
Approximation Schemes for Capacitated Vehicle Routing on
Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension∗

ADITYA JAYAPRAKASH, Department of Computing Science, University of Alberta

MOHAMMAD R. SALAVATIPOUR†, Department of Computing Science, University of Alberta

In this paper, we present Approximation Schemes for Capacitated Vehicle Routing Problem (CVRP) on several

classes of graphs. In CVRP, introduced by Dantzig and Ramser in 1959 [14], we are given a graph 𝐺 = (𝑉 , 𝐸)
with metric edges costs, a depot 𝑟 ∈ 𝑉 , and a vehicle of bounded capacity 𝑄 . The goal is to find a minimum

cost collection of tours for the vehicle that returns to the depot, each visiting at most 𝑄 nodes, such that they

cover all the nodes. This generalizes classic TSP and has been studied extensively. In the more general setting,

each node 𝑣 has a demand 𝑑𝑣 and the total demand of each tour must be no more than 𝑄 . Either the demand

of each node must be served by one tour (unsplittable) or can be served by multiple tours (splittable). The best

known approximation algorithm for general graphs has ratio 𝛼 + 2(1 − 𝜖) (for the unsplittable) and 𝛼 + 1 − 𝜖

(for the splittable) for some fixed 𝜖 > 1

3000
, where 𝛼 is the best approximation for TSP. Even for the case of

trees, the best approximation ratio is 4/3 [5] and it has been an open question if there is an approximation

scheme for this simple class of graphs. Das and Mathieu [15] presented an approximation scheme with time

𝑛log
𝑂 (1/𝜖 ) 𝑛

for Euclidean plane R2. No other approximation scheme is known for any other class of metrics

(without further restrictions on 𝑄). In this paper, we make significant progress on this classic problem by

presenting Quasi-Polynomial Time Approximation Schemes (QPTAS) for graphs of bounded treewidth, graphs

of bounded highway dimensions, and graphs of bounded doubling dimensions. For comparison, our result

implies an approximation scheme for Euclidean plane with run time 𝑛𝑂 (log6 𝑛/𝜖5)
.

CCS Concepts: • Theory of computation→ Routing and network design problems.

Additional Key Words and Phrases: Approximation Scheme, Capacitated Vehicle Routing, Bounded Treewidth,

Bounded Doubling Dimension

ACM Reference Format:
Aditya Jayaprakash and Mohammad R. Salavatipour. 2023. Approximation Schemes for Capacitated Vehicle

Routing on Graphs of Bounded Treewidth, Bounded Doubling, or Highway Dimension. ACM Trans. Algor. 1, 1
(January 2023), 36 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Vehicle routing problems (VRP) describe a class of problems where the objective is to find cost

efficient delivery routes for delivering items from depots to clients using vehicles with some

constraints on the vehicles (e.g. having limited capacity, or the distance a vehicle can travel in each

∗
A preliminary version of this paper has appeared in the proceedings of The 33rd ACM-SIAM Symp. on Disc. Algorithms

(SODA) 2022.

†
Supported by NSERC DG

Authors’ addresses: Aditya Jayaprakash, jayaprak@ualberta.ca, Department of Computing Science, University of Alberta;

Mohammad R. Salavatipour, mrs@ualberta.ca, Department of Computing Science, University of Alberta.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1549-6325/2023/1-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


2 Jayaprakash and Salavatipour

tour). These problems have numerous applications in real world settings. The Capacitated Vehicle

Routing Problem (CVRP) was introduced by Dantzig and Ramser in 1959 [14]. In CVRP, we are

given as input a graph 𝐺 = (𝑉 , 𝐸) with metric edge weights (also referred to as costs)𝑤 (𝑒) ∈ Z≥0,
a depot 𝑟 ∈ 𝑉 , along with a vehicle of capacity𝑄 > 0, and wish to compute a minimum weight/cost

collection of tours, each starting from the depot and visiting at most 𝑄 customers, whose union

covers all the customers. In the more general setting each node 𝑣 has a demand 𝑑 (𝑣) ∈ Z≥1 and the

goal is to find a set of tours of the minimum total cost each of which includes 𝑟 such that the union

of the tours covers the demand at every client and every tour covers at most 𝑄 demand.

There are three common versions of CVRP: unit, splittable, and unsplittable. In the splittable

variant, the demand of a node can be delivered using multiple tours, but in the unsplittable variant,

the entire demand of a client must be delivered by a single tour. The unit demand case is a special

case of the unsplittable case where every node has unit demand and the demand of a client must be

delivered by a single tour. CVRP has also been referred to as the 𝑘-tours problem [3, 4]. All three

variants admit constant factor approximation algorithm in polynomial-time [19]. Haimovich et al.

[19] showed that a heuristic called iterative partitioning (which starts from a TSP tour and breaks

the tour into capacity respecting tours by making a trip back and forth to the depot) implies an

(𝛼 + 1(1 − 1/𝑄))-approximation for the unit demand case, with 𝛼 being the approximation ratio of

Traveling Salesman Problem (TSP). A similar approach implies a (2 + (1 − 2/𝑄)𝛼)-approximation

for the unsplittable variant [2]. Very recently, Blauth et al. [10] improved these approximations by

showing that there is an 𝜖 > 0 such that there is an (𝛼 + 2 · (1 − 𝜖))-approximation algorithm for

unsplittable CVRP and a (𝛼 + 1 − 𝜖)-approximation algorithm for unit demand CVRP and splittable

CVRP. For 𝛼 = 3/2, they showed 𝜖 > 1/3000. All three variants are APX-hard in general metric

spaces [28], so a natural research focus has been on structured metric spaces, i.e. special graph

classes. Even on trees (and in particular on stars) CVRP remains NP-hard [24], and there exist

constant-factor approximations (currently being 4/3 [5]), better than those for general metrics,

however, the following question has remained open:

Question. Is it possible to design an approximation scheme for CVRP on trees or more generally

graphs of bounded treewidth?

We answer the above question affirmatively. For ease of exposition we start by proving the

following first:

Theorem 1. For any 𝜖 > 0, there is an algorithm that, for any instance of the unit demand CVRP
on trees outputs a (1+ 𝜖)-approximate solution in time 𝑛𝑂 (log4 𝑛/𝜖3) . Our algorithm extends to the cases
of splittable and unsplittable CVRP on trees when 𝑄 = 𝑛𝑂 (log𝑐 𝑛) , for some constant 𝑐 > 0, and the
algorithm runs in time 𝑛𝑂 (log2𝑐+4 𝑛/𝜖3) .

We then show how this result can be extended to design QPTAS for graphs of bounded treewidth.

Theorem 2. For any 𝜖 > 0, there is an algorithm that, for any instance of the unit demand CVRP
on a graph 𝐺 of bounded treewidth 𝑘 outputs a (1 + 𝜖)-approximate solution in time 𝑛𝑂 (𝑘2

log
3 𝑛/𝜖2) .

For the splittable and unsplittable CVRP on graphs of bounded treewidth when 𝑄 = 𝑛𝑂 (log𝑐 𝑛) for some
constant 𝑐 > 0, the algorithm outputs a (1 + 𝜖)-approximate solution in time 𝑛𝑂 (𝑘2

log
2𝑐+3 𝑛/𝜖2) .

As a consequence of this and using earlier results of embedding graphs of bounded doubling

dimensions or bounded highway dimensions into graphs of low treewidth we obtain approximation

schemes for CVRP on those graph classes.

Theorem 3. For any 𝜖 > 0 and fixed 𝐷 > 0, there is a an algorithm that, given an instance of the
splittable CVRP or unsplittable CVRP with capacity 𝑄 = 𝑛𝑂 (log𝑐 𝑛) (for a constant 𝑐 > 0) on a graph of
doubling dimension 𝐷 , finds a (1 + 𝜖)-approximate solution in time 𝑛𝑂 (𝐷𝐷

log
2𝑐+𝐷+3 𝑛/𝜖𝐷+2) .

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 3

As an immediate corollary, this implies an approximation scheme for CVRP on Euclidean metrics

on R2 in time 𝑛𝑂 (log6 𝑛/𝜖5)
which improves on the run time of 𝑛𝑂 (log𝑂 (1/𝜖 ) 𝑛)

of QPTAS of [15]. We

also show how our results in Theorem 2 implies the following.

Theorem 4. For any 𝜖 > 0, 𝜆 > 0 and 𝐷 > 0, there is a an algorithm that, given a graph with
highway dimension 𝐷 with violation 𝜆 as an instance of the splittable CVRP or unsplittable CVRP with
capacity 𝑄 = 𝑛𝑂 (log𝑐 𝑛) (for some constant 𝑐 > 0), finds a solution whose cost is at most (1 + 𝜖) times

the optimum in time 𝑛𝑂 (log2𝑐+3+log
2 ( 𝐷

𝜖𝜆
) · 1
𝜆 𝑛/𝜖2) .

We shoude note that in the splittable and unsplittable cases we consider in these theorems,

the demands 𝑑 (𝑣) and 𝑄 are integers and 𝑄 is quasi-polynomially bounded (in 𝑛). However, for

unsplittable CVRP when demands of the nodes and capacity 𝑄 are fractional numbers in [0, 1] the
problem is APX-hard. This follows easily from a simple reduction from Bin packing to unsplittable

CVRP on a star with one leaf being the depot connected to the center with an edge of cost 1 and all

the other leaves being the items in the bin-packing each having the demand being equal to the

size of the item and connected to the center with a zero-cost edge. For such instances, deciding

between whether the optimum is 2 or 3 is NP-hard. However, if all the items (and bin sizes) in

bin packing are integers that are polynomially bounded (in 𝑛) then the problem has a PTAS. Very

recently, for unsplittable CVRP on trees where 𝑄 = 1 and 𝑑 (𝑣) ∈ [0, 1] [26] have presented a

(1.5 + 𝜖)-approximation.

1.1 Related Works
CVRP generalizes the classic TSP problem (with 𝑄 = 𝑛). For general metrics, Haimovich et al. [19]

considered a simple heuristic, called tour partitioning, which starts from a TSP tour and then splits

the tour into tours of size at most 𝑄 (by making back-and-forth trips to 𝑟 ) and showed that it is a

(1 + (1 − 1/𝑄)𝛼)-approximation for splittable CVRP, where 𝛼 is the approximation ratio for TSP.

Essentially the same algorithm implies a (2 + (1− 2/𝑄)𝛼)-approximation for unsplittable CVRP [2].

These stood as the best known bounds until recently, when Blauth et al. [10] showed that given a

TSP approximation 𝛼 , there is an 𝜖 > 0 such that there is an (𝛼 +2 · (1−𝜖))-approximation algorithm

for CVRP. For 𝛼 = 3/2, they showed 𝜖 > 1/3000. They also showed a (𝛼 + 1 − 𝜖)-approximation

algorithm for unit demand CVRP and splittable CVRP. For unsplittable CVRP, Friggstad et al. [17]

presented better approximation algorithms including one with ratio 3.194.

For the case of trees, Labbé et al. [24] showed splittable CVRP is NP-hard and Golden et al. [18]

showed unsplittable version is APX-hard and hard to approximate better than 1.5. For splittable

CVRP (again on trees), Hamaguchi et al. [20] defined a lower bound for the cost of the optimal

solution and gave a 1.5 approximation with respect to the lower bound. Asano et al. [4] improved

the approximation to (
√
41 − 1)/4 with respect to the same lower bound and also showed the

existence of instances whose optimal cost is exactly 4/3 times the lower bound. Becker [5] gave a

4/3-approximation with respect to the lower bound. Becker and Paul [9] showed a (1, 1+𝜖)-bicriteria
polynomial-time approximation scheme for splittable CVRP in trees, i.e. a PTAS but the capacity of

every tour is up to (1 + 𝜖)𝑄 .
Das and Mathieu [15] gave a quasi-polynomial-time approximation scheme (QPTAS) for CVRP

in the Euclidean plane (R2). For the same metric and when𝑄 is𝑂 (log𝑛/log log𝑛) or𝑄 is Ω(𝑛) was
shown for the same metric by Asano et al. [4]. A PTAS (for Euclidean plane R2) for all moderately

large values of 𝑄 ≤ 2
log

𝛿 𝑛
, where 𝛿 = 𝛿 (𝜖), was shown by Adamaszek et al [1], building on the

work of Das and Mathieu [15], and using it as a subroutine. For high dimensional Euclidean spaces

R𝑑 , Khachay et al. [21] showed a PTAS when 𝑄 is 𝑂 (log1/𝑑 𝑛). For graphs of bounded doubling

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



4 Jayaprakash and Salavatipour

dimension, Khachay et al. [22] gave a QPTAS when the number of tours is polylog(𝑛) and Khachay
et al. [23] gave a QPTAS when 𝑄 is polylog(𝑛).

The following results are all for when 𝑄 is some constant. CVRP is APX-hard in general metrics

and is polynomial-time solvable on trees. There exists a PTAS for CVRP in the Euclidean plane (R2)
(again for when 𝑄 is fixed) as shown by Khachay et al. [21]. A PTAS for planar graphs was shown

by Becker et al. [8] and a QPTAS for planar and bounded-genus graphs was shown by Becker et al.

[6]. A PTAS for graphs of bounded highway dimension and an exact algorithm for graphs with

bounded treewidth with running time 𝑂 (𝑛tw𝑄 ) (where 𝑡𝑤 is the treewidth) was shown by Becker

et al [7]. Cohen-Addad et al. [12] showed an efficient PTAS for graphs of bounded-treewidth, an

efficient PTAS for bounded highway dimension, an efficient PTAS for bounded genus metrics and a

QPTAS for minor-free metrics. Again, note that these results are all under the assumption that 𝑄 is

some constant.

So aside from the QPTAS of [15] for R2 and subsequent slight generalization of [1] no approxi-

mation scheme is known for CVRP on any non-trivial metrics for arbitrary values of 𝑄 (even for

trees). Standard ways of extending a dynamic program for Euclidean metrics to bounded doubling

metrics do not seem to work to extend the results of [15] to doubling metrics in quasi-polynomial

time.

Very recently and after the first draft of this paper was made public, building upon ideas of

[9] and this paper, Mathieu and Zhou [25] have presented a PTAS for splittable CVRP on trees.

Their result builds upon and extends the ideas of [9] for decomposing a tree into "components" and

showing existence of a near optimum solution where the number of tours covering the vertices in

each component is 𝑂𝜖 (1), there are 𝑂𝜖 (1) levels of components, and the distances are of bounded

aspect ratio. They also use the idea of changing tours as discussed in this paper (they refer to it

as adaptive rounding). This allows one to compute such a near optimum one in polynomial time.

Their result does not seem to extend to the more general classes of bounded treewidth or doubling

dimensions without some new ideas. As mentioned earlier, for unsplittable CVRP on trees where

𝑄 = 1 and 𝑑 (𝑣) ∈ [0, 1], Mathieu and Zhou [26] present a polynomial time (1.5 + 𝜖)-approximation.

1.2 Overview of our technique
We start by presenting a QPTAS for CVRP on trees and then extend the technique to graphs of

bounded treewidth. Our main technique to design an approximation scheme for CVRP is to show

the existence of a near optimum solution where the sizes of the partial tours going past any node

of the tree can be partitioned into only poly-logarithmic many classes. This will allow one to use

dynamic programming to find a low cost solution. A simple rounding of tour sizes to some threshold

values (e.g. powers of (1 + 𝜖)) only works (with some care) to achieve a bi-criteria approximation as

any underestimation of tour sizes may result in tours that are violating the capacities. To achieve

a true approximation (without capacity violation) we show how we can break the tours of an

optimum solution into "top" and "bottom" parts (at any node 𝑣) and then swap the bottom parts

of tours with the bottom parts of other tours which are smaller, and then "round them up" to the

nearest value from a set of poly-logarithmic threshold values. This swapping creates enough room

to do the "round up" without violating the capacities. However, this will cause a small fraction

of the vertices to become "not covered", we call them orphant nodes. We will show how we can

randomly choose some tours of the optimum and add them back to the solution (at a small extra

cost) and use these extra tours (after some modifications) to cover the orphant nodes. There are

many details along the way. For instance, we treat the demand of each node as a token to be picked

up by a tour. To ensure partial tour sizes are always from a small (i.e. poly-logarithmic) size set, we

add extra tokens over the nodes. Also, for our QPTAS to work we need to bound the height of the

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 5

tree. We show how we can reduce the height of the tree to poly-logarithmic at a small loss using a

height reduction lemma that might prove useful for other vehicle routing problems.

The technique of QPTAS for trees then can be extended to graphs of bounded treewidth and also

graphs of bounded doubling dimension by proving the existence of a similar near optimum solution

and finding one using dynamic program. Or one can use the known results for the embedding of

graphs of bounded doubling dimension into graphs of small treewidth.

2 PRELIMINARIES
Recall that an instance I to CVRP is a graph 𝐺 = (𝑉 , 𝐸), where𝑤 (𝑒) is the cost or weight of edge
𝑒 ∈ 𝐸 and 𝑄 is the capacity of the vehicle. Each tour T is a walk over some nodes of 𝐺 . We say T
covers node 𝑣 if it serves the demand at node 𝑣 . We use the terms "coverage" and "size" of a tour to

refer to the number of demands a tour covers. For the unit demand CVRP, it is easier to think of the

demand of each node 𝑣 as being a token on 𝑣 that must be picked up by a tour. So the coverage/size

of a tour is the number of tokens it picks. We can generalize this and assume each node 𝑣 can have

multiple tokens and the total number of tokens a tour can pick is at most 𝑄 (possibly from the

same or different locations). Note that each tour might visit vertices without picking any token

there. The goal is to find a collection of tours of minimum total cost such that each token is picked

up (or say covered) by some tour. We use OPT(𝐺) or simply OPT to refer to an optimum solution

of𝐺 , and opt to denote the value of it. Fix an optimal solution OPT. For any edge 𝑒 let 𝑓 (𝑒) denote
the number of tours travelling edge 𝑒 in OPT; so opt =

∑
𝑒 𝑤 (𝑒) · 𝑓 (𝑒).

First, we show the demand of each node is bounded by a function of𝑄 . And then, using standard

scaling and rounding and at a small loss, we show we can assume the edge weights are polynomially

bounded (in 𝑛). Given an instance for splittable CVRP with 𝑛 nodes and capacity 𝑄 , it is possible

that the demand 𝑑 (𝑣) > 𝑄 for some node 𝑣 . From the work of Adamaszek et al [1], we will show

how we can assume that the demand at each node 𝑣 satisfies 1 ≤ 𝑑 (𝑣) < 𝑛𝑄 . Adamaszek et al

[1] defined a trivial tour to be a tour that picks up tokens from a single node in 𝑇 and a tour is

non-trivial if the tour picks up tokens from at least two nodes in 𝑇 . They defined a cycle to be a set

of tours 𝑡1, . . . , 𝑡𝑚 (𝑚 ≥ 2) and a set of nodes ℓ1, ℓ2, . . . , ℓ𝑚, ℓ𝑚+1 = ℓ1 such that each tour 𝑡𝑖 covers

locations ℓ𝑖 and ℓ𝑖+1 and the origin is not considered as a node in ℓ1, . . . , ℓ𝑚 . They showed in Lemma

1 of [1] that there is an optimal solution in which there are no cycles. Since there are no cycles of

size 2, there are no two tours that cover the same pair of nodes. So there is an optimal solution

such that there are at most 𝑛 non-trivial tours (as argued in [1]). So putting aside trivial tours

(each picking up 𝑄 tokens at a node), we can assume we have a total of at most 𝑛𝑄 tokens and in

particular, each node has at most this many tokens. Without loss of generality, we assume we have

removed all trivial tours and so there is a total of at most 𝑛𝑄 demands.

Now we scale edge weights to be polynomially bounded. Observe that each tour in OPT traverses

each edge 𝑒 at most once in each direction, so at most twice. Also we can think of each tour as a

walk. Suppose we have guessed the largest edge weight that belongs to OPT (by enumerating over

all possible such guesses) and have removed any edge with a weight larger. Let𝑊 = max𝑒∈𝐸 𝑤 (𝑒)
be the largest (guessed) edge in OPT. Suppose we build instance I ′

by rounding up the weight

of each edge 𝑒 to be a maximum of 𝑤 (𝑒) and 𝜖𝑊 /2𝑛3. Since there are a total of at most 𝑛 tours

in OPT and each edge is traversed at most twice by each tour, and there are at most 𝑛2 edges,

the cost of the solution OPT in I ′
is at most opt + 2𝑛 · 𝑛2 · 𝜖𝑊

2𝑛3
≤ (1 + 𝜖)opt. Note that the ratio

of maximum to minimum edge weight in I ′
is 2𝑛3/𝜖 , but the edge weights are not necessarily

an integer. Now suppose we scale the edge weights so that the minimum edge weight is 1 and

the maximum edge weight is 2𝑛3/𝜖 and then scale them all by 1/𝜖 , and then round each one up

to the nearest integer. Note that by this rounding to the nearest integer, the cost of each edge is

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



6 Jayaprakash and Salavatipour

increased by a factor of at most 1 + 𝜖 , so the cost of an optimum solution in the new instance is at

most (1 + 𝜖) (1 + 𝜖) = (1 +𝑂 (𝜖)) factor larger than before rounding while the edge weights are all

polynomially bounded integers. So from now on, we assume we have this property for the given

instance at a small loss. To summarize: we assume our instance has been transformed (at a small

loss at the cost of optimum) to a new instance satisfying the following properties:

• For each edge 𝑒:𝑤 (𝑒) ≤ 2𝑛3/𝜖2.
• The total number of tokens on the nodes is at most 𝑛𝑄 .

• There are no trivial tours.

• There are at most 𝑛 tours in an optimal solution.

We will use the following two simplified versions of the Chernoff Bound [27] in our analysis.

Lemma 1 (Chernoff bound). Let 𝑌 =
∑𝑛

𝑖=1 𝑌𝑖 where 𝑌𝑖 = 1 with probability 𝑝𝑖 and 0 with
probability 1 − 𝑝𝑖 , and all 𝑌𝑖 ’s are independent. With 𝜇 = E[𝑌 ], P[𝑌 > 2𝜇] ≤ 𝑒−𝜇/3 and P

[
𝑌 <

𝜇

2

]
≤

𝑒−𝜇/8.

3 QPTAS FOR CVRP ON TREES
In this section we prove Theorem 1. We assume the given tree𝑇 is rooted at the depot. We will first

prove a structure theorem that describes the structural properties of a near-optimal solution. We

will leverage these structural properties and use dynamic programming to compute a near-optimal

solution.

3.1 Structure Theorem
Our goal in this section is to show the existence of a near optimum solution (i.e. one with cost

(1 +𝑂 (𝜖))opt) with certain properties which make it easy to find using dynamic programming.

More specifically, we show we can modify the instance I to instance I ′
on the same tree 𝑇 where

each node has ≥ 1 tokens (so possibly more than 1) and change OPT to a solution OPT
′
on I ′

where

the cost of OPT
′
is at most (1 +𝑂 (𝜖))opt. Clearly the tours of OPT

′
form a capacity respecting

solution of I as well (of no more cost).

To be able to do that we need to be able to bound the height of the tree. A starting point in our

structure theorem is to show that given input tree 𝑇 , for any 𝜖 > 0, we can build another tree 𝑇

of height 𝑂 (log2 𝑛/𝜖) such that the cost of an optimum solution in 𝑇 is within 1 + 𝜖 factor of the

optimum solution to 𝑇 . We can lift a near-optimum solution for 𝑇 into a near-optimum solution of

𝑇 . Our instance I ′
is built on 𝑇 . We will show the following in Subsection 3.6

Theorem 5. Given a tree 𝑇 as an instance of CVRP and for any fixed 𝜖 > 0, one can build a tree 𝑇 ′

with height 𝛿 log2 𝑛/𝜖 , for some fixed 𝛿 > 0, such that opt(𝑇 ′) ≤ opt(𝑇 ) ≤ (1 + 𝜖)opt(𝑇 ′).

So for the rest of this section, we assume our input tree has height 𝑂 (log2 𝑛/𝜖) at a loss of (yet
another) 1 + 𝜖 in approximation ratio.

3.1.1 Overview of the ideas. Let us give a high level idea of the Structure theorem. In order to do

that it is helpful to start from a simpler task of developing a bi-criteria approximation scheme.
1
Let

T be a tour in OPT and 𝑣 be a node in 𝑇 . Similar to the definition of coverage (or size) given for a

tour in the previous section, the coverage (or size) of T with respect to 𝑣 is the number of tokens

picked by T in the subtree 𝑇𝑣 (subtree rooted at 𝑣). Suppose a tour T visits node 𝑣 . We refer to the

subtour of T in 𝑇𝑣 as a partial tour.

1
Note that [9] already presents a bicriteria PTAS for CVRP on trees. We present a simple bi-criteria QPTAS here as it is our

starting point towards a true approximation scheme.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 7

A Bicriteria QPTAS: First we try to explain the ideas of a bicriteria QPTAS, i.e. an algorithm in

which the cost is within (1 + 𝜖) of optimum, but each tour may have size up to (1 + 𝜖)𝑄 and the

algorithm runs in quasi-polynomial time. For simplicity, assume 𝑇 is binary (this is not crucial in

the design of the DP). A subproblem would be defined based on each node 𝑣 ∈ 𝑇 and the structure

of partial tours going into𝑇𝑣 to pick up tokens in𝑇𝑣 at minimum cost. More specifically, for a vector

®𝑡 with 𝑄 entries, where ®𝑡𝑖 (for each 1 ≤ 𝑖 ≤ 𝑄) is the number of partial tours going down 𝑇𝑣 which

pick 𝑖 tokens (or their coverage for that portion is 𝑖), entry A[𝑣, ®𝑡] in our table would store the

minimum cost of covering 𝑇𝑣 with (partial) tours whose coverage profile is given by ®𝑡 . It is not
hard to fill this table’s entries using a simple recursion based on the entries of children of 𝑣 . So

one can solve the CVRP problem exactly in time 𝑂 (𝑛𝑄+1). We can reduce the time complexity by

storing approximate sizes of the partial tours for each 𝑇𝑣 . So let us round the sizes of the tours into

𝑂 (log𝑄/𝜖) buckets, where bucket 𝑖 represents sizes that are in [(1 + 𝜖)𝑖−1, (1 + 𝜖)𝑖 ). More precisely,

consider threshold-sizes 𝑆 = {𝜎1, . . . , 𝜎𝜏 } where: for 1 ≤ 𝑖 ≤ 1/𝜖 , 𝜎𝑖 = 𝑖 , and for each value 𝑖 > 1/𝜖 :
𝜎𝑖 = 𝜎𝑖−1 (1 + 𝜖) and 𝜎𝜏 = 𝑄 . Note that |𝑆 | = 𝑂 (log𝑄/𝜖) = 𝑂 (log𝑛/𝜖) since 𝑄 = poly(𝑛). Suppose
we allow each tour to pick up to (1 + 𝜖)𝑄 tokens. If it was the case that each partial tour for 𝑇𝑣 (i.e.

part of a tour that enters/exits 𝑇𝑣) has a coverage that is also threshold-size (this may not be true!)

then the DP table entries would be based on vectors ®𝑡 of size 𝑂 (log𝑛/𝜖), and the run time would

be quasi-polynomial. One has to note that for each subproblem of the optimum at a node 𝑣 with

children 𝑢,𝑤 , even if the tour sizes going down 𝑇𝑣 were of threshold-sizes, the partial tours at 𝑇𝑢
and 𝑇𝑤 do not necessarily satisfy this property.

This scheme requires a bit more care (and details) to get a bicriteria (1 + 𝜖)-approximation

as every time (in our DP recursion) we combine two partial tours with threshold size values to

obtain a bigger partial tour, it may not have a threshold size value and we have to do a rounding.

These roundings (at various levels) compound. Instead of using thresholds that are powers of

1 + 𝜖 , we can define the thresholds based on powers of 1 + 𝜖 ′ where 𝜖 ′ = 𝜖2

log
2 𝑛
: let 𝑆 = {𝜎1, . . . , 𝜎𝜏 }

where 𝜎𝑖 = 𝑖 for 1 ≤ 𝑖 ≤ 1/𝜖 ′, and for 𝑖 > 1/𝜖 ′ we have 𝜎𝑖 = 𝜎𝑖−1 (1 + 𝜖 ′), and 𝜎𝜏 = 𝑄 . So now

|𝑆 | = 𝑂 (log2 𝑛 · log𝑄/𝜖) = 𝑂 (log3 𝑛/𝜖2) when 𝑄 = poly(𝑛). For each vector ®𝑡 of size 𝜏 , where
0 ≤ 𝑡𝑖 ≤ 𝑛 is the number of partial tours with coverage 𝜎𝑖 , let 𝐴[𝑣, ®𝑡] store the minimum cost of a

collection of (partial) tours covering all the tokens in𝑇𝑣 whose coverage profile is ®𝑡 , i.e. the number

of tours of size in [𝜎𝑖 , 𝜎𝑖+1) is ®𝑡𝑖 .
To compute the solution for 𝐴[𝑣, ®𝑡], given all the solutions for its two children 𝑢,𝑤 we can do

the following: consider two partial solutions, 𝐴[𝑢, ®𝑡𝑢] and 𝐴[𝑤, ®𝑡𝑤]. One can combine some partial

tours of 𝐴[𝑢, ®𝑡𝑢] with some partial tours of 𝐴[𝑤, ®𝑡𝑤], i.e. if T𝑢 is a (partial) tour of class 𝑖 for 𝑇𝑢 and

T𝑤 is a partial tour of class 𝑗 for 𝑇𝑤 then either these two tours are in fact part of the same tour for

𝑇𝑣 , or not. In the former case, the partial tour for 𝑇𝑣 obtained by the combination of the two tours

will have cost𝑤 (T𝑢) +𝑤 (T𝑤) + 2𝑤 (𝑣𝑢) + 2𝑤 (𝑣𝑤) and coverage 𝑡𝑖 + 𝑡 𝑗 (or possibly 𝑡𝑖 + 𝑡 𝑗 + 1 if this

tour is to cover 𝑣 as well). In the latter case, each of T𝑢 and T𝑤 extend (by adding edges 𝑣𝑢 and 𝑣𝑤 ,

respectively) into partial tours for𝑇𝑣 of weights𝑤 (T𝑢) + 2𝑤 (𝑣𝑢) and𝑤 (T𝑤) + 2𝑤 (𝑣𝑤) (respectively)
and sizes 𝑡𝑖 and 𝑡 𝑗 (or perhaps 𝑡𝑖 + 1 or 𝑡 𝑗 + 1 if one of them is to cover 𝑣 as well). In the former

case, since 𝑡𝑖 + 𝑡 𝑗 is not a threshold-size, we can round it (down) to the nearest threshold-size. We

say partial solutions for 𝑇𝑣 , 𝑇𝑢 and 𝑇𝑤 are consistent if one can obtain the partial solution for 𝑇𝑣 by

combining the solutions for 𝑇𝑣 and 𝑇𝑤 .

Given 𝐴[𝑣, ®𝑡], we consider all possible subproblems 𝐴[𝑢, ®𝑡𝑢] and 𝐴[𝑤, ®𝑡𝑤] that are consistent
and take the minimum cost among all possible ways to combine them to compute 𝐴[𝑣, ®𝑡]. Note
that whenever we combine two solutions, we might be rounding the partial tour sizes down to a

threshold-size, so we under-estimate the actual tour size by a factor of 1 + 𝜖 ′ in each subproblem

calculation. Since the height of the tree isℎ = 𝑂 (log2 𝑛/𝜖), the actual error in the tour sizes computed

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



8 Jayaprakash and Salavatipour

at the root is at most (1 + 𝜖 ′)ℎ = (1 +𝑂 (𝜖)), so each tour will have size at most (1 +𝑂 (𝜖))𝑄 . This
is why we get a bicriteria approximation. The time to compute each entry 𝐴[𝑣, ®𝑡] can be upper

bounded by 𝑛𝑂 (log3 𝑛/𝜖2)
and since there are 𝑛𝑂 (log3 𝑛/𝜖2)

subproblems, the total running time of the

algorithm will be 𝑛𝑂 (log3 𝑛/𝜖2)
. We can handle the setting where the tree is not binary (i.e. each node

𝑣 has more than two children) by doing an inner DP, like a knapsack problem over children of 𝑣

(we skip the details here as we will explain the details for the actual QPTAS instead).

Going from a Bicriteria to a true QPTAS: Our main tool to obtain a true approximation

scheme for CVRP in trees is to show the existence of a near-optimum solution where the partial

solutions for each 𝑇𝑣 have sizes that can be grouped into polyogarithmic many buckets as in the

case of bi-criteria solution. Roughly speaking, starting from an optimum solution OPT, we follow

a bottom-up scheme and modify OPT by changing the solution at each 𝑇𝑣 : at each node 𝑣 , we

change the structure of the tours going down 𝑇𝑣 (by adding a few extra tours from the depot) and

also adding some extra tokens at 𝑣 so that the partial tours that visit 𝑇𝑣 all have a size from one

of polyogarithmic many possible sizes (buckets) while increasing the number and the cost of the

tours by a small factor. We do this by duplicating some of the tours that visit 𝑇𝑣 while changing

parts of them that go down in 𝑇𝑣 and adding some extra tokens at 𝑣 : each tour still picks up at

most a total of 𝑄 tokens and the size (i.e. the number of tokens picked) for each partial tour in the

subtree, 𝑇𝑣 is one of 𝑂 (log4 𝑛/𝜖2) many possible values, while the total cost of the solution is at

most (1 +𝑂 (𝜖))opt.
Suppose𝑇 has height ℎ (where ℎ = 𝛿 log2 𝑛/𝜖). Let𝑉ℓ (for 1 ≤ ℓ ≤ ℎ) be the set of vertices at level

ℓ of the tree where 𝑉1 = {𝑟 } and for each ℓ ≥ 2, 𝑉ℓ are those vertices whose parent is in level ℓ − 1.

For every tour T and every level ℓ , the top part of T w.r.t. ℓ , is the part of T induced by the vertices

in 𝑉1 ∪ . . . ∪𝑉ℓ−1 and the bottom part of T are the partial tours of T in the subtrees rooted at a

vertex in 𝑉ℓ . Note that if we replace each partial tour of the bottom part of a tour T with a partial

tour of a smaller coverage, the tour remains a capacity respecting tour. Consider a node 𝑣 (which is

at some level ℓ) and suppose we have 𝑛𝑣 partial tours covering 𝑇𝑣 . Let the 𝑛𝑣 tours in increasing

order of their coverage be 𝑡1, . . . , 𝑡𝑛𝑣
. Let |𝑡𝑖 | be the coverage of tour 𝑡𝑖 (so |𝑡𝑖 | ≤ |𝑡𝑖+1 |). For a 𝑔 (to

be specified later), we add enough empty tours to the beginning of this list so that the number of

tours is a multiple of 𝑔. Then, we create linear grouping of these tours: we create groups𝐺𝑣
1
, . . . ,𝐺𝑣

𝑔

of equal sizes by placing the first 𝑛𝑣/𝑔 partial tours 𝑡1, . . . , 𝑡𝑛𝑣/𝑔 into 𝐺
𝑣
1
, the 2nd 𝑛𝑣/𝑔 partial tours

𝑡𝑛𝑣/𝑔+1, . . . , 𝑡2𝑛𝑣/𝑔 into 𝐺
𝑣
2
, and in general the 𝑖’th 𝑛𝑣/𝑔 partial tours in that list into group 𝐺𝑣

𝑖 . Let

ℎ
𝑣,𝑚𝑎𝑥
𝑖

(ℎ
𝑣,𝑚𝑖𝑛
𝑖

) refer to the maximum (minimum) size of the tours in 𝐺𝑣
𝑖 . This grouping is similar to

the grouping in the asymptotic PTAS for the classic bin-packing problem. Note that ℎ
𝑣,𝑚𝑎𝑥
𝑖

≤ ℎ
𝑣,𝑚𝑖𝑛
𝑖+1 .

Consider a mapping 𝑓 where it maps each partial tour in 𝐺𝑣
𝑖 to one in 𝐺𝑣

𝑖−1 in the same order, i.e.

the largest partial tour in𝐺𝑣
𝑖 is mapped to the largest in𝐺𝑣

𝑖−1, the 2nd largest to the 2nd largest and

so on, for 𝑖 > 1 (suppose 𝑓 (.) maps all the tours of 𝐺𝑣
1
to empty tours). Now suppose we modify

OPT to OPT
′
in the following way: for each tour T that has a partial tour 𝑡 ∈ 𝐺𝑣

𝑖 , replace the

bottom part of T at 𝑣 from 𝑡 to 𝑓 (𝑡) (which is in𝐺𝑣
𝑖−1). Note that by this change, the size of any tour

like T can only decrease. Also, if instead of 𝑓 (𝑡) we had replaced 𝑡 with a partial tour of size ℎ
𝑣,𝑚𝑎𝑥
𝑖−1 ,

it would still form a capacity respecting solution with the rest of T , because ℎ
𝑣,𝑚𝑎𝑥
𝑖−1 ≤ ℎ

𝑣,𝑚𝑖𝑛
𝑖

≤ |𝑡 |.
The only problem is that those tokens in 𝑇𝑣 that were picked by the partial tours in 𝐺𝑣

𝑔 are not

covered by any tours because the top part of the tours whose bottom part has a partial tour in 𝐺𝑣
𝑔

are assigned to partial tours in 𝐺𝑣
𝑔−1. So the partial tours in 𝐺𝑣

𝑔 don’t have any top part (i.e. are

not reached from the depot to 𝑣). we call the tokens picked by these partial tours orphant tokens.
For now, assume that we add a few extra tours to OPT at a low cost such that they cover all the

orphant tokens of 𝑇𝑣 . If we have done this change for all vertices 𝑣 ∈ 𝑉ℓ , then for every tour like

T , the partial tours of T going down each 𝑇𝑣 (for 𝑣 ∈ 𝑉ℓ ) are replaced with partial tours from a

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 9

group one index smaller. This means that, after these changes, for each tour T and its (new) partial

tour 𝑡 ∈ 𝐺𝑣
𝑖 , if we add ℎ

𝑣,𝑚𝑎𝑥
𝑖

− |𝑡 | extra tokens at 𝑣 to be picked up by 𝑡 then each partial tour has

size exactly the same as the maximum size of its group without violating the capacities. This helps

us store a compact "sketch" for partial solutions at each node 𝑣 with the property that the partial

solution can be extended to a near optimum one.

How to handle the case of orphant tokens (those picked by the tours in the last groups𝐺𝑣
𝑔 before

the swap)? We will show that if 𝑛𝑣 is sufficiently large (at least polylogarithmic) then if we sample

a small fraction of the tours of the optimum at random and add two copies of them (as extra tours),

they can be used to cover the orphant tokens. More specifically, for each level ℓ suppose we add two

extra copies of each tour of the optimum with probability 𝜖/ℎ to 𝑋ℓ : 𝑋ℓ will be the extra tours for

vertices in 𝑉ℓ that will be used to collect the orphan tokens from groups 𝐺𝑣
𝑔 for vertices 𝑣 ∈ 𝑉ℓ . The

cost of these extra tours added to cover the orphant tokens will be small. Also, if 𝑛𝑣 is sufficiently

big, then with high probability at least |𝐺𝑣
𝑔 | many tours will have a copy in 𝑋ℓ . Those extra tours

are enough to be able to pick up the orphan tokens (i.e. the top part of these extra tours can be

used to reach the bottom parts of those partial tours and tokens that are orphant). So overall, we

show how one can modify OPT by adding some extra tours to it at a cost of at most 𝜖 · opt such

that: each node 𝑣 has ≥ 1 tokens and the sketch of the partial tours at each node 𝑣 is compact (only

polyogarithmic many possible sizes) while the dropped tokens overall can be covered by the extra

tours.

3.1.2 Changing OPT to a near optimum structured solution. We will show how to modify the

optimal solution OPT to a near-optimum solution OPT
′
for a new instance I ′

which has ≥ 1 token

at each node with certain properties. We start from ℓ = ℎ and let OPT
′ = OPTℓ = OPT and for

decreasing values of ℓ , we will show how to modify OPTℓ+1 to obtain OPTℓ . Once this is done for

all levels, the final solution will be OPT
′
. To obtain OPTℓ from OPTℓ+1 we keep the partial tours

at levels ≥ ℓ the same as OPTℓ+1 but we change the top parts of the tours and how the top parts

are matched to the partial tours at level ℓ so that together they form capacity respecting solutions

(tours of coverage at most 𝑄) without increasing the cost of the solution too much (i.e. overall

the new solution after going through all levels has cost at most (1 +𝑂 (𝜖))opt). The goal of the
transformation is to ensure that in the new (near optimum) solution we build, the partial tours

going down each node 𝑣 have a size that belongs to a set of size polylog(𝑛), instead of poly(𝑛).
First, we assume that OPT has at least 𝑑 log𝑛 many tours for some sufficiently large 𝑑 . Otherwise,

if there are at most 𝐷 = 𝑑 log𝑛 many tours in OPT we can do a simple DP to compute OPT: for

each node 𝑣 , we have a sub problem 𝐴[𝑣,𝑇 𝑣
1
, . . . ,𝑇 𝑣

𝐷
] which stores the minimum cost solution if 𝑇 𝑣

𝑖

is the number of vertices the 𝑖’th tour is covering in the subtree 𝑇𝑣 . It is easy to fill this table in

time 𝑂 (𝑛𝐷 ) having computed the solutions for its children.

Definition 1. Let threshold values be {𝜎1, . . . , 𝜎𝜏 } where 𝜎𝑖 = 𝑖 for 1 ≤ 𝑖 ≤ ⌈1/𝜖⌉, and for
𝑖 > ⌈1/𝜖⌉ we have 𝜎𝑖 = ⌈𝜎𝑖−1 (1 + 𝜖)⌉, and 𝜎𝜏 = 𝑄 . So 𝜏 = 𝑂 (log𝑄/𝜖).

We consider the vertices of 𝑇 level by level, starting from nodes in level 𝑉ℓ=ℎ−1 and going up,

modifying the solution OPTℓ+1 to obtain OPTℓ .

Definition 2. For a node 𝑣 , the 𝑖-th bucket, 𝑏𝑖 , contains the number of tours of OPTℓ having
coverage belonging to [𝜎𝑖 , 𝜎𝑖+1) tokens in𝑇𝑣 where 𝜎𝑖 is the 𝑖-th threshold value. We will denote a node
and bucket by a pair (𝑣, 𝑏𝑖 ). Let 𝑛𝑣,𝑖 be the number of tours in bucket 𝑏𝑖 of 𝑣 .

Definition 3. A bucket 𝑏 is small if the number of tours in 𝑏 is at most 𝛼 log
3 𝑛/𝜖2 and is big

otherwise, for a constant 𝛼 ≥ max{1, 12𝛿}.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



10 Jayaprakash and Salavatipour

Note that for every node 𝑣 and bucket 𝑏𝑖 and for any two partial tours in 𝑏𝑖 , the ratio of their

size (coverage) is at most (1 + 𝜖). We will use this fact crucially later on. While giving the high

level idea earlier in this section, we mentioned that we can cover the orphant tokens by using a

few extra tours at low cost. For this to work, we need to assume that the ratio of the maximum size

tour to the minimum size tour in all groups 𝐺𝑣
1
, . . . ,𝐺𝑣

𝑔 is at most (1 + 𝜖). To have this property, we

need to do the grouping described for each vertex bucket pair (𝑣, 𝑏𝑖 ) that is big.
For each 𝑣 ∈ 𝑉ℓ , let (𝑣, 𝑏𝑖 ) be a vertex bucket pair. If 𝑏𝑖 is a small bucket, we do not modify the

partial tours in it. If 𝑏𝑖 is a big bucket, we create groups𝐺
𝑣
𝑖,1, . . . ,𝐺

𝑣
𝑖,𝑔 of equal sizes (by adding empty

tours if needed to 𝐺𝑣
𝑖,1 to have equal size groups), for 𝑔 = (2𝛿 log𝑛)/𝜖2; so |𝐺𝑣

𝑖, 𝑗 | = ⌈𝑛𝑣,𝑖/𝑔⌉. We also

consider a mapping 𝑓 (as before) which maps (in the same order) the tours 𝑡 ∈ 𝐺𝑣
𝑖, 𝑗 to the tours

in 𝐺𝑣
𝑖, 𝑗−1 for all 1 < 𝑗 ≤ 𝑔. We assume the mapping maps tours of 𝐺𝑣

𝑖,1 to empty tours. Let the size

of the smallest (largest) partial tour in 𝐺𝑣
𝑖, 𝑗 be ℎ

𝑣,𝑚𝑖𝑛
𝑖,𝑗

(ℎ
𝑣,𝑚𝑎𝑥
𝑖,𝑗

). Note that ℎ
𝑣,𝑚𝑎𝑥
𝑖,𝑗−1 ≤ ℎ

𝑣,𝑚𝑖𝑛
𝑖,𝑗

. Consider

the set Tℓ of all the tours T in OPTℓ that visit a vertex in one of the lower levels 𝑉≥ℓ . Consider an
arbitrary such tour T that has a partial tour 𝑡 in a big vertex bucket pair (𝑣, 𝑏𝑖 ), suppose 𝑡 belongs
to group 𝐺𝑣

𝑖, 𝑗 . We replace 𝑡 with 𝑓 (𝑡) in T . Note that for T , the partial tour at 𝑇𝑣 now has a size

between ℎ
𝑣,𝑚𝑖𝑛
𝑖,𝑗−1 and ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑗−1 . Now, add some extra tokens at 𝑣 to be picked up by T so that the size

of the partial tour of T at 𝑇𝑣 is exactly ℎ
𝑣,𝑚𝑎𝑥
𝑖,𝑗−1 ; note that since ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑗−1 ≤ |𝑡 |, the new partial tour at 𝑣

can pick up the extra tokens without violating the capacity of T . If we make this change for all

tours T ∈ Tℓ , then for each such tour T if at level ℓ its partial tour was in a group 𝑗 < 𝑔 of a big

vertex bucket pair (𝑣, 𝑖), that partial tour is replaced with a smaller partial tour from group 𝑗 − 1 of

the same big vertex bucket pair; after adding extra tokens at 𝑣 (if needed) the size of that partial

tour is the maximum size from group 𝑗 − 1. All the other partial tours (from small vertex bucket

pairs) remain unchanged. Also, the total cost of the tours has not increased (in fact some now have

partial tours that are empty). However, the tokens that were picked by partial tours from 𝐺𝑣
𝑖,𝑔 for a

big vertex bucket pair (𝑣, 𝑏𝑖 ) are now orphant because the top part of their tour is mapped to the

bottom part of tours from smaller groups. We describe how to add some tours from the depot to 𝑣

so that they together with the partial tours that were in 𝐺𝑣
𝑖,𝑔 can be used to cover those orphant

tokens. More speficially, the top parts of the tours whose bottom part belongs to 𝐺𝑣
𝑖,𝑔 are mapped

to partial tours in other groups 𝐺𝑣
𝑖,𝑔′ with 𝑔

′ < 𝑔. For such tours, their bottom part still exists, but

there is no top part, i.e. a tour that goes from the depot to 𝑣 . We use some extra tours that come

from the depot down to 𝑣 and each will be matched with one partial tours in 𝐺𝑣
𝑖,𝑔 to make them a

complete tour.

One important observation is that when we make these changes to make OPTℓ from OPTℓ+1, for
any partial tours at vertices at lower levels, (𝑉>ℓ ) their sizes remain the same. It is only the tour

sizes going down a vertex at level ℓ that we are adjusting (by adding extra tokens). All the lower

level partial tours remain unchanged (only their top parts may get swapped). So the sizes of partial

tours at vertices in levels > ℓ do not change when we build OPTℓ from OPTℓ+1. This property holds

inductively as we go up the tree (from larger ℓ to smaller ℓ) and ensures that the lower level partial

tours have one of polylogarithmic many sizes. More precisely, as we go up the levels to compute

OPTℓ , for any vertex 𝑣 ′ ∈ 𝑉ℓ′ (where ℓ
′ > ℓ) and any partial tour T ′

visiting𝑇𝑣′ , either |T ′ | belongs
to a small vertex bucket pair (𝑣 ′, 𝑏𝑖′) (and so has one of 𝑂 (log3 𝑛/𝜖) many possible values) or if it

belongs to a big vertex bucket pair (𝑣 ′, 𝑏𝑖′) then its size is equal to ℎ
𝑣′,𝑚𝑎𝑥
𝑖′, 𝑗 ′ for some group 𝑗 ′ and

hence one of 𝑂 ((log𝑄 log𝑛)/𝜖2) possible values.
To handle (cover) orphant nodes, we are going to (randomly) select a subset of tours of OPT as

"extra tours" and add them to OPT
′
and modify them such that they cover all the tokens that are

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 11

now orphant (i.e. those that were covered by partial tours of𝐺𝑣
𝑖,𝑔 for all big vertex bucket pairs at

level ℓ).

Suppose we select each tour T of OPT with probability 𝜖 (note that OPT is the original solution

before modifications). We duplicate each so we have two copies of each sampled tour and we

designate both copies to one of the levels 𝑉ℓ that it visits with equal probability. We call these the

extra tours. The extra tours designated to a level ℓ are used to cover the orphant tokens when we

build OPTℓ (from OPTℓ+1). In fact, for each extra tour designated to level ℓ we only need the portion

of that tour in the layers 𝑉1, . . . ,𝑉ℓ , i.e. we don’t need (don’t use) the part of those tours that go

down below level ℓ . The algorithm to build each OPTℓ from OPTℓ+1 is also illustrated in Algorithm

1

Algorithm 1. Converting OPT to a near optimum structured solution

1: For each tour T in OPT and each level 1 ≤ ℓ < ℎ, add two copies of T to 𝑋ℓ with probability

𝜖/ℎ; (extra tours for level ℓ)
2: Let ℓ = ℎ, OPTℓ = OPT

3: For ℓ = ℎ − 1 downto 1 do

4: Let OPTℓ = OPTℓ+1
5: For each 𝑣 ∈ 𝑉ℓ and each bucket 𝑏𝑖 where (𝑣, 𝑏𝑖 ) is a big vertex bucket pair do

6: Partition the partial tours of the (𝑣, 𝑏𝑖 ) into 𝑔 equal size groups (linear grouping):

𝐺𝑣
𝑖,1, . . . ,𝐺

𝑣
𝑖,𝑔.

7: Consider a 1-1 mapping 𝑓 from 𝐺𝑣
𝑖, 𝑗 to 𝐺

𝑣
𝑖, 𝑗−1 for 𝑗 ≥ 2.

8: For any two tours 𝑡, 𝑡 ′ visiting 𝑇𝑣 where partial tours of them belong to groups 𝐺𝑣
𝑖, 𝑗 and

𝐺𝑣
𝑖, 𝑗+1 ( 𝑗 < 𝑔), respectively. and 𝑓 (𝑡 ′) = 𝑡 : change 𝑡 ′ by following the top part of 𝑡 ′ outside

𝑇𝑣 and then following the bottom part of 𝑡 at 𝑣 (bottom part of 𝑡 ′ is matched with another

tour from 𝐺𝑣
𝑖, 𝑗+2); add extra tokens at 𝑣 to be picked up by the new tour 𝑡 ′ so that its size

becomes exactly ℎ
𝑣,𝑚𝑎𝑥
𝑖,𝑗

. (partial tours of𝐺𝑣
𝑖,𝑔 now are not connected to the depot anymore;

they will be fixed soon)

9: Partial tours in 𝐺𝑣
𝑖,𝑔 (for each big vertex bucket pair (𝑣, 𝑏𝑖 )) will be assigned to extra tours in

𝑋ℓ (see Lemma 4)

Lemma 2. The cost of extra tours selected is at most 4𝜖 · opt w.h.p.

Proof. Recall that 𝑓 (𝑒) denotes the number of tours passing through 𝑒 in OPT. The contribution

of edge 𝑒 to the optimal solution is 2 ·𝑤 (𝑒) · 𝑓 (𝑒) and we can write opt =
∑

𝑒∈𝐸 2 ·𝑤 (𝑒) · 𝑓 (𝑒). Let
𝑒 be the parent edge of a node in 𝑣 ∈ 𝑉ℓ . Suppose an extra tour is designated to level ℓ , we will only

use it to cover orphant tokens from big buckets from nodes in𝑉ℓ . A node 𝑣 would use an extra tour

to cover orphant tokens only if one of 𝑣 ’s buckets is a big bucket. From now on, we will assume the

extra tours only pass through an edge 𝑒 if 𝑓 (𝑒) ≥ 𝛼 log
3 𝑛/𝜖2 (we can shortcut it otherwise).

For an edge 𝑒 , let 𝑓 ′(𝑒) denote the number of sampled tours passing through 𝑒 and since we use

two copies of each sampled tour, 2𝑓 ′(𝑒) is the number of extra tours passing through 𝑒 in OPT
′
. We

can write opt
′ =

∑
𝑒∈𝐸 2 ·𝑤 (𝑒) · (𝑓 (𝑒) + 2𝑓 ′(𝑒)) and the cost of extra tours is∑𝑒∈𝐸 2 ·𝑤 (𝑒) · 2𝑓 ′(𝑒).

While modifying OPT to OPT
′
, each tour in the optimal solution is sampled with probability 𝜖 . Let

𝑒 be an edge with 𝑓 (𝑒) tours T𝑒,1, . . . ,T𝑒,𝑓 (𝑒) passing through it. Let 𝑌𝑒,𝑖 be a random variable which

is 1 if tour T𝑒,𝑖 is sampled and 0 otherwise.

E
[
𝑌𝑒,𝑖

]
= P

[
T𝑒,𝑖 is sampled

]
= 𝜖.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



12 Jayaprakash and Salavatipour

Let 𝑓 ′(𝑒) = 𝑌𝑒 =
∑𝑓 (𝑒)

𝑖=1
𝑌𝑒,𝑖 . By linearity of expectations, we have

E[𝑓 ′(𝑒)] = E[𝑌𝑒 ] =
𝑓 (𝑒)∑
𝑖=1

E
[
𝑌𝑒,𝑖

]
=

𝑓 (𝑒)∑
𝑖=1

𝜖 = 𝜖 · 𝑓 (𝑒).

Our goal is to show P[𝑌𝑒 > 2E[𝑌𝑒 ]] is very low. Using Chernoff bound with 𝜇 = E[𝑌𝑒 ] = 𝜖 · 𝑓 (𝑒) ≥
𝛼 log

3 𝑛/𝜖 ≥ 6 log𝑛.

P[𝑌𝑒 > 2E[𝑌𝑒 ]] ≤ 𝑒−(2 log𝑛) =
1

𝑛2

The above concentration bound holds for a single edge 𝑒 . Using the union bound, we can show this

hold with high probability over all edges,∑
𝑒∈𝐸
P[𝑌𝑒 > 2E[𝑌𝑒 ]] ≤

1

𝑛
.

We showed 𝑓 ′(𝑒) ≤ 2𝜖 · 𝑓 (𝑒) with high probability. Hence, with high probability, the cost of the

extra tours is at most∑
𝑒∈𝐸

2 ·𝑤 (𝑒) · 2𝑓 ′(𝑒) ≤
∑
𝑒∈𝐸

2 ·𝑤 (𝑒) · 4𝜖 · 𝑓 (𝑒) = 4𝜖
∑
𝑒∈𝐸

2 ·𝑤 (𝑒) · 𝑓 (𝑒) = 4𝜖 · opt.

Therefore, we can assume that the cost of all the extra tours added is at most 4𝜖 · opt. Let 𝑋ℓ be

the set of extra tours designated to level ℓ . We assume we add 𝑋ℓ when we are building OPTℓ (it is

only for the sake of analysis). For each 𝑣 ∈ 𝑉ℓ and vertex bucket pair (𝑣, 𝑏𝑖 ), let 𝑋𝑣,𝑖 be those in 𝑋ℓ

whose partial tour in 𝑇𝑣 has been assigned to bucket 𝑏𝑖 . Each extra tour in 𝑋ℓ will not be picking

any of the tokens in levels𝑉<ℓ (as they will be covered by the tours already in OPTℓ ); they are used

to cover the orphant tokens created by partial tours of 𝐺𝑣
𝑖,𝑔 for each big vertex bucket pair (𝑣, 𝑏𝑖 )

with 𝑣 ∈ 𝑉ℓ ; as described below.

Lemma 3. For each level 𝑉ℓ , each vertex 𝑣 ∈ 𝑉ℓ and big vertex bucket pair (𝑣, 𝑏𝑖 ), w.h.p. |𝑋𝑣,𝑖 | ≥
𝜖2

𝛿 log
2 𝑛

· 𝑛𝑣,𝑖 .

Proof. Suppose (𝑣, 𝑏𝑖 ) is a big vertex bucket pair at some level 𝑉ℓ . Let 𝑝1, . . . , 𝑝𝑛𝑣,𝑖
be the partial

tours in vertex bucket pair (𝑣, 𝑏𝑖 ). Let the tour in OPT corresponding to 𝑝 𝑗 be T . Two copies of T
are assigned to 𝑏𝑖 if both of the following events are true:

• Let 𝐴 𝑗 be the event where tour T is sampled as an extra tour. Since each tour is sampled

with probability 𝜖 , we have P
[
𝐴 𝑗

]
= 𝜖 .

• Let 𝐵 𝑗 be the event where tour T is assigned to level ℓ . There are ℎ = 𝛿 log2 𝑛/𝜖 many levels

and since T (if sampled) is assigned to any one of its levels, P
[
𝐵 𝑗

]
≥ 1/ℎ ≥ 𝜖/(𝛿 log2 𝑛).

Let 𝑌𝑗 be a random variable which is 1 if 𝑝 𝑗 is an extra tour in (𝑣, 𝑏𝑖 ) and 0 otherwise.

E
[
𝑌𝑗

]
= P

[
𝑌𝑗 = 1

]
= P

[
𝐴 𝑗 ∧ 𝐵 𝑗

]
= P

[
𝐴 𝑗

]
· P

[
𝐵 𝑗

]
≥ 𝜖2/(𝛿 log2 𝑛).

Let 𝑌𝑣,𝑖 =
∑𝑛𝑣,𝑖

𝑗=1
𝑌𝑗 be the random variable keeping track of the number of sampled tours in (𝑣, 𝑏𝑖 ).

The number of extra tours, |𝑋𝑣,𝑖 | = 2𝑌𝑣,𝑖 since we add two copies of a sampled tour to 𝑋𝑣,𝑖 . By

linearity of expectation, we have

E
[
|𝑋𝑣,𝑖 |

]
= 2E

[
𝑌𝑣,𝑖

]
= 2

𝑛𝑣,𝑖∑
𝑗=1

E
[
𝑌𝑗

]
≥ 2𝜖2

𝛿 log2 𝑛
· 𝑛𝑣,𝑖 .

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 13

We want to show that |𝑋𝑣,𝑖 | ≥
E[ |𝑋𝑣,𝑖 |]

2
≥ 𝜖2

𝛿 log
2 𝑛

· 𝑛𝑣,𝑖 with high probability over all vertex bucket

pairs.

Using Chernoff Bound with 𝜇 = E
[
|𝑋𝑣,𝑖 |

]
≥ 2𝜖2

𝛿 log
2 𝑛

· 𝑛𝑣,𝑖 ≥ 24 log𝑛 since 𝑛𝑣,𝑖 ≥ 𝛼 log
3 𝑛/𝜖2 and

𝛼 ≥ 12𝛿 .

P

[
|𝑋𝑣,𝑖 | <

E
[
|𝑋𝑣,𝑖 |

]
2

]
≤ 𝑒−(3 log𝑛) =

1

𝑛3

Note that the above equation only shows the concentration bound for a single vertex bucket pair.

There are 𝑛 nodes and each node has up to 𝜏 = log𝑛/𝜖 buckets, so the total number of vertex bucket

pairs is at most 𝑛 log𝑛/𝜖 . Suppose we do a union bound over all buckets, we get∑
all (𝑣,𝑏𝑖 ) pairs

P

[
|𝑋𝑣,𝑖 | <

E
[
|𝑋𝑣,𝑖 |

]
2

]
≤ 1

𝑛
.

We showed that for each vertex bucket pair 𝑣, 𝑏𝑖 , |𝑋𝑣,𝑖 | ≥ 𝜖2

𝛿 log
2 𝑛
𝑛𝑣,𝑖 ≥ 𝛼 log𝑛/(2𝛿) holds with high

probability.

Lemma 4. Consider all 𝑣 ∈ 𝑉ℓ , big vertex bucket pairs (𝑣, 𝑏𝑖 ) and partial tours in𝐺𝑣
𝑖,𝑔 . We can modify

the tours in 𝑋𝑣,𝑖 (without increasing the cost) and adding some extra tokens at 𝑣 (if needed) so that:
(1) The tokens picked up by partial tours in 𝐺𝑣

𝑖,𝑔 are covered by some tour in 𝑋𝑣,𝑖 , and
(2) The new partial tours that pick up the orphant tokens in 𝐺𝑣

𝑖,𝑔 have size exactly ℎ
𝑣,𝑚𝑎𝑥
𝑖,𝑔

and all
tours still have size at most 𝑄 .

(3) For each (new) partial tour of 𝑋𝑣,𝑖 and every level ℓ ′ > ℓ , the size of partial tours of 𝑋𝑣,𝑖 at a
vertex at level ℓ ′ is also one of 𝑂 (log𝑄 log

3 𝑛/𝜖3) many sizes.

Proof. Our goal is to use the extra tours in 𝑋𝑣,𝑖 to cover tokens picked up by partial tours of

𝐺𝑣
𝑖,𝑔 and we want each extra tour in 𝑋𝑣,𝑖 to cover exactly ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑔

tokens. The tours in the last group,

𝐺𝑣
𝑖,𝑔, cover

∑
𝑡 ∈𝐺𝑣

𝑖,𝑔
|𝑡 | many tokens. Since we want each tour in 𝑋𝑣,𝑖 to cover ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑔

tokens, we will

add

∑
𝑡 ∈𝐺𝑣

𝑖,𝑔
(ℎ𝑣,𝑚𝑎𝑥

𝑖,𝑔
− |𝑡 |) extra tokens at 𝑣 for each vertex bucket pair (𝑣, 𝑏𝑖 ) so that there are ℎ𝑣,𝑚𝑎𝑥

𝑖,𝑔

tokens for each partial tour in 𝐺𝑣
𝑖,𝑔. From now on, we will assume each partial tour in a last group

𝐺𝑣
𝑖,𝑔 covers ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑔

tokens.

We know |𝐺𝑣
𝑖,𝑔 | = 𝑛𝑣,𝑖/𝑔 = 𝜖2

2𝛿 log𝑛
· 𝑛𝑣,𝑖 . Using Lemma 3, we know with high probability that

|𝑋𝑣,𝑖 | ≥ 𝜖2

𝛿 log
2 𝑛

· 𝑛𝑣,𝑖 = 2|𝐺𝑣
𝑖,𝑔 |, so |𝑋𝑣,𝑖 |/|𝐺𝑣

𝑖,𝑔 | ≥ 2. Recall OPT
′
includes tours in OPT plus the extra

tours in OPT that were sampled. Let 𝑌𝑣,𝑖 denote the number of tours in vertex bucket pair (𝑣, 𝑏𝑖 )
that were sampled, so |𝑋𝑣,𝑖 | = 2|𝑌𝑣,𝑖 | since we made two extra copies of each sampled tour and

|𝑌𝑣,𝑖 | ≥ |𝐺𝑣
𝑖,𝑔 | with high probability. We will start by creating a one-to-one mapping 𝑠 : 𝐺𝑣

𝑖,𝑔 → 𝑌𝑣,𝑖

which maps each tour in 𝐺𝑣
𝑖,𝑔 to a sampled tour in 𝑌𝑣,𝑖 . We know such a one-to-one mapping exists

since |𝑌𝑣,𝑖 | ≥ |𝐺𝑣
𝑖,𝑔 |.

Let T be a sampled tour in 𝑌𝑣,𝑖 with two extra copies of it, T1 and T2 in 𝑋𝑣,𝑖 . Let the partial tours

of T at the bottom part in 𝑉ℓ be 𝑝1, . . . , 𝑝𝑚 . We know |T | ≥ ∑𝑚
𝑖=1 |𝑝𝑖 |. Since 𝑠 is one-to-one, one

partial tour from 𝑟𝑘 ∈ 𝐺𝑣
𝑖,𝑔 maps to 𝑝 𝑗 or no tour maps to 𝑝 𝑗 . If no tour maps to 𝑝 𝑗 , we consider the

load assigned to 𝑝 𝑗 to be zero. If 𝑠 (𝑟𝑘 ) = 𝑝 𝑗 where 𝑟𝑘 ∈ 𝐺𝑣
𝑖,𝑔, since we added extra tokens to make

each partial tour 𝑟𝑘 ∈ 𝐺𝑣
𝑖,𝑔 have ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑔

tokens, the load assigned to 𝑝 𝑗 would be ℎ
𝑣,𝑚𝑎𝑥
𝑖,𝑔

.

Suppose we think of 𝑟1, . . . , 𝑟𝑚 as items and T1 and T2 as bins of size 𝑄 . We know each 𝑟𝑖 fits into

a bin of size 𝑄 . Recall that for the tour 𝑟 𝑗 assigned to 𝑝 𝑗 , we know |𝑟 𝑗 | ≤ (1 + 𝜖) |𝑝 𝑗 | since both 𝑟 𝑗
and 𝑝 𝑗 are in the same bucket 𝑏𝑖 . We might not be able to fit all items 𝑟1, . . . , 𝑟𝑚 into a bin of size

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



14 Jayaprakash and Salavatipour

𝑄 because

∑𝑚
𝑖=1 |𝑟𝑖 | ≤ (1 + 𝜖)∑𝑚

𝑖=1 |𝑝𝑖 | ≤ (1 + 𝜖) |T | ≤ (1 + 𝜖)𝑄 . However, if we used two bins of

size 𝑄 , we can pack the items into both bins without exceeding the capacity of either bin such that

each item 𝑟𝑖 is completely in one bin. Since T1 and T2 are not assigned to any lower level, they have

not been used to cover any tokens so far in our algorithm and they both have unused capacity

𝑄 . Using the bin packing analogy, we could split 𝑟1, . . . , 𝑟𝑚 between T1 and T2. We could assign

𝑟1, . . . , 𝑟 𝑗 (for the maximum 𝑗 ) to T1 such that

∑𝑗

𝑖=1
|𝑟𝑖 | ≤ 𝑄 and the rest, 𝑟 𝑗+1, . . . , 𝑟𝑚 to T2. Since∑𝑚

𝑖=1 |𝑟𝑖 | ≤ (1 + 𝜖)𝑄 , we can ensure we can distribute the tokens in 𝑟𝑖 ’s amongst T1 and T2 such that

both T1 and T2 cover at most 𝑄 tokens. Although there are two copies of each partial tour 𝑝𝑖 in 𝑋𝑣,𝑖 ,

according to our approach, we are using at most one of them (their coverage would be zero if they

are not used). If the coverage of one of the extra partial tours is non-zero, we also showed that if it

picks up tokens from a partial tour in𝐺𝑣
𝑖,𝑔, it would pick up exactly ℎ

𝑣,max

𝑖,𝑔
tokens, proving the 2nd

property of the Lemma.

Also, note that for each partial tour 𝑟𝑘 ∈ 𝐺𝑣
𝑖,𝑔 and for each level ℓ ′ > ℓ if 𝑟𝑘 visits a vertex 𝑣 ′ ∈ 𝑉ℓ′ ,

then the partial tour of 𝑟𝑘 at 𝑇𝑣′ already satisfies the properties that: either its size belongs to a

small vertex bucket pair (𝑣 ′, 𝑏𝑖 ) (so has one of 𝑂 (log3 𝑛/𝜖) many possible values) or if it belongs to

a big vertex bucket pair (𝑣 ′, 𝑏𝑖′) then its size is equal to ℎ
𝑣′,𝑚𝑎𝑥
𝑖′, 𝑗 ′ for some group 𝑗 ′ and hence one of

𝑂 ((log𝑄 log𝑛)/𝜖2) possible values. This implies that for the extra tours of 𝑋𝑣,𝑖 , after we reassign

partial tours of𝐺𝑣
𝑖,𝑔 to them (to cover the orphant nodes), each will have size exactly equal to ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑔

at level ℓ and at lower levels 𝑉>ℓ they already have one of the 𝑂 (log𝑄 log
3 𝑛/𝜖3) many possible

sizes. This establishes the 3rd property of the lemma.

Therefore, using Lemma 4, all the tokens of𝑇𝑣 remain covered by partial tours; those partial tours

in 𝐺𝑣
𝑖, 𝑗 (for 1 ≤ 𝑗 < 𝑔) are tied to the top parts of the tours from group 𝐺𝑣

𝑖, 𝑗+1 and the partial tours

of𝐺𝑣
𝑖,𝑔 will be tied to extra tours designated to level ℓ . We also add extra tokens at 𝑣 to be picked up

by the partial tours of 𝑇𝑣 so that each partial tour has a size exactly equal to the maximum size of a

group. All in all, the extra cost paid to build OPTℓ (from OPTℓ+1) is for the extra tours designated
to level ℓ .

One can easily verify that following holds for the near optimum solution OPT
′
we build from

OPT.

Observation 1. If the original solution OPT was an unsplittable solution, i.e. the tokens 𝑑 (𝑣) of
each node was picked up by a single tour (where 𝑑 (𝑣) ≤ 𝑄), in the modified solution OPT

′, for every
vertex 𝑣 , all the tokens at 𝑣 (including the extra tokens added), are picked up by a single tour as well.

This observation is used to show that if OPT is a solution for an unsplittable instance of CVRP

then the near optimum solution OPT
′
is also a feasible solution for unsplittable CVRP.

Theorem 6. (Structure Theorem) Let opt be the cost of the optimal solution to instance I. We
can build an instance I ′ on the same tree 𝑇 such that each node has ≥ 1 tokens and there exists a
near-optimal solution OPT

′ for I ′ having cost (1 + 4𝜖)opt w.h.p with the following property. The
partial tours going down subtree 𝑇𝑣 for every node 𝑣 in OPT

′ has one of 𝑂 ((log𝑄 log
3 𝑛)/𝜖3) possible

sizes. More specifically, suppose (𝑣, 𝑏𝑖 ) is a bucket pair for OPT′. Then either:
• 𝑏𝑖 is a small bucket and hence there are at most 𝛼 log

3 𝑛/𝜖2 many partial tours of 𝑇𝑣 whose size
is in bucket 𝑏𝑖 , or

• 𝑏𝑖 is a big bucket; in this case there are 𝑔 = (2𝛿 log𝑛)/𝜖2 many group sizes in 𝑏𝑖 : 𝜎𝑖 ≤ ℎ
𝑣,𝑚𝑎𝑥
𝑖,1

≤
. . . ≤ ℎ

𝑣,𝑚𝑎𝑥
𝑖,𝑔

< 𝜎𝑖+1 and every tour of bucket 𝑖 has one of these sizes.

Proof. We will show how to modify OPT to a near-optimal solution OPT
′
. We start from ℓ = ℎ

and let OPTℓ = OPT. For decreasing values of ℓ we show, for each ℓ , how to modify OPT𝑙+1 to
obtain OPTℓ . We do this in the following manner: we do not modify partial tours in small buckets.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 15

However, for tours in big buckets, in each vertex bucket pair (𝑣, 𝑏𝑖 ) in level ℓ − 1, we place them

into 𝑔 groups 𝐺𝑣
1
, . . . ,𝐺𝑣

𝑔 of equal sizes by placing the 𝑖’th 𝑛𝑣/𝑔 partial tours into 𝐺𝑣
𝑖 . We have a

mapping 𝑓 from each partial tour in𝐺𝑣
𝑖 to one in𝐺

𝑣
𝑖−1 for 𝑖 ∈ {2, . . . , 𝑔}. We modify OPTℓ to OPTℓ+1

in the following way: for each tour T that has a partial tour 𝑡 ∈ 𝐺𝑣
𝑖 , replace the bottom part of T

at 𝑣 from 𝑡 to 𝑓 (𝑡) (which is in 𝐺𝑣
𝑖−1). For each tour 𝑡 ∈ 𝐺𝑣

𝑖−1, we will add ℎ
𝑣,max

𝑖−1 − |𝑡 | many extra

tokens at 𝑣 . Note that by this change, the size of any tour such as T can only decrease and we are

not violating feasibility of the tour because ℎ
𝑣,max

𝑖−1 ≤ ℎ
𝑣,min

𝑖
. However, the tokens in 𝑇𝑣 picked up by

the partial tours in𝐺𝑣
𝑖,𝑔 are not covered by any tours. We can use Lemma 4 to show how we can use

extra tours to cover the partial tours in 𝐺𝑣
𝑖,𝑔 such that the new partial tours have size exactly ℎ

𝑣,max

𝑖,𝑔
.

We will inductively repeat this for levels ℓ − 2, ℓ − 3, . . . , 1 and obtain OPT1 = OPT
′
. Note that by

adding extra tokens ℎ
𝑣,max

𝑖−1 − |𝑡 | for a tour 𝑡 ∈ 𝐺𝑣
𝑖−1, we are enforcing that the coverage of each tour

is the maximum size of tours in its group. In a big bucket, there are 𝑔 = (2𝛿 log𝑛)/𝜖2 many group

sizes, so there are 𝑂 (log𝑛/𝜖2) possible sizes for tours in big buckets at a node. In a small bucket,

there can be at most 𝛼 log
3 𝑛/𝜖2 many tours and since there are 𝜏 = 𝑂 (log𝑄/𝜖) many buckets,

there can be at most 𝑂 ((log𝑄 log
3 𝑛)/𝜖3) many tour sizes covering 𝑇𝑣 .

Using Lemma 2, we know the cost of the extra tours is at most 4𝜖 · opt with high probability, so

the cost of opt
′ ≤ (1 + 4𝜖)opt.

3.2 Dynamic Program
In this section, we prove the first part of Theorem 1 (CVRP with unit demands on trees). We will

describe how we can compute a solution of cost at most (1 + 4𝜖)opt using dynamic programming

and based on the existence of a near-optimum solution guaranteed using the structure theorem.

For each vertex bucket pair, we do not know if the bucket is small or big, so we will consider

subproblems corresponding to both possibilities. Informally, we will have a vector ®𝑛 ∈ [𝑛]𝜏 where
if 𝑖 < 1/𝜖 , 𝑛𝑖 keeps track of the exact number of tours of size 𝑖 and for 𝑖 ≥ 1/𝜖 , ®𝑛𝑖 keeps track of the

number of tours in bucket 𝑏𝑖 (i.e. tours covering between [𝜎𝑖 , 𝜎𝑖+1) tokens). Let 𝑜𝑣 denote the total
number of tokens to be picked up across all nodes in the subtree𝑇𝑣 . Since each node has at least one

token, 𝑜𝑣 ≥ |𝑉 (𝑇𝑣) |. We will keep track of three other pieces of information conditioned on whether

𝑏𝑖 is a small or big bucket. If 𝑏𝑖 is a small bucket, we will store all the tour sizes exactly. Since

the number of tours in a small bucket is at most 𝛾 = 𝛼 log
3 𝑛/𝜖2, we will use a vector ®𝑡𝑖 ∈ [𝑛]𝛾 to

represent the tours of a small bucket where ®𝑡𝑖𝑗 represents the size of 𝑗-th tour in bucket 𝑏𝑖 . Suppose

𝑏𝑖 is a big bucket, there are 𝑔 = (2𝛿 log𝑛)/𝜖2 many tour sizes in the bucket corresponding to 𝑛𝑔

possibilities. For each big bucket 𝑏𝑖 at node 𝑣 , we need to keep track of the following information,

• ®ℎ𝑖𝑣 ∈ [𝑛]𝑔 is a vector where ®ℎ𝑖𝑣, 𝑗 = ℎ
𝑣,max

𝑖, 𝑗
, which is the size of the maximum tour in group 𝑗 of

bucket 𝑖 at node 𝑣 .

• ®𝑙𝑖𝑣 ∈ [𝑛]𝑔 is a vector where ®𝑙𝑖𝑣, 𝑗 denotes the number of partial tours covering ℎ
𝑣,max

𝑖, 𝑗
tokens

which lie in group 𝑗 of bucket 𝑖 at node 𝑣 .

Let ®𝑦𝑣 denote a configuration of tours across all buckets of 𝑣 .

®𝑦𝑣 = [𝑜𝑣, ®𝑛𝑣, (®𝑡1𝑣 , ®ℎ1𝑣, ®𝑙1𝑣 ), (®𝑡2𝑣 , ®ℎ2𝑣, ®𝑙2𝑣 ), . . . , (®𝑡𝜏𝑣 , ®ℎ𝜏𝑣, ®𝑙𝜏𝑣 )] .

Note that a bucket 𝑏𝑖 is either small or big and cannot be both, hence given (®𝑡𝑖𝑣, ®ℎ𝑖𝑣, ®𝑙𝑖𝑣), it cannot
be the case that ®𝑡𝑖𝑣 ≠ ®0, ®ℎ𝑖𝑣 ≠ ®0 and ®𝑙𝑖𝑣 ≠ ®0. The subproblem A[𝑣, ®𝑦] is supposed to be the minimum

cost collection of partial tours going down 𝑇𝑣 (to cover the tokens in 𝑇𝑣) and the cost of using the

parent edge of 𝑣 having a tour profile corresponding to ®𝑦. Our dynamic program heavily relies

on the properties of the near-optimal solution in the structure theorem. Let 𝑣 be a node. We will

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



16 Jayaprakash and Salavatipour

compute 𝐴[·, ·] in a bottom-up manner, computing A[𝑣, ®𝑦𝑣] after we have computed the entries for

the children of 𝑣 .

The final answer is obtained by looking at the various entries of A[𝑟, ·] and taking the smallest

one. First, we argue why this will correspond to a solution of cost no more than opt
′
. We will

compute our solution in a bottom-up manner.

For the base case, we consider leaf nodes. A leaf node 𝑣 with parent edge 𝑒 could have 𝑜𝑣 ≥ 1

tokens at 𝑣 . We will set A[𝑣, ®𝑦𝑣] = 2 · 𝑤 (𝑒) · 𝑚𝑣 where 𝑚𝑣 is the number of tours in ®𝑦𝑣 if the

total sum of tokens picked up by the partial tours in ®𝑦𝑣 is exactly 𝑜𝑣 . Recall that 𝑓 (𝑒) is the load
on (i.e. number of tours using) edge 𝑒 . From our structure theorem, we know there exists a near

optimum solution such that each partial tour of 𝑇𝑣 has one of 𝑂 ((log𝑄 log
3 𝑛)/𝜖3) tour sizes and

for each small bucket, there are at most 𝛼 log
3 𝑛/𝜖2 partial tours in it. For every big bucket, there

are 𝑔 = (2𝛿 log𝑛)/𝜖2 many group sizes and every tour of bucket 𝑖 has one of these sizes. The base

case follows directly from the structure theorem.

To compute cell A[𝑣, ®𝑦𝑣], we would need to use another auxiliary table B. Suppose 𝑣 has 𝑘

children 𝑢1, . . . , 𝑢𝑘 and assume we have already calculated A[𝑢 𝑗 , ®𝑦] for every 1 ≤ 𝑗 ≤ 𝑘 and for

all vectors ®𝑦. Then we define a cell in our auxiliary table B[𝑣, ®𝑦 ′
𝑣, 𝑗] for each 1 ≤ 𝑗 ≤ 𝑘 where

B[𝑣, ®𝑦 ′
𝑣, 𝑗] is the minimum cost of covering 𝑇𝑢1

∪ . . . ∪𝑇𝑢 𝑗
where ®𝑦 ′

𝑣 is the tour profile for the union

of subtrees 𝑇𝑢1
∪ . . . ∪𝑇𝑢 𝑗

. In other words, B[𝑣, ®𝑦 ′
𝑣, 𝑗] is what A[𝑣, ®𝑦𝑣] is supposed to capture when

restricted only to the first 𝑗 children of 𝑣 . We will set A[𝑣, ®𝑦𝑣] = B[𝑣, ®𝑦 ′
𝑣, 𝑘] + 2 ·𝑤 (𝑒) ·𝑚𝑣 where

𝑚𝑣 is the number of different tours in ®𝑦 ′
𝑣 . We will assume the parent edge of the depot has weight

0. Suppose 𝑇𝑢𝑖 has 𝑜𝑖 tokens, then the number of tokens in 𝑇𝑣 is at least 1 +
∑𝑘

𝑖=1 𝑜𝑖 . To compute

entries of B[𝑣, ·, ·], we use both A and B entries for smaller subproblems of 𝑣 in the following way:

Case 1: j = 1: This is the case when we restrict the coverage to only the first child of 𝑣 , 𝑢1.

B[𝑣, ®𝑦 ′
𝑣, 1] = min

®𝑦′
{A[𝑢1, ®𝑦 ′]}

We will find the minimum cost configurations ®𝑦 ′
such that ®𝑦 ′

𝑣 and ®𝑦 ′
are consistent with each other.

We say ®𝑦 ′
𝑣 and ®𝑦 ′

are consistent if a tour in ®𝑦 ′
𝑣 either only covers tokens at 𝑣 and does not visit

any node below 𝑣 or ®𝑦 ′
𝑣 consists of a tour from ®𝑦 ′

plus zero or more extra tokens picked up at 𝑣 .

Moreover, every tour in ®𝑦 ′
is part of some tour in ®𝑦 ′

𝑣 .

Case 2: 2 ≤ 𝑗 ≤ 𝑘 . We will assume we have computed B[𝑣, ®𝑦 ′, 𝑗 − 1] and A[𝑢 𝑗 , ®𝑦 ′′] and we have

B[𝑣, ®𝑦 ′
𝑣, 𝑗] = min

®𝑦′, ®𝑦′′
{B[𝑣, ®𝑦 ′, 𝑗 − 1] + A[𝑢 𝑗 , ®𝑦 ′′]}.

There are four possibilities for each partial tour 𝑡𝑣 at node 𝑣 going down 𝑇𝑣 covering tokens for

subtrees rooted at children 𝑢1, . . . , 𝑢𝑘 .

• 𝑡𝑣 could be a tour that only picks up tokens at 𝑣 and does not pick up tokens from subtrees

𝑇𝑢1
∪ . . . ∪𝑇𝑢 𝑗

.

• 𝑡𝑣 could be a tour that picks up tokens at 𝑣 and picks up tokens only from subtrees𝑇𝑢1
∪ . . .∪

𝑇𝑢 𝑗−1 .

• 𝑡𝑣 could be a tour that picks up tokens at 𝑣 and picks up tokens only from subtree 𝑇𝑢 𝑗
.

• 𝑡𝑣 could be a tour that picks up tokens at 𝑣 and picks up tokens from subtrees 𝑇𝑢1
∪ . . . ∪𝑇𝑢 𝑗

.

We would find the minimum cost over all configurations ®𝑦 ′
𝑣, ®𝑦 ′

and ®𝑦 ′′
as long as ®𝑦 ′

𝑣, ®𝑦 ′
and ®𝑦 ′′

are

consistent. We say tours ®𝑦 ′
𝑣, ®𝑦 ′

and ®𝑦 ′′
are consistent if there is a way to combine partial tours from

®𝑦 ′
and ®𝑦 ′′

to form a partial tour in ®𝑦 ′
𝑣 while also picking up extra tokens at node 𝑣 . We will define

consistency more rigorously in the next section.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 17

3.3 Checking Consistency
In our dynamic program, for the inner DP, we are given three vector ®𝑦 ′

𝑣, ®𝑦 ′, ®𝑦 ′′
where 𝑣 is a node

having children 𝑢1, . . . , 𝑢 𝑗 . ®𝑦 ′
represents the configuration of tours in 𝑇𝑢1

∪ . . . ∪ 𝑇𝑢 𝑗−1 and ®𝑦 ′′

represents the configuration of tours covering 𝑇𝑢 𝑗
. For the case of checking consistency for case 1,

we will assume ®𝑦 ′′ = ®0. Suppose we are given 𝑜𝑣 (for node 𝑣), 𝑜𝑢 for children 𝑢1, . . . , 𝑢 𝑗−1, and 𝑜𝑤 for

𝑢 𝑗 , we can infer that there are 𝑜 ′𝑣 = 𝑜𝑣 − 𝑜𝑢 − 𝑜𝑤 extra tokens that need to be picked at 𝑣 . 𝑜 ′𝑣 tokens
need to be distributed amongst tours in ®𝑦𝑣 . There are three possibilities for each tour 𝑡𝑣 in ®𝑦 ′

𝑣 .

• 𝑡𝑣 could be a tour that picks up extra tokens at 𝑣 and picks up tokens only from subtrees

𝑇𝑢1
∪ . . . ∪𝑇𝑢 𝑗−1 .

• 𝑡𝑣 could be a tour that picks up extra tokens at 𝑣 and picks up tokens only from subtree 𝑇𝑢 𝑗
.

• 𝑡𝑣 could be a tour that picks up extra tokens at 𝑣 and picks up tokens from subtrees𝑇𝑢1
∪. . .∪𝑇𝑢 𝑗

.

For simplicity, we will refer to a tour picking up tokens in𝑇𝑢1
∪ . . .∪𝑇𝑢 𝑗−1 to be 𝑡𝑢 and a tour picking

up tokens from 𝑇𝑢 𝑗
to be 𝑡𝑤 .

Definition 4. We say configurations ®𝑦 ′
𝑣, ®𝑦 ′ and ®𝑦 ′′ are consistent if the following holds:

• Every tour in ®𝑦 ′ maps to some tour in ®𝑦 ′
𝑣 .

• Every tour in ®𝑦 ′′ maps to some tour in ®𝑦 ′
𝑣 .

• Every tour in ®𝑦 ′
𝑣 has at most two tours mapping to it and they cannot both be from ®𝑦 ′ or ®𝑦 ′′.

• Suppose only one tour (𝑡𝑢 ) maps to a tour 𝑡𝑣 in ®𝑦 ′
𝑣 . The number of extra tokens picked up by tour

𝑡𝑣 at 𝑣 is |𝑡𝑣 | − |𝑡𝑢 |.
• Suppose 𝑡𝑣 , a tour in ®𝑦 ′

𝑣 has two tours: 𝑡𝑢 in ®𝑦 ′ and 𝑡𝑤 in ®𝑦 ′′ mapped to it, then the number of
extra tokens picked up by tour 𝑡𝑣 at 𝑣 is |𝑡𝑣 | − |𝑡𝑢 | − |𝑡𝑤 |.

• The extra tokens at 𝑣 , 𝑜 ′𝑣 = 𝑜𝑣 − 𝑜𝑢 − 𝑜𝑤 , are picked up by the tours in ®𝑦 ′
𝑣 .

Consistency ensures that we can patch up tours from subproblems and combine them into new

tours in a correct manner while also picking up extra tokens at 𝑣 . Now we will describe how we

can compute consistency. Let ®𝑧 be a vector containing a subset of information contained in ®𝑦.

®𝑧𝑣 = [®𝑛𝑣, (®𝑡1𝑣 , ®ℎ1𝑣, ®𝑙1𝑣 ), (®𝑡2𝑣 , ®ℎ2𝑣, ®𝑙2𝑣 ), . . . , (®𝑡𝜏𝑣 , ®ℎ𝜏𝑣, ®𝑙𝜏𝑣 )] .
From now on, we will choose to not write ®𝑛𝑣 explicitly since we can figure out the entries of the

vector from
®𝑙 . Suppose |𝑡𝑣 | is the length of a tour in ®𝑧 ′𝑣 . Let ®𝑧 ′𝑣−𝑡𝑣 refer to the configuration ®𝑧 ′𝑣 having

one less tour of size |𝑡𝑣 |. Let C[𝑜 ′𝑣, ®𝑧 ′𝑣, ®𝑧 ′, ®𝑧 ′′] = True if it is consistent and False otherwise. For the

base case, C[0, ®0, ®0, ®0] =True. For the recurrence, we will look at all possible ways of combining ®𝑧 ′
and ®𝑧 ′′ into ®𝑧 ′𝑣 while also picking up extra tokens 𝑜 ′𝑣 . Note that 𝑡𝑣 is always non-zero, but both or

one of 𝑡𝑢 or 𝑡𝑤 could be zero.

C[𝑜 ′𝑣, ®𝑧 ′𝑣, ®𝑧 ′, ®𝑧 ′′] =
∨

𝑡𝑣 ,𝑡𝑢 ,𝑡𝑤
|𝑡𝑣 |= |𝑡𝑢 |+ |𝑡𝑤 |+𝑜𝑐

C[𝑜 ′𝑣 − 𝑜𝑐 , ®𝑧 ′𝑣 − 𝑡𝑣, ®𝑧 ′ − 𝑡𝑢, ®𝑧 ′′ − 𝑡𝑤] .

3.4 Time Complexity
We will work bottom-up and assume we have already pre-computed our consistency table. Comput-

ing B[·, ·, ·] requires looking at previously computed B[·, ·, ·] and A[·, ·]. Given ®𝑦 ′
𝑣, ®𝑦 ′

and ®𝑦 ′′
which

are all consistent, computing the cost of ®𝑦 ′
𝑣 using ®𝑦 ′

and ®𝑦 ′′
takes 𝑂 (1) time. Each ®𝑦 ′

𝑣 consists of

(1) ®𝑛 has 𝑛𝑂 (log𝑛/𝜖)
possibilities.

(2) Each ®𝑡𝑖 has 𝑛𝑂 (log3 𝑛/𝜖2)
possibilities since there are 𝑂 (log3 𝑛/𝜖) tours in a small bucket.

(3) Each
®ℎ and

®𝑙 have 𝑛𝑂 (𝑔)
possibilities. Recall that 𝑔 = (2𝛿 log𝑛)/𝜖2, so each

®ℎ and
®𝑙 have

𝑛𝑂 (log𝑛/𝜖2)
possibilities.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



18 Jayaprakash and Salavatipour

(4) Each triple (®𝑡𝑖 , ®ℎ𝑖 , ®𝑙𝑖 ) has 𝑛𝑂 (log3 𝑛/𝜖2)
possibilities.

(5) (®𝑡1, ®ℎ1, ®𝑙1), (®𝑡2, ®ℎ2, ®𝑙2), . . . , (®𝑡𝜏 , ®ℎ𝜏 , ®𝑙𝜏 ) have 𝑛𝑂 (𝜏 log3 𝑛/𝜖2) = 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

possibilities since

𝜏 = 𝑂 (log𝑄/𝜖).

In total, each ®𝑦 ′
𝑣 has 𝑛𝑂 ( (log𝑄 log

3 𝑛)/𝜖3)
possibilities. For each ®𝑦 ′

𝑣 , we will have 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

possibilities for ®𝑦𝑢 and ®𝑦𝑤 . Since there are𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

possibilities for ®𝑦 ′
𝑣 , the cost of computing

the DP entries for a single node 𝑣 would be 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

and since there are 𝑛 nodes in the

tree, the total time of computing the DP table assuming the consistency table is precomputed is

𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

.

Before we compute our DP, we will first compute the consistency table C[·, ·, ·, ·]. Similar to our

DP table, each entry of the consistency table has 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

possibilities. Assuming we have

already precomputed smaller entries of C , there are 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

ways of picking 𝑡𝑣, 𝑡𝑢 and 𝑡𝑤 .

For a fixed ®𝑦𝑣, ®𝑦𝑢, ®𝑦𝑤 and 𝑜 ′𝑣 , computing C[𝑜 ′𝑣, ®𝑧 ′𝑣, ®𝑧 ′, ®𝑧 ′′] takes 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

time. Since there

are only 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

possibilities for ®𝑧 ′𝑣, ®𝑧 ′ and ®𝑧 ′′, the cost of computing all entries of the

consistency table is 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

.

The time for computing both the DP table and consistency table is 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

, so the

total time taken by our algorithm is 𝑛𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

. For the unit demand case, since 𝑄 ≤ 𝑛, the

runtime of our algorithm is 𝑛𝑂 (log4 𝑛/𝜖3)
.

3.5 Extension to Splittable and Snsplittable CVRP
We can extend our algorithm for unit demand CVRP in trees and show how we can get a QPTAS for

splittable and unsplittable CVRP as long as the demands are quasi-polynomially bounded. This will

prove the 2nd part of Theorem 1. In our algorithm for unit demand CVRP, we viewed the demand

of each node as a token placed at the node. For splittable CVRP, we could assume each node has

1 ≤ 𝑑 (𝑣) < 𝑛𝑄 tokens and we can use the same structure theorem as before by modifying tours

such that there are at most 𝑂 ((log𝑄 log
3 𝑛)/𝜖3) different tour sizes for partial tours at a node. We

can use the same DP to compute the solution. Each ®𝑦𝑣 consists of

(1) ®𝑛 has (𝑛𝑄)𝑂 (log𝑛/𝜖)
possibilities.

(2) Each ®𝑡𝑖 has (𝑛𝑄)𝑂 (log3 𝑛/𝜖2)
possibilities since there are 𝑂 (log3 𝑛/𝜖) tours in a small bucket.

(3) Each
®ℎ and

®𝑙 have (𝑛𝑄)𝑂 (𝑔)
possibilities. Recall that 𝑔 = (2𝛿 log𝑛)/𝜖2, so each ®ℎ and

®𝑙 have
(𝑛𝑄)𝑂 (log𝑛/𝜖2)

possibilities.

(4) Each triple (®𝑡𝑖 , ®ℎ𝑖 , ®𝑙𝑖 ) has (𝑛𝑄)𝑂 (log3 𝑛/𝜖2)
possibilities.

(5) (®𝑡1, ®ℎ1, ®𝑙1), (®𝑡2, ®ℎ2, ®𝑙2), . . . , (®𝑡𝜏 , ®ℎ𝜏 , ®𝑙𝜏 ) have (𝑛𝑄)𝑂 (𝜏 log3 𝑛/𝜖2) = (𝑛𝑄)𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

possibili-

ties since 𝜏 = 𝑂 (log𝑄/𝜖).

Similar to the analysis of the runtime of the unit demand case, the time complexity of computing

the entries of DP tables A,B, and the consistency table C is, (𝑛𝑄)𝑂 ( (log𝑄 log
3 𝑛)/𝜖3)

. Suppose 𝑄 =

𝑛𝑂 (log𝑐 𝑛)
, then the runtime of our algorithm is 𝑛𝑂 (log2𝑐+4 𝑛/𝜖3)

.

For unsplittable CVRP, first observe that𝑑 (𝑣) ≤ 𝑄 for each node 𝑣 . Using Observation 1, whenever

our algorithm serves a node 𝑣 , it picks up all the tokens at that node completely. Therefore, the

solution it generates serves each node by a single tour. In this case, the running time of the algorithm

will be 𝑛𝑂 (log2𝑐+3 𝑛/𝜖3)
.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 19

3.6 Height reduction
In this section, we will prove Theorem 5. The first goal is to decompose the edge set of the tree 𝑇

into edge-disjoint paths. We will do so using the following lemma, similar to Lemma 5 from Cygan

et al. [13] to obtain such a decomposition in polynomial-time for a different problem.

Lemma 5. There exists a partitioning of the edge set of 𝑇 into edge-disjoint paths P, which can
be grouped into 𝑠 = 𝑂 (log𝑛) collections (called levels) 𝐿1, . . . , 𝐿𝑠 such that the following hold: For
every root-to-leaf path 𝑃 = 𝑒1𝑒2, . . . , 𝑒ℓ in 𝑇 (where 𝑒1 is an edge incident to the root and 𝑒ℓ is an edge
incident to a leaf), 𝑒1 belongs to a level 1 or level 2 path, and for each edge 𝑒𝑖 (𝑖 ≥ 2) either 𝑒𝑖 is part of
the same path in P that contains 𝑒𝑖−1, or it is part of a path in P whose level index is one more than
the level of the path containing 𝑒𝑖−1.

Proof. Given a tree 𝑇 , a D-path of 𝑇 is a root-to-leaf path 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑘 such that 𝑣𝑖+1 is the
child of 𝑣𝑖 with the largest number of nodes in the tree rooted at 𝑇𝑣𝑖+1 . If there are multiple children

with the same number of descendants, break ties arbitrarily. Let 𝑃 be a D-path. All the nodes in

D-path 𝑃 receive label 1. Also edges of 𝑃 are level 1 edges. Let𝑇1, . . . ,𝑇𝑐 be the set of trees obtained

from 𝑇 − 𝑃 . Let 𝑃𝑖 be the D-path for 𝑇𝑖 . We will label all nodes in 𝑃𝑖 to be 2. Also all the edges in 𝑃𝑖 ,

as well as the edges that connect the root of each 𝑇𝑖 to 𝑃 are level 2. We will repeat this process

recursively by finding D-paths for trees resulting from𝑇𝑖 −𝑃𝑖 and labelling every node in the D-path

with the value corresponding to the depth of recursion (similarly for the edges of the D-paths we

find as well as the edges that connect the current trees to the D-paths of the previous step). Each

step involves finding a D-path, labelling the nodes and edges of the paths, deleting the paths and

recursively repeating the process for the resulting trees (with the value of the label increased by

1). Nodes of D-paths of trees at depth ℓ in the recursion receive labels ℓ . We will terminate this

process when all nodes have been labelled. Let 𝐿 𝑗 denote the collection of all D-paths whose nodes

received the label 𝑗 together with the edges that connects them to their parent (see figure 1).

Note that after the first step, the trees 𝑇1, . . . ,𝑇𝑐 satisfy the property that |𝑉 (𝑇𝑖 ) | ≤ |𝑉 (𝑇 ) |
2

i.e.,

each tree is at most half of the original tree. This is because we pick the child with the largest

number of nodes in the subtree rooted at it. After each step, the size of the new components formed

is at most half the size of the previous component, hence we would use at most log𝑛 labels to label

all nodes in the tree. An easy induction shows that for each root-to-leaf path 𝑃 the property stated

in the lemma about the levels of edges of 𝑃 hold since each root to leaf path either follows the same

path as its parent or branches off into a new path with whose level is increased by 1.

Figure 1 shows an example of such labelling where each color represents a level.

3.6.1 Creating a new tree. Given a tree 𝑇 , we can use Lemma 5 to decompose the tree into edge-

disjoint paths. Next, we describe an algorithm to modify the tree recursively into a low height tree

𝑇 . The first step is to look at all the paths in 𝐿1. 𝐿1 is a special case since there is only one path in

𝐿1 which goes from the depot to a leaf node. All the other levels 𝐿𝑖 could have multiple disjoint

paths. Let 𝑃 be the path in 𝐿1 and let 𝑙 (𝑃) be the number of edges in path 𝑃 . If 𝑙 (𝑃) ≤ 𝛿 log𝑛

𝜖
for a

𝛿 > 0 to be specified, then we are done for 𝐿1.

However, if 𝑙 (𝑃) > 𝛿 log𝑛

𝜖
, we will compress the path into a low height one. We will do a sequence

of what is called up-pushes. We will pick 𝑠 ≤ 𝛿 log 𝑙 (𝑃 )
𝜖

points to be anchor points. Let us call the
anchor points 𝑎1, . . . , 𝑎𝑠 where 𝑎1 is the anchor point closest to the root and 𝑎𝑠 is closest to the leaf.

We will later show how to find these anchor points.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



20 Jayaprakash and Salavatipour

(a) A tree before labelling. (b) Blue (solid) edges are level 1, red (dashed)
edges are level 2 and green (dotted) edges

are level 3.

Fig. 1. An example of a tree before and after applying labels to nodes

Fig. 2. A tree before an up-push (left) and after (right) with reduced height. The blue (dashed) edge connecting
𝑎𝑖 and 𝑎𝑖+1 has weight𝑤 = 𝑤𝑝 +𝑤𝑞 +𝑤𝑠 +𝑤𝑡

𝑤𝑝 𝑤1

𝑤𝑞 𝑤2 𝑤3

𝑤𝑠 𝑤4 𝑤5

𝑤𝑡 𝑤6

𝑎𝑖

𝑝 𝑇1

𝑠 𝑇2 𝑇3

𝑡 𝑇4 𝑇5

𝑎𝑖+1 𝑇6

0 0 0 𝑤 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

𝑎𝑖

𝑝 𝑠 𝑡 𝑎𝑖+1 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 21

Each up-push acts on nodes in 𝑃 between two consecutive anchor points 𝑎𝑖 , 𝑎𝑖+1 of the path
𝑃 . During an up-push, we take all the nodes in 𝑃 that lie between 𝑎𝑖 and 𝑎𝑖+1, which we will call

𝑃 ′
, and make each node in 𝑃 ′

a child of 𝑎𝑖 with the edge connecting them to 𝑎𝑖 having weight 0.

Suppose there is a child subtree 𝑇𝑗 , which is a child of a node in 𝑃 ′
with edge connection cost𝑤 𝑗 ,

the subtree 𝑇𝑗 will become a child of 𝑎𝑖 with the edge connecting them having cost𝑤 𝑗 (see Figure

2). Once we have completed up-pushes for all paths in 𝐿1, we will find anchor points and perform

up-pushes for each path in 𝐿2. We will repeat this for paths in 𝐿𝑖 after our algorithm has finished

up-pushes for paths in 𝐿𝑖−1.
We will now describe how we can find the anchor points. We will first describe what we would

like to achieve from anchor points. We want the cost associated with a path in 𝐿𝑖 for some tours to

differ by at most 𝑂 (𝜖) in our new tree compared to the original tree. Suppose 𝑃 is a path in 𝐿𝑖 and

a tour 𝑡 is travelling 𝑃 down to node 𝑢 which is between 𝑎𝑖 and 𝑎𝑖+1. Then the cost of the portion

of the tour from the root of 𝑃 to 𝑎𝑖 is the same in the original tree and the new tree; however the

cost to travel from 𝑎𝑖 to 𝑢 is zero. We would like this cost in the original tree to be a small factor of

the cost from the root of 𝑃 to 𝑎𝑖 .

Our algorithm to build𝑇 from𝑇 works as follows from top to bottom. For any path 𝑃 in 𝐿𝑖 , we will

set the top node of the path to be 𝑎1 and its child in 𝑃 to be 𝑎2. Our goal is to pick 𝑎𝑖 and 𝑎𝑖+1 for 𝑖 > 2

such that𝑤 (𝑎𝑖 , 𝑎𝑖+1) > 𝜖 ·𝑤 (𝑎1, 𝑎𝑖 ) and𝑤 (𝑎𝑖 , 𝑣) ≤ 𝜖 ·𝑤 (𝑎1, 𝑎𝑖 ) where 𝑣 is the last vertex on 𝑎𝑖 , 𝑎𝑖+1
path before 𝑎𝑖+1. If there is no 𝑎𝑖+1 such that𝑤 (𝑎𝑖 , 𝑎𝑖+1) > 𝜖 ·𝑤 (𝑎1, 𝑎𝑖 ), then we set the last node of

𝑃 to be 𝑎𝑖+1. So, we pick 𝑎𝑖+1 to be the farthest vertex from 𝑎𝑖 in 𝑃 such that𝑤 (𝑎𝑖 , 𝑣) ≤ 𝜖 ·𝑤 (𝑎1, 𝑎𝑖 )
where 𝑣 is the last node before 𝑎𝑖+1. This in turn would imply that𝑤 (𝑎1, 𝑎𝑖+1) > (1 + 𝜖)𝑤 (𝑎1, 𝑎𝑖 ),
except if 𝑎𝑖+1 is the last node of the path. Hence,𝑤 (𝑎1, 𝑎𝑖 ) > (1 + 𝜖)𝑖−2𝑤 (𝑎1, 𝑎2) > (1 + 𝜖)𝑖−2. Since
edge weights are at most 2𝑛3/𝜖2, the number of anchor points are at most

𝛿 log𝑛

𝜖
for some constant

𝛿 > 0

3.6.2 Analysis. In the last section, we showed that every path in some level 𝐿𝑖 can be made to have

at most 𝑂

(
log𝑛

𝜖

)
nodes.

Lemma 6. The height of the new tree 𝑇 is 𝑂
(
log

2 𝑛

𝜖

)
.

Proof. In our algorithm, we first decomposed 𝑇 into a set of edge-disjoint paths. The decom-

position guarantees that one would first visit a lower level node in any root-to-leaf path before

visiting one with a higher level. Since there are at most 𝑂 (log𝑛) different levels, any root-to-leaf

path will be a disjoint union of paths from levels 𝐿1, . . . , 𝐿𝑠 and there can be at most one path from

each level. Since the height of a path in any level, 𝐿𝑖 is at most 𝑂

(
log𝑛

𝜖

)
, and there are at most

𝑂 (log𝑛) different levels, the maximum height in our new tree 𝑇 is at most 𝑂

(
log

2 𝑛

𝜖

)
Suppose we take a path 𝑃 at some level 𝐿𝑐 . Let us fix a tour in an optimal solution and let the

farthest point in 𝑃 the tour travels to be between anchor points [𝑎𝑖 ,𝑎𝑖+1). We use [𝑎𝑖 ,𝑎𝑖+1) denote
that the tour crosses 𝑎𝑖 but will not cross 𝑎𝑖+1. Let 𝑇 be the original tree and let 𝑇 ′

be the new tree

with reduced height. A tour in the optimal solution for 𝑇 ′
can visit nodes lying between 𝑎𝑖 and

𝑎𝑖+𝑖 at no additional cost after visiting 𝑎𝑖 . Suppose the cost of traversing the edges of 𝑃 in 𝑇 ′
is

denoted by 𝑑 , then the cost of traversing the edges of 𝑃 in𝑇 is going to be at most (1+𝑂 (𝜖))𝑑 . This
is because the cost of the edges between 𝑎𝑖 and the vertex before 𝑎𝑖+1 sum to at most 𝑂 (𝜖)𝑤 (𝑟, 𝑎𝑖 ).
Hence, the additional cost to cover them in 𝑇 is only going to be at most an 𝜖 fraction more.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



22 Jayaprakash and Salavatipour

Lemma 7. Let 𝑇 be the original tree, 𝑇 be the new tree, opt be the cost of the optimal set of tours
covering 𝑇 and opt′ be the cost of the optimal set of tours covering 𝑇 . Then,

opt
′ ≤ opt ≤ (1 + 𝜖)opt′.

Proof. Let us fix an optimal set of tours covering tree𝑇 with cost opt. Suppose we pick a tour 𝑡

and decompose this tour into paths each of which is entirely within one level 𝐿𝑖 . Suppose 𝑃 is a

path of 𝑡 in some level 𝐿𝑐 . Let the farthest point in 𝑃 the tour travels to be between anchor points

[𝑎𝑖 ,𝑎𝑖+1). In our construction, the cost to visit any point lying between the root of 𝑃 and 𝑎𝑖 is the

same in both𝑇 and𝑇 . However, in𝑇 , the tour can visit any node lying between 𝑎𝑖 and 𝑎𝑖+1 for free,
but the tour would have an additional cost to traverse these edges in tree 𝑇 . Hence, for any path

such 𝑃 , the cost of a tour 𝑡 to traverse edges in 𝑃 is less in𝑇 compared to𝑇 . Since any tour costs no

more in instance 𝑇 , we have opt′ ≤ opt.

Conversely, the extra cost of covering points lying between 𝑎𝑖 and 𝑎𝑖+1 in𝑇 is at most𝑂 (𝜖) times

the cost of path 𝑃 (based on the property of anchor points). This is because the cost of the edges

between 𝑎𝑖 and the vertex before 𝑎𝑖+1 sum to at most 𝑂 (𝜖)𝑤 (𝑟, 𝑎𝑖 ). Hence, the additional cost to
cover them in 𝑇 is only going to be at most an 𝜖 fraction more. So the cost of using a path like 𝑃 is

at most an 𝜖 factor more in𝑇 compared to𝑇 . Thus, the cost of any tour 𝑡 in𝑇 is at most 1 + 𝜖 times

the cost of the same tour in 𝑇 and hence opt ≤ (1 + 𝜖)opt′
Instead of 𝑇 , we can solve the instance on 𝑇 with height 𝑂 (log2 𝑛/𝜖) and lift the solution for 𝑇

back to a solution for 𝑇 . We obtain a solution for 𝑇 with cost at most (1 + 𝜖)opt.

4 QPTAS FOR BOUNDED TREEWIDTH GRAPHS
In this section we prove Theorem 2. First we start by recalling definitions of graphs of bounded

treewidth.

Definition 5. A tree decomposition of a graph 𝐺 is a pair (𝑇, {𝐵𝑡 }𝑡 ∈𝑉 (𝑇 ) ), where 𝑇 is a tree
whose every node 𝑡 ∈ 𝑉 ′ is assigned a vertex subset 𝐵𝑡 ⊆ 𝑉 (𝐺), called a bag, such that the following
three conditions hold:
(1) ∪𝑡 ∈𝑉 (𝑇 )𝐵𝑡 = 𝑉 (𝐺). In other words, every vertex of 𝐺 is in at least one bag.
(2) For every 𝑢𝑣 ∈ 𝐸 (𝐺), there exists a node 𝑡 of 𝑇 such that bag 𝐵𝑡 contains both 𝑢 and 𝑣 .
(3) For every 𝑢 ∈ 𝑉 (𝐺), the set 𝑇𝑢 = {𝑡 ∈ 𝑉 (𝑇 ) : 𝑢 ∈ 𝐵𝑡 }, i.e., the set of nodes whose corresponding

bags contain 𝑢, induces a connected subtree of 𝑇 .

A graph 𝐺 = (𝑉 , 𝐸) has treewidth 𝑘 if it has a tree decomposition in which each bag has size at

most 𝑘 + 1. For such a graph we will assume we are given a tree decomposition 𝑇 = (𝑉 ′, 𝐸 ′). We

will refer to 𝐺 as the graph and 𝑇 as the tree. We will refer to vertices in 𝑉 by nodes and vertices

in 𝑉 ′
by bags. For a bag 𝑠 , let 𝐶𝑠 denote the union of nodes in bags below 𝑠 including 𝑠 . Bag 𝑠

forms a boundary or border between nodes in 𝐶𝑠 and 𝑉 (𝐺) \𝐶𝑠 . We will assume an arbitrary bag

containing the depot to be root of the tree decomposition. Let 𝑘 be the treewidth of our graph 𝐺 .

We will assume that following properties hold for our tree decomposition 𝑇 of 𝐺 from the work of

Boedlander and Hagerup [11],

• 𝑇 is binary.

• 𝑇 has depth 𝑂 (log𝑛).
• The width of 𝑇 is at most 𝑘 ′ = 3𝑘 + 2.

To simplify notation, by replacing 𝑘 ′
with 𝑘 we will assume 𝑇 has height 𝛿 log𝑛 for some fixed

𝛿 > 0 and each bag has width 𝑘 . From the third property of a tree decomposition, we know that

for every 𝑢 ∈ 𝑉 (𝐺), the set 𝑇𝑢 = {𝑡 ∈ 𝑉 (𝑇 ) : 𝑢 ∈ 𝑋𝑡 } i.e., the set of nodes whose corresponding
bags contain 𝑢, induces a connected subtree of 𝑇 . Since the bags associated with a node 𝑢 ∈ 𝑉 (𝐺)

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 23

correspond to a subtree in 𝑇 , we will place the demand/tokens of 𝑢 at the root bag of the tree 𝑇𝑢 i.e.

the bag containing 𝑢 closest to the root bag of𝑇 . Since𝑇𝑢 is a tree, we are guaranteed a unique root

bag of 𝑇𝑢 exists. We are doing this to ensure that the demand of a client is delivered exactly once.

Similar to how we showed the existence of a near-optimum solution for trees, we will modify the

optimum solution OPT in a bottom-up manner by modifying the tours covering the set of nodes

below bag 𝑠 , 𝐶𝑠 . For each bag 𝑠 , we change the structure of the partial tours going down 𝐶𝑠 (by

adding a few extra tours from the depot) and also adding some extra tokens for nodes in bag 𝑠

so that the partial tours that visit 𝐶𝑠 all have a size from one of polyogarithmic many possible

sizes (buckets) while increasing the number and the cost of the tours by a small factor. Note that

although a node can be in different bags, its initial demand is in one bag and we might add extra

tokens to copies of it in other bags.

Similar to the case of a tree, we assume that the optimum solution has at least a polylogarithmic

number of tours and that the bags of the tree decomposition are partitioned into levels 𝑉1, . . . ,𝑉ℎ
where 𝑉1 is the bag containing the depot and ℎ is the height of 𝑇 . For every tour T and every level

ℓ , we can define the notion of top and bottom part similar to the case of trees. For every 𝐶𝑠 , a tour

T enters𝐶𝑠 through bag 𝑠 using a node 𝑥 and exists through node 𝑧 where both 𝑥 and 𝑧 have to be

in 𝑠 . Note that 𝑥 and 𝑧 could be equal if the tour enters and exists 𝑠 using the same node. For a bag 𝑠 ,

let 𝑛
𝑥,𝑧
𝑠 be the number of partial tours covering nodes in𝐶𝑠 that enter through 𝑥 and exit through 𝑧

in 𝑠 . For each bag and entry/exit pair, we will define the notion of a small/big bucket similar to the

case of trees. For a big bucket, we will place the 𝑛
𝑥,𝑧
𝑠 tours (ordered by increasing size) into groups

𝐺
𝑥,𝑧,𝑠
1

, . . . ,𝐺
𝑥,𝑧,𝑠
𝑔 of equal sizes. Let ℎ

𝑠,𝑥,𝑧,max

𝑖
(ℎ𝑠,𝑥,𝑧,min

𝑖
) refer to the maximum (minimum) size of the

tours in 𝐺
𝑥,𝑧,𝑠
𝑖

.

Similar to the case of trees, let 𝑓 be a mapping from a tour in𝐺
𝑥,𝑧,𝑠
𝑖

to one in𝐺
𝑥,𝑧,𝑠
𝑖−1 . Now suppose

we modify OPT to OPT
′
in the following way: for each tour T that has a partial tour in 𝑡 ∈ 𝐺

𝑥,𝑧,𝑠
𝑖

,

replace the bottom part of T entering through 𝑥 and exiting through 𝑧 in 𝑠 from 𝑡 to 𝑓 (𝑡) (which is

in 𝐺
𝑥,𝑧,𝑠
𝑖−1 ). The only problem is that those tokens in 𝐶𝑠 that were picked up by the partial tours in

𝐺
𝑥,𝑧,𝑠
𝑔 are not covered by any tours and like the case of trees, these are orphant tokens. For each

tour T and its (new) partial tour 𝑡 ∈ 𝐺
𝑥,𝑧,𝑠
𝑖

, if we add ℎ
𝑥,𝑧,𝑠,max

𝑖
− |𝑡 | extra tokens at 𝑠 to be picked

up by 𝑡 , then each partial tour has size exactly same as the maximum size of its group without

violating the capacities. Similar to the case of trees, we will show that if 𝑛
𝑥,𝑧
𝑠 is sufficiently large (at

least polylogarithmic), then if we sample a small fraction of the tours of the optimum at random

and add two copies of them (as extra tours), they can be used to cover the orphant tokens.

4.1 Changing OPT to a near-optimum structured solution
Similar to the structure theorem for trees, we will modify the optimal solution OPT to a near-

optimum solution OPT
′
having certain properties. We will start at the last level, and modify partial

tours fromOPT at level ℓ to obtain OPTℓ . Wewill then iteratively obtain OPTℓ−1 bymodifying partial

tours from OPTℓ at level ℓ − 1, and iteratively do this for each level until we obtain OPT1 = OPT
′
.

Definition 6. For a bag 𝑠 , the 𝑖-th bucket, 𝑏𝑖 , entering at 𝑥 and exiting at 𝑧 contains the number of
tours of OPTℓ having coverage between [𝜎𝑖 , 𝜎𝑖+1) tokens in 𝐶𝑠 where 𝜎𝑖 is the 𝑖-th threshold value. We
will denote this by a entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧). Let 𝑛𝑥,𝑧𝑠,𝑖

be the number of tours in
bucket 𝑏𝑖 entering through 𝑥 and exiting through 𝑧 in bag 𝑠 .

Definition 7. An entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is small if 𝑛𝑥,𝑧
𝑠,𝑖

is at most
𝛼 log

2 𝑛/𝜖 and is big otherwise, for a constant 𝛼 ≥ max{1, 20𝛿}.

Note that for any bag 𝑠 and entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧), if (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is small,

we do not modify the partial tours in it. However, if (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is a big bucket, we create groups

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



24 Jayaprakash and Salavatipour

𝐺
𝑠,𝑥,𝑧
𝑖,1

, . . . ,𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

of equal sizes, for 𝑔 = (2𝛿 log𝑛)/𝜖; so |𝐺𝑠,𝑥,𝑧
𝑖, 𝑗

| = ⌈𝑛𝑥,𝑧
𝑠,𝑖

/𝑔⌉. We also consider a

mapping 𝑓 (as before) which maps (in the same order) the tours 𝑡 ∈ 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗

to the tours in 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗−1

for all 1 < 𝑗 ≤ 𝑔. Consider set Tℓ of all the tours T in OPTℓ that visit a bag in one of the lower

levels𝑉≥ℓ . Consider an arbitrary such tour T that has a partial tour 𝑡 in a big entry/exit-bag-bucket

configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧), suppose 𝑡 belongs to group 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗

. We replace 𝑡 with 𝑓 (𝑡) in T .

Now, add some extra tokens at 𝑥 to be picked up by T so that the size of the partial tour of T at

𝐶𝑠 is exactly ℎ
𝑠,𝑥,𝑧,max

𝑖, 𝑗−1 . If we make this change for all tours T ∈ Tℓ , each partial tour of them at level

ℓ that was in a group 𝑗 < 𝑔 of a big entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is replaced with

a smaller partial tour from group 𝑗 − 1 of the same big entry/exit-bag-bucket configuration; after

adding extra tokens to 𝑥 at bag 𝑠 (if needed), the size is the maximum size from group 𝑗 − 1. The

tokens that were picked by partial tours from 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

for a big entry/exit-bag-bucket configuration

(𝑠, 𝑏𝑖 , 𝑥, 𝑧) are now orphant. We are going to (randomly) select a subset of tours of OPT as extra

tours and add them to OPT
′
and modify them such that they cover all the tokens that are now

orphant (i.e. those that were covered by partial tours of 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

for all big entry/exit-bag-bucket

configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) at level ℓ). Suppose we select each tour T of OPT with probability 𝜖 . We

make two copies of the extra tour and we designate both extra copies to bags at one of the levels𝑉ℓ
that it visits with equal probability.

Lemma 8. The expected cost of extra tours selected is 2𝜖 · opt.

Proof. Suppose 𝑓 + (𝑒) and 𝑓 − (𝑒) denote the number of tours traveling edge 𝑒 in each of the

two directions. So the contribution of edge 𝑒 to the optimal solution is 2 ·𝑤 (𝑒) · (𝑓 + (𝑒) + 𝑓 − (𝑒));
opt =

∑
𝑒∈𝐸 𝑤 (𝑒) · (𝑓 + (𝑒) + 𝑓 − (𝑒)). Let𝑚+ (𝑒) (𝑚− (𝑒)) denote the number of sampled tours from the

tours contributing to 𝑓 + (𝑒) (𝑓 − (𝑒)). Since we used two copies for each sampled tour, the number

of extra tours for an edge 𝑒 is 2(𝑚+ (𝑒) +𝑚− (𝑒)). Let T𝑒,1, . . . ,T𝑒,𝑓 + (𝑒)+𝑓 − (𝑒) be the tours using 𝑒 in
either directions. Like in the case of trees, it is possible for a tour to use edge 𝑒 in both directions.

Let 𝑌𝑒,𝑖 be a random variable which is 1 if tour T𝑒,𝑖 is sampled and 0 otherwise.

E
[
𝑌𝑒,𝑖

]
= P

[
T𝑒,𝑖 is sampled

]
= 𝜖.

Let𝑚+ (𝑒) +𝑚− (𝑒) = 𝑌𝑒 =
∑𝑓 + (𝑒)+𝑓 − (𝑒)

𝑖=1
𝑌𝑒,𝑖 . By linearity of expectations, we have

E
[
𝑚+ (𝑒) +𝑚− (𝑒)

]
= E[𝑌𝑒 ] =

𝑓 + (𝑒)+𝑓 − (𝑒)∑
𝑖=1

E
[
𝑌𝑒,𝑖

]
=

𝑓 + (𝑒)+𝑓 − (𝑒)∑
𝑖=1

𝜖 = 𝜖 · (𝑓 + (𝑒) + 𝑓 − (𝑒)) .

Summing up the extra cost over all edges, the expected cost of the extra tours is

2

∑
𝑒∈𝐸
E
[
𝑚𝑖𝑛 (𝑒) +𝑚𝑜𝑢𝑡 (𝑒)

]
= 2𝜖 ·

∑
𝑒∈𝐸

(𝑓 + (𝑒) + 𝑓 − (𝑒)) = 2𝜖 · opt.

Therefore, we can assume that the expected cost of all extra tours added is at most 2𝜖 · opt.
Let 𝑋ℓ be the set of extra tours designated to bags in level ℓ . We assume we add 𝑋ℓ when we are

building OPTℓ (it is only for the sake of analysis). For each bag 𝑠 ∈ 𝑉ℓ and entry/exit-bag-bucket

configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧), let 𝑋 𝑠,𝑥,𝑧
𝑖

be those in 𝑋ℓ whose partial tour in 𝐶𝑠 has a size in bucket 𝑏𝑖 .

Each extra tour in 𝑋ℓ will not be picking any of the tokens in levels 𝑉<ℓ (as they will be covered by

the tours already in OPTℓ ); they are used to cover the orphant tokens created by partial tours of

𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

for each big entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) with 𝑠 ∈ 𝑉ℓ ; as described below.

Lemma 9. For each level𝑉ℓ , each bag 𝑠 ∈ 𝑉ℓ and big entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧),
w.h.p. |𝑋 𝑠,𝑥,𝑧

𝑖
| ≥ 𝜖2

𝛿 log𝑛
· 𝑛𝑥,𝑧

𝑠,𝑖
.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 25

Proof. Suppose (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is a big entry/exit-bag-bucket configuration at some level 𝑉ℓ . Let

𝑝1, . . . , 𝑝𝑛𝑥,𝑧
𝑠,𝑖

be the partial tours in the entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧). Let the tour
in OPT corresponding to 𝑝 𝑗 be T . Two copies of tour T are assigned to 𝑏𝑖 if both of the following

events are true:

• Let 𝐴 𝑗 be the event where tour T is sampled as an extra tour. Since each tour is sampled

with probability 𝜖 , we have P
[
𝐴 𝑗

]
= 𝜖 .

• Let 𝐵 𝑗 be the event where tour T is assigned to level ℓ . There are ℎ = 𝛿 log𝑛 many levels and

since T (if sampled) is assigned to any one of its levels, P
[
𝐵 𝑗

]
≥ 1/ℎ ≥ 1/(𝛿 log𝑛).

Let 𝑌𝑗 be a random variable which is 1 if 𝑝 𝑗 is an extra tour in (𝑣, 𝑏𝑖 ) and 0 otherwise.

E
[
𝑌𝑗

]
= P[𝑌𝑖 = 1] = P

[
𝐴 𝑗 ∧ 𝐵 𝑗

]
= P

[
𝐴 𝑗

]
· P

[
𝐵 𝑗

]
≥ 𝜖/(𝛿 log𝑛).

Let 𝑌
𝑠,𝑥,𝑧
𝑖

=
∑𝑛

𝑥,𝑧
𝑠,𝑖

𝑗=1
𝑌𝑗 be the random variable keeping track of the number of sampled tours in

(𝑠, 𝑏𝑖 , 𝑥, 𝑧). The number of extra tours, |𝑋 𝑠,𝑥,𝑧
𝑖

| = 2𝑌
𝑠,𝑥,𝑧
𝑖

since we add two copies of a sampled tour

to 𝑋
𝑠,𝑥,𝑧
𝑖

. By linearity of expectation, we have

E
[
|𝑋 𝑠,𝑥,𝑧

𝑖
|
]
= 2E

[
𝑌
𝑠,𝑥,𝑧
𝑖

]
= 2

𝑛
𝑥,𝑧
𝑠,𝑖∑
𝑗=1

E
[
𝑌𝑗

]
≥ 2𝜖

𝛿 log𝑛
· 𝑛𝑥,𝑧

𝑠,𝑖
.

We want to show that |𝑋 𝑠,𝑥,𝑧
𝑖

| ≥ E[ |𝑋𝑠,𝑥,𝑧
𝑖

|]
2

≥ 𝜖
𝛿 log𝑛

·𝑛𝑥,𝑧
𝑠,𝑖

with high probability over all vertex bucket

pairs.

Using Chernoff Bound with 𝜇 = E
[
|𝑋 𝑠,𝑥,𝑧

𝑖
|
]
≥ 2𝜖2

𝛿 log
2 𝑛

· 𝑛𝑥,𝑧
𝑠,𝑖

≥ 24 log𝑛 since 𝑛
𝑥,𝑧
𝑠,𝑖

≥ 𝛼 log
2 𝑛/𝜖 and

𝛼 ≥ 20𝛿 .

P

[
|𝑋 𝑠,𝑥,𝑧

𝑖
| <
E
[
|𝑋 𝑠,𝑥,𝑧

𝑖
|
]

2

]
≤ 𝑒−(5 log𝑛) =

1

𝑛5

Note that the above equation only shows the concentration bound for a single entry/exit-bag-

bucket configuration. For a bag, there are 𝑂 (𝑘2) many entry/exit pairs. There are 𝑂 (𝑘𝑛) bags and
𝜏 = 𝑂 (log𝑛/𝜖) buckets, so the total number of entry/exit-bag-bucket configuration is at most

𝑂 (𝑘2𝑛 log𝑛/𝜖). Suppose we do a union bound over all buckets, we get∑
all (𝑠,𝑏𝑖 ,𝑥,𝑧) configurations

P

[
|𝑋 𝑠,𝑥,𝑧

𝑖
| <
E
[
|𝑋 𝑠,𝑥,𝑧

𝑖
|
]

2

]
≤ 1

𝑛
.

We showed that for every entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧), |𝑋 𝑠,𝑥,𝑧
𝑖

| ≥ 𝜖
𝛿 log𝑛

𝑛
𝑥,𝑧
𝑠,𝑖

holds

with high probability.

Lemma 10. Consider all bags 𝑠 ∈ 𝑉ℓ , big entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) and the
partial tours in𝐺𝑠,𝑥,𝑧

𝑖,𝑔
. We can modify the tours in 𝑋 𝑠,𝑥,𝑧

𝑖
(without increasing the cost) and adding some

extra tokens at nodes in 𝑠 (if needed) so that:
(1) The tokens picked up by partial tours in 𝐺𝑠,𝑥,𝑧

𝑖,𝑔
are covered by some tour in 𝑋 𝑠,𝑥,𝑧

𝑖
, and

(2) The new partial tours that pick up the orphant tokens in 𝐺𝑠,𝑥,𝑧
𝑖,𝑔

have size exactly ℎ𝑠,𝑥,𝑧,max

𝑖,𝑔
and

all tours still have size at most 𝑄 .
(3) For each (new) partial tour of 𝑋 𝑠,𝑥,𝑧

𝑖
and every level ℓ ′ > ℓ , the size of partial tours of 𝑋 𝑠,𝑥,𝑧

𝑖
at a

bag 𝑠 ′ at level ℓ ′ is also one of 𝑂 ((log𝑄 log
2 𝑛)/𝜖2) many possible sizes.

Proof. Our proof is going to be very similar to Lemma 4 for the case of trees. Our goal is

to use the extra tours in 𝑋
𝑠,𝑥,𝑧
𝑖

to cover tokens picked up by partial tours of 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

and we want

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



26 Jayaprakash and Salavatipour

each extra tour in 𝑋
𝑠,𝑥,𝑧
𝑖

to cover exactly ℎ
𝑠,𝑥,𝑧,max

𝑖,𝑔
tokens. The tours in the last group, 𝐺

𝑠,𝑥,𝑧
𝑖,𝑔

, cover∑
𝑡 ∈𝐺𝑠,𝑥,𝑧

𝑖,𝑔
|𝑡 | many tokens. We will add

∑
𝑡 ∈𝐺𝑠,𝑥,𝑧

𝑖,𝑔
(ℎ𝑠,𝑥,𝑧,max

𝑖,𝑔
− |𝑡 |) extra tokens in node 𝑥 at bag 𝑠 for

each entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) so that there areℎ𝑠,𝑥,𝑧,max

𝑖,𝑔
tokens corresponding

to each partial tour in𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

. From now on, we will assume each partial tour in the last group𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

covers ℎ
𝑠,𝑥,𝑧,max

𝑖,𝑔
tokens.

Using Lemma 9, we know with high probability that |𝑋 𝑠,𝑥,𝑧
𝑖

|/|𝐺𝑠,𝑥,𝑧
𝑖,𝑔

| ≥ 2 since |𝑋 𝑠,𝑥,𝑧
𝑖

| ≥ 𝜖
𝛿 log𝑛

·
𝑛
𝑥,𝑧
𝑠,𝑖

= 2|𝐺𝑠,𝑥,𝑧
𝑖,𝑔

|. Let 𝑌 𝑠,𝑥,𝑧
𝑖

denote the number of tours in entry/exit-bag-bucket configuration

(𝑠, 𝑏𝑖 , 𝑥, 𝑧) that were sampled, so |𝑋 𝑠,𝑥,𝑧
𝑖

| = 2|𝑌 𝑠,𝑥,𝑧
𝑖

| and |𝑌 𝑠,𝑥,𝑧
𝑖

| ≥ |𝐺𝑠,𝑥,𝑧
𝑖,𝑔

| with high probability. We

will start by creating a one-to-one mapping 𝑠 : 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

→ 𝑌
𝑠,𝑥,𝑧
𝑖

which maps each tour in 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

to a

sampled tour in 𝑌
𝑠,𝑥,𝑧
𝑖

. We know such a one-to-one mapping exists since |𝑌 𝑠,𝑥,𝑧
𝑖

| ≥ |𝐺𝑠,𝑥,𝑧
𝑖,𝑔

|.
Let T be a sampled tour in 𝑌

𝑠,𝑥,𝑧
𝑖

with two extra copies of it, T1 and T2 in 𝑋
𝑠,𝑥,𝑧
𝑖

. Let the partial

tours of T at the bottom part in 𝑉ℓ be 𝑝1, . . . , 𝑝𝑚 . We know |T | ≥ ∑𝑚
𝑖=1 |𝑝𝑖 |. Like the case for trees,

𝑠 maps at most one tour in 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

to each 𝑝 𝑗 . If a tour from 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

maps to 𝑝 𝑗 , we will assume the

load assigned to 𝑝 𝑗 would be 𝑟 𝑗 = ℎ
𝑠,𝑥,𝑧,max

𝑖,𝑔
and 𝑝 𝑗 has load 0 if no tour is assigned to it.

Suppose we think of 𝑟1, . . . , 𝑟𝑚 as items and T1 and T2 as bins of size𝑄 . We might not be able to fit

all items 𝑟1, . . . , 𝑟𝑚 into a bin of size𝑄 because

∑𝑚
𝑖=1 |𝑟𝑖 | ≤ (1 + 𝜖)∑𝑚

𝑖=1 |𝑝𝑖 | ≤ (1 + 𝜖) |T | ≤ (1 + 𝜖)𝑄 .

Similar to the case of trees, we can show that we can assign 𝑟1, . . . , 𝑟 𝑗 (for the maximum 𝑗 ) to T1
such that

∑𝑗

𝑖=1
|𝑟𝑖 | ≤ 𝑄 and the rest, 𝑟 𝑗+1, . . . , 𝑟𝑚 to T2 such that both T1 and T2 cover at most 𝑄

tokens and all items 𝑟1, . . . , 𝑟𝑚 are covered by either T1 or T2. Hence, we have shown that the extra

partial tours pick up exactly ℎ
𝑠,𝑥,𝑧,max

𝑖,𝑔
while picking up orphant tokens from 𝐺

𝑠,𝑥,𝑧
𝑖,𝑔

.

Also, the size of the extra tours after this modification at each bag 𝑠 ′ at any level ℓ ′ > ℓ is

essentially the same as what each of 𝑟𝑖 ’s were at those levels and since we go bottom to top in the

tree, each of those partial tours 𝑟𝑖 have a size that either belongs to a small bucket (and hence has one

of 𝛼 log
2 𝑛/𝜖 many sizes) or a big entry/exit-bag bucket (and hence has one of 𝑂 ((log𝑄 log𝑛)/𝜖2)

many sizes). Therefore, the size of partial tours of 𝑋
𝑠,𝑥,𝑧
𝑖

at any bag 𝑠 ′ at level ℓ ′ > ℓ is one of

𝑂 ((log𝑄 log
2 𝑛)/𝜖2) many sizes.

Therefore, using Lemma 10, all the tokens of 𝐶𝑠 remain covered by partial tours; those partial

tours in 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗

(for 1 ≤ 𝑗 < 𝑔) are tied to the top parts of the tours from group 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗+1 and the partial

tours of 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

will be tied to extra tours designated to level ℓ . We also add extra tokens at nodes in

𝑠 to be picked up by the partial tours of 𝐶𝑠 so that each partial tour has size exactly equal to the

maximum size of a group. All in all, the extra cost paid to build OPTℓ (from OPTℓ+1) is for the extra
tours designated to level ℓ .

Theorem 7. (Structure Theorem) Let opt be the cost of the optimal solution to instance I. We
can build an instance I ′ such that each node has ≥ 1 tokens and there exists a near-optimal solution
OPT

′ for I ′ having expected cost (1 + 2𝜖)opt with the following property. The partial tours going
down 𝐶𝑠 for every bag 𝑠 in OPT

′ has one of 𝑂 ((log𝑄 log
2 𝑛)/𝜖2) possible sizes. More specifically,

suppose (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is a entry/exit-bag-bucket configuration for OPT′. Then either:

• 𝑏𝑖 is a small bucket and hence there are at most 𝛼 log
2 𝑛/𝜖 many partial tours of 𝐶𝑠 whose size

is in bucket 𝑏𝑖 , or
• 𝑏𝑖 is a big bucket; in this case there are 𝑔 = (2𝛿 log𝑛)/𝜖 many group sizes in 𝑏𝑖 : 𝜎𝑖 ≤ ℎ

𝑠,𝑥,𝑧,𝑚𝑎𝑥
𝑖,1

≤
. . . ≤ ℎ

𝑠,𝑥,𝑧,𝑚𝑎𝑥
𝑖,𝑔

< 𝜎𝑖+1 and every tour of bucket 𝑖 has one of these sizes.

Proof. We will show how to modify OPT to a near-optimal solution OPT
′
. We start from ℓ = ℎ

and let OPTℓ = OPT. For decreasing values of ℓ we show, for each ℓ how to modify OPTℓ+1 to obtain

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 27

OPTℓ . We do this in the following manner: we do not modify partial tours in small entry/exit-bag-

bucket configuration. However, for tours in big entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) in
level ℓ − 1, we place them into 𝑔 groups 𝐺

𝑠,𝑥,𝑧
𝑖,1

, . . . ,𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

of equal sizes by placing the 𝑖’th 𝑛
𝑥,𝑧
𝑠,𝑖

/𝑔
partial tours into 𝐺

𝑠,𝑥,𝑧
𝑖, 𝑗

. We have a mapping 𝑓 from each partial tour in 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗−1 to one in 𝐺

𝑠,𝑥,𝑧
𝑖, 𝑗

for

𝑗 ∈ {2, . . . , 𝑔}. We modify OPTℓ to OPT𝑙+1 in the following way: for each tour T that has a partial

tour 𝑡 ∈ 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗

, replace the bottom part of T at 𝑠 from 𝑡 to 𝑓 (𝑡) (which is in 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗−1). For each tour

𝑡 ∈ 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗−1, we will add ℎ

𝑠,𝑥,𝑧,max

𝑖, 𝑗−1 − |𝑡 | many extra tokens at 𝑥 in 𝑠 . Note that by this change, the size

of any tour such as T can only decrease and we are not violating feasibility of the tour because

ℎ
𝑠,𝑥,𝑧,max

𝑖, 𝑗−1 ≤ ℎ
𝑠,𝑥,𝑧,min

𝑖, 𝑗
. However, the tokens in 𝐶𝑠 picked up by the partial tours in 𝐺

𝑠,𝑥,𝑧
𝑖,𝑔

are not

covered by any tours. We can use Lemma 10 to show how we can use extra tours to cover the

partial tours in 𝐺
𝑠,𝑥,𝑧
𝑖,𝑔

such that the new partial tours have size exactly ℎ
𝑠,𝑥,𝑧,max

𝑖,𝑔
.

We will inductively repeat this for levels ℓ − 2, ℓ − 3, . . . , 1 and obtain OPT1 = OPT
′
. Note that by

adding extra tokens ℎ
𝑠,𝑥,𝑧,max

𝑖, 𝑗−1 − |𝑡 | for a tour 𝑡 ∈ 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗−1, we are enforcing that the coverage of each

tour is the maximum size of tours in its group. In a big bucket, there are𝑔 = (2𝛿 log𝑛)/𝜖 many group

sizes, so there are 𝑂 (log𝑛/𝜖) possible sizes for tours in big entry/exit-bag-bucket configuration at

a node. In a small entry/exit-bag-bucket configuration, there can be at most 𝛼 log
2 𝑛/𝜖 many tours

and since there are 𝜏 = 𝑂 (log𝑄/𝜖) many buckets, there can be at most 𝑂 ((log𝑄 log
2 𝑛)/𝜖2) many

tour sizes covering 𝐶𝑏 .

Using Lemma 8, we know the expected cost of the extra tours is at most 2𝜖 · opt, so the expected
cost of opt

′ ≤ (1 + 2𝜖)opt.

4.2 Dynamic Program
In this section we prove Theorem 2 by presenting a dynamic program that will compute a near

optimum solution guaranteed by the structure theorem (Theorem 7). For a given bag 𝑠 , we will

estimate the number of tours entering and exiting 𝑠 . Informally, we will have a vector ®𝑛𝑠,𝑥,𝑧 ∈ [𝑛]𝜏
where if 𝑖 < 1/𝜖 , ®𝑛𝑠,𝑥,𝑧

𝑖
keeps track of the exact number of tours covering 𝑖 tokens in 𝐶𝑠 by entering

through 𝑥 and exiting though 𝑧 and if 𝑖 ≥ 1/𝜖 , ®𝑛𝑠,𝑥,𝑧
𝑖

keeps track of the number of tours covering

between [𝜎𝑖 , 𝜎𝑖+1) tokens. Let 𝑎𝑠 denote the total number of tokens to be picked up from nodes

from bags below and including bag 𝑠 . Since each bag 𝑠 has 𝑘 nodes, we use ®𝑜𝑠 ∈ [𝑛]𝑘 to denote the

tokens (including extra tokens) to be picked up from nodes at bag 𝑠 . If 𝑣 is a node in bag 𝑠 , then ®𝑜𝑠,𝑣
denotes the number of extra tokens to be picked up at 𝑣 in 𝑠 . For a given entry/exit-bag-bucket

configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧), we will keep track of other pieces of information conditional on whether

it is small or big. If entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is small, we will store all tour

sizes exactly. Since the number of tours in a small entry/exit-bag-bucket configuration is at most

𝛾 = 𝛼 log
2 𝑛/𝜖 , we will use a vector ®𝑡𝑠,𝑥,𝑧,𝑖 ∈ [𝑛]𝛾 to represent the tours where ®𝑡𝑠,𝑥,𝑧,𝑖

𝑗
represents the

size of the 𝑗-th tour in the 𝑖-th bucket of tours covering 𝐶𝑠 entering through 𝑥 and exiting through

𝑧.

If the entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is big, there are 𝑔 = (2𝛿 log𝑛)/𝜖 many tour

sizes corresponding to 𝑛𝑂 (𝑔)
possibilities. For each entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧),

we need to keep track of the following information,

• ®ℎ𝑠,𝑥,𝑧,𝑖 ∈ [𝑛]𝑔 is a vector where ®ℎ𝑠,𝑥,𝑧,𝑖
𝑗

= ℎ
𝑠,𝑥,𝑧,max

𝑖, 𝑗
, which is the size of the maximum tour

which lies in group 𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗

of bucket 𝑖 at bag 𝑠 entering through 𝑥 and exiting through 𝑧.

• ®𝑙𝑠,𝑥,𝑧,𝑖 ∈ [𝑛]𝑔 is a vector where ®𝑙𝑠,𝑥,𝑧,𝑖
𝑗

denotes the number of partial tours covering ℎ
𝑠,𝑥,𝑧,max

𝑖, 𝑗

tokens which lie in group𝐺
𝑠,𝑥,𝑧
𝑖, 𝑗

of bucket 𝑖 at bag 𝑠 entering through 𝑥 and exiting through 𝑧.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



28 Jayaprakash and Salavatipour

For a bag 𝑠 and entry/exit pairs, let ®𝑝𝑠,𝑥,𝑧 be a vector containing information about all tours entering

and exiting 𝑠 through 𝑥 and 𝑧 across all buckets.

®𝑝𝑠,𝑥,𝑧 = [®𝑛𝑠,𝑥,𝑧, (®𝑡𝑠,𝑥,𝑧,1, ®ℎ𝑠,𝑥,𝑧,1, ®𝑙𝑠,𝑥,𝑧,1), (®𝑡𝑠,𝑥,𝑧,2, ®ℎ𝑠,𝑥,𝑧,2, ®𝑙𝑠,𝑥,𝑧,2), . . . , (®𝑡𝑠,𝑥,𝑧,𝜏 , ®ℎ𝑠,𝑥,𝑧,𝜏 , ®𝑙𝑠,𝑥,𝑧,𝜏 )] .
Similar to the case of trees, an entry/exit-bag-bucket configuration (𝑠, 𝑏𝑖 , 𝑥, 𝑧) is either small or big

and cannot be both, hence given (®𝑡𝑠,𝑥,𝑧,𝑖 , ®ℎ𝑠,𝑥,𝑧,𝑖 , ®𝑙𝑠,𝑥,𝑧,𝑖 ), it cannot be the case that ®𝑡𝑠,𝑥,𝑧,𝑖 ≠ ®0, ®ℎ𝑠,𝑥,𝑧,𝑖 ≠ ®0
and

®𝑙𝑠,𝑥,𝑧,𝑖 ≠ ®0. Since a bag 𝑠 contains 𝑘 nodes, then we will let ®𝑦𝑠 denote a configuration of all

partial tours covering tokens in 𝐶𝑠 which are entering and exiting 𝑠 . Let 𝑣1, . . . , 𝑣𝑘 be the set of all

nodes in 𝑠 , then ®𝑦𝑠 contains information of tours entering and exiting 𝑠 through pairs of nodes in

{𝑣1, . . . , 𝑣𝑘 }. Note that a tour can enter and exit 𝑠 through the same node.

®𝑦𝑠 = [𝑎𝑠 , ®𝑜𝑠 , ®𝑝𝑠,𝑣1,𝑣1 , ®𝑝𝑠,𝑣1,𝑣2 , . . . , ®𝑝𝑠,𝑣𝑘 ,𝑣𝑘−1 , ®𝑝𝑠,𝑣𝑘 ,𝑣𝑘 ] .
The subproblem A[𝑠, ®𝑦𝑠 ] is supposed to be the minimum cost collection of partial tours covering

𝐶𝑠 having tour profiles corresponding to ®𝑦𝑠 . Our dynamic program heavily relies on the properties

of the near-optimal solution characterized by the structure theorem. We will compute A[·, ·] in a

bottom-up manner, computing A[𝑠, ®𝑦𝑠 ] after we have computed entries for the children bags of 𝑠 .

The final answer is obtained by looking at various entries of the root bag of the tree decomposi-

tion, denoted by 𝑟𝑠 . We will take the minimum cost entry amongst A[𝑟𝑠 , ®𝑦𝑟𝑠 ] such that ®𝑦𝑟𝑠 is the
configuration where all tours enter and exit 𝑟𝑠 only through the depot, 𝑟 . We will compute our

solution in a bottom-up manner.

For any nodes 𝑢, 𝑣 in bag 𝑠 , if there is no edge between 𝑢 and 𝑣 , we can add an edge between

them and the cost of the edge is the shortest path cost between 𝑢 and 𝑣 in 𝐺 . Similarly, for two

adjacent bags, 𝑠 and 𝑠1, if 𝑢 ∈ 𝑠 and 𝑣 ∈ 𝑠1 and if there is no edge between 𝑢 and 𝑣 in𝐺 , we will add

an edge between them and the cost of the edge is the shortest path cost between 𝑢 and 𝑣 in 𝐺 . If

𝑢 = 𝑣 , then the cost of the edge connecting them can be assumed to be zero. Let ∥®𝑜𝑠 ∥ =
∑

𝑢∈𝑠 ®𝑜𝑠,𝑢 .
For the base case, we consider leaf bags. A leaf bag 𝑠 could have 𝑎𝑠 ≥ 1 tokens where 𝑎𝑠 = ∥®𝑜𝑠 ∥.

We will defer how we compute A[𝑠, ®𝑦𝑠 ] to the end of this section. Informally, we will set A[𝑠, ®𝑦𝑠 ]
to be the minimum cost of the edges between nodes in bag 𝑠 used for the tours in ®𝑦𝑠 to pick up ®𝑜𝑠
tokens located at nodes in bag 𝑠 . The total coverage of the tours in ®𝑦𝑠 should be exactly 𝑎𝑠 and a

token at a node should be picked up by one of the tours in ®𝑦𝑠 . From our structure theorem, we know

there exists a near optimum solution such that each partial tour has one of 𝑂 (log𝑄 log
2 𝑛/𝜖2) tour

sizes and for each small bucket, there are at most 𝛼 log
2 𝑛/𝜖 partial tours in it. For every big bucket,

there are 𝑔 = (2𝛿 log𝑛)/𝜖 many group sizes and every tour of bucket 𝑖 has one of those sizes. We

are computing all possible A[𝑠, ®𝑦𝑠 ] entries and from our structure theorem, we know one of them

has near-optimum expected cost, so by enumerating all possibilities, our dynamic program finds a

near-optimums solution for the leaf bag, proving the base case.

Recall that the tree 𝑇 is binary. Suppose bag 𝑠 has two children in 𝑇 , 𝑠1 and 𝑠2. To compute

cell A[𝑠, ®𝑦𝑠 ], we will use the entries of its children, A[𝑠1, ®𝑦 ′] and A[𝑠2, ®𝑦 ′′]. Suppose 𝐶𝑠𝑖 has 𝑎𝑠𝑖
tokens, then 𝑎𝑠 = ∥®𝑜𝑠 ∥ + 𝑎𝑠1 + 𝑎𝑠2 . H[®𝑜𝑠 , ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′] checks whether the tour profiles ®𝑦𝑠 , ®𝑦 ′

and ®𝑦 ′′

are consistent meaning that all tokens picked up by tours in ®𝑦 ′
and ®𝑦 ′′

along with tokens in 𝑠 , ®𝑜𝑠
are picked up by tours in ®𝑦𝑠 . We will also define I[·, ·, ·, ·] where I[®𝑜𝑠 , ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′] denotes the cost of
using the edges in bag 𝑠 , edges connecting nodes in 𝑠 and 𝑠1, and edges connecting nodes in 𝑠 and

𝑠2. We can think of I as the cost of using edges to patch up partial tours covering 𝐶𝑠1 and partial

tours covering 𝐶𝑠2 to create tours covering 𝐶𝑠 . We will explain in the next section how H and I
are computed. Recall ®𝑜𝑠 is part of ®𝑦𝑠 . Suppose we have already computed the entries A[𝑠1, ·] and
A[𝑠2, ·], we will compute A[𝑠, ·] in the following way:

A[𝑠, ®𝑦𝑠 ] = min

®𝑦′, ®𝑦′′:H[®𝑜𝑠 , ®𝑦𝑠 , ®𝑦′, ®𝑦′′ ]=True
{A[𝑠1, ®𝑦 ′] + A[𝑠2, ®𝑦 ′′] + I[®𝑜𝑠 , ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′]}. (1)

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 29

There are four possibilities for each partial tour 𝑡 at bag 𝑠 going down 𝐶𝑠 covering tokens for the

subtree rooted at children bags, 𝑠1 and 𝑠2 while also picking up extra tokens from nodes in 𝑠:

• 𝑡 could be a tour that picks up tokens from nodes at bag 𝑠 and does not visit or pick up tokens

in 𝐶𝑠1 ∪𝐶𝑠2 .

• 𝑡 could be a tour that picks up tokens from nodes at bag 𝑠 and picks up tokens only from 𝐶𝑠1 .

• 𝑡 could be a tour that picks up tokens from nodes at bag 𝑠 and picks up tokens only from 𝐶𝑠2 .

• 𝑡 could be a tour that picks up tokens from nodes at bag 𝑠 and picks up tokens from𝐶𝑠1 ∪𝐶𝑠2 .

We would find the minimum cost over all configurations ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′
as long as ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′

are consistent.

We say ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′
are consistent if there is a way to write each tour in ®𝑦𝑠 as a combination of some

tours from ®𝑦 ′
(at most𝑂 (𝑘2) such tours), and some tours from ®𝑦 ′′

(at most𝑂 (𝑘2)) while also picking
up extra tokens from nodes in 𝑠 . We would also require that all tokens in ®𝑦 ′

and ®𝑦 ′′
are picked up

by tours in ®𝑦𝑠 .
For a leaf bag 𝑠 , I[®𝑜𝑠 , ®𝑦𝑠 , ®0, ®0] denotes the minimum cost of tours entering bag 𝑠 and visiting the

nodes in 𝑠 such that all tokens in 𝑠 are picked up by some tour in ®𝑦𝑠 . The last two entries are set to

®0 since 𝑠 is a leaf bag, and has no children, and there are no other tours (apart from those in ®𝑦𝑠 )
entering or exiting through nodes in bag 𝑠 . We will set A[𝑠, ®𝑦𝑠 ] = I[®𝑜𝑠 , ®𝑦𝑠 , ®0, ®0] since I[®𝑜𝑠 , ®𝑦𝑠 , ®0, ®0]
computes exactly the minimum cost collection of partial tours covering 𝐶𝑠 = 𝑠 having tour profiles

corresponding to ®𝑦𝑠 . We will explain how to compute the entries of I[·, ·, ·, ·] in the next section.

4.3 Checking Consistency
In our dynamic program, we are given three vectors ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′

where 𝑠 is a bag having children bags

𝑠1 and 𝑠2. ®𝑦 ′
represents the configuration of tours covering 𝐶𝑠1 and ®𝑦 ′′

represents the configuration

of tours covering 𝐶𝑠2 . Given ®𝑦𝑠 , for each node 𝑢 in 𝑠 , there are ®𝑜𝑠,𝑢 many tokens to be picked up at

𝑢. We require the tokens for nodes in 𝑠 and tokens covered by the partial tours from ®𝑦 ′
and ®𝑦 ′′

to

be picked up by tours in ®𝑦𝑠 . For simplicity, we will refer to a tour from ®𝑦𝑠 as 𝑡𝑠 , ®𝑦 ′
as 𝑡𝑢 and a tour

from ®𝑦 ′′
as 𝑡𝑤 .

Definition 8. We say configurations ®𝑦𝑠 , ®𝑦 ′ and ®𝑦 ′′ are consistent if the following holds:
• Every tour in ®𝑦 ′ maps to some tour in ®𝑦𝑠 .
• Every tour in ®𝑦 ′′ maps to some tour in ®𝑦𝑠 .
• Every tour in ®𝑦𝑠 has at most 𝑘2 tours from ®𝑦 ′ and at most 𝑘2 tours from ®𝑦 ′′ mapping to it.
• Suppose 𝑡1𝑠1 , 𝑡

2

𝑠1
, . . . , 𝑡

𝜎1
𝑠1 are tours from ®𝑦 ′ and 𝑡1𝑠2 , . . . , 𝑡

𝜎2
𝑠2 are tours from ®𝑦 ′′ mapping to a tour 𝑡𝑠 in

®𝑦𝑠 . Then there is an ordering of 𝑡1𝑠1 , 𝑡
2

𝑠1
, . . . , 𝑡

𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 together with some edges in 𝑠 ∪ 𝑠1 ∪ 𝑠2,

which when concatenated gives 𝑡𝑠 . Also, the number of extra tokens (from nodes in 𝑠) in total
picked up by tour 𝑡𝑠 from nodes in bag 𝑠 is exactly |𝑡𝑠 | −

∑𝜎1
𝑗=1

|𝑡 𝑗𝑠1 | −
∑𝜎2

𝑗=1
|𝑡 𝑗𝑠2 |.

• All tokens of nodes at bag 𝑠 , ®𝑜𝑠 are picked up tours in ®𝑦𝑠 .

Consistency ensures that we can patch up tours from subproblems and combine them into new

tours in a correct manner while also picking up extra tokens from nodes in 𝑠 . We will describe

how we can compute consistency. Instead of using ®𝑦𝑠 , we will use ®𝑧𝑠 which is the same as ®𝑦𝑠 , but
excludes information about the number of tokens in a bag, and only tracks information about the

number of tours passing through bag 𝑠 .

®𝑧𝑠 = [ ®𝑝𝑠,𝑣1,𝑣1 , ®𝑝𝑠,𝑣1,𝑣2 , . . . , ®𝑝𝑠,𝑣𝑑 ,𝑣𝑑−1 , ®𝑝𝑠,𝑣𝑑 ,𝑣𝑑 ] .
We will similarly define ®𝑧 ′ and ®𝑧 ′′. Suppose 𝑡𝑠,𝑥1,𝑥2 is a tour in 𝑠 which enters through 𝑥1 and exits

through 𝑥2, let ®𝑧𝑠 − 𝑡𝑠,𝑥1,𝑥2 refers to the configuration ®𝑧𝑠 having one less tour of size |𝑡𝑠,𝑥1,𝑥2 | from
tours entering through 𝑥1 and exiting through 𝑥2 in 𝑠 . Recall that ®𝑜𝑠 is the vector of extra tokens at
each node in bag 𝑠 which need to be covered by tours in ®𝑧𝑠 .

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



30 Jayaprakash and Salavatipour

Given ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′ and ®𝑜𝑠 , we will use the table H to check if ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′ are consistent. We set

H[®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′] =True if ®𝑧𝑠 , ®𝑧 ′ and ®𝑧 ′′ are consistent and False otherwise. For the base case,

H[®0, ®0, ®0, ®0] =True. For the recurrence, we will look at all possible ways of combining tours from ®𝑧 ′
and ®𝑧 ′′ into ®𝑧𝑠 while also picking up extra tokens from bag 𝑠 . For a tour 𝑡𝑠 , let ®𝑜 ′𝑠,𝑡𝑠 be a vector where
®𝑜 ′𝑠,𝑡𝑠 ,𝑢 denotes the number of extra tokens picked up by 𝑡𝑠 at node𝑢 in bag 𝑠 . Let



®𝑜 ′𝑠,𝑡𝑠 

 = ∑
𝑢∈𝑠 ®𝑜 ′𝑠,𝑡𝑠 ,𝑢

count the number of tokens picked up by 𝑡𝑠 from nodes in 𝑠 .

Note that the vertices in a bag 𝑠 are a cut-set for the graph induced by the vertices in the subtree

rooted at 𝑠 (called𝑇𝑠 ) and the rest of the graph. So any tour that visits a vertex that belongs to a bag

in𝑇𝑠 must go through a vertex in 𝑠 . Since each bag has 𝑘 vertices, hence each tour 𝑡𝑠 that enters and

exits 𝑠 at most 𝑘2 times and can be can be obtained from concatenation of a collection of (at most

𝑘2) tours 𝑡1𝑠1 , 𝑡
2

𝑠1
, . . . , 𝑡

𝜎1
𝑠1 entering and exiting 𝑠1 from 𝑠 , a colletion (of at most 𝑘2) tours 𝑡1𝑠2 , . . . , 𝑡

𝜎2
𝑠2

entering and exiting 𝑠2 from 𝑠 , and some edges 𝑃𝑡𝑠 between vertices in 𝑠 ∪ 𝑠1 ∪ 𝑠2, in some order. So

similar to the case of trees, we can write the recurrence of our consistency table as:

H[®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′] =
∨

𝑡𝑠 ,𝑡
1

𝑠
1

,...,𝑡
𝜎
1

𝑠
1
,𝑡1𝑠

2

,...,𝑡
𝜎
2

𝑠
2
,®𝑜′𝑠,𝑡𝑠

|𝑡𝑠 |=
∑𝜎

1

𝑗=1
|𝑡 𝑗𝑠

1
|+∑𝜎

2

𝑗=1
|𝑡 𝑗𝑠

2
|+∥ ®𝑜′𝑠,𝑡𝑠 ∥

H[®𝑜𝑠 −®𝑜 ′𝑠,𝑡𝑠 , ®𝑧𝑠 −𝑡𝑠 , ®𝑧
′−𝑡1𝑠1 − . . .−𝑡𝜎1𝑠1 , ®𝑧

′′−𝑡1𝑠2 − . . .−𝑡𝜎2𝑠2 ],

(2)

where the

∨
is over all tours 𝑡𝑠 , 𝑡

1

𝑠1
, . . . , 𝑡

𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 where:

• 𝜎1, 𝜎2 ≤ 𝑘2

• tour 𝑡𝑠 is composed of concatenation of 𝑡1𝑠1 , . . . , 𝑡
𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 plus some edges between

vertices in 𝑠 ∪ 𝑠1 ∪ 𝑠2, in some order.

Note that for each possible tour size in ®𝑧𝑠 , we consider a tour 𝑡𝑠 and an orderd collection

of 𝑂 (𝑘2) tours from 𝑠1, 𝑠2 and edges from 𝑠 ∪ 𝑠1 ∪ 𝑠2. The number of possible options for 𝑡𝑠 is

𝑂 (𝑘2 log𝑄 log
2 𝑛/𝜖2), since each tour is defined by a pair of vertices of 𝑠 (to enter and exit) and

has one of 𝑂 (log𝑄 log
2 𝑛/𝜖2) possible sizes. Similar bound holds for each of 𝑡1𝑠1 , . . . , 𝑡

𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 .

Also, the number of ways tokens of 𝑡𝑠 can be broken up among these subtours of 𝑠1, 𝑠2 is at most

𝑄𝑂 (𝑘2)
. Therefore, for each entry ofH[., ., .] in Equation (2) the number of subproblems considered

in

∨
is at most (𝑄𝑘)𝑂 (𝑘2) · log𝑂 (𝑘2) 𝑛/𝜖2.

Although the above DP lets us check if ®𝑦𝑠 , ®𝑦 ′
and ®𝑦 ′′

are consistent, the entries ofH are True/False

and does not give us information about the cost associated with such composition of 𝑡𝑠 from tours

𝑡1𝑠1 , . . . , 𝑡
𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 . We will use table I[., ., .] which is computed similar to table H[., ., .] except

that it stores the minimum cost of generating tours for 𝑠 from patching up tours from 𝑠1, 𝑠2. Recall

the recurrence of our dynamic program for A is the following,

A[𝑠, ®𝑦𝑠 ] = min

®𝑦′, ®𝑦′′:H[®𝑜𝑠 , ®𝑦𝑠 , ®𝑦′, ®𝑦′′ ]=True
{A[𝑠1, ®𝑦 ′] + A[𝑠2, ®𝑦 ′′] + I[®𝑜𝑠 , ®𝑦𝑠 , ®𝑦 ′, ®𝑦 ′′]}.

The cost of using edges in 𝐶𝑠1 and 𝐶𝑠2 by the partial tours in ®𝑦 ′
and ®𝑦 ′′

in ®𝑦𝑠 are accounted for by

A[𝑠1, ®𝑦 ′] +A[𝑠2, ®𝑦 ′′]. However, we have not accounted for the cost of hopping from one node to

the other in 𝑠 and also the cost of going from nodes in 𝑠 to nodes in child bags, 𝑠1 and 𝑠2. Suppose

𝑡𝑠 (a tour for 𝑠) is obtained from a collection of tours 𝑡1𝑠1 , . . . , 𝑡
𝜎1
𝑠1 from 𝑠1 and tours 𝑡1𝑠2 , . . . , 𝑡

𝜎2
𝑠2 from

𝑠2 and a collection of edges 𝑃𝑡𝑠 that are between the vertices in 𝑠 ∪ 𝑠1 ∪ 𝑠2 in some order. We will

let cost(𝑃𝑡𝑠 ) denote the cost of the edges in 𝑃𝑡𝑠 . The following figure illustrates an example of one

such tour 𝑡𝑠 (in red) and 𝑃𝑡𝑠 (in dotted) and the tours from 𝑠1 and 𝑠2

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 31

a b c d e

a b cd e a b c f
g

Fig. 3. Dashed edges represent one such edge set for a particular tour 𝑡𝑠

We will useH to compute I. Let I[®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′] denote the cost of using the edges in bag 𝑠 , edges

connecting nodes in 𝑠 and 𝑠1, and edges connecting nodes in 𝑠 and 𝑠2. We can think of I as the cost
of using edges to patch up partial tours covering 𝐶𝑠1 (®𝑧 ′), and partial tours covering 𝐶𝑠2 ( ®𝑧 ′′), to
create tours covering𝐶𝑠 (®𝑧𝑠 ). For the base case, we will set I[®0, ®0, ®0, ®0] = 0 and set all other entries to

infinity. We will only compute an entry I[®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′] if H[®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′] =True. The computation

for I is similar to H but also considers the cost of the edges from 𝑠 ∪ 𝑠1 ∪ 𝑠2 used in concatenating

the tours of 𝑠1, 𝑠2 to obtain a tour 𝑡𝑠 for 𝑠 . In our recurrence, we are taking a tour 𝑡𝑠 from ®𝑦𝑠 along
with tours 𝑡1𝑠1 , . . . , 𝑡

𝜎1
𝑠1 from ®𝑦 ′

(with 𝜎1 ≤ 𝑘2), tours 𝑡1𝑠2 , . . . , 𝑡
𝜎2
𝑠2 from ®𝑦 ′′

(with 𝜎2 ≤ 𝑘2), along with

tokens ®𝑜 ′𝑠 that 𝑡𝑠 covers at nodes in bag 𝑠 . Suppose 𝑃𝑡𝑠 is the ordered the set of edges from 𝑠 ∪ 𝑠1 ∪ 𝑠2
that is used in between some ordering of 𝑡1𝑠1 , . . . , 𝑡

𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 to obtain 𝑡𝑠 . For such a tour 𝑡𝑠 , there

are 𝑄𝑂 (𝑘2)𝑘𝑂 (𝑘2)
many possibilities for 𝑃𝑡𝑠 (their orders and the tokens from 𝑠 picked by 𝑡𝑠 ). For a

fixed 𝑃𝑡𝑠 , cost(𝑃𝑡𝑠 ) is the cost edges of 𝑃𝑡𝑠 used for forming 𝑡𝑠 from concatenating tours of 𝑠1 and 𝑠2,

while picking up extra tokens from nodes in 𝑠 . We will enumerate through all possibilities, break

the recurrence into subproblems and find a solution of minimum cost. We can write the recurrence

as follows:

I[®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′] = min

{
cost(𝑃𝑡𝑠 ) + I[®𝑜𝑠 − ®𝑜 ′𝑠,𝑡𝑠 , ®𝑧𝑠 − 𝑡𝑠 , ®𝑧 ′ − 𝑡1𝑠1 − . . . − 𝑡𝜎1𝑠1 , ®𝑧

′′ − 𝑡1𝑠2 − . . . − 𝑡𝜎2𝑠2 ]
}
,

where the minimum is taken over all tours 𝑡𝑠 , 𝑡
1

𝑠1
, . . . , 𝑡

𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 , collection of edges 𝑃𝑡𝑠 and

®𝑜𝑠,𝑡𝑠 where:
• |𝑡𝑠 | =

∑𝜎1
𝑗=1

|𝑡 𝑗𝑠1 | +
∑𝜎2

𝑗=1
|𝑡 𝑗𝑠2 | +



®𝑜 ′𝑠,𝑡𝑠 


• 𝜎1, 𝜎2 ≤ 𝑘2

• tour 𝑡𝑠 is composed of concatenation (in some order) of 𝑡1𝑠1 , . . . , 𝑡
𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 and edges 𝑃𝑡𝑠 .

From the definition of I,H, and A, it should be easy to see the correctness of recurrence given in

Equation (1).

4.4 Time Complexity
We will work bottom-up and analyze the time complexity of A[·, ·] on the assumption that we

have already precomputed our consistency table I[·, ·, ·, ·]. Computing A[𝑠, ·] requires looking at
entries of child bags in A[·, ·]. Given ®𝑦𝑠 , ®𝑦 ′

and ®𝑦 ′′
which are consistent, computing the cost of

A[𝑠, ®𝑦𝑠 ] takes 𝑂 (1) time. Each ®𝑦𝑠 consists of 𝑂 (𝑘2) different ®𝑝𝑠,𝑢,𝑣 vectors. Each ®𝑝𝑠,𝑢,𝑣 contains 𝜏
many triples (®𝑡𝑠,𝑥,𝑧,𝑖 , ®ℎ𝑠,𝑥,𝑧,𝑖 , ®𝑙𝑠,𝑥,𝑧,𝑖 ).

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



32 Jayaprakash and Salavatipour

(1) Each ®𝑡𝑠,𝑥,𝑧,𝑖 has 𝑛𝑂 (log2 𝑛/𝜖)
possibilities since there are at most 𝑂 (log2 𝑛/𝜖) tours in a small

bucket.

(2) Each
®ℎ𝑠,𝑥,𝑧,𝑖 and ®𝑙𝑠,𝑥,𝑧,𝑖 have 𝑛𝑂 (𝑔)

possibilities. Recall that 𝑔 = (2𝛿 log𝑛)/𝜖 , so each ®ℎ𝑠,𝑥,𝑧,𝑖 and
®𝑙𝑠,𝑥,𝑧,𝑖 have 𝑛𝑂 (log𝑛/𝜖)

possibilities.

(3) Each triple (®𝑡𝑠,𝑥,𝑧,𝑖 , ®ℎ𝑠,𝑥,𝑧,𝑖 , ®𝑙𝑠,𝑥,𝑧,𝑖 ) has 𝑛𝑂 (log2 𝑛/𝜖)
possibilities.

(4) Since ®𝑝𝑠,𝑢,𝑣 has 𝜏 = 𝑂 (log𝑄/𝜖) many such triples, the number of possible entries for ®𝑝𝑠,𝑢,𝑣 is
𝑛𝑂 (𝜏 log2 𝑛/𝜖) = 𝑛𝑂 (log𝑄 log

2 𝑛/𝜖2)
.

(5) Since ®𝑦𝑠 consists of 𝑂 (𝑘2) different entries of ®𝑝 , so the total number of possible entries for

each ®𝑦𝑠 is 𝑛𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
.

Since there are 𝑛𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
possibilities for ®𝑦𝑠 , ®𝑦 ′

and ®𝑦 ′′
, the time of computing DP entries of

A[𝑠, ·] for a single bag 𝑠 would take 𝑛𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
and across all bags of the tree decomposition,

it would still be 𝑛𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
.

Now, we will analyze the time of computing the consistency table I[·, ·, ·, ·]. Assuming we have

computed smaller entries, the cost of computing if I[®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′] requires taking all possibili-

ties way of picking 𝑡𝑠 , 𝑡
1

𝑠1
, . . . , 𝑡

𝜎1
𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 , and 𝑃𝑡𝑠 and some ordering of them, and ®𝑜 ′𝑠,𝑡𝑠 . Since

there are at most 𝑂 (log𝑄 log
2 𝑛/𝜖2) different tour sizes, the number of possible ways of picking

𝑡𝑠 , 𝑡
1

𝑠1
, . . . , 𝑡𝜎𝑠1 , 𝑡

1

𝑠2
, . . . , 𝑡

𝜎2
𝑠2 is 𝑂 ((log𝑄 log

2 𝑛/𝜖2)3𝑘2 ). Since the number of entries in the vector of ®𝑜 is

𝑂 (𝑘), there are𝑄𝑂 (𝑘)
possibilities for ®𝑜 ′𝑠 . Each path 𝑃𝑡𝑠 consists of𝑂 (𝑘) nodes and at most𝑄 tokens

can be picked up from each node, this would lead to 𝑂 (𝑄𝑘𝑘𝑘
2 ) = (𝑛𝑘)𝑂 (𝑘2)

many possibilities for

𝑃𝑡𝑠 since𝑄 ≤ 𝑛. Hence, the total cost of computing a single entry of I[·, ·, ·, ·] is (𝑛𝑘)𝑂 (𝑘2)
. Similar to

the analysis for A[·, ·], there are 𝑛𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
possibilities for ®𝑜𝑠 , ®𝑧𝑠 , ®𝑧 ′, ®𝑧 ′′, hence the total cost

of computing I[·, ·, ·, ·] is (𝑛𝑘)𝑂 (𝑘2)𝑛𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
. Similarly, the cost of computing H[·, ·, ·, ·] is

(𝑛𝑘)𝑂 (𝑘2)𝑛𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
.

Since the cost of computing I[·, ·, ·, ·] dominates the cost of computing A[·, ·], the total time

complexity of our algorithm is (𝑛𝑘)𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
. Hence, for the unit demand case, since 𝑄 ≤ 𝑛,

the run time of our algorithm is (𝑛𝑘)𝑂 (𝑘2
log

3 𝑛/𝜖2)
.

4.5 Extension to Splittable and Unsplittable CVRP in Bounded Treewidth Graphs
We will extend our algorithm for unit demand CVRP on bounded-treewidth graphs to the splittable

CVRP when demands are quasi-polynomially bounded. In our algorithm for unit demand CVRP for

bounded-treewidth CVRP, we viewed the unit demand of each node as a token placed at the node.

For the splittable case, we can rescale the demand 𝑑 (𝑣) such that there are 1 ≤ 𝑑 (𝑣) < 𝑛𝑄 tokens

on a node and we can use the same structure theorem as before by modifying tours such that there

are at most 𝑂 (log𝑄 log
2 𝑛/𝜖2) different tours for partial tours at a node. We can use the same DP

to compute the solution. Each ®𝑦𝑠 consists of 𝑂 (𝑘2) different ®𝑝𝑠,𝑢,𝑣 vectors. Each ®𝑝𝑠,𝑢,𝑣 contains 𝜏
many triples (®𝑡𝑠,𝑥,𝑧,𝑖 , ®ℎ𝑠,𝑥,𝑧,𝑖 , ®𝑙𝑠,𝑥,𝑧,𝑖 ).

(1) Each ®𝑡𝑠,𝑥,𝑧,𝑖 has (𝑛𝑄)𝑂 (log2 𝑛/𝜖2)
possibilities since there are at most 𝑂 (log2 𝑛/𝜖) tours in a

small bucket.

(2) Each
®ℎ𝑠,𝑥,𝑧,𝑖 and ®𝑙𝑠,𝑥,𝑧,𝑖 have (𝑛𝑄)𝑂 (𝑔)

possibilities. Recall that 𝑔 = (2𝛿 log𝑛)/𝜖2, so each ®ℎ𝑠,𝑥,𝑧,𝑖
and

®𝑙𝑠,𝑥,𝑧,𝑖 have (𝑛𝑄)𝑂 (log𝑛/𝜖2)
possibilities.

(3) Each triple (®𝑡𝑠,𝑥,𝑧,𝑖 , ®ℎ𝑠,𝑥,𝑧,𝑖 , ®𝑙𝑠,𝑥,𝑧,𝑖 ) has (𝑛𝑄)𝑂 (log2 𝑛/𝜖)
possibilities.

(4) Since ®𝑝𝑠,𝑢,𝑣 has 𝜏 = 𝑂 (log𝑄/𝜖) many such triples, the number of possible entries for ®𝑝𝑠,𝑢,𝑣 is
(𝑛𝑄)𝑂 (𝜏 log2 𝑛/𝜖) = (𝑛𝑄)𝑂 (log𝑄 log

2 𝑛/𝜖2)
.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 33

(5) Since ®𝑦𝑠 consists of 𝑂 (𝑘2) different entries of ®𝑝 , the total number of possible entries for each

®𝑦𝑠 is (𝑛𝑄)𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
.

Similar to the analysis of the runtime of the unit demand case, the time complexity of com-

puting the entries of DP tables A and consistency table I is, (𝑘𝑄)𝑂 (𝑘2) (𝑛𝑄)𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2) =

(𝑛𝑄)𝑂 (𝑘2
log𝑄 log

2 𝑛/𝜖2)
since 𝑘 ≤ 𝑛. Suppose 𝑄 = 𝑛𝑂 (log𝑐 𝑛)

, then the runtime of our algorithm is

𝑛𝑂 (𝑘2
log

2𝑐+3 𝑛/𝜖2)
.

For unsplittable CVRP, similar to the case of trees, observe that 𝑑 (𝑣) ≤ 𝑄 for each node 𝑣 and

whenever our algorithm serves a node 𝑣 , it picks up all the tokens at that node completely. Therefore,

the solution it generates serves each node in a single tour.

5 EXTENSION TO GRAPHS OF BOUNDED DOUBLING METRICS AND BOUNDED
HIGHWAY DIMENSION

In this section, we will show how we can use our algorithm for CVRP on bounded-treewidth graphs

as a blackbox to obtain a QPTAS for graphs of bounded doubling metrics and graphs of bounded

highway dimension. Consider a metric (𝑉 ,𝑑) defined on a set of vertices 𝑉 along with distance

function 𝑑 between vertices. Let 𝐵(𝑣, 𝑟 ) be the ball of radius 𝑟 around 𝑣 , i.e., 𝐵(𝑣, 𝑟 ) = {𝑢 : 𝑑 (𝑣,𝑢) ≤
𝑟 }. The doubling dimension of (𝑉 ,𝑑) is the smallest 𝜅 such that any 𝐵(𝑣, 2𝑟 ) is contained in the

union of at most 2
𝜅
balls of radius 𝑟 . A metric is called a doubling metric if 𝜅 is a constant. For

example, a constant dimensional Euclidean metric is a doubling metric.

We will use the following result about embedding graphs of doubling dimension 𝐷 into a

bounded-treewidth graph of treewidth 𝑘 ≤ 2
𝑂 (𝐷)

⌈(
4𝐷 logΔ

𝜖

)𝐷⌉
by Talwar [29].

Lemma 11. (Theorem 9 in [29]) Let (𝑋,𝑑) be a metric with doubling dimension 𝐷 and aspect ratio Δ.
For any 𝜖 > 0, (𝑋,𝑑) can be (1 + 𝜖) probabilistically approximated by a family of treewidth 𝑘-metrics

for 𝑘 ≤ 2
𝑂 (𝐷)

⌈(
4𝐷 logΔ

𝜖

)𝐷⌉
.

For graphs of bounded highway dimension we use the following definition from [16]. Suppose

(𝑉 ,𝑑) is a metric space. We can think of 𝑉 as the vertices of a complete graph 𝐺 and 𝑑 as the edge

weights satisfying triangle inequality.

Definition 9. [16] The highway dimension of (𝑉 ,𝑑) is the smallest integer 𝜅 such that, for some
universal constant 𝑐 ≥ 4, for every 𝑟 ∈ R+ and every ball 𝐵(𝑣, 𝑐 · 𝑟 ) of radius 𝑐 · 𝑟 , there are at most 𝜅
vertices in 𝐵(𝑣, 𝑐 · 𝑟 ) hitting all shortest paths of length more than 𝑟 that lie in 𝐵(𝑣, 𝑐 · 𝑟 ).

The parameter 𝜆 = 𝑐 − 4 is called the violation parameter. The following result by Feldmann et

al. [16] shows how every graph with low highway dimension can be embedded approximately into

a graph with (relatively) small treewidth.

Lemma 12. (Theorem 3 in [16]) Let 𝐺 be a graph with highway dimension 𝐷 of violation 𝜆 > 0,
and aspect ratio Δ. For any 𝜖 > 0, there is a polynomial-time computable probabilistic embedding 𝐻
of 𝐺 with treewidth (logΔ)𝑂 (log2 ( 𝐷

𝜖𝜆
)/𝜆) and expected distortion 1 + 𝜖 .

For both graph classes, our algorithm works as follows. The input graph 𝐺 is embedded into a

host graph 𝐻 of bounded treewidth using the embedding given in Lemma 11 and Lemma 12. The

algorithm then finds a (1 + 𝜖)-approximation for CVRP for 𝐻 , using the dynamic programming

solution from the Section 5. The solution for 𝐻 is then lifted back to a solution in 𝐺 . For each tour

in the solution for 𝐻 , a tour in𝐺 will visit nodes in the same order as the tour in 𝐻 . The embedding

given in Lemma 11 and Lemma 12 is such that an optimal set of tours in the host graph gives a

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



34 Jayaprakash and Salavatipour

(1 + 𝜖) solution in 𝐺 . The embedding also ensures that 𝐻 has treewidth small enough that the

algorithm runs in quasi-polynomial time.

Theorem 8. For any 𝜖 > 0 and 𝐷 > 0, there is a an algorithm that, given an instance of the
splittable or unsplittable CVRP with capacity 𝑄 = 𝑛log

𝑐 𝑛 and the graph has doubling dimension 𝐷

with cost opt, finds a (1 + 𝜖)-approximate solution in time 𝑛𝑂 (𝐷𝐷
log

2𝑐+𝐷+3 𝑛/𝜖𝐷+2) .

Proof. This follows easily from Lemma 11 and using the algorithm for bounded-treewidth

as a blackbox. In place of 𝑘 , we will substitute 𝑘 = 2
𝑂 (𝐷)

⌈(
4𝐷 logΔ

𝜖

)𝐷⌉
into the runtime for the

algorithm for bounded-treewidth which is 𝑛𝑂 (𝑘2
log

2𝑐+3 𝑛/𝜖2)
. Hence, we have an algorithm for graphs

of bounded doubling dimension with runtime 𝑛𝑂 (𝐷𝐷
log

2𝑐+𝐷+3 𝑛/𝜖𝐷+2)
.

As an immediate corollary, since R2 has doubling dimension log
2
7 < 3 [30], the above theorem

implies an approximation scheme for unit demand CVRP on Euclidean metrics on R2 in time

𝑛𝑂 (log6 𝑛/𝜖5)
which improves on the run time of 𝑛log

𝑂 (1/𝜖 ) 𝑛
of [15].

Theorem 9. For any 𝜖 > 0, 𝜆 > 0 and 𝐷 > 0, there is a an algorithm that, given an instance of the
splittable or unsplittable CVRP with capacity 𝑄 = 𝑛log

𝑐 𝑛 and a graph with highway dimension 𝐷 and

violation 𝜆 finds a (1 + 𝜖)-approximate solution in time 𝑛𝑂 (log2𝑐+3+log
2 ( 𝐷

𝜖𝜆
) · 1
𝜆 𝑛/𝜖2) .

Proof. This follows easily from Lemma 12 and using the algorithm for bounded-treewidth

as a blackbox. In place of 𝑘 , we will substitute 𝑘 = (logΔ)𝑂 (log2 ( 𝐷
𝜖𝜆

)/𝜆)
into the runtime for the

algorithm for bounded-treewidth which is 𝑛𝑂 (𝑘2
log

2𝑐+3 𝑛/𝜖2)
. Hence, we have an algorithm for graphs

of bounded doubling dimension with runtime 𝑛𝑂 (log2𝑐+3+log
2 ( 𝐷

𝜖𝜆
) · 1
𝜆 𝑛/𝜖2)

.

6 CONCLUSION
In this paper we presented QPTAS’s for CVRP on trees, graphs of bounded treewidths, bounded

doubling dimension, and bounded highway dimension. The immediate questions to consider are

whether these approximation schemes can in fact be turned into PTAS’s. As we said earlier, following

the anouncement of this paper, Mathieu and Zhou [25] presented a PTAS for CVRP on trees but

the problem remains open to obtain a PTAS for the more general classes. For unsplittable CVRP,

our result shows the difficult case is when demands (and 𝑄) are not bounded, i.e. when 𝑄 = 1 and

𝑑 (𝑣) ∈ [0, 1]. It would be interesting to see if there is an asymptotic PTAS for special graph classes

(such as trees).

Although our result implies a QPTAS with a better run time for CVRP on Euclidean plan R2

(𝑛𝑂 (log6 𝑛/𝜖5)
vs the time of 𝑛log

𝑂 (1/𝜖 ) 𝑛
of [15]), getting a PTAS remains an interesting open question.

As discussed in [1], the difficult case appears to be when𝑄 is polynomial in 𝑛 (e.g.𝑄 =
√
𝑛). Another

interesting question is to consider CVRP on planar graphs and develop approximation schemes for

them and more generally graphs of bounded genus or minor free graphs.

Acknowledgements: We thank the anonymous referres whose comments helped improve the

writing of this paper.

REFERENCES
[1] A. Adamaszek, A. Czumaj, and A. Lingas. PTAS for k-tour cover problem on the plane for moderately large values of

k. In Y. Dong, D. Du, and O. H. Ibarra, editors, Algorithms and Computation, 20th International Symposium, ISAAC 2009,
Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, volume 5878 of Lecture Notes in Computer Science, pages
994–1003. Springer, 2009.

[2] K. Altinkemer and B. Gavish. Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations
Research Letters, 6(4):149–158, 1987.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



Approximation Schemes for Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded Doubling, or
Highway Dimension 35

[3] S. Arora. Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J.
ACM, 45(5):753–782, Sept. 1998.

[4] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama. Covering points in the plane by k-tours: Towards a polynomial time

approximation scheme for general k. In F. T. Leighton and P. W. Shor, editors, Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 275–283. ACM, 1997.

[5] A. Becker. A tight 4/3 approximation for capacitated vehicle routing in trees. In E. Blais, K. Jansen, J. D. P. Rolim,

and D. Steurer, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs, pages 3:1–3:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018.

[6] A. Becker, P. N. Klein, and D. Saulpic. A quasi-polynomial-time approximation scheme for vehicle routing on planar

and bounded-genus graphs. In K. Pruhs and C. Sohler, editors, 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 12:1–12:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

[7] A. Becker, P. N. Klein, and D. Saulpic. Polynomial-time approximation schemes for k-center, k-median, and capacitated

vehicle routing in bounded highway dimension. In Y. Azar, H. Bast, and G. Herman, editors, 26th Annual European
Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 8:1–8:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[8] A. Becker, P. N. Klein, and A. Schild. A PTAS for bounded-capacity vehicle routing in planar graphs. In Z. Friggstad,

J. Sack, and M. R. Salavatipour, editors, Algorithms and Data Structures - 16th International Symposium, WADS 2019,
Edmonton, AB, Canada, August 5-7, 2019, Proceedings, volume 11646 of Lecture Notes in Computer Science, pages 99–111.
Springer, 2019.

[9] A. Becker and A. Paul. A framework for vehicle routing approximation schemes in trees. In Z. Friggstad, J. Sack, and

M. R. Salavatipour, editors, Algorithms and Data Structures - 16th International Symposium, WADS 2019, Edmonton, AB,
Canada, August 5-7, 2019, Proceedings, volume 11646 of Lecture Notes in Computer Science, pages 112–125. Springer,
2019.

[10] J. Blauth, V. Traub, and J. Vygen. Improving the approximation ratio for capacitated vehicle routing. CoRR,
abs/2011.05235, 2020.

[11] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded treewidth. In Z. Fülöp and

F. Gécseg, editors, Automata, Languages and Programming, 22nd International Colloquium, ICALP95, Szeged, Hungary,
July 10-14, 1995, Proceedings, volume 944 of Lecture Notes in Computer Science, pages 268–279. Springer, 1995.

[12] V. Cohen-Addad, A. Filtser, P. N. Klein, and H. Le. On light spanners, low-treewidth embeddings and efficient traversing

in minor-free graphs. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020, pages 589–600. IEEE, 2020.

[13] M. Cygan, F. Grandoni, S. Leonardi, M. Pilipczuk, and P. Sankowski. A path-decomposition theorem with applications

to pricing and covering on trees. In L. Epstein and P. Ferragina, editors, Algorithms - ESA 2012 - 20th Annual European
Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, volume 7501 of Lecture Notes in Computer Science,
pages 349–360. Springer, 2012.

[14] J. H. Dantzig, G. B.and Ramser. The truck dispatching problem. Management Science, 6(1):80–91, 1959.
[15] A. Das and C. Mathieu. A quasipolynomial time approximation scheme for euclidean capacitated vehicle routing.

Algorithmica, 73(1):115–142, 2015.
[16] A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post. A (1+𝜖)-embedding of low highway dimension graphs into

bounded treewidth graphs. In M. M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors, Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part I, volume 9134 of Lecture Notes in Computer Science, pages 469–480. Springer, 2015.

[17] Z. Friggstad, R. Mousavi, M. Rahgoshay, and M. R. Salavatipour. Improved approximations for capacitated vehicle

routing with unsplittable client demands. In K. Aardal and L. Sanità, editors, Integer Programming and Combinatorial
Optimization - 23rd International Conference, IPCO 2022, Eindhoven, The Netherlands, June 27-29, 2022, Proceedings,
volume 13265 of Lecture Notes in Computer Science, pages 251–261. Springer, 2022.

[18] B. L. Golden and R. T. Wong. Capacitated arc routing problems. Networks, 11(3):305–315, 1981.
[19] M. Haimovich and A. H. G. R. Kan. Bounds and heuristics for capacitated routing problems. Mathematics of Operations

Research, 10(4):527–542, 1985.
[20] S.-y. Hamaguchi and N. Katoh. A capacitated vehicle routing problem on a tree. In K.-Y. Chwa and O. H. Ibarra, editors,

Algorithms and Computation, pages 399–407, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[21] M. Khachay and R. Dubinin. PTAS for the euclidean capacitated vehicle routing problem in rˆd. In Y. Kochetov,

M. Khachay, V. L. Beresnev, E. A. Nurminski, and P. M. Pardalos, editors, Discrete Optimization and Operations Research
- 9th International Conference, DOOR 2016, Vladivostok, Russia, September 19-23, 2016, Proceedings, volume 9869 of

Lecture Notes in Computer Science, pages 193–205. Springer, 2016.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.



36 Jayaprakash and Salavatipour

[22] M. Khachay and Y. Ogorodnikov. QPTAS for the CVRP with a moderate number of routes in a metric space of any

fixed doubling dimension. In I. S. Kotsireas and P. M. Pardalos, editors, Learning and Intelligent Optimization - 14th
International Conference, LION 14, Athens, Greece, May 24-28, 2020, Revised Selected Papers, volume 12096 of Lecture
Notes in Computer Science, pages 27–32. Springer, 2020.

[23] M. Khachay, Y. Ogorodnikov, and D. Khachay. An extension of the das and mathieu QPTAS to the case of polylog

capacity constrained CVRP in metric spaces of a fixed doubling dimension. In A. V. Kononov, M. Khachay, V. A.

Kalyagin, and P. M. Pardalos, editors, Mathematical Optimization Theory and Operations Research - 19th International
Conference, MOTOR 2020, Novosibirsk, Russia, July 6-10, 2020, Proceedings, volume 12095 of Lecture Notes in Computer
Science, pages 49–68. Springer, 2020.

[24] M. Labbé, G. Laporte, and H. Mercure. Capacitated vehicle routing on trees. Operations Research, 39(4):616–622, 1991.
[25] C. Mathieu and H. Zhou. A ptas for capacitated vehicle routing on trees. CoRR, arXiv:2111.03735, 2020.
[26] C. Mathieu and H. Zhou. A tight ( 3

2
+ 𝜖)-approximation for unsplittable capacitated vehicle routing on trees. 2022.

[27] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms
and Data Analysis. Cambridge University Press, USA, 2nd edition, 2017.

[28] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two. Mathematics of
Operations Research, 18(1):1–11, 1993.

[29] K. Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing, STOC ’04, page 281–290, New York, NY, USA, 2004. Association for

Computing Machinery.

[30] E. W. Weisstein. Disk covering problem. From MathWorld–A Wolfram Web Resource, 2018.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: January 2023.


	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Overview of our technique

	2 Preliminaries
	3 QPTAS for CVRP on Trees
	3.1 Structure Theorem
	3.2 Dynamic Program
	3.3 Checking Consistency
	3.4 Time Complexity
	3.5 Extension to Splittable and Snsplittable CVRP
	3.6 Height reduction

	4 QPTAS for Bounded Treewidth Graphs
	4.1 Changing OPT to a near-optimum structured solution
	4.2 Dynamic Program
	4.3 Checking Consistency
	4.4 Time Complexity
	4.5 Extension to Splittable and Unsplittable CVRP in Bounded Treewidth Graphs

	5 Extension to Graphs of Bounded Doubling Metrics and Bounded Highway Dimension
	6 Conclusion
	References

