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Abstract

In this paper, we present Approximation Schemes for Capacitated Vehicle Routing Problem (CVRP) on
several classes of graphs. In CVRP, introduced by Dantzig and Ramser in 1959 [13], we are given a graph
G = (V,E) with metric edges costs, a depot r ∈ V , and a vehicle of bounded capacity Q. The goal is to �nd
a minimum cost collection of tours for the vehicle that returns to the depot, each visiting at most Q nodes,
such that they cover all the nodes. This generalizes classic TSP and has been studied extensively. In the
more general setting, each node v has a demand dv and the total demand of each tour must be no more than
Q. Either the demand of each node must be served by one tour (unsplittable) or can be served by multiple
tours (splittable). The best known approximation algorithm for general graphs has ratio α+ 2(1− ε) (for the
unsplittable) and α + 1 − ε (for the splittable) for some �xed ε > 1

3000
, where α is the best approximation

for TSP. Even for the case of trees, the best approximation ratio is 4/3 [5], and it has been an open question
if there is an approximation scheme for this simple class of graphs. Das and Mathieu [14] presented an

approximation scheme with time nlogO(1/ε) n for Euclidean plane R2. No other approximation scheme is known
for any other class of metrics (without further restrictions on Q). In this paper, we make signi�cant progress
on this classic problem by presenting Quasi-Polynomial Time Approximation Schemes (QPTAS) for graphs of
bounded treewidth, graphs of bounded highway dimensions, and graphs of bounded doubling dimensions. For

comparison, our result implies an approximation scheme for Euclidean plane with run time nO(log6 n/ε5).

1 Introduction

Vehicle routing problems (VRP) describe a class of problems where the objective is to �nd cost-e�cient delivery
routes for delivering items from depots to clients using vehicles having limited capacity. These problems have
numerous applications in real-world settings. The Capacitated Vehicle Routing Problem (CVRP) was introduced
by Dantzig and Ramser in 1959 [13]. In CVRP, we are given as input a graph G = (V,E) with metric edge weights
(also referred to as costs) w(e) ∈ Z≥0, a depot r ∈ V , along with a vehicle of capacity Q > 0, and wish to compute
a minimum weight/cost collection of tours, each starting from the depot and visiting at most Q customers, whose
union covers all the customers. In the more general setting, each node v has a demand d(v) ∈ Z≥1 and the goal is
to �nd a set of tours of the minimum total cost, each of which includes r such that the union of the tours covers
the demand at every client and every tour covers at most Q demand.

There are three common versions of CVRP: unit, splittable, and unsplittable. In the splittable variant, the
demand of a node can be delivered using multiple tours, but in the unsplittable variant, the entire demand of a
client must be delivered by a single tour. The unit demand case is a special case of the unsplittable case where
every node has unit demand, and the demand of a client must be delivered by a single tour. CVRP has also
been referred to as the k-tours problem [3, 4]. All three variants admit constant factor approximation algorithm
in polynomial-time [17]. Haimovich et al. [17] showed that a heuristic called iterative partitioning (which starts
from a TSP tour and breaks the tour into capacity respecting tours by making a trip back and forth to the
depot) implies an (α + 1(1 − 1/Q))-approximation for the unit demand case, with α being the approximation
ratio of Traveling Salesman Problem (TSP). A similar approach implies a 2 + (1− 2/Q)α)-approximation for the
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unsplittable variant [2]. Very recently, Blauth et al. [10] improved these approximations by showing that there is
an ε > 0 such that there is an (α+ 2 · (1− ε))-approximation algorithm for unsplittable CVRP and a (α+ 1− ε)-
approximation algorithm for unit demand CVRP and splittable CVRP. For α = 3/2, they showed ε > 1/3000.
All three variants are APX-hard in general metric spaces [24], so a natural research focus has been on structured
metric spaces, i.e. special graph classes. Even on trees (and in particular on stars) CVRP remains NP-hard [22],
and there exist constant-factor approximations (currently being 4/3 [5]), better than those for general metrics,
however, the following question has remained open:
Question. Is it possible to design an approximation scheme for CVRP on trees, or more generally, graphs of
bounded treewidth?

We answer the above question a�rmatively. For ease of exposition, we start by proving the following �rst:

Theorem 1.1. For any ε > 0, there is an algorithm that, for any instance of the unit demand CVRP on trees
outputs a (1 + ε)-approximate solution in time nO(log4 n/ε3). For any instance of the splittable CVRP on trees

when Q = nO(logc n) the algorithm runs in time nO(log2c+4 n).

We then show how this result can be extended to design QPTAS for graphs of bounded treewidth.

Theorem 1.2. For any ε > 0, there is an algorithm that, for any instance of the unit demand CVRP on a graph
G of bounded treewidth k outputs a (1 + ε)-approximate solution in time nO(k2 log3 n/ε2). For the splittable CVRP
on graphs of bounded treewidth when Q = nO(logc n), the algorithm outputs a (1 + ε)-approximate solution in time

nO(k2 log2c+3 n/ε2).

As a consequence of this and using earlier results of embedding graphs of bounded doubling dimensions or
bounded highway dimensions into graphs of low treewidth, we obtain approximation schemes for CVRP on those
graph classes.

Theorem 1.3. For any ε > 0 and �xed D > 0, there is a an algorithm that, given an instance of the splittable
CVRP with capacity Q = nlogc n on a graph of doubling dimension D, �nds a (1+ ε)-approximate solution in time

nO(DD log2c+D+3 n/εD+2).

As an immediate corollary, this implies an approximation scheme for CVRP on Euclidean metrics on R2 in

time nO(log6 n/ε5) which improves on the run time of nlogO(1/ε) n of QPTAS of [14].

Theorem 1.4. For any ε > 0, λ > 0 and D > 0, there is a an algorithm that, given a graph with highway
dimension D with violation λ as an instance of the splittable CVRP with capacity Q = nlogc n, �nds a solution

whose cost is at most (1 + ε) times the optimum in time nO(log2c+3+log2( D
ελ

)· 1
λ n/ε2).

1.1 Related Works CVRP generalizes the classic TSP problem (with Q = n). For general metrics, Haimovich
et al. [17] considered a simple heuristic, called tour partitioning, which starts from a TSP tour and then splits the
tour into tours of size at most Q (by making back-and-forth trips to r) and showed that it is a (1 + (1− 1/Q)α)-
approximation for splittable CVRP, where α is the approximation ratio for TSP. Essentially the same algorithm
implies a (2+(1−2/Q)α)-approximation for unsplittable CVRP [2]. These stood as the best-known bounds until
recently, when Blauth et al. [10] showed that given a TSP approximation α, there is an ε > 0 such that there is
an (α+ 2 · (1− ε))-approximation algorithm for CVRP. For α = 3/2, they showed ε > 1/3000. They also showed
a (α+ 1− ε)-approximation algorithm for unit demand CVRP and splittable CVRP.

For the case of trees, Labbé et al. [22] showed splittable CVRP is NP-hard, and Golden et al. [16] showed
unsplittable version is APX-hard and hard to approximate better than 1.5. For splittable CVRP (again on trees),
Hamaguchi et al. [18] de�ned a lower bound for the cost of the optimal solution and gave a 1.5 approximation
with respect to the lower bound. Asano et al. [4] improved the approximation to (

√
41 − 1)/4 with respect to

the same lower bound and also showed the existence of instances whose optimal cost is exactly 4/3 times the
lower bound. Becker [5] gave a 4/3-approximation with respect to the lower bound. Becker and Paul [9] showed
a (1, 1 + ε)-bicriteria polynomial-time approximation scheme for splittable CVRP in trees, i.e. a PTAS but the
capacity of every tour is up to (1 + ε)Q.

Das and Mathieu [14] gave a quasi-polynomial-time approximation scheme (QPTAS) for CVRP in the
Euclidean plane (R2). A PTAS for when Q is O(log n/ log log n) or Q is Ω(n) was shown by Asano et al.
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[4]. A PTAS for Euclidean plane R2 for all moderately large values of Q ≤ 2logδ n, where δ = δ(ε), was shown
by Adamaszek et al [1], building on the work of Das and Mathieu [14], and using it as a subroutine. For high

dimensional Euclidean spaces Rd, Khachay et al. [19] showed a PTAS when Q is O(log1/d n). For graphs of
bounded doubling dimension, Khachay et al. [20] gave a QPTAS when the number of tours is polylog(n) and
Khachay et al. [21] gave a QPTAS when Q is polylog(n).

The following results are all for when Q is �xed. CVRP is APX-hard in general metrics and is polynomial-
time solvable on trees. There exists a PTAS for CVRP in the Euclidean plane (R2) (again for when Q is �xed)
as shown by Khachay et al. [19]. A PTAS for planar graphs was shown by Becker et al. [8] and a QPTAS for
planar and bounded-genus graphs were shown by Becker et al. [6]. A PTAS for graphs of bounded highway
dimension and an exact algorithm for graphs with treewidth with running time O(ntwQ) was shown by Becker et
al. [7]. Cohen-Addad et al. [12] showed an e�cient PTAS for graphs of bounded-treewidth, an e�cient PTAS for
bounded highway dimension, an e�cient PTAS for bounded genus metrics and a QPTAS for minor-free metrics.
Again, note that these results are all under the assumption that Q is �xed.

So aside from the QPTAS of [14] for R2 and subsequent slight generalization of [1] no approximation scheme is
known for CVRP on any non-trivial metrics for arbitrary values of Q (even for trees). Standard ways of extending
a dynamic program for Euclidean metrics to bounded doubling metrics do not seem to work to extend the results
of [14] to doubling metrics in quasi-polynomial time.

1.2 Overview of our technique We start by presenting a QPTAS for CVRP on trees and then extend the
technique to graphs of bounded treewidth. Our main technique to design an approximation scheme for CVRP is
to show the existence of a near-optimum solution where the sizes of the partial tours going past any node of the
tree can be partitioned into only poly-logarithmic many classes. This will allow one to use dynamic programming
to �nd a low-cost solution. A simple rounding of tour sizes to some threshold values (e.g. powers of (1 + ε)) only
works (with some care) to achieve a bi-criteria approximation as any underestimation of tour sizes may result in
tours that are violating the capacities. To achieve a true approximation (without capacity violation), we show
how we can break the tours of an optimum solution into "top" and "bottom" parts at any node v (the bottom
part of the tour being the part inside the subtree and then swap the bottom parts of tours with the bottom parts
of other tours which are smaller, and then "round them up" to the nearest value from a set of poly-logarithmic
threshold values. This swapping creates enough room to do the "round up" without violating the capacities.
However, this will cause a small fraction of the vertices to become "not covered", we call them orphant nodes.
We will show how we can randomly choose some tours of the optimum and add them back to the solution (at
a small extra cost) and use these extra tours (after some modi�cations) to cover the orphant nodes. There are
many details along the way. For instance, we treat the demand of each node as a token to be picked up by a tour.
To ensure partial tour sizes are always from a small (i.e. poly-logarithmic) size set, we add extra tokens over the
nodes. Also, for our QPTAS to work, we need to bound the height of the tree. We show how we can reduce the
height of the tree to poly-logarithmic at a small loss using a height reduction lemma that might prove useful for
other vehicle routing problems.

The technique of QPTAS for trees then can be extended to graphs of bounded treewidth and also graphs
of bounded doubling dimension; prove the existence of a similar near-optimum solution and �nd one using the
dynamic program. Or one can use the known results for the embedding of graphs of bounded doubling dimension
into graphs of small treewidth. Many of the proofs are deferred to the full version.

2 Preliminaries

Recall that an instance I to CVRP is a graph G = (V,E), where w(e) is the cost or weight of edge e ∈ E and Q
is the capacity of the vehicle. Each tour T is a walk over some nodes of G. We say T "covers" node v if it serves
the demand at node v. For the unit demand CVRP, it is easier to think of the demand of each node v as being a
token on v that must be picked up by a tour. We can generalize this and assume each node v can have multiple
tokens, and the total number of tokens a tour can pick is most Q (possibly from the same or di�erent locations).
Note that each tour might visit vertices without picking any token there. The goal is to �nd a collection of tours
of minimum total cost such that each token is picked up (or, say, covered) by some tour. We use OPT(G) or
simply OPT to refer to an optimum solution of G, and opt to denote the value of it. Fix an optimal solution
OPT. For any edge e let f(e) denote the number of tours travelling edge e in OPT; so opt =

∑
e w(e) · f(e).

First we show the demand of each node is bounded by a function of Q. And then, using standard scaling and
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rounding and at a small loss, we show we can assume the edge weights are polynomially bounded (in n). Given
an instance for splittable CVRP with n nodes and capacity Q, it is possible that the demand d(v) > Q for some
node v. From the work of Adamaszek et al [1], we will show how we can assume that the demand at each node v
satis�es 1 ≤ d(v) < nQ. Adamaszek et al [1] de�ned a trivial tour to be a tour that picks up tokens from a single
node in T and a tour is non-trivial if the tour picks up tokens from at least two nodes in T . They de�ned a cycle
to be a set of tours t1, . . . , tm(m ≥ 2) and a set of nodes `1, `2, . . . , `m, `m+1 = `1 such that each tour ti covers
locations `i and `i+1 and the origin is not considered as a node in `1, . . . , `m. They showed in Lemma 1 of [1] that
there is an optimal solution in which there are no cycles. Since there are no 2-cycles, there are no two tours that
cover the same pair of nodes. So there is an optimal solution such that there are at most n non-trivial tours (as
argued in [1]). So putting aside trivial tours (each picking up Q tokens at a node), we can assume we have a total
of at most nQ tokens, and in particular, each node has at most this many tokens. Without loss of generality,
we assume we have removed as many trivial tours as we can so that each node has at most nQ demands (for a
total of n2Q demands). We can also assume there is at most one tour in OPT covering at most Q/2 demand. If
there are at least two tours T1 and T2 covering less than Q/2 demand, they can be merged into a single tour at
no additional cost. Since the total demand is at most n2Q, the total number of tours in the optimal solution is
at most n2Q/(Q/2) = 2n2.

Now we scale edge weights to be polynomially bounded. Observe that each tour in OPT traverses each edge
e at most once in each direction, so at most twice. Suppose we have guessed the largest edge weight that belongs
to OPT (by enumerating over all possible such guesses) and have removed any edge with weight larger. Let
W = maxe∈E w(e) be the largest edge which clearly is used at least twice by OPT (since for each node v with
zero demands in Tv we can delete the subtree Tv). Suppose we build instance I ′ by rounding up the weight of
each edge e to be a maximum of w(e) and εW/4n4. Since there are a total of at most 2n2 tours in OPT and each
edge is traversed at most twice by each tour, and there are at most n2 edges, the cost of solution OPT in I ′ is at
most opt+ 4n2 · n2 · εW4n4 ≤ (1 + ε)opt. Note that the ratio of maximum to minimum edge weight in I ′ is 4n4/ε,
but the edge weights are not necessarily integer. Now suppose we scale the edge weights so that the minimum
edge weight is 1 and the maximum edge weight is 4n4/ε and then scale them all by 1/ε, and then round each one
up to the nearest integer. Note that by this rounding to the nearest integer, the cost of each edge is increased by a
factor of at most 1+ε, so the cost of an optimum solution in the new instance is at most (1+ε)(1+ε) = (1+O(ε))
factor larger than before rounding while the edge weights are all polynomially bounded integers. So from now on,
we assume we have this property for the given instance at a small loss.

We will use the following two simpli�ed versions of the Cherno� Bound [23] in our analysis.

Lemma 2.1. (Cherno� bound) Let Y =
∑n
i=1 Yi where Yi = 1 with probability pi and 0 with probability 1− pi,

and all Yi's are independent. With µ = E[Y ], P[Y > 2µ] ≤ e−µ/3 and P
[
Y < µ

2

]
≤ e−µ/8.

3 QPTAS for CVRP on Trees

In this section we prove Theorem 1.1. We will �rst prove a structure theorem that describes the structural
properties of a near-optimal solution. We will leverage these structural properties and use dynamic programming
to compute a near-optimal solution.

3.1 Structure Theorem Our goal in this section is to show the existence of a near-optimum solution (i.e. one
with cost (1 + O(ε))opt) with certain properties, which makes it easy to �nd one using dynamic programming.
More speci�cally, we show we can modify the instance I to instance I ′ on the same tree T where each node has
≥ 1 tokens (so possibly more than 1) and change OPT to a solution OPT′ on I ′ where the cost of OPT′ is at
most (1+O(ε))opt. Clearly, the tours of OPT′ form a capacity respecting solution of I as well (of no more cost).

A starting point in our structure theorem is to show that given input tree T , for any ε > 0, we can build
another tree T ′ of height O(log2 n/ε) such that the cost of an optimum solution in T ′ is within 1 + ε factor of the
optimum solution to T . We can lift a near-optimum solution to T ′ into a near-optimum solution of T . We can
show the following (see the full version):

Theorem 3.1. Given a tree T as an instance of CVRP and for any �xed ε > 0, one can build a tree T ′ with
height δ log2 n/ε, for some �xed δ > 0, such that opt(T ′) ≤ opt(T ) ≤ (1 + ε)opt(T ′). Furthermore, any feasible
solution for T ′ can be transformed into a feasible solution of T while increasing the cost by at most a factor (1+ε).

So for the rest of this section, we assume our input tree has height O(log2 n/ε) at a loss of (yet another) 1 + ε
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in approximation ratio.

3.1.1 Overview of the ideas Let us give a high-level idea of the Structure theorem. In order to do that, it
is helpful to start from a simpler task of developing a bi-criteria approximation scheme1

Let T be a tour in OPT and v be a node in T . The coverage of T with respect to v is the number of tokens
picked by T in the subtree Tv (subtree rooted at v). Suppose a tour T visits node v. We refer to the subtour of
T in Tv (subtree rooted at v) as a partial tour.

A Bicriteria QPTAS: For simplicity, assume Q = Poly(n) and that T is binary (this is not crucial in
the design of the DP). A subproblem would be based on a node v ∈ T and the structure of partial tours going
into Tv to pick up tokens in Tv at minimum cost. In other words, if one looks at the sections of tours of an
optimum solution that cover tokens of Tv, what are the capacity pro�les of those sections? For a vector ~t with Q
entries, where ~ti (for each 1 ≤ i ≤ Q) is the number of partial tours going down Tv which pick i tokens (or their
capacity for that portion is i), entry A[v,~t] would store the minimum cost of covering Tv with (partial) tours
whose capacity pro�le is given by ~t. It is not hard to �ll this table's entries using a simple recursion based on
the entries of children of v. So one can solve the CVRP problem "exactly" in time O(nQ+1). We can reduce the
time complexity by storing "approximate" sizes of the partial tours for each Tv. So let us "round" the capacities
of the tours into O(logQ/ε) buckets, where bucket i represents capacities that are in [(1 + ε)i−1, (1 + ε)i). More
precisely, consider threshold-sizes S = {σ1, . . . , στ} where: for 1 ≤ i ≤ 1/ε, σi = i, and for each value i > 1/ε:
σi = σi−1(1 + ε) and στ = Q. Note that |S| = O(logQ/ε) = O(log n/ε). Suppose we allow each tour to pick up
to (1 + ε)Q tokens. If it was the case that each partial tour for Tv (i.e. part of a tour that enters/exits Tv) has a
capacity that is also threshold-size (this may not be true!) then the DP table entries would be based on vectors ~t
of size O(log n/ε), and the run time would be quasi-polynomial. One has to note that for each subproblem of the
optimum at a node v with children u,w, even if the tour sizes going down Tv were of threshold-sizes, the partial
tours at Tu and Tw do not necessarily satisfy this property.

To extend this to a proper bicriteria (1 + ε)-approximation we can de�ne the thresholds based on powers of

1 + ε′ where ε′ = ε2

log2 n
instead: let S = {σ1, . . . , στ} where σi = i for 1 ≤ i ≤ 1/ε′, and for i > 1/ε′ we have

σi = σi−1(1 + ε′), and στ = Q. So now |S| = O(log2 n · logQ/ε) = O(log3 n/ε2) when Q = poly(n). For each
vector ~t of size τ , where 0 ≤ ti ≤ n is the number of partial tours with coverage/capacity σi, let A[v,~t] store
the minimum cost of a collection of (partial) tours covering all the tokens in Tv whose capacity pro�le is ~t, i.e.
the number of tours of size in [σi, σi+1) is ~ti. To compute the solution for A[v,~t], given all the solutions for its
two children u,w we can do the following: consider two partial solutions, A[u,~tu] and A[w,~tw]. One can combine
some partial tours of A[u,~tu] with some partial tours of A[w,~tw], i.e. if Tu is a (partial) tour of class i for Tu
and Tw is a partial tour of class j for Tw then either these two tours are in fact part of the same tour for Tv,
or not. In the former case, the partial tour for Tv obtained by the combination of the two tours will have cost
w(Tu) +w(Tw) + 2w(vu) + 2w(vw) and capacity ti + tj (or possibly ti + tj + 1 if this tour is to cover v as well). In
the latter case, each of Tu and Tw extend (by adding edges vu and vw, respectively) into partial tours for Tv of
weights w(Tu) + 2w(vu) and w(Tw) + 2w(vw) (respectively) and capacities ti and tj (or perhaps ti + 1 or tj + 1 if
one of them is to cover v as well). In the former case, since ti+tj is not a threshold-size, we can round it (down) to
the nearest threshold-size. We say partial solutions for Tv, Tu and Tw are consistent if one can obtain the partial
solution for Tv by combining the solutions for Tv and Tw. Given A[v,~t], we consider all possible subproblems
A[u,~tu] and A[w,~tw] that are consistent and take the minimum cost among all possible ways to combine them
to compute A[v,~t]. Note that whenever we combine two solutions, we might be rounding the partial tour sizes
down to a threshold-size, so we "under-estimate" the actual tour size by a factor of 1 + ε′ in each subproblem
calculation. Since the height of the tree is h = O(log2 n/ε), the actual error in the tour sizes computed at the
root is at most (1 + ε′)h = (1 + O(ε)), so each tour will have size at most (1 + O(ε))Q. The time to compute

each entry A[v,~t] can be upper bounded by nO(log3 n/ε2) and since there are nO(log3 n/ε2) subproblems, the total

running time of the algorithm will be nO(log3 n/ε2). We can handle the setting where the tree is not binary (i.e.
each node v has more than two children) by doing an inner DP, like a knapsack problem over children of v (we
skip the details here as we will explain the details for the actual QPTAS instead).

Going from a Bicriteria to a true QPTAS: Our main tool to obtain a true approximation scheme

1Note that [9] already presents a bicriteria PTAS for CVRP on trees. We present a simple bi-criteria QPTAS here as it is our
starting point towards a true approximation scheme.
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for CVRP in trees is to show the existence of a near-optimum solution where the partial solutions for each Tv
have sizes that can be grouped into polylogarithmic many buckets as in the case of bi-criteria solution. Roughly
speaking, starting from an optimum solution OPT, we follow a bottom-up scheme and modify OPT by changing
the solution at each Tv: at each node v, we change the structure of the tours going down Tv (by adding a few
extra tours from the depot) and also adding some extra tokens at v so that the partial tours that visit Tv all have
a size from one of polylogarithmic many possible sizes (buckets) while increasing the number and the cost of the
tours by a small factor. We do this by duplicating some of the tours that visit Tv while changing parts of them
that go down in Tv and adding some extra tokens at v: each tour still picks up at most a total of Q tokens and
the size (i.e. the number of tokens picked) for each partial tour in the subtree Tv is one of O(log4 n/ε2) many
possible values, while the total cost of the solution is at most (1 +O(ε))opt.

To achieve what we have outlined above, suppose T has height h (where h = δ log2 n/ε). Let V` (for 1 ≤ ` ≤ h)
be the set of vertices at level ` of the tree where V1 = {r} and for each ` ≥ 2, V` are those vertices whose parent
is in level `− 1. For every tour T and every level `, the top part of T w.r.t. ` (denoted by T top` ), is the part of T
induced by the vertices in V1∪ . . .∪V`−1 and the bottom part of T are the partial tours of T in the subtrees rooted
at a vertex in V`. Note that if we replace each partial tour of the bottom part of a tour T with a partial tour of
a smaller capacity, the tour remains a capacity respecting tour. Consider a node v (which is at some level `) and
suppose we have nv partial tours covering Tv. Let the nv tours in increasing order of their coverage be t1, . . . , tnv .
Let |ti| be the coverage of tour ti (so |ti| ≤ |ti+1|). For a g (to be speci�ed later), we add enough empty tours
to the beginning of this list so that the number of tours is a multiple of g. Then, we will put these tours into
groups Gv1, . . . , G

v
g of equal sizes by placing the i'th nv/g partial tours into Gvi . Let h

v,max
i (hv,mini ) refer to the

maximum (minimum) size of the tours in Gvi . This grouping is similar to the grouping in the asymptotic PTAS

for the classic bin-packing problem. Note that hv,maxi ≤ hv,mini+1 .
Consider a mapping f where it maps each partial tour in Gvi to one in Gvi−1 in the same order, i.e. the

largest partial tour in Gvi is mapped to the largest in Gvi−1, the 2nd largest to the 2nd largest and so on, for i > 1
(suppose f(.) maps all the tours of Gv1 to empty tours). Now suppose we modify OPT to OPT′ in the following
way: for each tour T that has a partial tour t ∈ Gvi , replace the bottom part of T at v from t to f(t) (which is
in Gvi−1). Note that by this change, the size of any tour like T can only decrease. Also, if instead of f(t) we had
replaced t with a partial tour of size hv,maxi−1 , it would still form a capacity respecting solution with the rest of

T , because hv,maxi−1 ≤ hv,mini ≤ |t|. The only problem is that those tokens in Tv that were picked by the partial
tours in Gvg are not covered by any tours; we call these orphant tokens. For now, assume that we add a few extra
tours to OPT at low-cost such that they cover all the orphant tokens of Tv. If we have done this change for all
vertices v ∈ V`, then for every tour like T , the partial tours of T going down each Tv (for v ∈ V`) are replaced
with partial tours from a group one index smaller. This means that, after these changes, for each tour T and its
(new) partial tour t ∈ Gvi , if we add h

v,max
i − |t| extra tokens at v to be picked up by t then each partial tour has

size exactly the same as the maximum size of its group without violating the capacities. This helps us store a
compact "sketch" for partial solutions at each node v with the property that the partial solution can be extended
to a near-optimum one.

How to handle the case of orphant tokens (those picked by the tours in the last groups Gvg before the swap)?
We will show that if nv is su�ciently large (at least polylogarithmic) then if we sample a small fraction of the
tours of the optimum at random and add two copies of them (as extra tours), they can be used to cover the
orphant tokens. So overall, we show how one can modify OPT by adding some extra tours to it at a cost of at
most ε · opt such that: each node v has ≥ 1 tokens and the sketch of the partial tours at each node v is compact
(only polylogarithmic many possible sizes) while the dropped tokens overall can be covered by the extra tours.

3.1.2 Changing OPT to a near-optimum structured solution We will show how to modify the optimal
solution OPT to a near-optimum solution OPT′ for a new instance I ′ which has ≥ 1 token at each node with
certain properties. We start from ` = h and let OPT′ = OPT` = OPT, and for decreasing values of `, we will
show how to modify OPT`+1 to obtain OPT`. To obtain OPT` from OPT`+1 we keep the partial tours at levels
≥ ` the same as OPT`+1 but we change the top parts of the tours and how the top parts can be matched to the
partial tours at level ` so that together they form capacity respecting solutions (tours of capacity at most Q) at
low-cost.

First, we assume that OPT has at least d log n many tours for some su�ciently large d. Otherwise, if there
are at most D = d log n many tours in OPT we can do a simple DP to compute OPT: for each node v, we have
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a sub problem A[v, T v1 , . . . , T
v
D] which stores the minimum cost solution if T vi is the number of vertices, the i'th

tour is covering in the subtree Tv. It is easy to �ll this table in time O(nD) having computed the solutions for its
children.

Definition 1. Let threshold values be {σ1, . . . , στ} where σi = i for 1 ≤ i ≤ d1/εe, and for i > d1/εe we have
σi = dσi−1(1 + ε)e, and στ = Q. So τ = O(logQ/ε).

We consider the vertices of T level by level, starting from nodes in level V`=h−1 and going up, modifying the
solution OPT`+1 to obtain OPT`.

Definition 2. For a node v, the i-th bucket, bi, contains the number of tours of OPT` having coverage between
[σi, σi+1) tokens in Tv where σi is the i-th threshold value. We will denote a node and bucket by a pair (v, bi). Let
nv,i be the number of tours in bucket bi of v.

Definition 3. A bucket b is small if the number of tours in b is at most α log3 n/ε2 and is big otherwise, for a
constant α ≥ max{1, 12δ}.

Note that for every node v and bucket bi and for any two partial tours in bi, the ratio of their size (coverage)
is at most (1 + ε). We will use this fact crucially later on. While giving the high level idea earlier in this section,
we mentioned that we can cover the orphant tokens at low-cost by using a few extra tours at low-cost. For this
to work, we need to assume that the ratio of the maximum size tour to the minimum size tour in all groups
Gv1, . . . , G

v
g is at most (1 + ε). To have this property, we need to do the grouping described for each vertex-bucket

pair (v, bi) that is big.
For each v ∈ V`, let (v, bi) be a vertex-bucket pair. If bi is a small bucket, we do not modify the partial tours

in it. If bi is a big bucket, we create groups Gvi,1, . . . , G
v
i,g of equal sizes (by adding null/empty tours if needed

to Gvi,1 to have equal size groups), for g = (2δ log n)/ε2; so |Gvi,j | = dnv,i/ge. We also consider a mapping f (as
before) which maps (in the same order) the tours t ∈ Gvi,j to the tours in Gvi,j−1 for all 1 < j ≤ g. We assume the

mapping maps tours of Gvi,1 to empty tours. Let the size of the smallest (largest) partial tour in Gvi,j be h
v,min
i,j

(hv,maxi,j ). Note that hv,maxi,j−1 ≤ hv,mini,j . Consider the set T` of all the tours T in OPT` that visit a vertex in one
of the lower levels V≥`. Consider an arbitrary such tour T that has a partial tour t in a big vertex/bucket pair
(v, bi), suppose t belongs to group Gvi,j . We replace t with f(t) in T . Note that for T , the partial tour at Tv now
has a size between hv,mini,j−1 and hv,maxi,j−1 . Now, add some extra tokens at v to be picked up by T so that the size of
the partial tour of T at Tv is exactly h

v,max
i,j−1 ; note that since hv,maxi,j−1 ≤ |t|, the new partial tour at v can pick up the

extra tokens without violating the capacity of T . If we make this change for all tours T ∈ T`, each partial tour of
them at level ` that was in a group j < g of a big vertex/bucket pair (v, i) is replaced with a smaller partial tour
from a group j − 1 of the same big vertex/bucket pair; after adding extra tokens at v (if needed), the size is the
maximum size from a group j − 1. All other partial tours (from small vertex/bucket pairs) remain unchanged.
Also, the total cost of the tours has not increased (in fact some now have partial tours that are empty). However,
the tokens that were picked by partial tours from Gvi,g for a big vertex/bucket pair (v, bi) are now orphant. We
describe how to cover them with some new tours.

One important observation is that when we make these changes, for any partial tours at vertices at lower
levels (V>`) their size remains the same. It is only the tour sizes going down a vertex at level ` that we are
adjusting (by adding extra tokens). All other lower level partial tours remain unchanged (only their top parts
may get swapped). This property holds inductively as we go up the tree and ensure that the lower level partial
tours have one of polylogarithmic many sizes. More precisely, as we go up levels to compute OPT`, for any vertex
v′ ∈ V`′ (where `

′ > `) and any partial tour T ′ visiting Tv′ , either |T ′| belongs to a small vertex bucket pair
(v′, bi′) (and so has one of O(log3 n/ε) many possible values) or if it belongs to a big vertex bucket pair (v′, bi′)

then its size is equal to hv
′,max
i′,j′ for some group j′ and hence one of O((logQ log n)/ε2) possible values.

To handle (cover) orphant nodes, we are going to (randomly) select a subset of tours of OPT as "extra tours"
and add them to OPT′ and modify them such that they cover all the tokens that are now orphant (i.e. those
that were covered by partial tours of Gvi,g for all big vertex/bucket pairs at level `). Suppose we select each tour
T of OPT with probability ε. We make two copies of the extra tour, and we designate both extra copies to one
of the levels V` that it visits with equal probability. We call these the extra tours.

Lemma 3.1. The cost of extra tours selected is at most 4ε · opt w.h.p.
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Therefore, we can assume that the cost of all the extra tours added is at most 4ε · opt. Let X` be the set of
extra tours designated to level `. We assume we add X` when we are building OPT` (it is only for the sake of
analysis). For each v ∈ V` and vertex/bucket pair (v, bi), let Xv,i be those in X` whose partial tour in Tv has a
size in bucket bi. Each extra tour in X` will not be picking any of the tokens in levels V<` (as they will be covered
by the tours already in OPT`); they are used to cover the orphant tokens created by partial tours of Gvi,g for each
big vertex/bucket pair (v, bi) with v ∈ V`; as described below.

Lemma 3.2. For each level V`, each vertex v ∈ V` and big vertex/bucket pair (v, bi), w.h.p. |Xv,i| ≥ ε2

δ log2 n
· nv,i.

Lemma 3.3. Consider all v ∈ V`, big vertex/bucket pairs (v, bi) and partial tours in Gvi,g. We can modify the
tours in Xv,i (without increasing the cost) and adding some extra tokens at v (if needed) so that:

1. The tokens picked up by partial tours in Gvi,g are covered by some tour in Xv,i, and

2. The new partial tours that pick up the orphant tokens in Gvi,g have size exactly hv,maxi,g and all tours still
have size at most Q.

3. For each (new) partial tour of Xv,i and every level `′ > `, the size of partial tours of Xv,i at a vertex at
level `′ is also one of O(logQ log3 n/ε3) many sizes.

Proof. Our goal is to use the extra tours in Xv,i to cover tokens picked up by partial tours of Gvi,g and we want
each extra tour in Xv,i to cover exactly hv,maxi,g tokens. The tours in the last group, Gvi,g, cover

∑
t∈Gvi,g

|t| many

tokens. Since we want each tour in Xv,i to cover h
v,max
i,g tokens, we will add

∑
t∈Gvi,g

(hv,maxi,g − |t|) extra tokens at
v for each vertex/bucket pair (v, bi) so that there are hv,maxi,g tokens for each partial tour in Gvi,g. From now on,
we will assume each partial tour in a last group Gvi,g covers h

v,max
i,g tokens.

We know |Gvi,g| = nv,i/g = ε2

2δ logn · nv,i. Using Lemma 3.2, we know with high probability that

|Xv,i| ≥ ε2

δ log2 n
· nv,i = 2|Gvi,g|, so |Xv,i|/|Gvi,g| ≥ 2. Recall OPT′ includes tours in OPT plus the extra tours in

OPT that were sampled. Let Yv,i denote the number of tours in vertex/bucket pair (v, bi) that were sampled,
so |Xv,i| = 2|Yv,i| since we made two extra copies of each sampled tour and |Yv,i| ≥ |Gvi,g| with high probability.
We will start by creating a one-to-one mapping s : Gvi,g → Yv,i which maps each tour in Gvi,g to a sampled tour
in Yv,i. We know such a one-to-one mapping exists since |Yv,i| ≥ |Gvi,g|.

Let T be a sampled tour in Yv,i with two extra copies of it, T1 and T2 in Xv,i. Let the partial tours of T
at the bottom part in V` be p1, . . . , pm. We know |T | ≥

∑m
i=1 |pi|. Since s is one-to-one, one partial tour from

rk ∈ Gvi,g maps to pj or no tour maps to pj . If no tour maps to pj , we consider the load assigned to pj to be
zero. If s(rk) = pj where rk ∈ Gvi,g, since we added extra tokens to make each partial tour rk ∈ Gvi,g have h

v,max
i,g

tokens, the load assigned to pj would be hv,maxi,g .
Suppose we think of r1, . . . , rm as items and T1 and T2 as bins of size Q. We know each ri �ts into a

bin of size Q. Recall that for the tour rj assigned to pj , we know |rj | ≤ (1 + ε)|pj | since both rj and pj
are in the same group Gvi,g. We might not be able to �t all items r1, . . . , rm into a bin of size Q because∑m
i=1 |ri| ≤ (1 + ε)

∑m
i=1 |pi| ≤ (1 + ε)|T | ≤ (1 + ε)Q. However, if we used two bins of size Q, we can pack the

items into both bins without exceeding the capacity of either bin such that each item ri is completely in one
bin. Since T1 and T2 are not assigned to any lower level, they have not been used to cover any tokens so far in
our algorithm and they both have unused capacity Q. Using the bin packing analogy, we could split r1, . . . , rm
between T1 and T2. We could assign r1, . . . , rj (for the maximum j) to T1 such that

∑j
i=1 |ri| ≤ Q and the rest,

rj+1, . . . , rm to T2. Since
∑m
i=1 |ri| ≤ (1 + ε)Q, we can ensure we can distribute the tokens in ri's amongst T1 and

T2 such that both T1 and T2 cover at most Q tokens. Although there are two copies of each partial tour pi in
Xv,i, according to our approach, we are using at most one of them (their coverage would be zero if they are not
used). If the coverage of one of the extra partial tours is non-zero, we also showed that if it picks up tokens from
a partial tour in Gvi,g, it would pick up exactly hv,max

i,g tokens, proving the 2nd property of the Lemma.
Also, note that for each partial tour rk ∈ Gvi,g and for each level `′ > ` if rk visits a vertex v′ ∈ V`′ , then

the partial tour of rk at Tv′ already satis�es the properties that: either its size belongs to a small vertex-bucket
pair (v′, bi) (so has one of O(log3 n/ε) many possible values) or if it belongs to a big vertex bucket pair (v′, bi′)

then its size is equal to hv
′,max
i′,j′ for some group j′ and hence one of O((logQ log n)/ε2) possible values. This

implies that for the extra tours of Xv,i, after we reassign partial tours of Gvi,g to them (to cover the orphant
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nodes), each will have a size exactly equal to hv,maxi,g at level ` and at lower levels V>` they already have one of

the O(logQ log3 n/ε3) many possible sizes. This establishes the 3rd property of the lemma.

Therefore, using Lemma 3.3, all the tokens of Tv remain covered by partial tours; those partial tours in Gvi,j
(for 1 ≤ j < g) are tied to the top parts of the tours from group Gvi,j+1 and the partial tours of Gvi,g will be tied to
extra tours designated to level `. We also add extra tokens at v to be picked up by the partial tours of Tv so that
each partial tour has size exactly equal to the maximum size of a group. All in all, the extra cost paid to build
OPT` (from OPT`+1) is for the extra tours designated to level `. The following theorem is an easy consequence
of the previous lemmas.

Theorem 3.2. (Structure Theorem) Let opt be the cost of the optimal solution to instance I. We can build
an instance I ′ on the same tree T such that each node has ≥ 1 tokens and there exists a near-optimal solution
OPT′ for I ′ having cost (1 + 4ε)opt w.h.p with the following property. The partial tours going down subtree Tv
for every node v in OPT′ has one of O((logQ log3 n)/ε3) possible sizes. More speci�cally, suppose (v, bi) is a
bucket pair for OPT′. Then either:

� bi is a small bucket and hence there are at most α log3 n/ε2 many partial tours of Tv whose size is in bucket
bi, or

� bi is a big bucket; in this case there are g = (2δ log n)/ε2 many group sizes in bi: σi ≤ hv,maxi,1 ≤ . . . ≤
hv,maxi,g < σi+1 and every tour of bucket i has one of these sizes.

3.2 Dynamic Program In this section, we complete the proof of Theorem 1.1. We will describe how we can
compute a solution of cost at most (1 + 4ε)opt using dynamic programming and based on the existence of a
near-optimum solution guaranteed using the structure theorem. For each vertex/bucket pair, we do not know if
the bucket is small or big, so we will consider subproblems corresponding to both possibilities. Informally, we
will have a vector ~n ∈ [n]τ where if i < 1/ε, ni keeps track of the exact number of tours of size i and for i ≥ 1/ε,
~ni keeps track of the number of tours in bucket bi, or tours covering between [σi, σi+1) tokens. Let ov denote
the total number of tokens to be picked up across all nodes in the subtree Tv. Since each node has at least one
token, ov ≥ |V (Tv)|. We will keep track of three other pieces of information conditioned on whether bi is a small
or big bucket. If bi is a small bucket, we will store all the tour sizes exactly. Since the number of tours in a small
bucket is at most γ = α log3 n/ε2, we will use a vector ~ti ∈ [n]γ to represent the tours of a small bucket where
~tij represents the size of j-th tour in bucket bi. Suppose bi is a big bucket, there are g = (2δ log n)/ε2 many tour
sizes in the bucket corresponding to ng possibilities. For each big bucket bi at node v, we need to keep track of
the following information,

�
~hiv ∈ [n]g is a vector where ~hiv,j = hv,max

i,j , which is the size of the maximum tour in group j of bucket i at
node v.

�
~liv ∈ [n]g is a vector where ~liv,j denotes the number of partial tours covering h

v,max
i,j tokens which lies in group

j of bucket i at node v.

Let ~yv denote a con�guration of tours across all buckets of v.

~yv = [ov, ~nv, (~t
1
v,
~h1
v,
~l1v), (~t

2
v,
~h2
v,
~l2v), . . . , (~t

τ
v ,
~hτv ,

~lτv )].

Note that a bucket bi is either small or big and cannot be both, hence given (~tiv,
~hiv,

~liv), it cannot be the case

that ~tiv 6= ~0,~hiv 6= ~0 and ~liv 6= ~0. The subproblem A[v, ~y] is supposed to be the minimum cost collection of partial
tours going down Tv (to cover the tokens in Tv) and the cost of using the parent edge of v having a tour pro�le
corresponding to ~y. Our dynamic program heavily relies on the properties of the near-optimal solution in the
structure theorem. Let v be a node. We will compute A[·, ·] in a bottom-up manner, computing A[v, ~yv] after we
have computed the entries for the children of v.

The �nal answer is obtained by looking at the various entries of A[r, ·] and taking the smallest one. First,
we argue why this will correspond to a solution of cost no more than opt′. We will compute our solution in a
bottom-up manner.
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For the base case, we consider leaf nodes. A leaf node v with parent edge e could have ov ≥ 1 tokens at v.
We will set A[v, ~yv] = 2 · w(e) ·mv where mv is the number of tours in ~yv if the total sum of tokens picked up
by the partial tours in ~yv is exactly ov. Recall that f(e) is the load on (i.e. number of tours using) edge e. From
our structure theorem, we know there exists a near-optimum solution such that each partial tour of Tv has one
of O((logQ log3 n)/ε3) tour sizes, and for each small bucket, there are at most α log3 n/ε2 partial tours in it. For
every big bucket, there are g = (2δ log n)/ε2 many group sizes and every tour of bucket i has one of these sizes.
The base case follows directly from the structure theorem.

To compute cell A[v, ~yv], we would need to use another auxiliary table B. Suppose v has k children u1, . . . , uk
and assume we have already calculated A[uj , ~y] for every 1 ≤ j ≤ k and for all vectors ~y. Then we de�ne a cell in
our auxiliary table B[v, ~y′v, j] for each 1 ≤ j ≤ k where B[v, ~y′v, j] is the minimum cost of covering Tu1

∪ . . . ∪ Tuj
where ~y′v is the tour pro�le for the union of subtrees Tu1 ∪ . . .∪ Tuj . In other words, B[v, ~y′v, j] is what A[v, ~yv] is
supposed to capture when restricted only to the �rst j children of v. We will set A[v, ~yv] = B[v, ~y′v, k]+2 ·w(e) ·mv

wheremv is the number of di�erent tours in ~y
′
v. We will assume the parent edge of the depot has weight 0. Suppose

Tui has oi tokens, then the number of tokens in Tv is at least 1 +
∑k
i=1 oi. To compute entries of B[v, ·, ·], we use

both A and B entries for smaller subproblems of v in the following way:
Case 1: j = 1: This is the case when we restrict the coverage to only the �rst child of v, u1.

B[v, ~y′v, 1] = min
~y′
{A[u1, ~y

′]}

We will �nd the minimum cost con�gurations ~y′ such that ~y′v and ~y′ are consistent with each other. We say ~y′v
and ~y′ are consistent if a tour in ~y′v either only covers tokens at v and does not visit any node below v or ~y′v
consists of a tour from ~y′ plus zero or more extra tokens picked up at v. Moreover, every tour in ~y′ is part of
some tour in ~y′v.

Case 2: 2 ≤ j ≤ k. We will assume we have computed B[v, ~y′, j − 1] and A[uj , ~y
′′] and we have

B[v, ~y′v, j] = min
~y′,~y′′
{B[v, ~y′, j − 1] +A[uj , ~y

′′]}.

There are four possibilities for each partial tour tv at node v going down Tv covering tokens for subtrees rooted
at children u1, . . . , uk .

� tv could be a tour that only picks up tokens at v and does not pick up tokens from subtrees Tu1
∪ . . .∪ Tuj .

� tv could be a tour that picks up tokens at v and picks up tokens only from subtrees Tu1
∪ . . . ∪ Tuj−1

.

� tv could be a tour that picks up tokens at v and picks up tokens only from subtree Tuj .

� tv could be a tour that picks up tokens at v and picks up tokens from subtrees Tu1
∪ . . . ∪ Tuj .

We would �nd the minimum cost over all con�gurations ~y′v, ~y
′ and ~y′′ as long as ~y′v, ~y

′ and ~y′′ are consistent. We
say tours ~y′v, ~y

′ and ~y′′ are consistent if there is a way to combine partial tours from ~y′ and ~y′′ to form a partial
tour in ~y′v while also picking up extra tokens at node v. We will de�ne consistency more rigorously in the next
section.

3.3 Checking Consistency In our dynamic program, for the inner DP, we are given three vector ~y′v, ~y
′, ~y′′

where v is a node having children u1, . . . , uj . ~y
′ represents the con�guration of tours in Tu1 ∪ . . . ∪ Tj−1 and ~y′′

represents the con�guration of tours covering Tuj . For the case of checking consistency for case 1, we will assume

~y′′ = ~0. Suppose we are given ov (for node v), ou for children u1, . . . , uj−1, and ow for uj , we can infer that there
are o′v = ov − ou − ow extra tokens that need to be picked at v. o′v tokens need to be distributed amongst tours
in ~yv. There are four possibilities for each tour tv in ~y

′
v.

� tv could be a tour that picks up extra tokens at v and picks up tokens only from subtrees Tu1
∪ . . .∪ Tuj−1

.

� tv could be a tour that picks up extra tokens at v and picks up tokens only from subtree Tuj .

� tv could be a tour that picks up extra tokens at v and picks up tokens from subtrees Tu1
∪ . . . ∪ Tuj .
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For simplicity, we will refer to a tour picking up tokens in Tu1
∪ . . .∪ Tuj−1

to be tu and a tour picking up tokens
from Tuj to be tw.

Definition 4. We say con�gurations ~y′v, ~y
′ and ~y′′ are consistent if the following holds:

� Every tour in ~y′ maps to some tour in ~y′v.

� Every tour in ~y′′ maps to some tour in ~y′v.

� Every tour in ~y′v has at most two tours mapping to it and both tours cannot be from ~y′ or ~y′′.

� Suppose only one tour (tu) maps to a tour tv in ~y′v. The number of extra tokens picked up by tour tv at v
is |tv| − |tu|.

� Suppose tv, a tour in ~y′v has two tours: tu in ~y′ and tw in ~y′′ mapped to it, then the number of extra tokens
picked up by tour tv at v is |tv| − |tu| − |tw|.

� The extra tokens at v, o′v = ov − ou − ow, are picked up by the tours in ~y′v.

Consistency ensures that we can patch up tours from subproblems and combine them into new tours in a correct
manner while also picking up extra tokens at v. Now we will describe how we can compute consistency. Let ~z be
a vector containing a subset of information contained in ~y.

~zv = [~nv, (~t
1
v,
~h1
v,
~l1v), (~t

2
v,
~h2
v,
~l2v), . . . , (~t

τ
v ,
~hτv ,

~lτv )].

From now on, we will choose to not write ~nv explicitly since we can �gure out the entries of the vector from ~l.
Suppose |tv| is the length of a tour in ~z′v. Let ~z

′
v − tv refer to the con�guration ~z′v having one less tour of size |tv|.

Let C[o′v, ~z
′
v, ~z
′, ~z′′] = True if it is consistent and False otherwise. For the base case, C[0,~0,~0,~0] =True. For the

recurrence, we will look at all possible ways of combining ~z′ and ~z′′ into ~z′v while also picking up extra tokens o′v.
Note that tv is always non-zero, but both or one of tu or tw could be zero.

C[o′v, ~z
′
v, ~z
′, ~z′′] =

∨
tv,tu,tw

|tv|=|tu|+|tw|+oc

C[o′v − oc, ~z′v − tv, ~z′ − tu, ~z′′ − tw].

3.4 Time Complexity We will work bottom-up and assume we have already pre-computed our consistency
table. Computing B[·, ·, ·] requires looking at previously computed B[·, ·, ·] and A[·, ·]. Given ~y′v, ~y′ and ~y′′ which
are all consistent, computing the cost of ~y′v using ~y

′ and ~y′′ takes O(1) time. Each ~y′v consists of

1. ~n has nO(logn/ε) possibilities.

2. Each ~ti has nO(log3 n/ε2) possibilities since there are O(log3 n/ε) tours in a small bucket.

3. Each ~h and ~l have nO(g) possibilities. Recall that g = (2δ log n)/ε2, so each ~h and ~l have nO(logn/ε2)

possibilities.

4. Each triple (~ti,~hi,~li) has nO(log3 n/ε2) possibilities.

5. (~t1,~h1,~l1), (~t2,~h2,~l2), . . . , (~tτ ,~hτ ,~lτ ) have nO(τ log3 n/ε2) = nO((logQ log3 n)/ε3) possibilities since τ =
O(logQ/ε).

In total, each ~y′v has nO((logQ log3 n)/ε3) possibilities. For each ~y′v, we will have n
O((logQ log3 n)/ε3) possibilities for

~yu and ~yw. Since there are n
O((logQ log3 n)/ε3) possibilities for ~y′v, the cost of computing the DP entries for a single

node v would be nO((logQ log3 n)/ε3) and since there are n nodes in the tree, the total time of computing the DP
table assuming the consistency table is precomputed is nO((logQ log3 n)/ε3).

Before we compute our DP, we will �rst compute the consistency table C[·, ·, ·, ·]. Similar to our DP table,

each entry of the consistency table has nO((logQ log3 n)/ε3) possibilities. Assuming we have already precomputed
smaller entries of C , there are nO((logQ log3 n)/ε3) ways of picking tv, tu and tw. For a �xed ~yv, ~yu, ~yw and o′v,
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computing C[o′v, ~z
′
v, ~z
′, ~z′′] takes nO((logQ log3 n)/ε3) time. Since there are only nO((logQ log3 n)/ε3) possibilities for

~z′v, ~z
′ and ~z′′, the cost of computing all entries of the consistency table is nO((logQ log3 n)/ε3).

The time for computing both the DP table and consistency table is nO((logQ log3 n)/ε3), so the total time taken
by our algorithm is nO((logQ log3 n)/ε3). For the unit demand case, since Q ≤ n, the runtime of our algorithm is
nO(log4 n/ε3).

3.5 Extension to Splittable CVRP We can extend our algorithm for unit demand CVRP in trees and
show how we can get a QPTAS for splittable CVRP as long as the demands are quasi-polynomially bounded.
In our algorithm for unit demand CVRP, we viewed the demand of each node as a token placed at the node.
For splittable CVRP, we could assume each node has 1 ≤ d(v) < nQ tokens and we can use the same structure
theorem as before by modifying tours such that there are at most O((logQ log3 n)/ε3) di�erent tour sizes for
partial tours at a node. We can use the same DP to compute the solution. Each ~yv consists of

1. ~n has (nQ)O(logn/ε) possibilities.

2. Each ~ti has (nQ)O(log3 n/ε2) possibilities since there are O(log3 n/ε) tours in a small bucket.

3. Each ~h and ~l have (nQ)O(g) possibilities. Recall that g = (2δ log n)/ε2, so each ~h and ~l have (nQ)O(logn/ε2)

possibilities.

4. Each triple (~ti,~hi,~li) has (nQ)O(log3 n/ε2) possibilities.

5. (~t1,~h1,~l1), (~t2,~h2,~l2), . . . , (~tτ ,~hτ ,~lτ ) have (nQ)O(τ log3 n/ε2) = (nQ)O((logQ log3 n)/ε3) possibilities since τ =
O(logQ/ε).

Similar to the analysis of the runtime of the unit demand case, the time complexity of computing the entries of
DP tables A,B, and the consistency table C is, (nQ)O((logQ log3 n)/ε3). Suppose Q = nO(logc n), then the runtime

of our algorithm is nO(log2c+4 n/ε3).

4 QPTAS for Bounded Treewidth Graphs

Given a graph G = (V,E) with treewidth k, we will assume we are given a tree decomposition T = (V ′, E′). We
will refer to G as the graph and T as the tree. We will refer to vertices in V by nodes and vertices in V ′ by
bags. We will refer to edges in E by edges and edges in E′ by superedges.

Definition 5. A tree decomposition of a graph G is a pair (T, {Bt}t∈V (T )), where T is a tree whose every
node t ∈ V ′ is assigned a vertex subset Bt ⊆ V (G), called a bag, such that the following three conditions hold:

1. ∪t∈V (T )Bt = V (G). In other words, every vertex of G is in at least one bag.

2. For every uv ∈ E(G), there exists a node t of T such that bag Bt contains both u and v.

3. For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Bt}, i.e., the set of nodes whose corresponding bags
contain u, induces a connected subtree of T .

For a bag s, let Cs denote the union of nodes in bags below s including s. Bag s forms a boundary or border
between nodes in Cs and V (G) \Cs. We will assume an arbitrary bag containing the depot to be root of the tree
decomposition. Let k be the treewidth of our graph G. We will assume that following properties hold for our tree
decomposition T of G from the work of Boedlander and Hagerup [11],

� T is binary.

� T has depth O(log n).

� The width of T is at most k′ = 3k + 2.

To simplify notation, by replacing k′ with k we will assume T has height δ log n for some �xed δ > 0 and each
bag has width k. From the third property of a tree decomposition, we know that for every u ∈ V (G), the set
Tu = {t ∈ V (T ) : u ∈ Xt} i.e., the set of nodes whose corresponding bags contain u, induces a connected subtree of
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T . Since the bags associated with a node u ∈ V (G) correspond to a subtree in T , we will place the demand/tokens
of u at the root bag of the tree Tu i.e. the bag containing u closest to the root bag of T . Since Tu is a tree, we are
guaranteed a unique root bag of Tu exists. We are doing this to ensure that the demand of a client is delivered
exactly once.

Similar to how we showed the existence of a near-optimum solution for trees, we will modify the optimum
solution OPT in a bottom-up manner by modifying the tours covering the set of nodes below bag s, Cs. For each
bag s, we change the structure of the partial tours going down Cs (by adding a few extra tours from the depot)
and also adding some extra tokens for nodes in bag s so that the partial tours that visit Cs all have a size from
one of polylogarithmic many possible sizes (buckets) while increasing the number and the cost of the tours by a
small factor. Note that although a node can be in di�erent bags, its initial demand is in one bag and we might
add extra tokens to copies of it in other bags.

Similar to the case of a tree, we assume the bags of the tree decomposition are partitioned into levels V1, . . . , Vh
where V1 is the bag containing the depot and h is the height of T . For every tour T and every level `, we can
de�ne the notion of top and bottom part similar to the case of trees. For every Cs, a tour T enters Cs through
bag s using a node x and exists through node z where both x and z have to be in s. Note that x and z could
be equal if the tour enters and exists s using the same node. For a bag s, let nx,zs be the number of partial
tours covering nodes in Cs that enter through x and exit through z in s. For each bag and entry/exit pair, we
will de�ne the notion of a small/big bucket similar to the case of trees. For a big bucket, we will place the nx,zs
tours (ordered by increasing size) into groups Gx,z,s1 , . . . , Gx,z,sg of equal sizes. Let hs,x,z,max

i (hs,x,z,min
i ) refer to

the maximum (minimum) size of the tours in Gx,z,si .
Similar to the case of trees, let f be a mapping from a tour in Gx,z,si to one in Gx,z,si−1 . Now suppose we modify

OPT to OPT′ in the following way: for each tour T that has a partial tour in t ∈ Gx,z,si , replace the bottom part
of T entering through x and exiting through z in s from t to f(t) (which is in Gx,z,si−1 ). The only problem is that
those tokens in Cs that were picked up by the partial tours in Gx,z,sg are not covered by any tours and like the case
of trees, these are orphant tokens. For each tour T and its (new) partial tour t ∈ Gx,z,si , if we add hx,z,s,max

i − |t|
extra tokens at s to be picked up by t, then each partial tour has size exactly same as the maximum size of its
group without violating the capacities. Similar to the case of trees, we will show that if nx,zs is su�ciently large
(at least polylogarithmic), then if we sample a small fraction of the tours of the optimum at random and add two
copies of them (as extra tours), they can be used to cover the orphant tokens.

The proof of the following structure theorem is similar to that of Theorem 3.2 (see full version):

Theorem 4.1. (Structure Theorem) Let opt be the cost of the optimal solution to instance I. We can build
an instance I ′ such that each node has ≥ 1 tokens and there exists a near-optimal solution OPT′ for I ′ having
expected cost (1 + 2ε)opt with the following property. The partial tours going down Cs for every bag s in OPT′

has one of O((logQ log2 n)/ε2) possible sizes. More speci�cally, suppose (s, bi, x, z) is a entry/exit-bag-bucket
con�guration for OPT′. Then either:

� bi is a small bucket and hence there are at most α log2 n/ε many partial tours of Cs whose size is in bucket
bi, or

� bi is a big bucket; in this case there are g = (2δ log n)/ε many group sizes in bi: σi ≤ hs,x,z,maxi,1 ≤ . . . ≤
hs,x,z,maxi,g < σi+1 and every tour of bucket i has one of these sizes.

Using this structure theorem, we can design a dynamic program to �nd a near-optimum solution. The
dynamic program will be similar to (but a lot more complex) the one developed for the case of trees (details in
the full version). For a given bag s, we will estimate the number of tours entering and exiting s. Informally,
we will have a vector ~ns,x,z ∈ [n]τ where if i < 1/ε, ~ns,x,zi keeps track of the exact number of tours covering i
tokens in Cs by entering through x and exiting though z and if i ≥ 1/ε, ~ns,x,zi keeps track of the number of tours
covering between [σi, σi+1) tokens. Let as denote the total number of tokens to be picked up from nodes from
bags below and including bag s. Since each bag s has k nodes, we use ~os ∈ [n]k to denote the extra tokens to be
picked up from nodes at bag s. If v is a node in bag s, then ~os,v denotes the number of extra tokens to be picked
up at v in s. For a given entry/exit-bag-bucket con�guration (s, bi, x, z), we will keep track of other pieces of
information conditional on whether it is small or big. If entry/exit-bag-bucket con�guration (s, bi, x, z) is small,
we will store all tour sizes exactly. Since the number of tours in a small entry/exit-bag-bucket con�guration is at
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most γ = α log2 n/ε, we will use a vector ~ts,x,z,i ∈ [n]γ to represent the tours where ~ts,x,z,ij represents the size of
the j-th tour in the i-th bucket of tours covering Cs entering through x and exiting through z.

If the entry/exit-bag-bucket con�guration (s, bi, x, z) is big, there are g = (2δ log n)/ε many tour sizes
corresponding to nO(g) possibilities. For each entry/exit-bag-bucket con�guration (s, bi, x, z), we need to keep
track of the following information,

�
~hs,x,z,i ∈ [n]g is a vector where ~hs,x,z,ij = hs,x,z,max

i,j , which is the size of the maximum tour which lies in
group Gs,x,zi,j of bucket i at bag s entering through x and exiting through z.

�
~ls,x,z,i ∈ [n]g is a vector where ~ls,x,z,ij denotes the number of partial tours covering hs,x,z,max

i,j tokens which
lies in group Gs,x,zi,j of bucket i at bag s entering through x and exiting through z.

For a bag s and entry/exit pairs, let ~ps,x,z be a vector containing information about all tours entering and exiting
s through x and z across all buckets.

~ps,x,z = [~ns,x,z, (~ts,x,z,1,~hs,x,z,1,~ls,x,z,1), (~ts,x,z,2,~hs,x,z,2,~ls,x,z,2), . . . , (~ts,x,z,τ ,~hs,x,z,τ ,~ls,x,z,τ )].

Similar to the case of trees, an entry/exit-bag-bucket con�guration (s, bi, x, z) is either small or big and cannot

be both, hence given (~ts,x,z,i,~hs,x,z,i,~ls,x,z,i), it cannot be the case that ~ts,x,z,i 6= ~0,~hs,x,z,i 6= ~0 and ~ls,x,z,i 6= ~0.
Since a bag s contains O(k) nodes, then we will let ~ys denote a con�guration of all partial tours covering tokens
in Cs which are entering and exiting s. Let v1, . . . , vd be the set of all nodes in s, then ~ys contains information of
tours entering and exiting s through pairs of nodes in {v1, . . . , vd}. Note that a tour can enter and exit s through
the same node.

~ys = [as, ~os, ~ps,v1,v1 , ~ps,v1,v2 , . . . , ~ps,vd,vd−1
, ~ps,vd,vd ].

The subproblem A[s, ~ys] is supposed to be the minimum cost collection of partial tours covering Cs having tour
pro�les corresponding to ~ys. Our dynamic program heavily relies on the properties of the near-optimal solution
characterized by the structure theorem. We will compute A[·, ·] in a bottom-up manner, computing A[s, ~ys] after
we have computed entries for the children bags of s.

The �nal answer is obtained by looking at various entries of the root bag of the tree decomposition, denoted
by rs. We will take the minimum cost entry amongst A[rs, ~yrs ] such that ~yrs is the con�guration where all tours
enter and exit rs only through the depot, r. We will compute our solution in a bottom-up manner.

It can be shown that the time complexity of computing the DP table will be (nk)O(k)nO(k2 logQ log2 n/ε2) =

nO(k2 logQ log2 n/ε2). Hence, for the unit demand case, since Q ≤ n, the runtime of our algorithm is nO(k2 log3 n/ε2).
We can extend our algorithm for unit demand CVRP on bounded-treewidth graphs to the splittable CVRP

when demands are quasi-polynomially bounded. In our algorithm for unit demand CVRP for bounded-treewidth
CVRP, we viewed the unit demand of each node as a token placed at the node. For the splittable case, we can
rescale the demand d(v) such that there are 1 ≤ d(v) < nQ tokens on a node and we can use the same structure
theorem as before by modifying tours such that there are at most O(logQ log2 n/ε2) di�erent tours for partial
tours at a node. We can use the same DP to compute the solution. The time complexity of computing the entries
of DP tables is, (kQ)O(k)(nQ)O(k2 logQ log2 n/ε2) = (nQ)O(k2 logQ log2 n/ε2) since k ≤ n. Suppose Q = nO(logc n),

then the runtime of our algorithm is nO(k2 log2c+3 n/ε2).

5 Extension to Splittable CVRP for Graphs of Bounded Doubling Metrics and Bounded Highway
Dimension

In this section, we will show how we can use our algorithm for CVRP on bounded-treewidth graphs as a black
box to obtain a QPTAS for graphs of bounded doubling metrics and graphs of bounded highway dimension. We
will use the following result about embedding graphs of doubling dimension D into a bounded-treewidth graph

of treewidth k ≤ 2O(D)

⌈(
4D log ∆

ε

)D⌉
by Talwar [25].

Lemma 5.1. (Theorem 9 in [25]) Let (X, d) be a metric with doubling dimension D and aspect ratio ∆.
For any ε > 0, (X, d) can be (1 + ε) probabilistically approximated by a family of treewidth k-metrics for

k ≤ 2O(D)

⌈(
4D log ∆

ε

)D⌉
.
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We will also use the following result by Feldmann et al. [15] related to graphs of low highway dimension.

Lemma 5.2. (Theorem 3 in [15]) Let G be a graph with highway dimension D of violation λ > 0, and aspect
ratio ∆. For any ε > 0, there is a polynomial-time computable probabilistic embedding H of G with treewidth

(log ∆)O(log2( Dελ )/λ) and expected distortion 1 + ε.

For both graph classes, our algorithm works as follows. The input graph G is embedded into a host graph
H of bounded treewidth using the embedding given in Lemma 5.1 and Lemma 5.2. The algorithm then �nds a
(1+ε)-approximation for CVRP for H, using the dynamic programming solution from the Section 5. The solution
for H is then lifted back to a solution in G. For each tour in the solution for H, a tour in G will visit nodes in
the same order as the tour in H. The embedding given in Lemma 5.1 and Lemma 5.2 is such that an optimal set
of tours in the host graph gives a (1 + ε) solution in G. The embedding also ensures that H has treewidth small
enough that the algorithm runs in quasi-polynomial time.

Theorem 5.1. For any ε > 0 and D > 0, there is a an algorithm that, given an instance of the splittable CVRP
with capacity Q = nlogc n and the graph has doubling dimension D with cost opt, �nds a (1 + ε)-approximate

solution in time nO(DD log2c+D+3 n/εD+2).

Proof. This follows easily from Lemma 5.1 and using the algorithm for bounded-treewidth as a black box. In

place of k, we will substitute k = 2O(D)

⌈(
4D log ∆

ε

)D⌉
into the runtime for the algorithm for bounded-treewidth

which is nO(k2 log2c+3 n/ε2). Hence, we have an algorithm for graphs of bounded doubling dimension with runtime

nO(DD log2c+D+3 n/εD+2).

As an immediate corollary, since R2 has doubling dimension log2 7 < 3 [26], the above theorem implies an

approximation scheme for unit demand CVRP on Euclidean metrics on R2 in time nO(log6 n/ε5) which improves

on the run time of nlogO(1/ε) n of [14].

Theorem 5.2. For any ε > 0, λ > 0 and D > 0, there is a an algorithm that, given an instance of the splittable
CVRP with capacity Q = nlogc n and a graph with highway dimension D and violation λ �nds a (1+ε)-approximate

solution in time nO(log2c+3+log2( D
ελ

)· 1
λ n/ε2).

Proof. This follows easily from Lemma 5.2 and using the algorithm for bounded-treewidth as a black box. In

place of k, we will substitute k = (log ∆)O(log2( Dελ )/λ) into the runtime for the algorithm for bounded-treewidth

which is nO(k2 log2c+3 n/ε2). Hence, we have an algorithm for graphs of bounded doubling dimension with runtime

nO(log2c+3+log2( D
ελ

)· 1
λ n/ε2).

6 Conclusion

In this paper, we presented QPTAS's for CVRP on trees, graphs of bounded treewidth, bounded doubling dimen-
sion, and bounded highway dimension. The immediate questions to consider are whether these approximation
schemes can in fact, be turned into PTAS's. Even for the case of trees, although we can improve the run time
slightly by shaving o� one (or maybe two) log factors from the exponent, it is not clear if it can be turned into a
PTAS without signi�cant new ideas.

Although our result implies a QPTAS with a better run time for CVRP on Euclidean plan R2 (nO(log6 n/ε5)

vs the time of nlogO(1/ε) n of [14]), getting a PTAS remains an interesting open question. As discussed in [1], the
di�cult case appears to be when Q is polynomial in n (e.g. Q =

√
n). Another interesting question is to consider

CVRP on planar graphs and develop approximation schemes for them, and more generally, graphs of bounded
genus or minor free graphs.
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