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Abstract
In this paper, we present approximation algorithms for the airport and railway problem (AR) on
several classes of graphs. The AR problem, introduced by [2], is a combination of the Capacitated
Facility Location problem (CFL) and the network design problem. An AR instance consists of a
set of points (cities) V in a metric d(., .), each of which is associated with a non-negative cost fv

and a number k, which represent respectively the cost of establishing an airport (facility) in the
corresponding point, and the universal airport capacity. A feasible solution is a network of airports
and railways providing services to all cities without violating any capacity, where railways are
edges connecting pairs of points, with their costs equivalent to the distance between the respective
points. The objective is to find such a network with the least cost. In other words, find a forest,
each component having at most k points and one open facility, minimizing the total cost of edges
and airport opening costs. Adamaszek et al. [2] presented a PTAS for AR in the two-dimensional
Euclidean metric R2 with a uniform opening cost. In subsequent work [1] presented a bicriteria
4
3

(
2 + 1

α

)
-approximation algorithm for AR with non-uniform opening costs but violating the airport

capacity by a factor of 1 +α, i.e. (1 +α)k capacity where 0 < α ≤ 1, a
(
2 + k

k−1 + ε
)
-approximation

algorithm and a bicriteria Quasi-Polynomial Time Approximation Scheme (QPTAS) for the same
problem in the Euclidean plane R2. In this work, we give a 2-approximation for AR with a uniform
opening cost for general metrics and an O(logn)-approximation for non-uniform opening costs. We
also give a QPTAS for AR with a uniform opening cost in graphs of bounded treewidth and a QPTAS
for a slightly relaxed version in the non-uniform setting. The latter implies O(1)-approximation on
graphs of bounded doubling dimensions, graphs of bounded highway dimensions and planar graphs
in quasi-polynomial time.
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1 Introduction

We study a problem that integrates capacitated facility location and network design problems.
The problem referred to as Airport and Railway problem denoted as AR (introduced by [2]
and studied further in [1]) is the following. Suppose we are given a complete weighted graph
G = (V,E) embedded in some metric space (for instance the Euclidean plane), with two
cost functions f : V → R≥0 for opening facilities (also known as airports) at vertices (also
known as cities) and c : E → R≥0 for installing railways on the edges in order to connect
cities to airports. We are also given a positive integer k ∈ Z+ as the capacity of each airport.
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Figure 1 a) An example tree where we assume the airport capacity is 3 and u1 and u2 have an
opening cost of zero while other vertices have cost infinity; b) The solution to ÃR. Pink vertices
represent cities with an airport. Each edge is coloured to indicate its cluster. The dashed edge is
used by both clusters; c) The solution to AR′. Each directed edge is labelled with its flow value.

The goal is to partition the vertices into a set of clusters each of size at most k, find a set of
vertices A ⊆ V at which we open facilities (airports) so that each cluster has exactly one
airport, and a set of edges R ⊆ E, such that the edges on each cluster induce a connected
graph, while minimising the total cost of the edges plus the opening of selected facilities.

Clearly, the graph induced by each cluster must be a tree. So we have a collection of
trees, each of size at most k and each having an open facility. The idea is each open facility
serves as an airport that will serve all the cities in the cluster it belongs to (including the
city at that vertex). The goal is to minimise the total cost

C =
∑
v∈A

fv +
∑
e∈R

ce.

To be more precise, a cluster is an airport and the set of all the cities served by it, together
with the set of railways connecting the cities to the airport that forms a tree. Adamaszek et
al. [1] also defined a relaxed version of AR (they called AR′) where in a feasible solution a
component of the forest might have multiple airports and multiple copies of any edge and
each component allows routing one unit of flow from all its cities to the airports so that each
airport receives at most k flows and each copy of an edge has capacity k. Note that in this
version of the problem, the cities belonging to different airports can share the edges of the
network. So an edge might be used by cities from different clusters but no more than k in
total; in this case, the cost of the edge occurs only once in the objective.

When considering special metrics (e.g. shortest path metrics induced by trees or other
special graph classes) we may not have a feasible solution to AR in the strict setting that
clusters need to be disjoint. For this reason, we consider a slightly relaxed version of AR,
denoted by ÃR where the clusters do not need to be edge-disjoint but each cluster will pay
for the edges it uses separately. In other words, each edge is allowed to be used by multiple
clusters but each of them needs to pay the cost of the edges they use separately. Considering
this relaxed version becomes useful when we are working on specific metrics e.g. shortest
path metrics of certain graph classes such as trees (e.g. see Figure 1). Note that in ÃR, each
connected component in a feasible solution may contain multiple clusters and the total cost
that we want to minimise is

∑
v∈A fv +

∑
e∈R ce · ϕ(e) where ϕ(e) is the number of clusters

using the edge e. We highlight that AR′ is a strictly more relaxed setting vs. ÃR. In AR′

the cities sending flows to different airports can share the edges of the network and if the
flow over an edge is ≤ k (even if used to send flow to different airports) the cost of the edge
is paid for only once. This is not the case in ÃR. For instance, a feasible solution to ÃR in
this Figure 1 has two clusters, one u1, u, v and the other u2, v1, v2 and has a total cost of 6
whereas a feasible solution to AR′ has one component with cost 5.

The AR problem has some characteristics of the Capacitated Facility Location (CFL)
problem and network design problem. The instance of AR is the same as CFL with uniform
capacities. However, in CFL one has to open a number of facilities and assign each client/city
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to an open facility (by a direct edge) so that each facility is assigned at most k clients and
we minimise the total opening cost and connection cost. The main difference is that in CFL
each cluster forms a star (with the facility being the centre) while in AR each cluster is a tree,
whose cost might be much cheaper than the star. In AR, the clients might share the same
path to be connected to the facility and hence reduce the total cost of forming the railroad
network. AR has also similarities to the Capacitated Vehicle Routing Problem (CVRP)
and Capacitated Minimum Spanning Tree (CMST). In CMST, the goal is to construct a
minimum-cost collection of trees covering all the input vertices, each tree spanning at most k
vertices, connected to a single root node. As discussed in [1], AR can be modelled as CMST
in general weighted (non-metric) graphs.

The following variants of AR have been studied [1, 2]. For some constant β > 1, ARβ

refers to the bicriteria version of AR, where airport capacity is allowed to be violated by
a factor of β (also known as resource augmentation). AR∞ is a relaxed version where the
airport capacity is dropped, or equivalently, set to infinity: k = +∞. When airport opening
costs are uniform we refer to it by 1AR. Another special case is ARP where each component
is a path with both endpoints having an airport. ARP is a relaxation of the capacitated
vehicle routing problem (CVRP) since not all the paths need to have a common endpoint
(the centralised dépôt in CVRP). The original problem is sometimes denoted as ARF (or
simply AR) where we have a general forest.

1.1 Related Work

As mentioned above, [1, 2] have studied AR and some variants of it defined above. No true
(non-trivial) approximation is known for AR in general setting. For the case of uniform
airport opening cost, for both 1AR and 1ARP , [2] show that the problems are NP-hard in
Euclidean metrics and present PTAS’s for them.

In [1] the authors consider bicriteria approximations. They present a 4
3 ·(2+ 1

p )-approximate
for AR1+p, p ∈ (0, 1] for general metrics. For Euclidean R2 they present a QPTAS for AR1+µ,
for arbitrary µ > 0 (i.e. violating the capacities by 1 + µ) and a (2 + k

k−1 + ε)-approximation
in polynomial time. To obtain the latter result they obtain a PTAS for AR′ on Euclidean
metrics and show that a solution to AR′ implies a solution for AR at a loss of factor 2 + k

k−1 .
In CFL, we are given a weighted (metric) graph G = (V,E), a facility opening cost

function f : V → R≥0, and edge costs c : E → R≥0, and a capacity uv. The goal is to
open a set of facilities F ⊆ V , and assign each point v ∈ V to an open facility so that each
open facility v has at most uv points assigned to it while minimizing the total opening costs
plus the assignment costs of points to open facilities. The only difference between CFL
and AR is that in CFL the assignment edges in each cluster form a star whereas in AR it
forms a minimum tree spanning the nodes of that cluster. There are constant approximation
algorithms for CFL in general as well as uniform settings [12, 16].

For CVRP and its variants there are constant-factor approximations in general settings
and QPTAS for special metrics such as Euclidean and doubling metrics and minor-free graphs
[3, 6, 9, 10]. Another related problem is the capacitated cycle cover problem (CCCP) studied
in [20]. In this problem, we are given a weighted graph G and parameters k and γ. The goal
is to find a spanning collection of cycles of size at most k while minimizing the cost of the
edges of the cycles plus γ times the number of cycles. This problem is related to Min-Max
Tree Cover and Bounded Tree Cover studied earlier [13, 21]. In [20] the authors present a
(2 + 2

7 )-approximation for CCCP. This also implies a (4 + 4
7 )-approximation for uniform AR.

SWAT 2024
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For CMST, Jothi and Raghavachari [11] give a 3.15-approximation algorithm for Euclidean
CMST and a (2 + γ)-approximation for metric CMST, where γ ≤ 2 is the ratio of minimum-
cost Steiner tree and minimum spanning tree. As pointed out by [1], AR can be reduced to
CMST in non-metric setting.

We refer to [1] for discussion of other related works such as capacitated-cable facility
location problem (CCFLP) [17] and sink clustering problem [14].

1.2 Contributions
Although AR (and ÃR) are similar to both CFL and CVRP, the mix of capacitated facility
location and network design components appears to make it significantly more difficult
than both. The approximability of AR for general metrics remains uncertain. Even for
more restricted settings such as special metrics (e.g. trees) or uniform opening costs, the
approximability of the problem is open.

In this paper, we make progress on some special cases. First, we consider AR with
uniform opening cost (i.e. 1AR) on various metrics. For general metrics, we present a simple
2-approximation algorithm for this.

▶ Theorem 1. There is a 2-approximation for uniform AR on general metrics.

We also consider graphs of bounded treewidth and present a QPTAS for ÃR on such
metrics.

▶ Theorem 2. There is a QPTAS for uniform ÃR on graphs of bounded treewidth which
runs in time nO(ωω·log3 n/(ε2 logω ω)). where ω is the treewidth of the input graph.

Next, we consider AR′ in the general setting (i.e. with non-uniform facility opening costs).
We propose an exact algorithm for trees and graphs of bounded treewidth.

▶ Theorem 3. AR′ can be solved in polynomial time on graphs with bounded treewidth.

Using embedding results for general metrics into tree metrics with O(logn) distortion as
well as embedding of graphs of bounded doubling dimension, graphs of bounded highway
dimension, and minor-free graphs into graphs with polylogarithmic treewidth as well as
O(1)-reduction from AR to AR′ ([1]) we obtain the following corollary.

▶ Corollary 4. There is a polynomial time O(logn)-approximation for AR on general graphs,
a QPTAS for AR′ and therefore a quasi-polynomial O(1)-approximation for AR for graphs
with bounded doubling dimension, graphs of bounded highway dimension, and minor-free
graphs.

We also show that at a factor 2 loss, we can reduce the general AR problem to the case
that facilities have cost 0 or +∞, we denote this case by 0/+∞ AR. In other words, the
special case of the problem that all facilities (to be opened) are given to us and we simply
have to build clusters of size at most k each of which has one of the open facilities. Even for
this special case, a good approximation remains elusive.

▶ Theorem 5. Given an instance G for AR, we can build an instance G′ for 0/+∞ AR
such that any α-approximate solution to 0/+∞ AR implies a 2α-approximate solution for
AR on G.

In the next section, we prove Theorem 1. Then in Section 3 we prove Theorem 2 and in
Section 4 we prove Theorem 3 and Corollary 4. We defer the proof of Theorem 5 to the full
version.
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2 Algorithm for Uniform AR in General Metric

In this section, we prove Theorem 1. Since each facility (airport) is trivially serving its own
city, we refer to the remaining capacity k − 1 (to serve other clients) as k for simplicity.
We assume opening a facility at each vertex costs a uniform value f . Given an instance G
we first define a modified instance G̃ for each input graph G. The graph G̃ is obtained by
adding a dummy node r to G and connecting r to all the vertices v ∈ V with an edge of cost
cvr = f . We first define the MSTσ

r problem and prove the following lower bound.

▶ Definition 6. In the MSTσ
r problem, we are given a graph G = (V,E) with a vertex r ∈ V .

The task is to find the minimal cost of the spanning tree of the input graph, while ensuring
that the degree of vertex r in the solution is at most σ.

▶ Lemma 7. If σ is the number of components in an optimum solution to AR on G then
the cost of an optimal solution to the MSTσ

r problem on G̃ is a lower bound on the optimal
solution to AR on G.

Proof. Consider an optimal solution ξ to AR on G. Say there are σ components in ξ. After
adding into ξ a dummy node r and connecting r to the vertices that are open facilities with
an edge of cost f , we obtain a spanning tree T for G̃ of the same cost, where the vertex r has
a degree of σ. Namely, this is a feasible solution to MSTσ

r . Therefore, an optimal solution
to MSTσ

r on G̃ cannot cost more than the optimal solution to AR on G. ◀

Our algorithm first guesses the number of components in the optimal solution. We do
this by enumerating all possibilities. Say there are σ components in the optimal solution for
some integer σ ≤ n. Note that we know σ ≥

⌈
n
k

⌉
for certain, as otherwise there must exist

some cities that are not getting served. Our algorithm is as follows.
Construct the instance G̃. Solve the MSTσ

r problem on instance G̃. After removing the
dummy vertex r, we obtain a set T = {T1, T2, . . . Tσ} of σ connected components (i.e. trees).
Note that we can solve the MSTσ

r problem using the technique of matroid intersection [7].
Let M1 = (Ẽ, I1) represent the graphic matroid of G̃ (also known as the cycle matroid or

polygon matroid), where the ground set Ẽ is the set of edges in G̃, and the set of independent
sets I1 consists of acyclic subgraphs of G̃. That is to say, each independent set corresponds
to the edges of a forest in the underlying graph G̃. Let M2 = (Ẽ, I2) denote the partition
matroid, where the set of independent sets I2 is defined as follows, where N(r) represents all
the edges incident to the vertex r and Ṽ is the vertex set of G̃,

I2 =
{
S ⊆ Ẽ

∣∣∣ |S ∩N(r)| ≤ σ, |S ∩ (Ẽ \N(r))| ≤ |Ṽ | − 1 − σ
}
.

In other words, each independent set of this partitional matroid corresponds to the edge set
of a subgraph of G̃ with at most |Ṽ | − 1 edges, where there are at most σ edges incident to
the vertex r and at most |Ṽ | − 1 − σ edges not incident to r.

Note that a feasible solution to MSTσ
r is an independent set of both matroids. The

underlying graph must form a spanning tree, so it is an independent set of M1. The set of
edges must satisfy the degree requirement for vertex r, so it is an independent set of M2.
For each connected component Ti ∈ T , we obtain a cycle Ci in the following way: double
the edges of Ti and trace them while short-cutting whenever we encounter a vertex that
has been visited. We cut each cycle Ci into a set of disjoint subpaths of fixed length k,
except for at most one subpath per cycle that is strictly shorter than k. Essentially, we have
transformed the trees in T into a set of paths. Let Pk denote the set of paths with length
exactly k. For each path in Pk, we simply open one of its cities as an airport. Note that

SWAT 2024
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|Pk| ≤
⌊
n
k

⌋
since there are at most n vertices (other than the vertex r) in the graph. In

addition, as we know σ ≥
⌈
n
k

⌉
, we have |Pk| ≤

⌊
n
k

⌋
≤

⌈
n
k

⌉
≤ σ. Consequently, the cost of

opening these |Pk| airports is |Pk| · f ≤ σ · f . For those subpaths of length less than k, we
simply open one of its vertices as the facility. Note that since there are |T | = σ trees Ti
(hence there are σ corresponding cycles Ci), we have at most σ such short subpaths. The
current cost is bounded by twice the edge cost of all the trees in T , as well as the facility
cost of all these subpaths, which is at most f · σ + |Pk| · f ≤ 2σ · f . Meanwhile, the cost of
the MSTσ

r solution is the edge cost of all the trees in T , plus the cost of incident edges of r
in the solution, which is f · σ. Thus, it is obvious that the cost is no more than twice the
cost of the MSTσ

r solution.
From the analysis above, it should be easy to see that Theorem 1 follows.

3 QPTAS for Uniform Case in Graphs of Bounded Treewidth

In this section, our goal is to prove Theorem 2. First, recall the definition of graphs with
bounded treewidth.

▶ Definition 8. A tree decomposition of a graph G = (V,E) is a tree T = (V ′, E′) and a
mapping Ξ : V ′ → 2V where each vertex β ∈ V ′ (also known as a bag) corresponds to a set
of vertices of G, such that

For each vertex v in G, it must be included in at least one bag of T .
For each edge uv in G, the pair of vertices u, v ∈ V must be included in at least one bag
of T .
For each vertex v in G, consider the set of all the bags in T that include v. These bags
induce a connected component in T .

The width of a tree decomposition is defined as the cardinality of its largest bag minus
one. The treewidth of a graph G is the smallest w such that G has a tree decomposition
with width w. Given a graph G = (V,E) of treewidth ω, there is a tree decomposition
T = (V ′, E′) of G where T is binary, with depth h ∈ O(logn) (where n = |V |) and treewidth
not exceeding ω′ = 3ω + 2, according to [4]. For simplicity, denote ω′ as ω instead. We
assume the tree height h = δ logn for some constant δ > 0.

Our algorithm for uniform ÃR on bounded treewidth graph relies on the technique
developed in [10] for designing QPTAS for CVRP on such metrics. First, we ignore the
concept of facilities/airports, we simply pay an extra f for each cluster in our solution (later
we designate one vertex in each cluster as the facility to be opened). For that, we define a
new version of the problem which we call UAR (meaning AR with undetermined airports).

▶ Definition 9. (UAR) The goal is to find a set F of (not necessarily disjoint) clusters
(i.e. trees) using edges in the graph. The size of each cluster must not exceed the capacity
constraint k. Each cluster γ ∈ F has a cost of f and we want to minimise the total cost,
which is defined as

|F| · f +
∑
γ∈F

cost(γ)

where cost(γ) denotes the railway cost of the cluster γ.

Since this is a relaxed version of the original problem (as we do not specify the location of
the facilities), its cost is a lower bound of that of the original problem. We can think of each
vertex in V to have one unit of demand which needs to be sent to an airport to be served. We
may add dummy demands to a vertex during the algorithm, so a vertex may end up having
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more than one unit of demand. The size of a cluster is defined to be the sum of demands
on all its vertices, instead of just the number of vertices. Note that a component may not
include every vertex that it passes through, as a component may be simply using the edges
of a vertex to get to somewhere else, which can also be seen as not picking up the demand of
the vertex. Be mindful that, from the perspective of demands, the size of a component is the
number of demands it includes, instead of the number of vertices. Therefore the clusters
in the solution are not necessarily edge-disjoint or vertex-disjoint, but the total number of
demands in each cluster obeys the capacity constraint.

For clarity, we refer to the vertices in T as bags, to differentiate them from the vertices
in G. For the notation β, we refer to it as the name of the bag β ∈ V (T ) as well as the
corresponding set of vertices β ⊆ V (G). For each bag β, denote the union of vertices in all
of the bags in the subtree Tβ as Cβ . Note that Cβ also denotes the set of all bags in Tβ .

Each vertex of G may appear in multiple bags of T as tree decomposition generates
duplicates. In order to make sure the demand of a vertex does not get duplicated in T , for
every vertex v ∈ V (G), we assume that the copy/instance of v in the bag β̃ that is the closest
to the root bag (we know there is a unique one and we denote this copy of v as ṽ) has a
demand of one, and the rest of the copies of v (which resides in other bags) have demand
zero.

Given an optimal solution denoted as OPT, we will demonstrate a process for transforming
it into a near-optimal solution for UAR and thereby show the existence of such a near-optimal
solution. This transformation occurs incrementally on T , moving from the bottom to the
top, one level at a time. The solution before modifying level ℓ is denoted as OPTℓ, and after
the modification as OPTℓ−1.

Overview of the approach and relation to [10]. Our goal is to show the existence of a
near-optimum solution with certain structures. Suppose OPT is an optimum solution for
UAR and opt is its value. We aim to find a near-optimal solution, of cost (1 +O(ε))opt,
where each vertex has at least one unit of demand, and the size of partial clusters in any
subtree Tβ can only be one of polylogarithmically many values. Two concepts are required to
describe the following data structures, namely, the notions of partial and complete clusters.
We consider a non-root bag β ∈ V (T ) and the subtree rooted at β, Tβ . A complete cluster in
Tβ is a cluster that is entirely in the graph Cβ , and a partial cluster is one that uses vertices
both inside Cβ and outside. Similar to [10], we first assume that the number of clusters in
OPT is sufficiently large, that is, at least λ logn for some large number λ. Otherwise, if the
number of clusters in OPT is upper-bounded by Σ = λ logn then a simple DP can solve the
problem exactly (see [19]). Given an optimal solution OPT, we will demonstrate a process
for transforming it into a near-optimal solution with certain structural properties that help
us find one using dynamic programming. This transformation occurs incrementally on T ,
moving from the bottom to the top, one level at a time. The solution before modifying level
ℓ is denoted as OPTℓ, and after the modification as OPTℓ−1. Looking at how OPTℓ looks
like, we would like to “approximately” keep the sizes of partial clusters that extend below β

in Tβ . A standard approach is to “bucket” the sizes of partial clusters into buckets where
each bucket contains all those sizes that are within (1 + ε) of each other (e.g. bucket i being
values in (1 + ε)i . . . [(1 + ε)i+1 − 1]. This will reduce the complexity of the DP table to
quasi-polynomial: we keep the number of partial clusters of each bucket and try to fill in the
DP table bottom-up. The problem is that then when we are combining solutions in the DP
table, since we are keeping the sizes approximately (and sacrificing precision), we may violate
the capacities unknowingly. The idea developed in [10] was to modify OPT by reducing the
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sizes of the clusters (at a small increase in the number of clusters) so that even if we scale
the sizes of the new clusters by a small number, they are still capacity-respecting. They
used a technique that was used later in [15], called adaptive rounding that we also use here
to round the sizes of partial clusters in Tβ for any bag β ∈ T . At each bag β, for clusters
that are in the same “bucket” we swap parts of them with a net effect of reducing their sizes
while having only a poly-logarithmic many possible bucket sizes at the end. We formalize
this in the following.

▶ Definition 10. Define the threshold values {σ1, . . . , στ} where

σi =
{
i 1 ≤ i ≤ ⌈1/ε⌉
⌈σi−1 · (1 + ε)⌉ i > ⌈1/ε⌉

in such a way that the last threshold στ = k. So τ ∈ O(log k/ε).

We adapted the definitions from [10]. Consider a bag β that is situated at level ℓ. We
consider partial clusters that cross β and based on their size in Cβ we bucket them. Bucket i
contains those partial clusters whose size is in the range [σi, σi+1). Now let’s focus on all
(partial) clusters that are in bucket i of bag β. Each of these clusters has some vertices in Cβ
and some vertices outside. For a set S ⊂ β consider all the partial clusters in bucket i that
their intersection with β is S. So each of them will form a number of connected components
in Cβ where each component contains some part of S; this defines a partition of S. We
consider all those partial clusters that have the same partition of S together (defined below).

▶ Definition 11. For a bag β at level ℓ in T , for each set S ⊆ β and partition ℘S of S,
consider the set b℘S

S which contains the clusters that use exactly the set of vertices S ⊆ β

to span into Cβ, where ℘S denotes a partition of the set S based on connectivity of the of
those clusters in Cβ. Define the i-th bucket of b℘S

S , denoted as bi, to store clusters in OPTℓ

that have a size between [σi, σi+1) inside Cβ, where σi is the i-th threshold value. Denote
this bucket by a tuple (β, bi, S, ℘S). Denote the number of clusters in bucket (β, bi, S, ℘S) as
nS,℘S

β,i .

Essentially, the set S represents the interface that the clusters in the bucket (β, bi, S, ℘S)
use to attach to the rest of their parts in Cβ , and ℘S is a set that describes the connectivity
between the vertices of S in Cβ . That is, each part in the partition ℘S specifies a subset
of vertices of S that need to be connected below. So if u, v ∈ S and there is some set
P ∈ ℘S such that P ⊇ {u, v}, then u and v need to be connected in Cβ by some cluster. For
simplicity, we just write ℘S as ℘.

▶ Definition 12. A bucket b is said to be small if it contains no more than α log2 n/ε clusters
and is otherwise said to be big, for some constant α ≥ max{1, 20δ}.

▶ Definition 13. For a big bucket (β, bi, S, ℘), define g groups where g = 2δ logn
ε , denoted as

Gβ,S,℘i,1 , Gβ,S,℘i,2 , . . . , Gβ,S,℘i,g in the following way (for simplicity assume the size of this bucket
is a multiple of g, if not add some empty clusters to achieve this). Sort the clusters in
the (padded) bucket in non-decreasing order, and put the first nS,℘

β,i

g clusters into Gβ,S,℘i,1 , the

second nS,℘
β,i

g into Gβ,S,℘i,2 , etc. For each group Gβ,S,℘i,j , denote the size of its smallest cluster as
hβ,S,℘,min
i,j and the size of its biggest cluster as hβ,S,℘,max

i,j .

Suppose we are considering a big bucket of β and a partial cluster Γ is in the group j > 1
of the big bucket. We find its top (that is, the part of the cluster that is outside of Tβ)
and reassign it to another partial cluster (that is no bigger than Γ) with the same order in
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the previous group (i.e., group j − 1) as the order of Γ in group j. The vertices that were
originally covered by the partial clusters in the last group are referred to as orphans. This is
essentially the rounding between groups of a big bucket that was done in [10] for the CVRP
on bounded treewidth graphs. The idea is that by this operation, the size of each cluster
goes down enough such that if we “approximate” the sizes by the size of the biggest cluster
in each group, we are still satisfying the capacity constraints. However, some vertices that
were covered by the partial clusters of the last group are now left “uncovered” (or orphan).
We will use some extra clusters to pick up (serve) the now orphan vertices.

We come up with a structure theorem that shows the existence of a near-optimal solution
with certain structures, and then provide a dynamic programming algorithm for the UAR
problem.

3.1 Structure Theorem for Graphs with Bounded Treewidth
The steps of modifying OPT to a near-optimal solution (denoted as OPT′) are largely the
same as the ones in [10]. Let’s assume we randomly choose clusters from OPT, denoted as
C, with a probability of ε. After selecting these clusters, we duplicate each chosen one and
assign both duplicates of each chosen cluster to one of the levels ℓ that it visits1, with equal
probability. These duplicated clusters are referred to as the extra clusters. We will bound
their total cost. The proof is very similar to the one in [10] and we only need to show the
part concerning the facility costs.

Recall f is the (uniform) facility opening cost, ε is the probability each cluster γ in OPT
is selected as the extra cluster, k is the capacity of each cluster, and ω is the treewidth of G.

▶ Lemma 14. The expected cost of the extra clusters sampled is 2ε · opt.

We make use of the following modified definitions and lemmata from [10]. They apply to
our problem as the proofs of the lemmata are almost identical.

Denote the bags in level ℓ of T as Bℓ. Define the set Xℓ to comprise the extra clusters
assigned to bags at level ℓ. For every bag β ∈ Bℓ and its bucket (β, bi, S, ℘), let XS,℘

β,i

represent the extra clusters (using vertices in S to span into Cβ , with ℘ depicting connectivity
downwards) in Xℓ whose partial clusters inside Cβ has a size that falls within the range
defined by bucket bi. For an extra cluster γ ∈ XS,℘

β,i , it covers some partial cluster ζ ∈ Gβ,S,℘i,g

(which is without its top). That is, the extra cluster γ only picks up demands at the levels
≥ ℓ and acts as the top of ζ, in particular, this combined cluster picks up only those demands
of ζ’s vertices (which are all orphans).

▶ Lemma 15. At any level ℓ, each bag β ∈ Bℓ and its big buckets (β, bi, S, ℘) satisfy, w.h.p.∣∣∣XS,℘
β,i

∣∣∣ ≥ ε2

δ logn · nS,℘β,i .

▶ Lemma 16. For all bags β at level ℓ in T , their big buckets (β, bi, S, ℘) and partial clusters
in Gβ,S,℘i,g ⊆ bi, we can make adjustments to the extra clusters present in XS,℘

β,i without
incurring any additional cost, and introduce some dummy demands within β when necessary,
so that:
1. The partial clusters in Gβ,S,℘i,g are now incorporated into some clusters in XS,℘

β,i . (That
is, all the demands that were covered by some partial cluster in Gβ,S,℘i,g are picked up by
some cluster in XS,℘

β,i .)

1 If a cluster γ passes crosses bag of level ℓ, we say γ visits or crosses level ℓ.

SWAT 2024



40:10 Approximation Algorithms for the Airport and Railway Problem

2. The modified partial clusters that cover the orphans (i.e., vertices in Gβ,S,℘i,g ) have precisely
the size of hβ,S,℘,max

i,g and all clusters remain underneath the size limit of k units of
demand.

3. For each modified partial cluster in the set XS,℘
β,i , its partial clusters at a bag β′ ∈ Bℓ′ is

also of one of O(log k log2 n/ε2) many sizes, where ℓ′ is any lower levels > ℓ.

Note that when we add dummy demands for some cluster γ in some bucket (β, bi, S, ℘),
we simply add these dummy demands onto the vertices in S. Using these lemmata and a very
similar proof to the one in [10], we can obtain a Structure Theorem for our UAR problem in
the case of graphs with bounded treewidth.

▶ Theorem 17. (Structure Theorem) Consider an instance I for the UAR problem. Denote its
optimal solution as OPT, with cost opt. We can transform OPT to another solution OPT′

so that, with high probability, OPT′ is a near-optimal solution of cost at most (1 + 2ε)opt.
Additionally, at every β in OPT′, all the clusters in Cβ have one of O(log k log2 n/ε2)
possible sizes. Consider a bucket (β, bi, S, ℘) in OPT′. We must have

If bi is small, the number of partial clusters in Cβ whose size falls within bi is at most
α log2 n/ε.
If bi is big, it has exactly g = 2δ logn/ε group sizes which are denoted as

σi ≤ hβ,S,℘,max
i,1 ≤ hβ,S,℘,max

i,2 ≤ · · · ≤ hβ,S,℘,max
i,g < σi+1

Each cluster in bi has a size of one of the h-values above.

Having this structure theorem one can design a (relatively complex) DP to compute a
near-optimum solution as guaranteed by this structure theorem. This DP builds upon ideas
of the DP in [10] but has more complexity as the clusters here do not necessarily have a
common point (like the dépôt in the CVRP problem). This will show that we can compute
a solution such as OPT′ in Theorem 17 in time nO(ωω·log3 n/(ε2 logω ω)).

We can transform the approximate solution obtained for the UAR problem into a solution
to the ÃR problem, without any increase in the cost. All we need to do is to pick a node in
each cluster to open a facility at (since we are already paying f for each cluster, this cost is
accounted for in the solution to UAR). This can be easily done since in a solution to UAR
each vertex is “covered” by a unique cluster.

4 Constant Approximation for Nonuniform-AR

In this section, we prove Theorem 3. For ease of exposition, we present the proof for the
case of trees (the extension to graphs with bounded treewidth appears in the full version).
Recall that in the relaxation AR′, we are given a graph G = (V,E) where each vertex v ∈ V

has a non-negative opening cost av and each edge e ∈ E has a non-negative weight ce. Every
edge and vertex has capacity k ∈ N+. Find a subset of vertices Φ ⊆ V as facilities (also
known as airports), and a multiset Ξ of edges from E to get a transportation network that
ensures one unit of flow from each vertex in V can be sent to facilities in Φ, without violating
the capacity constraint on any edge or facility. The goal is to find such a network while
minimising the total cost

∑
v∈Φ

av +
∑
e∈Ξ

ce. First, we prove some properties in an optimum

solution to AR′.

▶ Lemma 18. In an optimum solution, we can assume there are not any flows of opposite
directions on the same edge, as we can uncross them by redirecting each flow and attain a
lower cost.
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α1

vι

vj

α2

Figure 2 A simplest example of crossing flows in AR′. The red vertices are open facilities.

Note that it is allowed for multiple clients to use the same edge to send their demands in the
same direction.

v′ u w υ

α1

α2

path

pa
th

pa
th

path

Figure 3 The crossing flow is at the edge uw.

Proof. Without loss of generality, assume the vertices v′ and υ caused crossing flow at edge
uw. That is, the demand of v′ travels from v′ to u, crosses the edge uw from u to w, and
from w to a facility α2; and the demand of υ travels from υ to w, crosses the edge uw from
w to u, and from u to a facility α1. We can reroute so that the demand of v′ travels from v′

to u, and then from u to the facility α1; and similarly, the demand of υ travels from υ to w,
and then from w to the facility α2. It is easy to see such a rerouting makes the total cost
decrease, for the demands of both vertices v′ and υ now take a shorter path to be served. ◀

Consider a tree T as the input graph. A subproblem here is defined on the subtree Tv for
each vertex v. Since we aim to obtain a flow network in T , each vertex v, as the root of the
subtree Tv, will be considered a portal in the corresponding subproblem. There is thus a DP
cell for each vertex v in T . Note that at each vertex v, the portal configuration ψv simplifies
to the direction and value of the flow at v

ψv = ±fv

where we use − (minus sign) to signify the flow is leaving Tv, and + (plus sign) to signify the
flow is entering Tv. fv is the absolute value of the signed integer ψv and denotes the value
of the unidirectional (integral) flow passing through the vertex v and satisfies 0 ≤ fv ≤ n,
where n is the number of vertices in T . Note that in AR′, if an edge needs to carry a flow
fv, then we need to install

⌈
fv

k

⌉
parallel edges in the solution. At each vertex v, we also

consider both of the scenarios where v is an airport or it is not. We use a Boolean variable
πυ = True (or πυ = 1) to indicate that the portal υ is opened as an airport.

We define the DP table D as follows, for each v in T , let the entry D[v, πv, ψv] store
the cost of the optimal solution to AR′ on Tv with the amount of flow going in/out of Tv
conforming to ψv, with portal v opened as an airport if and only if πv.
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At each node, we also consider its parent edge and see it as part of the subtree Tv. For the
root node ϑ, we assume its parent edge has cost 0. The result will be minπϑ

{D[ϑ, πϑ, ψϑ = 0]}
as there will be no flow entering or leaving T at the root.

Base cases: At a leaf node v, denote the parent edge of v as e. Recall fv = |ψv|.

D[v, πv, ψv] = av · πv +


ce if ψv = −1

ce ·
⌈
fv
k

⌉
if 0 ≤ ψv < +k and πv = 1

+∞ otherwise

Here ψv = −1 means there is one unit of flow going out of the leaf v (actually does not need
to open a facility at v). If 0 ≤ ψv < +k, it means v does not emit any flow or it is absorbing
flows, then we have to make sure πv = True. Note that in this case,

⌈
fv

k

⌉
= 1 when

0 < ψv < +k, and
⌈
fv

k

⌉
= 0 when ψv = 0. If ψv ≥ +k then we know it is not achievable,

since a facility has capacity k and cannot absorb more flows. If ψv < −1 then it is simply
impossible, as a vertex only has one unit of demand and cannot emit more than that. For
these cases, we set the entry to +∞.

For a node v with z children w1, w2, . . . , wz, similar to the case of uniform facility cost
on trees in the previous chapter, we define an inner DP table B. Assume we have computed
D[wj , πwj

, ψwj
] for all possible πwj

and ψwj
, for all 1 ≤ j ≤ z. Let B[v, πjv, ψjv, j] store the

cost of the optimal solution to AR′ on Tv as if the portal v only has children w1, w2, . . . , wj .
Lastly, we define D[v, πv, ψv] = B[v, πv, ψv, z].

Case 1: j = 1. Only consider the first child of v.

B[v, π1
v , ψ

1
v , 1] = min

ψw1

{
D[w1, πw1 , ψw1 ] + av · π1

v + ce ·
⌈
f1
v

k

⌉ ∣∣∣∣∣ η(π1
v , ψ

1
v , ψw1) = True

}

where η(π1
v , ψ

1
v , ψw1) is a Boolean indicator function that takes into account the flow on v’s

parent edge and the edge vw1, as well as the decision about whether or not to open the
portal v as an airport. It is true if and only if all these parameters are compatible. Recall
that fv is the absolute value of ψv.

η(π1
v , ψ

1
v , ψw1) =


True if 0 ≤ ψ1

v − ψw1 < k ∧ π1
v = True,

or if ψw1 − ψ1
v = 1

False otherwise

The case ψw1 − ψ1
v = 1 means that v does not act like an airport as it is not absorbing any

flow, and is sending its own demand elsewhere (hence unnecessary to open an airport there).
The case 0 ≤ ψ1

v − ψw1 < k means the portal v is absorbing flows and v must be opened
as an airport. The other cases are impossible, either because v is absorbing too much flow
which violates its capacity limit, or because v is sending out more than one unit of flow.

Case 2: For 2 ≤ j ≤ z. Assume all entries of the form B[v, πj−1
v , ψj−1

v , j − 1] have been
computed. We define

B[v, πjv, ψjv, j] = min
πwj

,πj−1
v ,ψwj

,ψj−1
v :

πjv ≥ πj−1
v ,

η
(
πjv, ψ

j
v, ψ

j−1
v , ψwj

)
= True

(Ω)
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v

w1

−µ

−(µ+ 1)

(a) Portal v is sending its demand outside Tv.

v

w1

+(ζ + 1)

+ζ

(b) Portal v is sending its demand into Tw1 .

Figure 4 Here µ and ζ are non-negative integers. The label on edge vw1 represents ψw1 and the
label above v stands for ψ1

v.

The expression Ω should be{
D[wj , πwj

, ψwj
] + B[v, πj−1

v , ψj−1
v , j − 1] + av ·

(
πjv − πj−1

v

)
+ ce ·

⌈
f jv − f j−1

v

k

⌉}
where we define the indicator function η as follows:

η(πjv, ψjv, ψj−1
v , ψwj ) =


True if 0 < ψjv − (ψj−1

v + ψwj ) ≤ k ∧ πjv = True,
or if ψj−1

v + ψwj
= ψjv

False otherwise

Let e denote v’s parent edge. The case ψj−1
v +ψwj

= ψjv means that after taking wj (the j-th
child of v) into consideration, the flow on e whilst only considering the first j − 1 children
(which is ψj−1

v ), and the flow on the edge vwj adds up to the flow on e while considering all
the j children (which is ψjv). This means the portal v is not absorbing any of the flow from
Twj

, and thus there is no need to open it as an airport if it has not been opened. The case
0 < ψjv−(ψj−1

v +ψwj
) ≤ k means after taking wj into consideration, the portal v is absorbing

flows and needs to be opened, if it has not been opened. Note that
⌈
fj

v −fj−1
v

k

⌉
can be negative

if f jv < f j−1
v , which means the “load” on the parent edge of v has decreased and we pay less

on the edge cost. This exact algorithm on trees suggests we have an O(logn)-approximation
algorithm for the general metric (using metric approximation, also known as embeddings by
tree metrics).

4.1 Algorithm Efficiency
We will use a bottom-up approach, assuming that the relevant entries for subproblems have
already been pre-computed. At any step, checking the value for the indicator function η takes
O(1) time. To compute B[v, πjv, ψjv, j], we need to consider all possible ψwj

and ψj−1
v , which

is in total O(n2) possibilities. Since there are n nodes in the tree, the time for computing
the table D is in O(n4).

4.2 Generalisation for AR with Steiner Vertices
In this section, we describe how the algorithm above can be generalised for AR′ with Steiner
vertices with a few modifications. More generally, this algorithm can apply to the case where
the set of facilities or the set of clients is not the same as the entire vertex set of the input
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graph. If a vertex v is not part of the set of facilities, it should not be opened as a facility
(after all, no facility cost has been defined for it). So the Π-vector should not allow any copy
of v to be opened. If a vertex v is not part of the set of clients, it carries no demand, and so
does any of its copies in the tree decomposition.

Note that this will be useful when we try to embed a graph into a graph with bounded
treewidth where the host graph of the input graph (via graph embedding) may have Steiner
vertices. If ∆ is the aspect ratio of G (ratio of largest to smallest edge cost) then by standard
scaling (see for e.g. [10]) one can assume that ∆ is bounded by polynomial in n at a loss of
(1 + ϵ) on optimum solution.

We use the following lemma by [18] about embedding graphs of doubling dimension D

into a graph with treewidth ω ≤ 2O(D)
⌈(

4D log ∆
ε

)D⌉
.

▶ Lemma 19 (Theorem 9 in [18]). Let (X, d) be a metric with doubling dimension D and
aspect ratio ∆. Given any ε > 0, the metric (X, d) can be (1+ε) probabilistically approximated
by a family of treewidth ω-metrics for

ω ≤ 2O(D)

⌈(
4D log ∆

ε

)D
⌉
.

We adapt Theorem 8 and its proof from [10] to get the following result.

▶ Theorem 20. For any ε > 0 and D > 0, given an input graph G of the AR′ problem
where G has doubling dimension D, there is an algorithm that finds a (1 + ε)-approximate
solution in time nO(DD logD n/εD).

We introduce the following lemma proposed by [8] about embedding graphs of highway
dimension W into a graph with treewidth ω ∈ (log ∆)O(log2( W

ελ )/λ).

▶ Lemma 21 (Theorem 1.3 in [8]). Let G be a graph with highway dimension W of violation
λ > 0, and aspect ratio ∆. For any ϵ > 0, there is a polynomial-time computable probabilistic
embedding H of G with expected distortion 1 + ε and treewidth ω where

ω ∈ (log ∆)O(log2( W
ελ )/λ).

We adapt Theorem 9 and its proof from [10] to get the following result.

▶ Theorem 22. For any ε > 0, λ > 0 and W > 0, given an input graph G of the AR′

problem where G has highway dimension W and violation λ, there is an algorithm that finds

a (1 + ε)-approximate solution in time n
O

(
loglog2( W

ελ )· 1
λ n

)
.

We introduce the following lemma proposed by [5] about embedding minor-free graphs
(including planar graphs, which is a kind of K-minor-free graphs) into a graph with treewidth
OK

(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5)

where ℓ is the logarithm of the aspect ratio
of the input graph.

▶ Lemma 23 (Theorem 1.1 in [5]). For every fixed graph K, there exists a randomised
polynomial-time algorithm that, given an edge-weighted K-minor-free graph G = (V,E) and
an accuracy parameter ε > 0, constructs a probabilistic metric embedding of G with expected
distortion (1 + ε) into a graph of treedepth (the treedepth of a graph is an upper bound on its
treewidth)

OK
(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5)

where n = |V | and ℓ = log ∆ is the logarithm of the aspect ratio ∆ of the metric induced
by G.
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▶ Theorem 24. For any ε > 0, given an input graph G of the AR′ problem where G is a
minor-free graph, there exists an algorithm that finds a (1 + ε)-approximate solution in time
nOK(log8 n·(logn+log(1/ε))5/ε).

Theorems 20, 22, and 24 imply Corollary 4.

5 Concluding Remarks

The special case of 0/+∞ AR (at a factor 2 loss) is equivalent to the following variant of
CCCP: given a collection R of dépôts in a metric, find a collection of cycles of size ≤ k each
containing a unique dépôt that together covers all the non-dépôt nodes. Although there are
constant-factor approximations for CVRP, we do not know of a good approximation for this
version.
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