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Abstract12

Resource Minimization Fire Containment (RMFC) is a natural model for optimal inhibition of13

harmful spreading phenomena on a graph. In the RMFC problem on trees, we are given an undirected14

tree G, and a vertex r where the fire starts at, called root. At each time step, the firefighters15

can protect up to B vertices of the graph while the fire spreads from burning vertices to all their16

neighbors that have not been protected so far. The task is to find the smallest B that allows for17

saving all the leaves of the tree. The problem is hard to approximate up to any factor better than 218

even on trees unless P = NP [11].19

Chalermsook and Chuzhoy [6] presented a Linear Programming based O(log∗ n) approximation20

for RMFC on trees that matches the integrality gap of the natural Linear Programming relaxation.21

This was recently improved by Adjiashvili, Baggio, and Zenklusen [1] to a 12-approximation through22

a combination of LP rounding along with several new techniques.23

In this paper we present an asymptotic QPTAS for RMFC on trees. More specifically, let ε > 0,24

and I be an instance of RMFC where the optimum number of firefighters to save all the leaves is25

OPT (I). We present an algorithm which uses at most d(1 + ε)OPT (I)e many firefighters at each26

time step and runs in time nO(log logn/ε). This suggests that the existence of an asymptotic PTAS is27

plausible especially since the exponent is O(log logn), not O(logn).28

Our result combines a more powerful height reduction lemma than the one in [1] with LP29

rounding and dynamic programming to find the solution. We also apply our height reduction lemma30

to the algorithm provided in [1] plus a more careful analysis to improve their 12-approximation and31

provide a polynomial time (5 + ε)-approximation.32
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1 Introduction38

The Firefighter problem and a closely related problem named Resource Minimization Fire39

Containment (RMFC) are natural models for optimal inhibition of harmful spreading phe-40

nomena on a graph. The firefighter problem was formally introduced by Hartnell [9] and41

later Chalermsook and Chuzhoy [6] defined the RMFC problem. Since then, both problems42

have received a lot of attention in several research papers, even when the underlying graph is43

a spanning tree, which is one of the most-studied graph structures in this context and also44
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139:2 Asymptotic Approximation Scheme for Resource Minimization for Fire Containment

the focus of this paper.45

In both problems (when restricted to trees) we are given a graph G = (V,E), which is46

a spanning tree, and a vertex r ∈ V , called root. The problem is defined over discretized47

time steps. At time 0, a fire starts at r and spreads step by step to neighboring vertices.48

During each time step 1, 2, . . . any non-burning vertex u can be protected, preventing u from49

burning in any future time step.50

In the RMFC problem the task is to determine the smallest number B ∈ Z≥1 such that51

there is a protection strategy which protects B vertices at each time step while saving all52

the leaves from catching fire. In this context, B is referred to as the number of firefighters53

(or budget at each step). In the firefighters problem, given a fixed number of firefighters54

(i.e. number of vertices that can be protected at each time step) the goal is to find a strategy55

to maximize the number of vertices saved from catching the fire.56

For RMFC on trees, King and MacGillivray [11] showed that it is NP-hard to decide57

whether one firefighter is sufficient or not. This means that there is no (efficient) approximation58

algorithm with an approximation factor strictly better than 2, unless P=NP. On the positive59

side, Chalermsook and Chuzhoy [6] presented an O(log∗ n)-approximation, where n is the60

number of vertices. Their algorithm is based on a natural Linear Programming (LP) relaxation,61

which is a straightforward adaptation of the one previously used for the Firefighter problem62

on trees and essentially matches the integrality gap of the underlying LP (the integrality63

gap of the underlying LP is Θ(log∗ n) [6]). Recently, Adjiashvili et al. [1] presented a 12-64

approximation for RMFC, which is the first constant factor approximation for the problem.65

Their result is obtained through a combination of the known LPs with several new techniques,66

which allows for efficiently enumerating subsets of super-constant size of a good solution to67

obtain stronger LPs. They also present a PTAS for the firefighter problem.68

1.1 Our Results69

In this paper our main focus is on RMFC problem. By using Linear Programming and70

dynamic programming techniques, we show how to approximate RMFC with a small additive71

error by presenting a quasi-polynomial time asymptotic approximation scheme (AQPTAS)72

for it. More specifically our main result is the following theorem:73

I Theorem 1. For RMFC on trees and for any ε > 0 there is an algorithm that finds a74

solution using d
(
1 + O(ε)

)
Be firefighters with running time nO(log logn/ε), where B is the75

optimal number of firefighters.76

We will also show how applying our more powerful height reduction lemma to the77

algorithm used by Adjiashvili et al. [1], plus a more careful analysis, leads to a better constant78

factor. In particular, we obtain the following:79

I Theorem 2. For any ε > 0, there is a polynomial time (5 + ε)-approximation for the80

RMFC problem on trees.81

Recall that the RMFC problem on trees does not admit better than 2-approximation82

unless P = NP [11]. However, this does not rule out the possibility of a +1 approximation83

or an asymptotic PTAS. Our result is an indication that it is plausible that an asymptotic84

PTAS exists, especially since the exponent is O(log logn), not O(logn) as we don’t know85

any natural problem that admits nO(log logn) algorithm but not polynomial time.86

We start by introducing a more powerful height reduction transformation than the87

one used in [1] that allows for transforming the RMFC problem into a more compact and88

better structured form, by only losing a (1 + ε) factor in terms of approximability. This89
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transformation allows us to identify small substructures, over which we can optimize efficiently,90

and having an optimal solution to these subproblems we can define a residual LP with small91

integrality gap. Then we will show how to apply dynamic programming on the transformed92

instance to obtain a strategy to protect the nodes at each step to successfully contain the93

fire and save all the leaves with using only O(εB) more firefighters at each step. We will94

apply our more powerful height reduction lemma to the previous combinatorial approach [1]95

to reach a better constant factor approximation in polynomial time, which is presented in96

Theorem 2.97

1.2 Further Related Work98

The Firefighter problem and RMFC, both restricted to trees, are known to be computationally99

hard problems. More precisely, Finbow, King, MacGillivray and Rizzi [7] showed the NP-100

hardness for the Firefighter problem on trees even when the maximum degree is three. For101

RMFC on trees, it is NP-hard to decide whether one firefighter is sufficient or not [11], which102

implies that the problem is hard to approximate to a factor better than 2.103

Several approximation algorithms have been proposed for both of these problems. Hartnell104

and Li [8] proved that a natural greedy algorithm is a 1
2 -approximation for the Firefighter105

problem. Later, Cai, Verbin and Yang [3] improved this result to 1− 1
e , using a natural LP106

relaxation and dependent randomized rounding. Then Anshelevich, Chakrabarty, Hate and107

Swamy [2] showed that the Firefighter problem on trees can be interpreted as a monotone108

submodular function maximization (SFM) problem subject to a partition matroid constraint.109

This observation yields another (1− 1
e )-approximation by using a recent (1− 1

e )-approximation110

for monotone SFM subject to a matroid constraint [4, 13].111

Chalermsook and Vaz [5] showed that, for any ε > 0, the canonical LP used for the112

Firefighter problem on trees has an integrality gap of 1− 1
e + ε. This generalized a previous113

result by Cai, Verbin and Yang [3]. When restricted to some tree topologies this factor 1− 1
e114

was later improved (see [10]) but, for arbitrary trees, that was the best known approximation115

factor for a few years.116

Recently, Adjiashvili, Baggio and Zenklusen [1] have filled the gap between previous117

approximation ratios and hardness results for the Firefighter problem. In particular, they118

present approximation ratios that nearly match the hardness results, thus showing that the119

Firefighter problem can be approximated to factors that are substantially better than the120

integrality gap of the natural LP. Their results are based on several new techniques, which121

may be of independent interest.122

Assuming a variant of the Unique Games Conjecture (UGC), the RMFC problem in123

general graphs is hard to approximate within any constant factor, according to a recent work124

by Lee [12] which is based on a general method of converting an integrality gap instance to a125

length-control dictatorship test for variants of the s-t cut problem. For further results and126

related work we refer the reader to [1].127

1.3 Organization of the Paper128

In Section 2 we start by introducing some preliminaries including a (now standard) Linear129

Programming relaxation for the problem and then will provide a height reduction lemma.130

Section 3 will cover our main algorithm to obtain the asymptotic QPTAS. In Appendix A we131

will show how to apply our height reduction lemma to the previous combinatorial approach132

of [1] to improve their 12-approximation and provide a (5 + ε)-approximation.133

STACS 2020
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2 Preliminaries and Overview of the Algorithm134

Recall that we are given a tree G = (V,E) rooted at a vertex r, from which we assume the135

fire starts. We denote by Γ ⊆ V the set of all leaves of the tree. Given an instance I for136

RMFC and an integer parameter B ≥ 1, called the budget or the number of firefighters, at137

each time step we can “protect” up to B non-burning vertices. Such vertices are protected138

indefinitely. Our goal is to find the smallest B and a protection strategy such that all the139

leaves Γ are saved from catching the fire. Observe that we say a vertex u is protected, if we140

directly place a firefighter in u, and a vertex v is saved when the fire does not reach to u,141

because of protecting some u on the unique v-r path. This smallest value of B is denoted by142

OPT (I).143

Let L ∈ Z≥1 be the depth of the tree, i.e. the largest distance, in terms of the number of144

edges, between r and any other vertex in G. After at most L time steps, the fire spreading145

process will halt. For ` ∈ [L] := {1, . . . , L}, let V` ⊆ V be the set of all vertices of distance146

` from r, which we call the `-th level of the instance. We also use V≤` = ∪`k=1Vk, and we147

define V≥`, V<`, and V>` in the same way. Moreover, for each 1 ≤ ` < L and each u ∈ V` ,148

Pu ⊆ V≤` \ {r} denotes the set of all vertices on the unique u-r path except for the root r,149

and Tu ⊆ V>` denotes the subtree rooted at u, i.e. descendants of u.150

2.1 Linear Programming Relaxation151

We use the following (standard) Linear Programming (LP) relaxation for the problem that152

is used in both [6] and [1].153

min B (1)154

x(Pu) ≥ 1 ∀u ∈ Γ155

x(V≤`) ≤ B · ` ∀` ∈ [L]156

x ∈ RV \{r}≥0157

Here x(U) :=
∑
u∈U x(u) for any U ⊆ V \ {r}. Note that with x ∈ {0, 1}V \{r} and158

B ∈ Z≥0 we get an exact description of RMFC where x is the characteristic vector of the159

vertices to be protected and B is the budget. The first constraint enforces that for each leaf160

u, one vertex between u and r will be protected, which makes sure that the fire will not161

reach u. The second constraint ensures that the number of vertices protected after each time162

step is at most B · ` and makes sure that we are using no more than B firefighters per time163

step (see [6] for more details). Note that (as mentioned in [6]), there is an optimal solution164

to RMFC that protects, with the firefighters available at time step `, only the vertices in V`.165

Hence, we can change the above relaxation to one with the same optimal objective value by166

replacing the constraints x(V≤`) ≤ B · ` by the constraints x(V`) ≤ B for all ` ∈ [L].167

min B (2)168

x(Pu) ≥ 1 ∀u ∈ Γ169

x(V`) ≤ B ∀` ∈ [L]170

x ∈ RV \{r}≥0171

Throughout the paper we use a lemma of [1] which basically says that any basic feasible172

solution of LP(2) (and also LP(1)) is sparse. This is proved for the polytope of the firefighters173

problem, which has the same LP constraints (just different objective function). Consider any174

basic feasible solution x to LP(2). One can partition supp(x) = {v ∈ V \ {r} : x(v) > 0} into175
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two parts: x-loose vertices and x-tight vertices. A vertex v ∈ V \ {r} is x-loose or simply176

loose if v ∈ supp(x) and x(Pv) < 1. All other vertices in supp(x), which are not loose, will177

be x-tight or simply tight.178

I Lemma 3 (Lemma 6 in [1]). Let x be a vertex solution to LP(2) for RMFC, then the179

number of x-loose vertices is at most L, the depth of the tree.180

We will use this property crucially in the design of our algorithm. Also, as noted in [1],181

we can work with a slightly more general version of the problem in which we have different182

numbers of budgets/firefighters at each time step: say B` = m`B (for some m` ∈ Z≥0)183

firefighters for each time step ` ∈ [L] while we are still minimizing B. Lemma 3 is valid for184

this generalization too.185

2.2 Height Reduction186

The technique of reducing the height of a tree at a small loss in cost (or approximation ratio)187

has been used in different settings and various problems (e.g. network design problems).188

For RMFC, Adjiashvili et al. [1] showed how one can reduce an instance of the problem to189

another instance where the height of the tree is only O(logn) at a loss of factor 2. In a190

sense, the tree will be compressed into a tree with only O(logn) levels. Here we introduce a191

more delicate version of that compression, which allows for transforming any instance to one192

on a tree with O( logn
ε ) levels at a loss of 1 + ε in the approximation. Our compression is193

similar to that of [1] with an initial delay and ratio 1 + ε. One key property we achieve with194

compression, is that we can later use techniques with running time exponential in the depth195

of the tree.196

Suppose that the initial instance is a tree with L levels and each level ` has a budget197

B`. To compress the tree to a low height one, we will first do a sequence of what is called198

up-pushes. Each up-push acts on two levels `1, `2 ∈ [L] with `1 < `2 of the tree, and moves199

the budget B`2 of level `2 up to `1. This means the new budget of level `1 will be B`1 +B`2200

and for level `2 it will be 0.201

We will show that one can do a sequence of up-pushes such that: (i) the optimal objective202

value of the new instance is very close to the one of the original instance, and (ii) only203

O(logL/ε) levels have non-zero budgets. Finally, 0-budget levels can easily be removed204

through a simple contraction operation, thus leading to a new instance with only O(logL/ε)205

depth. The following theorem is a more powerful version of Theorem 5 in [1] with some206

improvements such as reducing the loss to only 1 + ε (instead of 2) and some differences in207

handling of the first levels.208

I Theorem 4. Let G = (V,E) be a rooted tree of depth L. Then for some constants c, d > 0209

(that only depend on ε) we can construct efficiently a rooted tree G′ = (V ′, E′) with |V ′| ≤ |V |210

and depth L′ = O( logL
ε ), such that:211

(i) If the RMFC problem on G has a solution with budget B ∈ Z≥0 at each level, then the212

RMFC problem on G′ has a solution with non-uniform budgets of B` = B for each level ` < c,213

and a budget of B` = m` ·B for each level ` ≥ c, where m` =
(
d(1+ε)(`−d+1)e−d(1+ε)(`−d)e

)
.214

(ii) Any solution to the RMFC problem on G′, where each level ` < c has a budget of215

B` = B and each level ` ≥ c has a budget of B` = m` ·B can be transformed efficiently into216

an RMFC solution for G with budget d(1 + 2ε)Be.217

Proof. We start by describing the construction of G′ = (V ′, E′) from G. We first change218

the budget assignment of the instance and then contract all 0-budgets levels.219
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We set i∗ to be the smallest integer such that (1 + ε)i∗ ≥ 2(1+ε)
ε2 and we let c = d(1 + ε)i∗e.220

The set of levels L in which the transformed instance will have non-zero budget contains221

the first c − 1 levels of G and all the levels ` ≥ c of G such that ` = d(1 + ε)ie for some222

i∗ ≤ i ≤ logL
log(1+ε) = O(logL/ε):223

L =
{

1 ≤ ` ≤ L | ` < c or ` = d(1 + ε)ie for some i∗ ≤ i ≤
⌊ logL

log(1 + ε)

⌋}
224

For all other levels ` /∈ L we first do up-pushes. More precisely, the budget of these225

levels ` ∈ [L] \ L will be assigned to the closest level in L that is above ` (has smaller index226

than `). We then remove all 0-budget levels by contraction. For each vertex v in a level227

`i = d(1 + ε)ie ≥ c we will remove all vertices in the levels `i < ` < `i+1 = d(1 + ε)i+1e from228

its sub-tree and connect all the vertices in level `i+1 of its sub-tree to v directly. This leads229

to a new tree G′ with a new set of leaves. Since our goal is to save all the leaves in the230

original instance, for each vertex v ∈ G′ such that v ∈ G has some leaves in its contracted231

sub-tree, we will mark v as a leaf in G′ and simply delete all its remaining subtree.232

This finishes our construction of G′ = (V ′, E′) and it remains to show that both (i) and233

(ii) hold. Note that the levels in G′ correspond to levels of G in L: the first c levels of G′ are234

the same as the first c levels of G; for each ` > c, level ` in G′ is level d(1 + ε)`−c+i∗e of G.235

Here we want to determine what will be the budget of each level of G′. For each236

` < c = d(1 + ε)i∗e, the level ` of G′ is the same as the level ` of G and has the same budget237

B` = B, because these levels are not involved in up-pushes. For ` = c, all the budgets238

from level d(1 + ε)i∗e to d(1 + ε)i∗+1e − 1 in G are up-pushed to this level. This means239

that the budget for level c in G′ is Bc =
(
d(1 + ε)i∗+1e − d(1 + ε)i∗e

)
· B. Now for each240

i∗ < i ≤ b logL
log(1+ε)c, all the budgets from levels d(1+ε)ie to d(1+ε)i+1e−1 in G are up-pushed241

to level d(1 + ε)ie, which becomes level i− i∗ + c in G′; this means that the budget for this242

level of G′ will be d(1 + ε)i+1e−d(1 + ε)ie. Setting ` = i− i∗+ c and d = c− i∗, the budget of243

level ` in G′, is B` = (d(1 + ε)`−d+1e − d(1 + ε)`−de) ·B. To prove (ii), we use the following244

lemma:245

I Lemma 5. For any two consecutive levels ` ≥ c and `+ 1 in G′, the difference between246

m` and m`+1 is relatively small. More precisely: m`(1 + 2ε) ≥ m`+1247

Proof. Based on the definition of m` and m`+1 we have:248

m` = d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e ≥ (1 + ε)(`−d+1) − (1 + ε)(`−d) − 1249

⇒ m`(1 + ε) ≥ (1 + ε)(`−d+2) − (1 + ε)(`−d+1) − (1 + ε). (3)250

On the other hand:251

m`+1 = d(1 + ε)(`−d+2)e − d(1 + ε)(`−d+1)e ≤ (1 + ε)(`−d+2) − (1 + ε)(`−d+1) + 1252

≤ m`(1 + ε) + 2 + ε using (3) (4)253

Also by our choice of c, d and i∗ = c− d we can conclude that:254

m` = d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e255

≥ (1 + ε)(`−d+1) − (1 + ε)(`−d) − 1 = ε(1 + ε)(`−d) − 1256

≥ ε(1 + ε)(c−d) − 1 = ε · (1 + ε)i
∗
− 1 ≥ ε2(1 + ε)

ε2
− 1257

⇒ m` ≥ 2 + ε

ε
⇒ εm` ≥ 2 + ε. (5)258

Combining (4) and (5) completes the proof. J259
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I Corollary 6. For each ` ≥ c and each budget B > 0:260

m`+1 ·B ≤ m` · d(1 + 2ε)Be261

Notice that in the constructed graph G′ for each level ` ≥ c, we have B` = m` ·B. Now262

consider the instance of the problem on graph G with budget d(1 + 2ε)Be at each level. We263

will show that by doing some down-pushes on G (i.e. move the budget of each level to some264

level down) we can construct G′ again where the budget of each level ` is m` ·B, and this265

means that if G′ has a solution with budget m` ·B in each level, then G has a solution with266

uniform budget d(1 + 2ε)Be.267

Like before the set of levels L with non-zero budgets will be the same. Instead of up-268

pushes, we will down-push the budget from all levels ` /∈ L to the closest level in L which is269

below ` (i.e has larger index than `). We will also down-push budget d2εBe from each level270

` < c to level ` = c.271

By doing the same contraction, for each level ` < c we will have B` = B and for each272

level ` > c we will have B` = m`−1 · d(1 + 2ε)Be, which is greater than m` ·B based on the273

above lemma.274

The only remaining level to consider is level ` = c. For this level, by doing down-pushes,275

we will have budget Bc = B + d2εBe · c. Our claim is that this is not less than mc ·B, which276

is equal to (d(1 + ε)ce − c) ·B (based on the definition of mc):277

Bc = B + d2εBe · c278

≥ B + 2εB · c = (1 + 2εc) ·B279

≥ d2εce ·B = d(1 + 2ε)c− ce ·B280

≥ (d(1 + ε)ce − c) ·B = mc ·B.281

This will complete the proof of the theorem, because by considering these down-pushes,282

any solution to the RMFC problem on G′, where level ` ≥ c has a budget of B` = m` ·B and283

level ` < c has a budget of B` = B, can be transformed efficiently into an RMFC solution284

for G with budget d(1 + 2ε)Be. J285

In the following we assume that the depth of the tree is not more than logn
log(1+ε) + 2(1+ε)

ε2 ,286

so L = O( logn
ε ). After finding a solution with budget B for a tree with this height, then we287

could apply the compression theorem and find a solution for the original tree by having dεBe288

more firefighters at each level.289

2.3 Overview of the Algorithm290

Given an instance I, our first step of the algorithm is to use Theorem 4 to reduce I to an291

instance I ′ with L = O(logn/ε) levels. Note that when we use B to refer to core budget292

for instance I ′ we mean each level ` has budget m` · B for ` ≥ c, and budget B for each293

level ` < c. Also, by OPT (I ′) we mean the smallest value B such that I ′ has a feasible294

solution with core budget B as above. By Theorem 4, if we find a solution with core budget295

B for I ′ then it can be transformed to a solution for I with budget d(1 + 2ε)Be. So we296

focus on the height reduced instance I ′ from now on. We present an algorithm such that if297

B ≥ OPT (I ′) then it finds a feasible solution to I ′ with core budget at most d(1 + ε)Be.298

Then, using binary search, we find the smallest value of Bo (for B) for which the algorithm299

finds a feasible solution. This would give us a solution of budget at most d(1 + ε)OPT (I ′)e,300

which in turn implies a solution for I of value at most d(1 +O(ε))OPT (I)e.301

STACS 2020
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So let us assume we have guessed a value OPT (I ′) ≤ Bo. We consider LP(2) (with fixed302

B = Bo) for I ′ with guessed core budget Bo. Let x∗ be a basic feasible solution to this303

instance. Using Lemma 3 we know that there are at most L loose vertices. As we will see,304

when Bo is relatively large, i.e. Bo > L
ε , then we can easily find an integer solution using305

core budget at most d(1 + ε)Boe and this yields the desired bound for the original instance.306

The difficult case is when Bo is small compared to L. The difficulty lies in deciding which307

vertices are to be protected by the optimum solution in the top h levels of the tree for some308

h = O(log logn); as if one has this information then we can obtain a good approximation as309

in [1].310

One way to do this would be to guess all the possible subsets of vertices that could be311

protected by the optimal solution in the first h levels of the tree, but this approach would312

have a running time far greater than ours. Still, we can solve the problem on instance I ′ in313

quasi-polynomial time using a bottom-up dynamic programming approach. More precisely,314

starting with the leaves and moving up to the root, we compute for each vertex u ∈ V the315

following table. Consider a subset of the available budgets, which can be represented as a316

vector q ∈ [B1]×...×[BL]. For each such vector q and node v, we want to know whether or not317

using budgets described by q for the subtree Tv (subtree rooted at v) allows for disconnecting318

v from all the leaves below it, i.e. saving all the leaves in Tv. Since L = O(logn/ε) and319

the size of each budget B` is at most the number of vertices, the table size is nO(logn/ε)).320

Moreover, it is easy to show that this table can be constructed bottom-up in quasi-polynomial321

time using an auxiliary table and another dynamic programming, to fill each cell of the table.322

This approach would have the total running time of nO(logn/ε), because of the size of the323

table. In order to reduce the running time to nO(log logn/ε), we would consider each budget324

vector value rounded up to the nearest power of (1+ ε2

(logn)2 ). So, instead of O(nL) = nO(logn/ε)
325

many options for budget vectors q, we will have O((logn/ε)3L) = nO(log logn/ε) many options326

and we will show how by being more careful in our dynamic programming on these budget327

vectors we can still compute the table in time nO(log logn/ε); this leads to an approximation328

scheme (instead of the exact algorithm) for the instance I ′.329

3 Asymptotic Approximation Scheme330

As mentioned above, first we use the height reduction as discussed in the previous section to331

reduce the given instance I to a new one I ′ with L = O( logn
ε ) levels. We assume we have332

guessed a value Bo ≥ OPT (I ′). Recall that, as in the statement of Theorem 4, for some333

constants c, d (depending on ε) the budget of each level ` < c is B` = Bo and for each level334

` ≥ c the budget is B` = m` ·Bo where m` =
(
d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e

)
.335

We consider two cases: (I) when Bo > L
ε , and (II) when Bo ≤ L

ε . For the first case we336

show how we can find a solution with core budget at most d(1 + ε)Boe by rounding the337

standard Linear Programming relaxation. For the second case we show how we can use a338

bottom-up dynamic programming approach to find a quasi-polynomial time approximation339

scheme.340

3.1 Easy Case: Bo >
L
ε

341

In this case we consider LP(2) (with fixed B = Bo) for this instance. If x∗ is a feasible342

solution to this LP and Bo >
L
ε then we add L ≤ dεBoe extra budget (i.e. number of343

firefighters) to the first level which is enough to protect all the loose vertices. Since by using344

Lemma 3 we know that there are at most L loose vertices and we can protect them all in the345

first step using L extra firefighters.346
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It remains to show that by using a budget of m` ·Bo at every level `, for c ≤ ` ≤ L, and347

Bo for ` < c, we can protect all the tight vertices and so all the leaves would be saved, by348

adding only L many extra firefighters to only the first level.349

Observe that for each tight vertex v, either x(v) < 1, then we would have a loose vertex350

in Pv, or x(v) = 1. In the first case v is already saved by protecting the loose vertices in the351

first step. If we only consider vertices with x(v) = 1, we can see that the solution is integral352

itself for these vertices. So we have rounded a fractional solution with Bo > L
ε to an integral353

one by using only dεBoe more firefighters just in the first level. In this case we find a feasible354

solution with core budget Bo + dεBoe in polynomial time.355

3.2 When Bo ≤ L
ε

356

Recall that we have a budget of B` = Bo < L/ε for each level ` < c and B` = m` ·Bo ≤ m` · Lε357

for each c ≤ ` ≤ L. We denote by q∗ the L-dimensional total budget vector that has q∗[`] = B`358

for each 1 ≤ ` ≤ L. Also for each L-dimensional vector q ∈ [B1] × [B2] × ... × [BL], we359

denote by Q(q) the set of all vectors q′ such that q′ ≤ q. Suppose that |Q(q∗)| = m. We360

first describe a simpler (and easier to explain) dynamic programming with running time361

nO(logn/ε). Then we change it to decrease the running time and have our final approximation362

scheme with running time nO(log logn/ε).363

3.2.1 First Algorithm364

Our dynamic program (DP) consists of two DP’s: an outer (main) DP and an inner DP. In365

our main DP table A we have an entry for each vertex v and each vector q ∈ Q(q∗). This366

entry, denoted by A[v, q], will store whether using budgets described by q for levels of Tv367

allows for disconnecting v from all leaves below it or not.368

More formally, if we assume v ∈ V`, then A[v, q] would be true if and only if there is a369

strategy for Tv such that (i) all the leaves in Tv are saved, and (ii) the budget for levels of370

Tv are given by vector q in indices `+ 1, . . . , L, i.e. q[`+ 1] for the first level of Tv (direct371

children of v) , q[`+ 2] for the second level, and so on.372

We compute the entry A[., .] in a bottom up manner, computing A[v, q] after we have373

computed the entries for children of v. To compute cell A[v, q], we would use another auxiliary374

table B. Suppose v has k children u1, . . . , uk and assume that we have already calculated375

A[uj , q′] for every 1 ≤ j ≤ k and all vectors q′ ∈ Q(q). Then we define a cell in our auxiliary376

table B[v, q′, j] for each 1 ≤ j ≤ k and q′ ∈ Q(q), where B[v, q′, j] is supposed to determine377

if the budget vector q′ is enough for the union of subtrees rooted at u1, . . . , uj to save all the378

leaves in Tu1 ∪ . . . Tuj or not, where the total budgets for union of those subtrees are given379

by q′. We can compute B[v, q′, j] having computed A[uj , q′′] and B[v, q′ − q′′, j − 1] for all380

q′′ ∈ Q(q′). This means that we can compute each cell A[v, q] using auxiliary table B and381

internal DPs and the running time is O(n2 ·m3). We need to find A[r, q∗]. If this cell is true,382

then we can save all the leaves of the tree using q∗ as the budget vector for each level and if383

it is false, Bo would not be enough.384

The problem is that m` could be large (mL = O(n)) and so the options we have for385

the budget of each level is O(n). Recall that we can have Bo ≤ L
ε many choices for q[`]386

when ` < c and m` · Lε many options when c ≤ ` ≤ L. Using the definition of the m`:387

m` = O(ε(1 + ε)`−d), and so the total possible different budget vectors we could have is:388

m =
(L
ε

)c−1
×

L∏
`=c

(
m` ·

L

ε

)
=

(L
ε

)c−1
×LL−c+1×

L∏
`=c

(
(1+ε)`−d

)
= O

(
(nL)L

)
389
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This means that the total running time will be O(nL) = nO(logn/ε) and this is an exact390

algorithm to solve the RMFC problem on instance I ′.391

3.2.2 Reducing Budget Possibilities392

To reduce the running time, we only consider budget vectors where each entry of the vector is393

a power of (1+
(
ε/ logn

)2). In this case we have at most O
(

log (m` · L)×( logn
ε )2) = O(log3 n)394

many options for `th entry of q for each c ≤ ` ≤ L, and so m = O((logn)L) = nO(log logn/ε).395

Also, we have to show how we can compute the entries of the table in time nO(log logn/ε) and396

why this would give a (1+ε)-approximation of the solution. For each real x, let RU(x) denote397

the value obtained by rounding up x to the nearest power of (1 + (ε/ logn)2). The main idea398

is that if for each vector q we round up each entry qi to RU(qi) and denote the new vector399

by RU(q) then if A[v, q] = true then A[v,RU(q)] is also true. So we only try to fill in entries400

of the table that correspond to vectors q where each entry is a power of (1 + (ε/ logn)2). We401

show this can be done in time nO(log logn/ε) and the total loss in approximation is at most402

1 + ε at the root of the tree.403

From now on, we assume each vector q has entries that are powers of (1 + (ε/ logn)2);404

and recall that Q(q) is the set of all such vectors q′ such that q ≤ q′ and assume we have405

already calculated A[uj , q′] for every vector q′ ∈ Q(q) (again with all entries being powers of406

(1 + (ε/ logn)2)).407

If we try to compute A[v, q] from A[uj , q′]’s the same way, we need to calculate B[v, q′, j]408

for each 1 ≤ j ≤ k and each time we round up the results of addition/subtractions (such as409

q − q′) to the nearest power of (1 + (ε/ logn)2).410

3.2.3 Reducing Height of Inner Table411

To compute cell A[v, q] then this round-up operation could happen k = O(n) times and the412

approximation loss blows up. Instead, we consider a hypothetical full binary tree with root v413

and leaves (at the lowest level) being u1, . . . , uk; this tree will have height O(log k) = O(logn).414

Then we define a cell in our auxiliary table for each internal node of this tree. See Figure 1415

for an illustration.416

v

u4 u5u3u2u1

v

u4 u5u3u2u1

Figure 1 Illustration of the hypothetical full binary tree with root v and leaves u1, . . . , u5

More formally we would define a cell in our auxiliary table B[v, q′, j, j′] for each 0 ≤ j ≤417

dlog ke, 1 ≤ j′ ≤ d k2j e and q
′ ∈ Q(q) with all entries being powers of (1 + (ε/ logn)2), where418

B[v, q′, j, j′] is supposed to determine if the budget vector q′ is enough for the subtrees rooted419

at uj1 , . . . , uj2 , where j1 = 2j · (j′ − 1) + 1 and j2 = min{2j · j′, k}, to save all the leaves in420

those subtrees, where the total budgets for the union of those subtrees is given by q′.421
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Similar to what we did before, we can compute B[v, q′, j, j′] having computed B[v, q′′, j−422

1, 2j′− 1] and B[v,RU(q′− q′′), j− 1, 2j′] (if it exists) for all q′′ ∈ Q(q′). At each step we are423

computing a cell in table B a round-up will be applied to make the result of vector subtraction424

to be a vector with entries being powers of (1 + (ε/ logn)2). If we can find a q′′ such that425

both B[v, q′′, j− 1, 2j′− 1] and B[v,RU(q′− q′′), j− 1, 2j′] are true, then B[v, q′, j, j′] would426

be true too. Also we can fill A[v, q] by checking the value of B[v, qi, dlog ke, 1].427

In the way we construct our auxiliary tables, while computing A[v, q], when v has k428

children, log k many round up operations have happened (going up the auxiliary tree with429

root v) to the solution we found for Tv only in this step. This means that O(log k) ≤ O(logn)430

many round-ups could happen to compute entry A[v, q] and the total number of round-ups431

starting from the values of A[., .] at a leaf level to A[r, q] (for any q) would be at most432

L× logn ≤ log2 n
ε and at each round-up we increase our budget by a factor of (1 + (ε/ logn)2).433

So the total approximation increase while computing the entries for A[r, .] would be at most:434

(
1 + ε2

(logn)2

) log2 n
ε = 1 +O(ε)435

Observe that for every node v and subtree Tv if there is a solution with budget vectors436

q then there is a solution with budget vector RU(q) as well. Using this fact we can find a437

solution with budget vector at most (1 +O(ε))q∗ if there exists a solution with budget vector438

q∗. This completes the proof of Theorem 1.439

4 Conclusion440

In this paper we presented an asymptotic QPTAS for RMFC on trees. More specifically, let441

ε > 0, and I be an instance of RMFC where the optimum number of firefighters is OPT (I).442

We presented an algorithm that uses at most d(1 + ε)OPT (I)e many firefighters at each step443

and runs in time nO(log logn/ε). Our result combines a more powerful height reduction lemma444

than the one in [1] by using dynamic programming to find the solution. We also provide a445

polynomial time (5 + ε)-approximation for the problem by applying our height reduction446

lemma to the algorithm provided in [1] as well as some minor changes to improve the best447

previously known 12-approximation (Appendix A).448

We believe that it should be possible to have an asymptotic PTAS for the RMFC problem.449

Perhaps one way is to somehow guess the upper part of the optimal solution in polynomial450

time and then use the LP to round the solution for the height reduced instance for which we451

initially applied the height reduction lemma.452
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A Polynomial (5 + ε)-Approximation for RMFC490

In this section we show how the approach introduced in [1] can be adapted so that along491

with our height reduction lemma gives a (5 + ε)-approximation. We largely follow the proof492

of [1] only pointing out the main steps that need slight adjustments. We assume the reader493

is familiar with that proof and terminology used there.494

Let x be a fractional solution to LP(2). We define Wx as the set of leaves that are495

(fractionally) cut off from r largely on low levels, i.e. there is high x-value on Pu on vertices496

far away from the root. We first start by recalling Theorem 12 from [1] which basically says497

that we can round an LP solution to an integral one by increasing the core budget B by a498

small constant such that Wx can be saved.499

I Theorem 7 (modified version of Theorem 12 in [1]). Let B ∈ R≥1, µ ∈ (0, 1], and500

h = blog1+ε Lc. Let x ∈ LP(2) with value B and supp(x) ⊆ V>h, and we define W = {u ∈501

Γ|x(Pu) ≥ µ}. Then one can efficiently compute a set R ⊆ V>h such that:502

R ∩ Pu 6= ∅ ∀u ∈W , and503

There is an integral solution z = y1 + y2 to LP(2), which is a combination of two integral504

solutions y1 and y2 with value B′ = 1
µB and 1 respectively such that supp(y1) ⊆ V>h and505

supp(y2) ⊆ V≤h.506

Proof. The proof would be very similar to the proof of Theorem 12 in [1], and the only507

difference is in providing the extra budget for protectecting the loose vertices in V>h. They508

changed B to B + 1 at level h + 1 to provide this required budget. It that was enough,509

because the budget in the reduced instance is Bh+1 = 2h+1 ·B at this level, and so by this510

change 2h = L many more firefighters are available and they are enough to protect all the511

loose vertices. But we need to change B to B + 1 on all levels 1 to h, to have L many more512
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firefighters for protecting all the loose vertices. This is because our budget in the reduced513

instance is B` = B when 1 ≤ ` < c and B` = m` ·B when c ≤ ` ≤ L. So by this change, we514

should have c− 1 more firefighters in total for the first c− 1 levels and
∑h
`=cm` many more515

firefighters for levels c to h and the total would be (1 + ε)h = L, which is enough to protect516

all the loose vertices. But the difference in our integral solution is that all the added budgets517

are from levels 1 to h (one for each level), and the remaining integral solution, which is 1
µ518

feasible, is the subset of V>h. This completes the proof of this theorem. J519

Similar to [1], we consider two cases based on how B compares to logL. When B ≥ logL,520

we will have a 3-approximation for the reduced instance, by first solving the LP(2). This is521

similar to Theorem 13 in [1] and consistent with our height reduction lemma:522

I Theorem 8 (modified version of Theorem 13 in [1]). There is an efficient algorithm that523

computes a feasible solution to a compressed instance of RMFC with budget at most 3BOPT524

when B ≥ logL.525

Proof. Assume x is a fractional LP(2) solution with value B. Then we use Theorem 7 and526

set µ = 1/2 to obtain an integral solution z, which saves W = {u ∈ Γ|x(Pu) ≥ µ}, by core527

budget 1 at each level 1 ≤ ` ≤ h and 2B at each level h+ 1 ≤ ` ≤ L. Note that we can now528

transfer the 1 unit of budget from the very first level ` = 1 to level h+ 1 and change the core529

budget 2B to 2B + 1 on this level and remove that extra budget from the very first level.530

This is because these extra firefighters from levels 1 to h are supposed to protect the loose531

vertices, which are in V>h. By doing so we have an integral solution z such that the core532

budget is 0 in the first level, 1 in levels 2 to h, 2B + 1 at level h+ 1, and 2B at level h+ 2533

to L. Now consider leaves Γ \W . If we write another LP similar to LP(2), but specifically534

to save only these leaves by only protecting the vertices in V≤h, this LP would be feasible.535

Because all these vertices had x(Pu)∩V≤h ≥ 0.5, and so, 2x restricted to the vertices in V≤h,536

would be a feasible solution to this LP. Hence, we can find the optimal solution to this LP537

call it y. Based on Lemma 3, there would be at most h = logL many loose vertices all in538

V≤h, and so by adding B > logL = h many firefighters in the first level we would be able539

to protect all these y-loose vertices. Then all other remaining vertices could be saved by540

core budget 2B. Putting these two solutions together (for saving W and Γ \W ) we have541

found an integral solution to save all the leaves, by having core budget 3B in the first level,542

2B + 1 in levels 2 to h+ 1, and 2B at the remaining levels. This completes the proof of this543

theorem. J544

We use the same terminology defined before Lemma 14 in [1], in particular for clean set545

pairs of vertices A,D. Suppose (A,D) is a clean pair compatible with OPT , i.e. A∪D ⊆ V≤h,546

A ⊆ OPT andD∩OPT = ∅, for h = log logL and LP (A,D) by adding two sets of constraints547

to LP(2) to force the solution to pick all vertices in A and not picking all vertices in D548

as well as the vertices in their path to the root. Also for each fractional solution to this549

LP let Wx =
{
u ∈ Γ

∣∣x(Pu ∩ V>h) ≥ 1
1+ε
}
to be the set of leaves cut off from the root by550

an x-load of at least µ = 1
1+ε within bottom levels (we changed 2

3 to 1/(1 + ε) from [1]).551

For each u ∈ Γ \Wx, let fu ∈ V≤h be the vertex closest to the root among all vertices in552

(Pu ∩ V≤h) \D, then define Fx = {fu|u ∈ Γ \Wx} \A. It follows that no two vertices of Fx553

lie on the same leaf-root path. Furthermore, every leaf u ∈ Γ \Wx is part of the subtree Tf554

for precisely one f ∈ Fx. Also lets define Qx = V≤h ∩ (∪f∈FxTf ).555

Now we are ready to provide our modification of Lemma 14 in [1] when B < logL:556

I Lemma 9 (modified version of Lemma 14 in [1]). Let (A,D) be a clean pair of vertices557

(A,D), which is compatible with OPT , and let x and y be optimal solutions to LP (A,D)558
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and LP (A, V≤h \A) with objective function B and B̂ respectively. Then, if OPT ∩Qx = ∅,559

we have B̂ ≤ (2 + ε)BOPT .560

Proof. The proof is similar to the proof of Lemma 14 in [1] and the first difference is that561

we changed 2
3 to 1

1+ε in the definition of Wx. First of all we can have a fractional solution562

that saves Wx with picking only vertices from V>h. This is because (1 + ε)x restricted to563

levels h + 1 to L would save Wx. Now partition Γ \Wx into two groups. The leaves that564

OPT cut them from the root by protecting a vertex in V≤h, denote them by W1, and W2565

are the leaves that OPT is cutting them in levels h+ 1 to L. By finding such (A,D), we are566

actually saving W1. and for W2 there is an integral solution with core budget BOPT , which567

is restricted to levels h+ 1 to L. So the optimum solution to LP (A, V≤h \A) would not use568

more than (1 + ε)BOPT +BOPT as the core budget in levels h+ 1 to L. This completes the569

first part of lemma. To round this fractional solution to an integral one which saves Wx and570

W2 (note that W1 is saved already by the choice of A and D), we use the same technique as571

Theorem 7.572

We need to first find an integral solution restricted to levels h1 = logL to L that saves the573

leaves with y(Pu ∩V>h1) ≥ 1
2(1+ε) by adding one core budget to levels 1 to h1 and then write574

another LP restricted to levels h to h1. Then we find another integral solution restricted to575

levels h to h1 by adding another core budget to levels 1 to h that saves all the remaining576

leaves, which for sure has y(Pu ∩ V>h ∩ V≤h1) ≥ 1
2(1+ε) . Finally we would have an integral577

solution with core budget BOPT + 2 for the first h levels, 2(2 + ε)BOPT + 1 for levels h+ 1578

to h1 and 2(2 + ε)BOPT for levels h1 to L. This completes the proof of this lemma. J579

The only remaining thing is to show how we can find such (A,D) pair of vertices in580

polynomial time that follows in the exact same way of Lemma 15 in [1]. and the only581

difference is the running time, which is still polynomial. In their proof they have used582

the fact that for each leaf u ∈ Γ \Wx, we have x(Pu ∩ V < h) > 1
3 , and here we can say583

x(Pu∩V < h) > 1− 1
1+ε > ε that would only change the constant factor in the actual running584

time of O(logL)O(logL). So the total running time would be still polynomial. This means585

that we are able to find a (5 + ε)-approximation for the reduced instance of the RMFC586

problem, and then it leads to the (5 + ε)-approximation for the RMFC problem.587
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