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Abstract

Given a graphG, the edge-disjoint cycle packing problem is to find the largest set of cycles of which no

two share an edge. For undirected graphs, the best known approximation algorithm has ratioO(
√

log n) where

n = |V (G)| and is due to Krivelevichet al [14, 15]. In fact, they proved the same upper bound for the integrality

gap of this problem by presenting a simple greedy algorithm.Here we show that this is almost best possible. By

modifying integrality gap and hardness results for the edge-disjoint paths problem given by Chuzhoy and Khanna

[1, 9], we show that the undirected edge-disjoint cycle packing problem has an integrality gap ofΩ(
√

log n

log log n
) and

furthermore it is quasi-NP-hard to approximate the edge-disjoint cycle problem within ratio ofO(log
1

2
−ǫ n) for

any constantǫ > 0. The same results hold for the problem of packing vertex-disjoint cycles.

1 Introduction

In the problem ofedge-disjoint cycle packing(EDC) we are given a graphG and our goal is to find a largest set

of edge-disjoint cycles. The vertex analog of the problem,vertex-disjoint cycle packing(VDC), is the problem of

finding a largest set of vertex-disjoint cycles in the given graph. The EDC problem has been studied extensively in

both directed and undirected settings (e.g. see Balister etal. [3], Caprara et al.[5], and Seymour [18]). A discussion

on the applications of packing cycles to computational biology and reconstructing evolutionary trees can be found

in [3].

Both EDC and VDC are known to be NP-hard even for undirected graphs and for very restricted cases of the

problem (see e.g. [10]). This motivates the study of approximation algorithms for these problems. Caprara, Pan-

conesi and Rizzi [5] showed that EDC is APX-hard even when restricted on planar graphs. They also presented

a simple greedy algorithm with approximation ratioO(log n). Recently, Krivelevich et al. [14, 15] showed that a

modification of the simple greedy algorithm of [5] with a morecareful analysis yields anO(
√

log n)-approximation

for EDC on undirected graphs. In fact, the algorithm obtainsan integer solution that is within factorO(
√

log n)

of the optimal fractional solution. They showed examples for which the solution obtained by the greedy algorithm

was withinΩ(
√

log n) of the optimal solution but it falls short of proving any super-constant lower bound on the
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integrality gap or approximability of the problem. They also presented anO(
√

n)-approximation for EDC on di-

rected graphs and anO(log n)-approximation for undirected VDC. Subsequently, in [16, 15], an integrality gap

of Ω( log n
log log n) for EDC on directed graphs was proved. This result was followed by a hardness of approximation.

There was proved that unlessNP ⊆ DTIME(npolylog(n)), it is hard to approximate EDC on directed graphs within

O(log1−ǫ n) for any ǫ > 0. However, the best known lower bound on the approximabilityof EDC on undirected

graphs remains APX-hardness and the best lower bound for integrality gap isO(1). For EDC on planar graphs,

Caprara, Panconesi, and Rizzi give a2 + ǫ-approximation algorithm [4].

For the related problem of edge-disjoint paths (EDP), on directed graphs the best approximation algorithms have

ratio O(min{n 2
3 log

1
3 n,

√
m}) [6, 13, 19] and it is known the problem is hard to approximate within O(m

1
2
−ǫ) for

anyǫ > 0 [11]. For undirected graphs, the best known approximation ratio for EDP isO(
√

n) [7] whereas the best

known hardness result is onlyΩ(log
1
2
−ǫ n) for anyǫ > 0 [1, 9]. The latter result was built on the major advance on

the lower bound of EDP (from APX-hardness toΩ(log
1
3
−ǫ n)) by Andrews and Zhang [2].

In this paper, we improve the lower bounds for both EDC and VDC. More specifically, we first present an

integrality gap construction which shows that the integrality gap upper bound of [14, 15] is almost tight.

Theorem 1.1 The EDC problem on undirected graphs has an integrality gap of Ω(
√

log n
log log n).

Then we show almost the same bound for the hardness of approximation for these problems.

Theorem 1.2 The EDC problem on undirected graphs is hard to approximate within O(log
1
2
−ǫ n) for any ǫ > 0

unlessNP ⊆ ZPTIME(npolylog(n)).

This shows that the simple greedy algorithm of [14, 15] with approximation ratioO(
√

log n) is almost best

possible for EDC. The reduction in the proof of Theorem 1.2 works, without modification, to prove the same hardness

result for VDC. Our results are heavily motivated by the hardness of the edge-disjoint paths problem presented by

Chuzhoy and Khanna in [9]. Nevertheless, they show a rather surprising approximability threshold for a very natural

packing problem. In fact there are very few problems known tohave a sub-logarithmic approximability threshold

([8, 12]). One other important message to be taken from our results is that, in order to improve the hardness of

approximation for EDP (fromΩ(log
1
2
−ǫ n) to beyondΩ(

√
log n)), there has to be substantially new ideas developed

that exploit the differences between EDC and EDP problems; since such a hardness result should not be adaptable

to work for EDC (because we already have anO(
√

log n)-approximation for EDC).

The rest of the paper is separated into three more sections. In Section 2 we describe the construction of a graph

with large integrality gap for EDC. The ideas from this section motivate the proof of hardness of approximation

result in the subsequent section. Section 3 starts by recalling a PCP characterization of NP presented in [9] based on

the results of Samorodnitsky and Trevisan [17]. Following this, the construction of the EDC instance is presented as

a reduction from 3SAT using this PCP result. Section 4 analyzes this construction to prove the hardness result for

EDC.

2 Integrality Gap

The construction of an instance of the EDC problem with a large integrality gap is similar to the construction used

by Chuzhoy and Khanna in [9]. We begin by generating a random graphG and use this graph to generate another
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graphH. With sufficiently large probability, the resulting graphH has a super-constant integrality gap. We use a

model of random graph different from [9] which enables us to handle some special cases that are overlooked in the

analysis of [9].

2.1 Constructing the Gap

Given a sufficiently large integern, defineβ1 =
√

log n
8 log log n andβ2 = 5β1 ln β1. The ultimate goal is to construct a

graph withO(n2) nodes and integrality gapΩ(β1). Start by building a random Hamiltonian cycleF on n vertices.

Then we add a random graphG1 = Gn,p to F with p = 2β2

n−1 , i.e. for each pair of nodes, if there is no edge between

them already (due toF ), we add it randomly (and independently) with probabilityp = 2β2

n−1 . This is our graphG.

Now, from graphG we will create another graphH as follows. For each edgeei ∈ G, add verticesℓi andri

to H and connect them with an edgeℓiri which will be called aspecialedge. Finally, for each vertexv of G, let

ev1 , ev2 , . . . , evk
be the edges incident withv in some arbitrary order. Add edgesrviℓvi+1 to H for all 1 ≤ i ≤ k

wherevk+1 = v1. Call the sequence of verticesℓv1 , rv1 , ℓv2 , rv2 , . . . , ℓvk
, rvk

the canonical cycleof v denoted by

Cv. Notice that each special edgeℓiri in H (corresponding to edgeei ∈ G) appears in exactly two canonical cycles

Cu andCv whereu andv are the endpoints ofei in the original graphG. Every other edge appears in exactly one

canonical cycle inH. Note that since the minimum degree ofG is 2, every vertex inG has a corresponding canonical

cycle inH. So we haven canonical cycles inH.
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Figure 1: Constructing the canonical cycle forv.

2.2 Analysis

If we assign a fractional value of12 to each canonical cycle inH, each special edge has total fractional value 1 and

all the other edges have fractional value1
2 . Thus, no edge constraint is violated and we have a fractional packing of

cycles with total valuen/2 in H (as there aren canonical cycles inH).

We now bound the number of cycles in any integral packingC in H. First observe that the expected degree of

each nodev in G1, E[d(v)], is 2β2. Using Chernoff bound,Pr[d(v) < β2] ≤ Pr[d(v) < 1
2E[d(v)]] ≤ e−β2

2/4. So

the expected number of nodes with degree smaller thanβ2 in G1 is at mostn · e−β2
2/4 ≤ n

8β1
. Thus using Markov’s

inequality, with probability at least78 the number of nodes with degree smaller thanβ2 in G1, and therefore inG, is

at most n
β1

.

Second, letM1 = |E(G1)|. SinceE[M1] = p ·
(n
2

)

= β2n, again using Chernoff bound, the probability of

|M1 − β2n| > β2n/4 is exponentially small. So we can assume that with probability at least78 :

3

4
β2n < M1 <

5

4
β2n. (1)
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If we defineM = |E(G)|, sinceM1 ≤ M ≤ M1 + n, using (1), the probability of event|M − β2n| > β2n/2

is at most78 . Let the bad eventE0 be the event that either|M − β2n| > β2n/2 or there are more thannβ1
nodes with

degree smaller thanβ2. From above it follows with probability at least3
4 eventE0 does not happen.

Note that for every pair of nodesuv, for the probability of having an edgee = uv in G we have:

Pr[e 6∈ G] = Pr[e 6∈ F ] · Pr[e 6∈ G1|e 6∈ F ]

=

(

1 − 2(n − 2)!

(n − 1)!

)

·
(

1 − 2β2

n − 1

)

=

(

1 − 2

n − 1

)

·
(

1 − 2β2

n − 1

)

= 1 +
4β2

(n − 1)2
− 2β2 + 2

n − 1

ThusPr[e ∈ G] = 2β2+2
n−1 − 4β2

(n−1)2
≤ 3β2

n−1 . Definingp′ = 3β2

n−1 we can assume each edge exists inG with

probability at mostp′. For g = 6β1β2, we say that a cycle is short if it is of length less thang and long otherwise.

Let C1, C2, andC3 be the set of canonical cycles, long cycles, and short cyclesof C, respectively. SoC = C1∪C2∪C3.

We will bound the size of eachCi by O(n/β1) which implies|C| ∈ O(n/β1). Let the bad eventE1 be the event that

there are more thann/β1 edge-disjoint canonical cycles inC, i.e. |C1| > n/β1.

Lemma 2.1 The probability of bad eventE1 happening is at most14 .

Proof. First we obtain a bound on the probability that some fixed subset S ⊆ V (G) of sizen/β1 doesn’t contain an

edge. Since each edge exists with probabilityp′, the probability that a fixed setS of sizen/β1 is empty is at most:

(

1 − 3β2

n − 1

)(n/β1
2 )

≤
(

1 − 3β2

n

)n2/(4β2
1 )

≤ e
−β2n

2β2
1 .

The number of such setsS is
(

n
n/β1

)

≤ (eβ1)
n/β1 ≤ β

2n/β1

1 ; so by union bound the probability of having any setS

of sizen/β1 that does not contain an edge is at most:

β
2n
β1
1 · e

−β2n

2β2
1 ≤ e

n
β1

“

2 lnβ1− β2
2β1

”

≤ e
−n lnβ1

2β1 ≤ 1

4
.

✷

To bound|C2|, first observe that graphH has3M edges. Since all cycles inC2 are of length at leastg then|C2|
is easily bound by3M

g ≤ n
β1

, assuming thatE0 does not happen.

Now we bound the size ofC3. First, obtain the multi-graphH ′ from H by contracting all special edgesℓiri to a

single vertexuei . So each such vertexuei now corresponds to an edgeei in G. If there are two edges between two

nodes ofH ′ then the only explanation can be that the edges come from the same canonical cycle corresponding to

a degree 2 vertex ofG. If we assume bad eventE0 does not happen, there are at mostn
β1

cycles of length 2 inH ′.

Now we bound the number of cycles of length3 ≤ k < g in H ′. It is easy to see that a bound on the number of
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cycles of length less thang in H ′ is an upper bound on the number of cycles of length less thang in G. Denote by

E2 the event that there are more thann
β1

simple cycles inH ′.

Lemma 2.2 The probability of bad eventE2 occurring is at most14 .

Proof. We begin by bounding the expected number of cycles of some fixed length3 ≤ k < g in H ′. Let C =

ei1 , ei2 , . . . , eik be an ordered sequence of edges forming a cycle inH ′ whereeij = uijuij+1 and all uij ’s are

distinct for 1 ≤ j ≤ k whereik+1 = i1. Denote the edge inG corresponding touij by hij for all 1 ≤ j ≤ k.

By the construction ofH ′, for each two consecutive nodesuij , uij+1 in C (1 ≤ j ≤ k), the corresponding edges

hij and hij+1 in G must be incident with a vertex i.e. have a common end-point (note thathi1 , . . . , hik do not

necessarily form a cycle inG since, for example,hij , hij+1 , andhij+2 can all be incident to the same vertex). Given

a sequence of pairs of nodes inG like hi1 , . . . , hik , whose corresponding nodes inH ′ form a simple cycle likeC,

the probability that all pairshi1 , . . . , hik are actually edges inG is
(

3β2

n−1

)k
. A loose upper bound on the number

of such sequences of pairs of nodes inG (that correspond to a simple cycle inH ′) is (2n)k since once we select a

pair of nodes, there are at most2n − 4 other pairs of nodes, each of which has an end-point in commonwith the

previous one. Also, every sequence ofk edges inG, like hi1 , . . . , hik corresponds to a sequence ofk nodes inH ′,

sayui1 , . . . , uik , and if this sequence forms a (simple) cycle then it forms at most2k cycles inH ′ because between

every pair of nodes inH ′ there are at most two edges. Thus, the expected number of cycles of lengthk in H ′ is at

most2k · (2n)k ·
(

3β2

n−1

)k
≤ (16β2)

k. Summing over all cycle lengths3 ≤ k < g gives an upper bound of(16β2)
g

on the expected number of short (simple) cycles. By Markov’sinequality, the probability that there are more than

4(16β2)
g cycles of length3 ≤ k < g in H ′ is at most14 . We show that this quantity is bound byn/β1.

4(16β2)
g ≤ β2g

2 = e2g ln β2 = e12β1β2 lnβ2

≤ e60β2
1 lnβ1 ln β2

≤ e120β2
1 ln2 β1

≤ e
120 ln n

64(ln ln n)2
· 1
(2 ln ln n)2

≤ e
ln n
2

≤ n

β1
.

Therefore, the probability that there are more thann/β1 short (simple) cycles inC3 is at most14 . ✷

Therefore, assuming thatE0 andE2 do not happen|C3| ≤ 2n/β1. By union bound, the probability ofE0∪E1∪E2

is at most34 . So with probability at least14 graphG (and accordingly graphH) with the above properties exist and

so any collection of disjoint cycles ofH is of size at most|C| ≤ |C1| + |C2| + |C3| ≤ 4n
β1

. Since we can packn/2

cycles fractionally inH, then the integrality gap isΩ(β1) = Ω
( √

log n
log log n

)

. The number of vertices of graphH is

N = 2M ∈ O(n2). Therefore, the integrality gap inH is Ω
( √

log N
log log N

)

.
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3 The Hardness Construction

In this section we prove Theorem 1.2. We show how a modification of the construction used to prove the hardness of

approximating edge-disjoint paths by Chuzhoy and Khanna in[9] can be used to show the same hardness for EDC.

Our starting point is a PCP characterization of NP introduced in [17].

3.1 A PCP Characterization of NP

To begin, we use the same PCP characterization of NP used in [9] which is a slight modification of the character-

ization obtained by Samorodnitsky and Trevisan in [17]. LetΦ be an instance of 3SAT withn variables. For any

constantk > 0, consider a PCP verifier that usesr = O(log n) random bits and queriesq = k2 bits of a proofΠ.

Let R be a random string of lengthr and denote the indices of the bits of the proof that are read given the random

stringR asb1(R), . . . , bq(R). Define aconfigurationto be the tuple(R, a1, . . . , aq) whereR is a random string of

lengthr andai = Πbi(R) ∈ {0, 1}, for 1 ≤ i ≤ q , are the values of the bits read in the proof. A configuration

(R, a1, . . . , aq) is calledacceptingif the PCP verifier accepts upon using random stringR and reading proof bits

a1, . . . , aq. It follows ([9]) from the construction of [17] that for every constantk > 0 and for sufficiently large

constantβ >> k2 there exists a a PCP verifier forΦ with the following properties:

• λr = O(log n log log n) random bits are used withr = O(log n) andλ = 2β log log n
k2 .

• Exactlyq = λk2 = O(log log n) bits of the proof are queried for each random string.

• If Φ is satisfiable, then there exists a proofΠ such that the acceptance probability of the PCP verifier upon

readingΠ is at least2−λ.

• If Φ is not satisfiable, then the acceptance probability of the PCP verifier upon readingΠ is at most2−λk2
for

all proofsΠ.

• Every random stringR participates in2λ(2k−1) accepting configurations.

• For every random stringR and for everyj = 1 . . . q, the number of accepting configurations withΠbj(R) = 0

and the number of accepting configurations withΠbj(R) = 1 are equal.

• Let Zj to be the set of all accepting configurations withΠj = 0 and letOj be the set of all accepting

configurations withΠj = 1. Let nj = |Zj | = |Oj |. Thennj ≥ 2λr/2.

• LetA be the set of all accepting configurations. Then|A| ≤ 2λr · 22λk.

For a given instance ofΦ of 3SAT with n variables, we assume thatV is a PCP verifier with aforementioned

properties and we choosek to be a large enough constant.

3.2 The Bit Gadget

The basic construction here is identical to that of [9]. LetM andX be two parameters which will be specified later.

We only note thatX will be exponentially larger thanM , i.e. X >> 2M . For each proof bitΠi, we construct a

bit gadgetG(i) in the following manner. Recall thatZi andOi are the set of accepting configurations in which bit
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Πi is zero and one, respectively. For each accepting configuration α ∈ Zi ∪ Oi and for each1 ≤ m ≤ M + 1, we

createX verticesvx,m(α, i), for 1 ≤ x ≤ X, called levelm vertices. LetZm(i) = {v1,m(α, i), . . . , vX,m(α, i)}
be the set of levelm vertices whenα ∈ Zi. Similarly defineOm(i) to be the set of levelm vertices whenα ∈ Oi.

Between levelsm andm + 1, for 1 ≤ m ≤ M , createXni verticesLm(i) = {ℓ1,m(i), . . . , ℓXni,m(i)} as well as

Xni verticesRm(i) = {r1,m(i), . . . , rXni,m(i)} whereni = |Zi| = |Oi|.
The edges in the bit-gadget are specified as follows. For each1 ≤ m ≤ M , create a random matching between

theXni levelm vertices associated with someα ∈ Zi and the vertices inLm(i). Similarly, create a random matching

between the vertices inRm(i) and theXni level m + 1 vertices associated with someα ∈ Zi. Repeat the same

process between vertices associated with someα ∈ Oi. Finally, for each1 ≤ m ≤ M and for each1 ≤ j ≤ Xni,

join ℓm,j(i) andrm,j(i) with an edge which we call aspecialedge. Figure 2 illustrates this construction.

For each configurationα ∈ Zi ∪ Oi, we define a canonical pathPx(α, i) for 1 ≤ x ≤ X, as being the path

(vx1,1(α, i), ℓa1 ,1(i), ra1,1(i), vx2,2(α, i), . . . , ℓaM ,M (i), raM ,M (i), vxM+1,M+1(α, i))

where the indicesx1 = x and the remainingxm, am indices are defined by the random matchings. Essentially, a

canonical path corresponding to configurationα begins at one of theX verticesvx,1(α, i) and follows the random

matchings between levels while never visiting vertices inOi if α ∈ Zi or never visiting vertices inZi if α ∈ Oi.
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Figure 2: Bit gadget construction for proofΠi

Note that the canonical paths corresponding to theXni configurations inZi are all edge-disjoint. Similarly, the

canonical paths to the configurations inOi are edge-disjoint. Each special edge belongs to exactly twocanonical

paths (one corresponding to a configuration inZi and one inOi) and every other edge belongs to exactly one

canonical path. Consider the set ofXni special edges at levelm (1 ≤ m ≤ M ). Since each such special edge

participates in exactly one canonical path representing a configuration inZi and one canonical path representing a

configuration inOi, the set of special edges in levelm, defines a matching between canonical paths corresponding to

configurations inZi and canonical paths corresponding to configuratinos inOi. This matching is random (because

of the random matchings placed before these special edges).So overall, theM levels of special edges defineM

random matchings between the canonical paths corresponding to configurations inZi and inOi.

Let ∆ = M
8 log M , noting thatM ≥ 8∆ log ∆ holds. For each indexi of proofΠ, letP0(i) be the set of canonical

paths corresponding to a configuration inZi andP1(i) be the set of canonical paths corresponding to a configuration

in Oi. A bit gadgetG(i) is said to bebad if there is a pair of subsetsA ⊆ P0(i), B ⊆ P1(i) with |A| = |B| = Xni
∆

such that all paths inA ∪ B are edge disjoint. Define bad eventB1 to be the event that there is some bit gadget that

is bad. The next lemma claims that with sufficiently high probability B1 does not happen. The proof is a simple

first-moment analysis. The idea is that each path fromA and each path fromB can be matched by any of theM
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random matchings defined by the special edges, in which case the two paths are not edge-disjoint. Since our bit

gadget is identical to the bit gadget constructed in [9], thefollowing result holds as well.

Lemma 3.1 [9] The probability that bad eventB1 happens is at most 1
poly(n) .

3.3 The Main Construction

In this subsection we show how to combine the bit gadgets intothe final construction. This is essentially the same

construction as in [9] with the modification that the corresponding source-sink pairs are connected by a new set of

edges, called back-edges.

Let α = (R, ai1 , ai2 , . . . , aiq) be an accepting configuration withi1, . . . , iq being the indices of the proof

bits queried upon reading the random stringR. For each1 ≤ j < q, we connect bit gadgetG(ij) to bit gad-

get G(ij+1) by creating a random matching between the sets of vertices{v1,M+1(α, ij) . . . vX,M+1(α, ij)} and

{v1,1(α, ij+1), . . . vX,1(α, ij+1). For each1 ≤ x ≤ X, we define canonical pathPx(α) = (Px1(α, i1), . . . , Pxq(α, iq))

where thexj ’s are recursively defined as follows:x1 = x andxj corresponds to the canonical path inG(ij) whose

start point is matched with the end-point ofPxj−1(α, ij−1) in G(ij−1) for each2 ≤ j ≤ q.

After performing the random matching, add an edge, called abackedge, for each canonical pathPx(α) between

the start and end vertices in that path. From this, we define acanonical cycleCx(α) to be the cycle formed by the

canonical path and the associated back edge. Denote the set of all canonical cycles byC. A few important facts

about this graph are noted. First, the length of each canonical cycle is(3M + 1)q ≤ 4Mλk2. Second, for each

accepting configurationα, there areX edge-disjoint canonical cycles associated withα. Finally, the degree of each

vertex is at most 3. Figure 3 illustrates this final construction.

We setX = 222λ(k2+4k)
andM = 2λ(k2+k) in the final construction. ThenX = 2polylog(n) andM = polylog(n).

Each vertex and edge participate in at least one canonical cycle and|C| ≤ X · 2λr · 2λ(2k−1) with the length of

each cycle inC being bound by4Mλk2. Denoting the number of vertices in the final construction byN we have

N ≤ X · 2λr · M · 22λk ≤ X · 2O(log n log log n).

Random
Matching

Random
Matching

Random
Matching

Back Edges Forα

G(i  )1 G(i  )2 G(i  )q

v   (   ,i  )α1,1 1

αv    (   ,i  )
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1αv         (   ,i  )1,M+1 1,1v   (   ,i  )α 2
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X,1 21v          (   ,i  )

X,M+1
α

2αv         (   ,i  )1,M+1

2v          (   ,i  )
X,M+1

α

1,1
v   (   ,i   )α q

αv    (   ,i   )
X,1 q

αv         (   ,i   )1,M+1 q

v          (   ,i   )
X,M+1

α q

. . .

Figure 3: The final instance for configurationα.

3.4 Analysis

Here we show that ifΦ is a satisfiable instance of 3SAT then there are many edge-disjoint cycles in the instance

we built (those corresponding to the canonical cycles). On the other hand ifΦ is a no-instance then the number of
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edge-disjoint cycles is small. For this part we show that thenumber of canonical as well as non-canonical cycles is

small.

3.4.1 Φ is Satisfiable

If Φ is satisfiable, then there exists a proofΠ′ for which the probability of acceptance of verifierV is at least2−λ. For

each of the at least2λr−λ random stringsR that result in verifierV accepting proofΠ′, choose all of theX canonical

cycles corresponding to the configuration(R, a1, . . . , aq) where theaj ’s, 1 ≤ j ≤ q , are the values of the bits read

in proof Π′ when the random string isR. It is easy to see that the set of all these canonical cycles are edge-disjoint.

Denoting the number of edge-disjoint cycles whenΦ is satisfiable byCY I , we haveCY I ≥ X · 2λr−λ ≥ |C|
22λk .

3.4.2 Φ is not satisfiable

Suppose thatΦ is not satisfiable and letC′ be a collection of edge-disjoint cycles of the constructed graphG. Define

g = 22λ(k2+k). We say a cycle is short if its length is less thang; otherwise the cycle is called long. PartitionC′ into

setsC1, C2, andC3 whereC1 is the set of all canonical cycles inC′, C2 is the set of long non-canonical cycles, andC3

is the set of short non-canonical cycles. We bound the sizes of each ofC1, C2, andC3. The proofs of the following

two lemmas are essentially the same as the the correspondingarguments in [9]. We skip repeating them here.

Lemma 3.2 If bad eventB1 does not happen, then|C1| ≤ 2CY I

2λk2−2λk−λ
.

The number of long non-canonical cycles is at most|E(G)|
g ≤ |C|·4Mλk2

g . Sinceg = 22λ(k2+k) andM = 2λ(k2+k)

it follows thatg/(4Mλk2) ≥ 2λk2
. Thus:

Lemma 3.3 |C2| ≤ |C|
2λk2 ≤ CY I

2λk2−2λk
.

To bound the number of short non-canonical cycles we have to be more careful. For that we first define bad event

B2 as the event|C3| > CY I

2λk2 .

Lemma 3.4 EventB2 happens with probability at most13 .

Proof. Let G′ be the resultant graph when all of the special edges ofG are contracted. An upper bound for the

number of cycles of length less thang in G′ is clearly an upper bound for the number of cycles of length less thang

in G as well. Consider any lengthg′ < g and let us bound the number of non-canonical cycles of lengthg′. There

are two types of edges inG′: those that come from random matchings inG and those that are back-edges inG.

Claim 3.5 The probability of each edgee = uv appearing in the graphG′ given the existence ofg′ − 1 other edges

that do not form a canonical path fromu to v, is at most 1
X−g′+1 .

This is easy to see for the case of a non-back-edge (i.e. random matching edge) as each matching edge exists

with probability at most 1
X−g′+1 given the existence ofg′ − 1 other edges. The case of a potential back-edge is

different as the back-edges are not completely random (eachis created between the source and sink of a canonical

path; but the path is created randomly). Consider a potential back edgee = uv between a source nodeu and a

sink nodev (note thatu andv are not necessarily the end points of a canonical path) and suppose we are given the
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existence of up tog′ − 1 other edges that do not form a canonical path fromu to v. Moreover, consider the partial

canonical paths fromu and fromv using the other at mostg′ − 1 other edges. Since there is currently no canonical

path fromu to v (otherwise we have a canonical cycle withe), then the probability thatu andv are endpoints of the

same canonical path is exactly the probability that they will be connected with a new random-matching edge. Thus,

the probability thate exists is at most 1
X−g′+1 . Using these arguments, for any potential non-canonical cycle C of

lengthg′ the probability that all edges ofC exist is at most( 1
X−g′+1)g

′ ≤ (2/X)g
′
. A coarse upper bound on the

number of potential cycles of lengthg′ in G′ is Ng′ which yields that the expected number of non-canonical cycles

of lengthg′ being no more than
(

2N
X

)g′
. Summing over allg′ < g, this yields an upper bound of

(

2N
X

)g
on the

expected number of short non-canonical cycles.

SinceN ≤ X · 2λr+2λk+λ(k2+k), the expected number of cycles of length less thang is at most2λg(r+k2+4k) ≤
23λrg. By Markov’s inequality, the probability that the number ofcycles of length less thang is greater than24λrg ≥
3 × 23λrg is at most13 . ✷

Therefore, if eventB2 does not happen, then:

|C3| ≤ 24λrg ≤ 222λ(k2+3k)+log log n

becauser = O(log n). Also, sinceλ = β log log n/k2 for β >> k2, thenλk ≥ log log n resulting in

|C3| ≤ 222λ(k2+4k) ≤ X ≤ CY I

2λ(r−1)
≤ CY I

2λk2 .

3.4.3 Wrap up

If neither of bad eventsB1 nor B2 happens, then|C′| = |C1| + |C2| + |C3| ≤ CY I

2λ(k2−3k)
. So the gap between the

size of the solution ofG for the case thatΦ is a yes-instance and for the case thatΦ is a no-instance of 3SAT is

Ω(2λ(k2−3k)). Remembering thatN ≤ X ·2λr ·M ·22λk, we havelog N ≤ 22λ(k2+4k) +3λr. By selectingβ a large

constant we havelog N ≤ 22λ(k2+5k) which yields
√

log N ≤ 2λ(k2−3k) · 28λk =
(

2λ(k2−3k)
)1+ 8

k−3
. Therefore,

2λ(k2−3k) = log
1
2
−( 4

k+5 and so for anyǫ > 0, we can choosek = k(ǫ) > 0 such that the gap is at leastlog
1
2
−ǫ N .

The probability of either of eventsB1 orB2 occurring is at most1/(poly(n)) + 1/3 ≤ 1/2. So, if a(log
1
2
−ǫ n)-

approximation algorithm exists for the edge-disjoint cycles problem for anyǫ > 0, then a co-RPTIME(npolylog(n))

algorithm for 3SAT exists, which in turn implies the existence of a ZPTIME(npolylog(n)) algorithm for 3SAT by a

standard result. Thus, for anyǫ > 0, it is hard to approximate the edge-disjoint cycle packing problem within a

factor ofΩ(log
1
2
−ǫ n) unless NP⊆ ZPTIME(npolylog(n)).

3.5 The Hardness of VDC

Since each vertex has degree at most 3 in the construction ofG, an edge-disjoint cycle packing must also be a vertex-

disjoint cycle packing. Also, a vertex-disjoint cycle packing must be an edge-disjoint cycle packing. Therefore,

the preceding construction and analysis also shows that it is hard to approximate the vertex-disjoint cycle packing

problem to within a factor ofΩ(log
1
2
−ǫ n) for any ǫ > 0 unlessNP ⊆ ZPTIME(npolylog(n)). The integrality gap

for EDC holds forV DC by the same reasoning.
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4 Concluding Remarks

Theorem 1.2 together with the results of [14, 15] yield an almost tight ratio for approximability of EDC in the

undirected setting (O(
√

log n) v.s. Ω(log
1
2
−ǫ n) for anyǫ > 0). However, the gap between the best approximation

ratio and hardness lower bounds for undirected VDC as well asdirected EDC (and VDC) are pretty wide; as said

earlier, the best upper and lower bounds for undirected VDC are O(log n) andΩ(log
1
2
−ǫ n), and for directed EDC

areO(
√

n) andΩ(log1−ǫ n) (for any ǫ > 0), respectively. The bounds for directed EDC are in the same ballpark

as the upper and lower bounds for approximability of the edge-disjoint paths problem in theundirectedsetting; this

does not seem to be coincidental as both the approximation algorithms and the lower bound techniques used for

these problems are similar in nature and we seem to need substantial new ideas to improve upon any of these. As

we mentioned in the Introduction, what is interesting to note is that, given that our hardness result for EDC uses

essentially the same construction for hardness result for EDP, any new improved hardness of approximation for EDP

(beyondO(
√

log n)) needs substantially new ideas that exploit the differences between EDP and EDC problems

since the best ratio for undirected EDC essentially meets the current hardness for undirected EDP.
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