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Abstract

Given a graph’, the edge-disjoint cycle packing problem is to find the latget of cycles of which no

two share an edge. For undirected graphs, the best knownxaption algorithm has rati®(/logn) where

n = |V(G)| and is due to Kriveleviclet al[14, 15]. In fact, they proved the same upper bound for thegirality
gap of this problem by presenting a simple greedy algoritHere we show that this is almost best possible. By
modifying integrality gap and hardness results for the edigg@int paths problem given by Chuzhoy and Khanna
[1, 9], we show that the undirected edge-disjoint cycle pagkroblem has an integrality gapﬁ(hﬁn) and
furthermore it is quasi-NP-hard to approximate the edgitit cycle problem within ratio o@(log%* n) for
any constanté > 0. The same results hold for the problem of packing vertejoitiscycles.

1 Introduction

In the problem ofedge-disjoint cycle packinEDC) we are given a grap&y and our goal is to find a largest set
of edge-disjoint cycles. The vertex analog of the problgertex-disjoint cycle packinyDC), is the problem of
finding a largest set of vertex-disjoint cycles in the giveapl. The EDC problem has been studied extensively in
both directed and undirected settings (e.g. see Balistdr 8], Caprara et al.[5], and Seymour [18]). A discussion
on the applications of packing cycles to computationaldggland reconstructing evolutionary trees can be found
in [3].

Both EDC and VDC are known to be NP-hard even for undirectegblgs and for very restricted cases of the
problem (see e.g. [10]). This motivates the study of appnaxion algorithms for these problems. Caprara, Pan-
conesi and Rizzi [5] showed that EDC is APX-hard even whetricésd on planar graphs. They also presented
a simple greedy algorithm with approximation raéiglogn). Recently, Krivelevich et al. [14, 15] showed that a
modification of the simple greedy algorithm of [5] with a maaeful analysis yields af(/log n)-approximation
for EDC on undirected graphs. In fact, the algorithm obtainsinteger solution that is within fact@p(/logn)
of the optimal fractional solution. They showed exampleswhich the solution obtained by the greedy algorithm
was withinQ(y/Tog n) of the optimal solution but it falls short of proving any segenstant lower bound on the
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integrality gap or approximability of the problem. Theyalsresented a®(,/n)-approximation for EDC on di-
rected graphs and af(log n)-approximation for undirected VDC. Subsequently, in [16], Jan integrality gap
of Q(lolg"l%) for EDC on directed graphs was proved. This result was falbly a hardness of approximation.
There was proved that unleB® C DTIME(nP°¥'&(")) it is hard to approximate EDC on directed graphs within
O(log'~¢n) for anye > 0. However, the best known lower bound on the approximabdftyfzDC on undirected
graphs remains APX-hardness and the best lower bound fegradity gap isO(1). For EDC on planar graphs,
Caprara, Panconesi, and Rizzi give & e-approximation algorithm [4].

For the related problem of edge-disjoint paths (EDP), oeatiéd graphs the best approximation algorithms have
ratio O(min{n§ log% n,y/m}) [6, 13, 19] and it is known the problem is hard to approximatiiw O(m%‘f) for
anye > 0 [11]. For undirected graphs, the best known approximatiio for EDP isO(+/n) [7] whereas the best
known hardness result is on@/(log%‘6 n) for anye > 0 [1, 9]. The latter result was built on the major advance on
the lower bound of EDP (from APX-hardnessﬂ()log%‘E n)) by Andrews and Zhang [2].

In this paper, we improve the lower bounds for both EDC and VMOre specifically, we first present an
integrality gap construction which shows that the intagrajap upper bound of [14, 15] is almost tight.

Theorem 1.1 The EDC problem on undirected graphs has an integrality ga@(q()—%).

Then we show almost the same bound for the hardness of apmban for these problems.

Theorem 1.2 The EDC problem on undirected graphs is hard to approximatlaiva(log%‘en) for anye > 0
unlessNP C ZPTIME(nPolyloe(n)),

This shows that the simple greedy algorithm of [14, 15] wigpmximation ratioO(y/log n) is almost best
possible for EDC. The reduction in the proof of Theorem 1.2kspwithout modification, to prove the same hardness
result for VDC. Our results are heavily motivated by the In@ss of the edge-disjoint paths problem presented by
Chuzhoy and Khanna in [9]. Nevertheless, they show a rathrprising approximability threshold for a very natural
packing problem. In fact there are very few problems knowhaee a sub-logarithmic approximability threshold
(I8, 12]). One other important message to be taken from aault®is that, in order to improve the hardness of
approximation for EDP (fronﬁl(log%‘e n) to beyond2(y/log n)), there has to be substantially new ideas developed
that exploit the differences between EDC and EDP probleinsgssuch a hardness result should not be adaptable
to work for EDC (because we already have@f,/log n)-approximation for EDC).

The rest of the paper is separated into three more sectinr&edtion 2 we describe the construction of a graph
with large integrality gap for EDC. The ideas from this sectmotivate the proof of hardness of approximation
result in the subsequent section. Section 3 starts by iega@IPCP characterization of NP presented in [9] based on
the results of Samorodnitsky and Trevisan [17]. Followinig,tthe construction of the EDC instance is presented as
a reduction from 3SAT using this PCP result. Section 4 amal\his construction to prove the hardness result for
EDC.

2 Integrality Gap

The construction of an instance of the EDC problem with adangegrality gap is similar to the construction used
by Chuzhoy and Khanna in [9]. We begin by generating a rand@phy= and use this graph to generate another
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graph H. With sufficiently large probability, the resulting grapgh has a super-constant integrality gap. We use a
model of random graph different from [9] which enables usandie some special cases that are overlooked in the
analysis of [9].

2.1 Constructing the Gap

Given a sufficiently large integet, define; = Bfg{g‘)l?ogn andf, = 541 In 81. The ultimate goal is to construct a
graph withO(n?) nodes and integrality ga@(3;). Start by building a random Hamiltonian cydieon n vertices.
Then we add a random gragh = G, , to F' with p = % i.e. for each pair of nodes, if there is no edge between
them already (due t&"), we add it randomly (and independently) with probability= % This is our graplG.

Now, from graphG we will create another grapH as follows. For each edge € G, add verticed; andr;
to H and connect them with an eddg-; which will be called aspecialedge. Finally, for each vertexof G, let
€uy,Euys - - - 5 €y, DE the edges incident within some arbitrary order. Add edges/,,,, to H forall1 <i <k
wherev,1 = vy. Call the sequence of verticés, , r,,, Ly, , vy, - - -, Lo, T, the canonical cycleof v denoted by
C,. Notice that each special edgge; in H (corresponding to edgg € () appears in exactly two canonical cycles
C, andC, whereu andv are the endpoints af; in the original graphG. Every other edge appears in exactly one
canonical cycle ir{. Note that since the minimum degree(®fs 2, every vertex itz has a corresponding canonical
cycle in H. So we have: canonical cycles irf.

\ 1

Figure 1: Constructing the canonical cycle tor

2.2 Analysis

If we assign a fractional value c%fto each canonical cycle if{, each special edge has total fractional value 1 and
all the other edges have fractional val%J.eThus, no edge constraint is violated and we have a fradtjmeking of
cycles with total value: /2 in H (as there are canonical cycles i).

We now bound the number of cycles in any integral pacKirig H. First observe that the expected degree of
each node in Gy, E[d(v)], is 26,. Using Chernoff boundpPr(d(v) < (] < Prld(v) < AE[d(v)]] < e /4. So
the expected number of nodes with degree smaller faan G is at mostn - e P34 < ﬁ Thus using Markov’s
inequality, with probability at Iea% the number of nodes with degree smaller tidann G, and therefore iz, is
at most%.

Second, letM; = |E(G1)|. SinceE[M;] = p- (;) = B.n, again using Chernoff bound, the probability of
|My — Ban| > Ban/4 is exponentially small. So we can assume that with proliglati Ieastg:

3 5
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If we defineM = |E(G)|, sinceM; < M < M; + n, using (1), the probability of evemd! — Gan| > (an/2
is at mostg. Let the bad evert, be the event that eithe®! — (31| > Son/2 or there are more thaft nodes with
degree smaller thafi,. From above it follows with probability at Iea%teventé’o does not happen.

Note that for every pair of nodes, for the probability of having an edge= uv in G we have:

Prle ¢ G]

Prle ¢ F| - Prle ¢ Gile ¢ F]
- () ()
(k) ()

435 _2524—2
(n—12% n-1

= 1+

ThusPrle € G] = 25242 (n4_5f)2 < 22 Dpefiningp’ = 222 we can assume each edge exist&invith
probability at mosp’. Forg = 63,32, we say that a cycle is short if it is of length less thaand long otherwise.
LetCq, C2, andC; be the set of canonical cycles, long cycles, and short cpél@srespectively. S@ = C; UC,UCs.

We will bound the size of eadfy by O(n/3:1) which implies|C| € O(n/81). Let the bad everd; be the event that

there are more tham/3; edge-disjoint canonical cyclesdi.e. |Ci| > n/f.
Lemma 2.1 The probability of bad everdt; happening is at mos}.

Proof. First we obtain a bound on the probability that some fixedsubs— V' (G) of sizen /3, doesn't contain an
edge. Since each edge exists with probabijlitythe probability that a fixed sét of sizen/3; is empty is at most:

n/ﬁ1)

<l_n3f21>( ;

The number of such setis (,,; ) < (ef1)"/"t < 3271+ 50 by union bound the probability of having any Set

of sizen/3; that does not contain an edge is at most:

<1 - %>n2/(46%)

n

IN

< e 27,

2n —Ban n B2 nln 31 1
G L plact) ok 1

|

To bound|Cs|, first observe that grapH has3M edges. Since all cycles @& are of length at least then|Cs|
is easily bound b ;Vf < ﬁ, assuming thaf, does not happen.

Now we bound the size df;. First, obtain the multi-graplif’ from H by contracting all special edgég; to a
single vertexu.,. So each such vertex., now corresponds to an edgein G. If there are two edges between two
nodes ofH’ then the only explanation can be that the edges come fromathe sanonical cycle corresponding to
a degree 2 vertex af. If we assume bad evef does not happen, there are at mglstycles of length 2 ind’.

Now we bound the number of cycles of length< k& < ¢ in H'. Itis easy to see that a bound on the number of

4



cycles of length less thapin H’ is an upper bound on the number of cycles of length less gharG. Denote by
&, the event that there are more thggnsimple cycles inf’.

Lemma 2.2 The probability of bad everdt, occurring is at mos%.

Proof. We begin by bounding the expected number of cycles of somd femgth3 < k& < gin H'. LetC =
€i»€iy, - - -, €, DE an ordered sequence of edges forming a cyclH/irwhereeZ-j = wu;;u;;,, and allu;’'s are
distinct for1 < j < k wherei;,; = i;. Denote the edge it corresponding tai;; by h;; forall 1 < j < k.

By the construction ofi’, for each two consecutive nodes, u;,,, in C (1 < j < k), the corresponding edges
h;; andh;, , in G must be incident with a vertex i.e. have a common end-poiote(that?;, , ..., h;, do not
necessarily form a cycle i& since, for exampley;;, h;, ,, andh;, , can all be incident to the same vertex). Given
a sequence of pairs of nodesgéhlike h;,, ..., h;,, whose corresponding nodesiff form a simple cycle like”,
the probability that all pair&;, , ..., h;, are actually edges i is (%)k A loose upper bound on the number
of such sequences of pairs of nodegir{that correspond to a simple cycle i) is (2n)* since once we select a
pair of nodes, there are at mast — 4 other pairs of nodes, each of which has an end-point in comnitinthe
previous one. Also, every sequencekaédges inG, like h;,, ..., h;, corresponds to a sequencekofiodes inH’,
sayu;,, ..., u;,, and if this sequence forms a (simple) cycle then it forms at2f* cycles inH’ because between
every pair of nodes i/’ there are at most two edges. Thus, the expected number elsaytlengthk in H' is at
most2” - (2n)k - (%)k < (1642)*. Summing over all cycle lengtt®s < k < ¢ gives an upper bound 6160, )9

on the expected number of short (simple) cycles. By Markmésjuality, the probability that there are more than
4(1602)9 cycles of lengttB < k < gin H' is at mosti. We show that this quantity is bound by ;.

4(166,)¢ < 5229 — 29mfBa _ 12518210 B2
< eGOB% In By In B2
< e1205% In? 3,
120lnn | 1
S e 64(Inln n)2 (2Inlnn)2
é eln2n
n
< —.
B
Therefore, the probability that there are more thdys; short (simple) cycles if; is at most%. O

Therefore, assuming thgg and&,; do not happeiCs| < 2n/3;. By union bound, the probability & U&; U,
is at most%. So with probability at Ieasi graphG (and accordingly grapli/) with the above properties exist and
so any collection of disjoint cycles df is of size at mosiC| < |C1| + |Ca| + |C3] < ‘é—’f. Since we can pack/2

cycles fractionally inH, then the integrality gap i8(5;) = Q ( viegn ) The number of vertices of grapt is

loglogn

N = 2M € O(n?). Therefore, the integrality gap if is ( Viog N )

loglog N



3 The Hardness Construction

In this section we prove Theorem 1.2. We show how a modifioaifdhe construction used to prove the hardness of
approximating edge-disjoint paths by Chuzhoy and Khanrif]inan be used to show the same hardness for EDC.
Our starting point is a PCP characterization of NP introduog17].

3.1 A PCP Characterization of NP

To begin, we use the same PCP characterization of NP used whjéh is a slight modification of the character-
ization obtained by Samorodnitsky and Trevisan in [17]. &die an instance of 3SAT with variables. For any
constantt > 0, consider a PCP verifier that uses= O(logn) random bits and queries= k? bits of a proofll.

Let R be a random string of lengthand denote the indices of the bits of the proof that are reashghe random
string R asb; (R), ..., by(R). Define aconfigurationto be the tupl€ R, a1, . .., a,) whereR is a random string of
lengthr anda; = II, () € {0,1}, for 1 <4 < ¢, are the values of the bits read in the proof. A configuration
(R,ai,...,aq) is calledacceptingif the PCP verifier accepts upon using random stidth@nd reading proof bits
ai,...,aq. It follows ([9]) from the construction of [17] that for ewerconstantt > 0 and for sufficiently large
constant3 >> k? there exists a a PCP verifier férwith the following properties:

o \r = O(log nloglog n) random bits are used with= O(log n) and\ = 221 an
e Exactlyq = \k? = O(loglog n) bits of the proof are queried for each random string.

e If ® is satisfiable, then there exists a prabisuch that the acceptance probability of the PCP verifier upon
readingl] is at leas2 .

e If @ is not satisfiable, then the acceptance probability of thE P&ifier upon readingl is at most—** for
all proofsII.

e Every random string? participates ir2*(2*—1) accepting configurations.

e For every random stringg and for everyj = 1... ¢, the number of accepting configurations with, z) = 0
and the number of accepting configurations Wit z) = 1 are equal.

e Let Z; to be the set of all accepting configurations wilh = 0 and letO; be the set of all accepting
configurations witHT; = 1. Letn; = |Z;| = |O,|. Thenn; > 2*/2,

e Let A be the set of all accepting configurations. Theh < 2*7 . 223k,

For a given instance ob of 3SAT with n variables, we assume thitis a PCP verifier with aforementioned
properties and we chooggo be a large enough constant.
3.2 The Bit Gadget

The basic construction here is identical to that of [9]. Létand X be two parameters which will be specified later.
We only note thatX will be exponentially larger thad/, i.e. X >> 2M. For each proof bill;, we construct a
bit gadgetG (i) in the following manner. Recall th&; andO; are the set of accepting configurations in which bit
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IT; is zero and one, respectively. For each accepting configarate Z; U O; and for each < m < M + 1, we
createX verticesv, ,,(a, i), for 1 < = < X, calledlevelm vertices. LetZ,,(i) = {vim(a,i),...,vxm(0, 1)}
be the set of leveh vertices whenx € Z;. Similarly defineO,,, (i) to be the set of level vertices whenx € O;.
Between levelsn andm + 1, for 1 < m < M, createXn; verticesL,, (1) = {{1m(i),...,lxn,; m()} as well as
Xn; verticesR,, (i) = {rim(i),...,"xn;.m(7)} wheren; = |Z;| = |O;].

The edges in the bit-gadget are specified as follows. For eachn < M, create a random matching between
the X'n; levelm vertices associated with somes Z; and the vertices if.,,, (7). Similarly, create a random matching
between the vertices iR,, (i) and theXn; level m + 1 vertices associated with somee Z;. Repeat the same
process between vertices associated with sargeO;. Finally, for eachl < m < M and for each < j < Xn;,
join 4., ; (i) andry, (i) with an edge which we call specialedge. Figure 2 illustrates this construction.

For each configuration € Z; U O;, we define a canonical paf?,. («, i) for 1 < x < X, as being the path

(vxhl(o‘a i)a €a17l(i)a Tahl(i)a Ux272(o‘a i)a <o ’gaM,M(Z‘)? TaMJ”@)ﬁ UJ?M+1,M+1(O‘7 Z))

where the indices;; = z and the remaining:,,,, a,,, indices are defined by the random matchings. Essentially, a
canonical path corresponding to configuratioiegins at one of th& verticesv,, 1(«, i) and follows the random
matchings between levels while never visiting vertice®jnf « € Z; or never visiting vertices itr; if a € O;.

20,

2,0) 20,4 0)

Xn,

Level M

Figure 2: Bit gadget construction for proff;

Note that the canonical paths corresponding toXhe configurations inZ; are all edge-disjoint. Similarly, the
canonical paths to the configurations(iy are edge-disjoint. Each special edge belongs to exactlycamonical
paths (one corresponding to a configurationZinand one inO;) and every other edge belongs to exactly one
canonical path. Consider the set ¥f:; special edges at leveh (1 < m < M). Since each such special edge
participates in exactly one canonical path representingnéiguration inZ; and one canonical path representing a
configuration in0D;, the set of special edges in level defines a matching between canonical paths corresporaling t
configurations inZ; and canonical paths corresponding to configuratina3;inThis matching is random (because
of the random matchings placed before these special ed§eshverall, theM levels of special edges defing
random matchings between the canonical paths corresgptwlzonfigurations irZ; and inO;.

LetA = SIO—AgM’ noting thatd/ > 8A log A holds. For each indekof proofII, let Py (i) be the set of canonical
paths corresponding to a configurationdpand?; (i) be the set of canonical paths corresponding to a configaratio
in O;. A bit gadgetG(:) is said to bebadif there is a pair of subsetd C Py(i), B C P (i) with |A| = |B| = %
such that all paths idl U B are edge disjoint. Define bad evefit to be the event that there is some bit gadget that
is bad. The next lemma claims that with sufficiently high @ity 3, does not happen. The proof is a simple
first-moment analysis. The idea is that each path febmnd each path fron? can be matched by any of thd
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random matchings defined by the special edges, in which basevb paths are not edge-disjoint. Since our bit
gadget is identical to the bit gadget constructed in [9] fthlewing result holds as well.

Lemma 3.1 [9] The probability that bad evern; happens is at mosl_gtm.

3.3 The Main Construction

In this subsection we show how to combine the bit gadgetstiredinal construction. This is essentially the same
construction as in [9] with the modification that the cor@sing source-sink pairs are connected by a new set of
edges, called back-edges.

Let a = (R,a;,ai,,...,a;,) be an accepting configuration with, ..., i, being the indices of the proof
bits queried upon reading the random striRg For eachl < j < ¢, we connect bit gadge®(i;) to bit gad-
get G(i;4+1) by creating a random matching between the sets of verfiees;;1(«, ;) ... vx m+1(e,4;)} and
{vra(a,ij11), ... vx1(o,dj41). Foreach <z < X, we define canonical path, (o) = (P, (a,i1), ..., Py, (a,iq))
where thex;'s are recursively defined as follows; = x andx; corresponds to the canonical pathiti;) whose
start point is matched with the end-point®f,_, (o, 4;-1) in G(i;—1) for each2 < j < q.

After performing the random matching, add an edge, calledckedge, for each canonical path («) between
the start and end vertices in that path. From this, we deficenanical cycleC,(«) to be the cycle formed by the
canonical path and the associated back edge. Denote théaetanonical cycles by. A few important facts
about this graph are noted. First, the length of each caabojcle is(3M + 1)g < 4MMk?. Second, for each
accepting configuration, there areX edge-disjoint canonical cycles associated with-inally, the degree of each
vertex is at most 3. Figure 3 illustrates this final constamct

We setx — 222° ) andar — 22245 in the final construction. Theli — 2°°12(m) and 1 = polylog(n).
Each vertex and edge participate in at least one canonicig end|C| < X - 2V . 2M2k=1) with the length of
each cycle irC being bound bytM \k?. Denoting the number of vertices in the final constructionNbyve have
N < X 23 . M .92 < x . 90(lognloglogn)

Back Edges Fouo

@j‘W'h) v {00) V1 a1 € k)

vy (@i )

~— . (—e Random e—— : (——e Random Random e—— .
Gy |—e Matching o—| Gli2) |——e Matching ~~ "~ Matching e——] Glid
@) Vemss € 4) v @@l Vener @ 2) Ve 1@ia ) Vymer @ )

— —e ~— —e -~ —e
-—— —e | e -~ —e
— —e ~— —e -~ —e

-— —e | ——e -~ —e

Figure 3: The final instance for configuration

3.4 Analysis

Here we show that ifb is a satisfiable instance of 3SAT then there are many edg@rdisycles in the instance
we built (those corresponding to the canonical cycles). l@nother hand ifb is a no-instance then the number of



edge-disjoint cycles is small. For this part we show thattlber of canonical as well as non-canonical cycles is
small.

3.4.1 & is Satisfiable

If ® is satisfiable, then there exists a préBffor which the probability of acceptance of verifiéris at leas2 . For
each of the at leagt""—* random stringsk that result in verifiel/ accepting prooil’, choose all of theX canonical
cycles corresponding to the configuratiaR, a, . . . , a,) where theu;’s, 1 < j < ¢, are the values of the bits read
in proof IT" when the random string iB. It is easy to see that the set of all these canonical cyckesdge-disjoint.
Denoting the number of edge-disjoint cycles whieis satisfiable by’y ;, we haveCy; > X - 2A—* > ‘C|

3.4.2 & is not satisfiable

Suppose thab is not satisfiable and I&t be a collection of edge-disjoint cycles of the constructepgG. Define
g= 22K +R) \We say a cycle is short if its length is less thamtherwise the cycle is called long. Partiti6hinto
setsCy, Co, andC3 where(; is the set of all canonical cycles @, Cs is the set of long non-canonical cycles, ahd
is the set of short non-canonical cycles. We bound the sizeaah ofCy, C», andCs. The proofs of the following
two lemmas are essentially the same as the the correspoadjnments in [9]. We skip repeating them here.

2Cyr
OAkZ—2Xk—X "

Lemma 3.2 If bad eveni3; does not happen, thdd; | <

The number of long non-canonical cycles is at n#géf—)' < W. Sinceg = 222k +k) and M = 2M(k*+k)
it follows thatg/(4MAk2) > 22+, Thus:

et Cyr
Lemma 3.3 |Cof < 557 < b

To bound the number of short non-canonical cycles we have todre careful. For that we first define bad event

C
B, as the eveniCs| > 2.

Lemma 3.4 Event3, happens with probability at moét

Proof. Let G’ be the resultant graph when all of the special edge§ afe contracted. An upper bound for the
number of cycles of length less tharin G’ is clearly an upper bound for the number of cycles of lengsk thary

in G as well. Consider any lengtff < ¢g and let us bound the number of non-canonical cycles of leggtiihere
are two types of edges i@@’: those that come from random matchinggirand those that are back-edgesin

Claim 3.5 The probability of each edge= uv appearing in the grapld:’ given the existence gf — 1 other edges

that do not form a canonical path fromto v, is at MoSty—— g -

This is easy to see for the case of a non-back-edgerandom matching edge) as each matching edge exists
with probability at mosty—r--—+ ,+1 given the existence of — 1 other edges. The case of a potential back-edge is
different as the back-edges are not completely random (samieated between the source and sink of a canonical
path; but the path is created randomly). Consider a potdraiek edgee = uv between a source nodeand a
sink nodev (note thatu andwv are not necessarily the end points of a canonical path) gopbse we are given the
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existence of up tg’ — 1 other edges that do not form a canonical path froto v. Moreover, consider the partial
canonical paths from and fromv using the other at mogt — 1 other edges. Since there is currently no canonical
path fromu to v (otherwise we have a canonical cycle wifhthen the probability that andv are endpoints of the
same canonical path is exactly the probability that theYlvelconnected with a new random-matching edge. Thus,
the probability thak exists is at mostﬁ. Using these arguments, for any potential non-canoniogkcy of
length g’ the probability that all edges @ exist is at mostﬁ)g' < (2/X)9’. A coarse upper bound on the
number of potential cycles of lengtfiin G’ is N9 which yields that the expected number of non-canonicalesycl
of length ¢’ being no more thalﬁ%)gl. Summing over aly’ < g, this yields an upper bound ¢~ )? on the
expected number of short non-canonical cycles.

SinceN < X - 2Mr+2Mk+AR*+k) the expected number of cycles of length less thaat mostA9(r++*+4k)
23719 By Markov’s inequality, the probability that the numberaytles of length less thapis greater thag*"9

3 x 23479 is at most}.

O IV IA

Therefore, if even3; does not happen, then:

‘CS‘ < 24)\7.9 < 222)\(k2+3k)+10g10gn

because = O(logn). Also, since\ = 3loglogn/k? for 3 >> k?, then\k > log log n resulting in

3.4.3 Wrap up

If neither of bad event#; nor B, happens, thefC'| = |Ci| + |Co| + |C5| < % So the gap between the
size of the solution of> for the case tha® is a yes-instance and for the case tftais a no-instance of 3SAT is

Q(2\**=3k)) Remembering thaV < X -2). M 222k we haveog N < 22A(**+4%) 1 3\, By selecting3 a large
1+5
constant we havibg N < 222(k*+5%) \which yields/Tog N < 2Mk*=3k) . 983k — (2”’“2‘3’“)) "% Therefore,

2A(=3k) — 10g2~(#%5 and so for any > 0, we can choosé = k() > 0 such that the gap is at ledst;z — N.

The probability of either of event8; or B, occurring is at most /(poly(n)) + 1/3 < 1/2. So, if a(log%—f n)-
approximation algorithm exists for the edge-disjoint egcproblem for any > 0, then a co—RPTIMEnPOlylog("))
algorithm for 3SAT exists, which in turn implies the existerof a ZPTIME—(nPOlleg(")) algorithm for 3SAT by a
standard result. Thus, for ary> 0, it is hard to approximate the edge-disjoint cycle packingbfem within a
factor ofQ2(log2 ~“n) unless NPC ZPTIME(nPolylog(n)),

3.5 The Hardness of VDC

Since each vertex has degree at most 3 in the constructiGharf edge-disjoint cycle packing must also be a vertex-
disjoint cycle packing. Also, a vertex-disjoint cycle pamk must be an edge-disjoint cycle packing. Therefore,
the preceding construction and analysis also shows thathiaid to approximate the vertex-disjoint cycle packing
problem to within a factor of2(logz ¢ n) for anye > 0 unlessNP C ZPTIME(nP°¥os(")). The integrality gap
for EDC holds forV DC by the same reasoning.
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4 Concluding Remarks

Theorem 1.2 together with the results of [14, 15] yield anaahtight ratio for approximability of EDC in the
undirected setting@(y/Tog n) V.S. Q(log%‘ﬁ n) for anye > 0). However, the gap between the best approximation
ratio and hardness lower bounds for undirected VDC as walirasted EDC (and VDC) are pretty wide; as said
earlier, the best upper and lower bounds for undirected VE2@dlog n) andQ(log%‘6 n), and for directed EDC
areO(y/n) andQ(log! ~n) (for anye > 0), respectively. The bounds for directed EDC are in the saafipark

as the upper and lower bounds for approximability of the aedigmint paths problem in thendirectedsetting; this
does not seem to be coincidental as both the approximatgoriddms and the lower bound techniques used for
these problems are similar in nature and we seem to needastibbnew ideas to improve upon any of these. As
we mentioned in the Introduction, what is interesting toenistthat, given that our hardness result for EDC uses
essentially the same construction for hardness resultdét, Bny new improved hardness of approximation for EDP
(beyondO(4/logn)) needs substantially new ideas that exploit the differermetween EDP and EDC problems
since the best ratio for undirected EDC essentially meetsdirent hardness for undirected EDP.
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