7, h2( 1
2 ) = 8.5,

and g(ε, α(ε)) = 16.5. Since β(ε) = 1, the overall ratio is (16.5, 3/2). ut

The algorithm for the RUCFLP( 1
3 ) is more involved. First, we show how find-

ing an approximation algorithm for the RUCFLP(ε) with zero facility opening
costs leads to an approximation algorithm for the general RUCFLP(ε). Then, we
give an approximation algorithm for the RUCFLP( 1

3 ) with zero opening costs.

Lemma 2. Given an algorithm A′ for the RUCFLP(ε) with zero facility open-
ing costs having approximation factor (α′(ε), β(ε)), we can find a (α′(ε) 1

ε , β(ε))-
approximation algorithm A for the general RUCFLP(ε).

Proof. Define a new connection cost c′ij = cij+fi and opening cost f ′i = 0 for all
i ∈ F and j ∈ C. Note that the new cost function is still metric. Then, we run A′
on this new modified instance and let the solution returned by it be assignment
φL. We use φL to assign the clients for the original instance and we claim this is
a (α′(ε) 1

ε , β(ε))-approximation. The proof of this appears in the full version. ut

Now, we present a (7, 1)-approximation algorithm for the RUCFLP( 1
3 ) with

zero opening costs (see Algorithm 2), which coupled with Lemma 2 yields a
(21, 1)-approximation algorithm for the RUCFLP( 1

3 ).

Theorem 6. There is a (7, 1)-approximation algorithm for the RUCFLP( 1
3)

with zero opening costs.

Proof. Note that all the clients in the given instance have size > 1
3 . We break

them into two groups: L′ = {j ∈ C : dj >
1
2} and L′′ = C\L′ are those which

have size in ( 1
3 ,

1
2 ]. In this proof (and of Lemma 3), we call clients in L′, huge

clients and those in L′′, moderately-large clients. The algorithm assigns the huge
clients by running a minimum weight perfect matching algorithm with edge
weights wij = djcij . Let IL′ be the opened facilities and φL′ : L′ → IL′ be the
assignment function. For moderately-large clients (i.e. those in L′′), we define a
flow-network H and show that minimum cost maximum flows in H correspond
to minimum cost feasible assignment of clients in L′′ to facilities (given the
assignment φL′).

Directed network H has node set X∪Y ∪{s, t} where there is a node xj ∈ X
for every client j ∈ L′′ and a node yi ∈ Y for every facility i ∈ F ; s is the



Algorithm 2 Algorithm for solving the RUCFLP( 1
3 ) with zero opening costs

Require: An instance of the RUCFLP( 1
3
) with zero opening costs

Ensure: A subset I ⊆ F and a function φ : C → I
1: Let L′ = {j ∈ C : dj >

1
2
} and L′′ = C\L′. Assign the clients in L′ by running a

minimum weight maximum matching algorithm that saturates L′ with edge weights
wij = djcij . Let IL′ be the opened facilities and φL′ : L′ → IL′ be the assignment
function.

2: Build the flow network H as described in Theorem 6.
3: Find a minimum cost maximum flow in H. If the value of the flow is smaller than
|L′′| then return “Infeasible”. Else, let IL′′ be the subset of facilities in F\IL′ whose
corresponding nodes in Y (in H) have non-zero flow through them and φL′′ be the
assignment function defined as: if there is a unit flow from xj to yi in H then
φL′′(j) = i.

4: Let I = IL′′ ∪ IL′ . Combine φL′′ and φL′ to form assignment function φL : C → I
where φ(j) = φL′′(j) if j ∈ L′′, otherwise φ(j) = φL′(j). Return φ and I.

source and t is the sink. The source is connected to each node xj ∈ X, and all
yi ∈ Y are connected to the sink. Each xj ∈ X is connected to a node yi ∈ Y
if either: the corresponding facility i is in F\IL′ , i.e. unopened yet, or i is in
IL′ and the remaining capacity of i is enough to serve the demand of client j.
Set the capacity of the edges between the source and the nodes in X to 1, set
the capacity of the edges between X and Y to 1, set the capacity of the edges
between the nodes yi ∈ Y whose corresponding facility i is unopened (i.e. not
in IL′) and the sink to 2, and set the capacity of the edges between the nodes
yi ∈ Y whose corresponding facility is in IL′ and the sink to 1. The cost of
an edge connecting xjyi is dj · cij and all the other costs are 0. Algorithm 2
summarizes the algorithm for the RUCFLP( 1

3 ) with zero opening costs.
Let φ∗L be an optimal assignment for the given instance of the RUCFLP( 1

3 )
with cost OPTL. We use the following lemma (whose proof appears in the full
version):

Lemma 3. There exists an assignment φ′ of clients consistent with φL′ with
cost at most 7OPTL where OPTL is the cost of an optimum assignment φ∗L for
the given instance of the RUCFLP( 1

3).

Below we prove that in Steps 2 and 3 the algorithm finds the best possible
feasible assignment of clients in L′′ (given φL′). Therefore, the cost of φ formed
in Step 4 is at most c(φ′) and hence, is at most 7OPTL.

Since for any j ∈ L′′: 1
3 < dj ≤ 1

2 , each unopened facility after Step 1 can
serve any two clients of L′′ (and no more than two). This fact is reflected in that
we connect all the nodes in X (corresponding to moderately-large clients) to the
nodes in Y corresponding to unopened facilities F\IL′ and we set the capacity of
the edges between those nodes in Y and the sink to 2. In addition, each facility
in IL′ can serve at most one moderately-large client, because more than 1

2 of
its capacity is already used by a huge client; accordingly we set the capacity of
the edges from those nodes in Y to the sink to 1 and we only connect to them



the nodes of X whose corresponding client can be served by them. Considering
these two simple facts (proof in the full version):

Lemma 4. The maximum flow in H has value |L′′| if and only if the given
instance is feasible and there is a one to one correspondence between maximum
flows in H and feasible assignment of moderately-large clients (i.e. in L′′) given
φL′ . Furthermore, a pair of corresponding maximum flow in H and assignment
of clients of L′′ to F have the same cost.

Therefore, the assignment φL′′ obtained from a minimum cost maximum flow
in H has the minimum cost among the assignments consistent with φL′ . This
together with Lemma 3 implies that φB as defined has cost at most 7OPTL. ut

Combining Lemma 2 and Theorem 6:

Corollary 3. There is a polynomial time (21, 1)-approximation algorithm for
the RUCFLP( 1

3).

Corollary 4. There is a (161.667,4/3)-approximation algorithm for the UCFL
problem.

Proof. We run Algorithm 1, where we use the algorithm of Corollary 3 for
A. That is, we first run the (7, 1)-approximation algorithm of Theorem 6 as
algorithm A′ in Lemma 2 to obtain A with α(ε) = 21 and ε = 1/3. Thus
h1( 1

3 ) = 19/3, h2( 1
3 ) = 23/3, and g(ε, α(ε)) = 23/3 + 21(22/3) < 161.667. Since

β(ε) = 1, the overall ratio is (161.667, 4/3). ut

With a more careful analysis and a simple scaling to balance the bi-factors of
connection and facility costs, we can bring down the factors of our algorithms
(see the full version). This will imply the improved ratios in Theorem 2 and 3.

Notice that we solved the RUCFLP( 1
3 ) and the the RUCFLP( 1

2 ) without
violation of capacities, but this is not possible for smaller values of ε as shown
below (see the full version for the proof).

Theorem 7. The RUCFLP(ε) does not admit any (α(ε), 1)-approximation al-
gorithm for ε < 1

3 unless P = NP .

It should be noted that to find an algorithm for the UCFLP that violates
capacities within factor 1 + ε, we do not need to find an algorithm that does not
violate capacities in the RUCFLP(ε). Even if we violate the capacities within
factor 1 + ε in the RUCFLP(ε), by Theorem 1 we can get an algorithm for the
UCFLP that violates the capacities within factor 1+ε. We think it is possible to
find an (α(ε), 1 + ε)-approximation for the RUCFLP(ε) for any constant ε > 0.
This, together with Theorem 1 would imply an (f(ε), 1 + ε)-approximation for
the UCFLP, for any constant ε > 0.



4 Discussion

We presented a reduction from the UCFLP to a restricted version in which all
demand values are large (i.e. > ε) and presented two algorithms for the case of
ε = 1

2 and 1
3 . These implied two constant factor approximation algorithms for

the UCFLP with capacity bounds within factor 3/2 and 4/3. We believe similar
results can be found with capacity violations bounded within factor 1+ε for any
ε > 0. We also showed that at a loss of factor 1/ε, we can ignore the opening
cost of facilities, and that if there is an (α(ε), 1 + ε)-approximation for these
instances then there is an (α′(ε), 1 + ε)-approximation for the general case. We
believe that it should be possible to design constant factor (perhaps depending
on ε) approximation for RUCFLP(ε) with zero opening costs with a violation of
at most 1 + ε on capacities.
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