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Abstract We study problems that integrate buy-at-bulk network design into the
classical (connected) facility location problem. In such problems, we need to open
facilities, build a routing network, and route every client demand to an open
facility. Furthermore, capacities of the edges can be purchased in discrete units
from K different cable types with costs that satisfy economies of scale.

We extend the linear programming framework of Talwar [IPCO 2002] for the
single-source buy-at-bulk problem to these variants and prove integrality gap up-
per bounds for both facility location and connected facility location buy-at-bulk
problems. For the unconnected variant we prove an integrality gap bound of O(K),
and for the connected version, we get the first LP-based bound of O(1).

Keywords Buy-at-Bulk Network Design · Facility Location · Approximation
Algorithm · LP Rounding

1 Introduction

We study problems that integrate buy-at-bulk network design into the classical
(connected) facility location problem. We are interested in applications with trade-
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Fig. 1: An example of the fiber optic network, where red lines represent the (na-
tional) core network and blue lines represent the (local) access networks.

offs between facility opening and network design costs. Problems of this type arise
in the planning of optical access networks in telecommunications, for example.
An operator must decide on which nodes to install routing and switching devices
(these are called central offices, and represented by facilities) and on which edges
to install transmission technologies (represented by so-called cable types) to route
traffic demands. In these networks, the traffic originating from each client is sent
via tree-like access networks, to its respective facility. A combination of different
cable types may be installed on the edges of these access trees to support the
traffic flow. This allows for multiple fibers emanating from different clients to
share a single, larger cable and the same trunk on their common path towards
their common central office. The facilities are connected amongst each other or to
some higher network level via a core network of (almost) unlimited capacity, which
is required to route the traffic further towards its destination; e.g., see Figure 1.

Designing such a network involves selecting the facilities, connecting them via
high-bandwidth links, and dimensioning the access links that are used to route
the traffic from the clients to facilities. This can be modeled as a connected facility
location with buy-at-bulk edge costs problem, denoted by BBCFL. Formally, we
are given a complete graph G = (V,E) with nonnegative edge lengths ce ∈ Z≥0,
e ∈ E satisfying triangle inequality; a set F ⊆ V of facilities with opening costs
µi ∈ Z≥0, i ∈ F ; and a set of clients D ⊆ V with demands dj ∈ Z>0, j ∈ D.
We are also given K types of access cables that may be used to connect clients to
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Fig. 2: A feasible solution for BBCFL, where square nodes (in orange) represent
(open) facilities, circle nodes in green represent clients, red lines represent core
cables, and blue lines (of different thicknesses) represent access cables (of different
capacities).

open facilities. A cable of type i has capacity ui ∈ Z>0 and cost (per unit length)
σi ∈ Z≥0. Furthermore, we are given an extra type of cable, called core cable,
having a cost (per unit length) of M > σK and infinite capacity, which may be used
to connect the open facilities with each other. We assume that access cable types
obey economies of scale. That is, σ1 < σ2 < · · · < σK and σ1

u1
> σ2

u2
> · · · > σK

uK
.

A feasible solution (see Figure 2) for BBCFL consists of (1) A subset F0 ⊆ F
of facilities to open; (2) a Steiner tree of G (core network) connecting all open
facilities via core cables; and (3) a forest (access network) connecting all clients
to the open facilities. Furthermore, on each edge of this forest we have to specify
a list of possibly multiple copies and types of access cables to install, in such a
way that the entire demand of each client can be routed along a single path to
an open facility. Note that we allow the demand crossing a single edge to use
different access cables, but the collection of edges trasversed must be a path in G.
The objective of BBCFL is to minimize the total cost of opening facilities, and
constructing core and access networks; where the cost for using edge e in the core
network is Mce, and the cost for installing a single copy of access cable of type i
on an edge e is σice.

It is worth noting that we are allowed to install core cables on edges incident
to closed facilities, to clients, or even to nodes in V \ (F ∪ D). Nevertheless, the
demand from a client to its facility is not allowed to use core cables. The rationality
for this constraint is that in real-life situations core and access networks are run
independently. The only way to access from the access network to the core network
is via an open facility.

There are various interesting variants of BBCFL that differ with respect to the
structure of the access or core network. For example, the planning of water and
energy supply networks occur in settings where the consideration of different con-
nection types on the edges of the access network is not motivated by the different
capacities but by the different per unit shipping cost of alternative technologies
or operational modes. This naturally leads to another interesting variant of the
BBCFL problem called connected facility location with deep-discount edge costs
problem, denoted by DDCFL. In this problem, instead of capacitated access ca-
bles, we are given K discount cable types, where cable type i has a fixed cost (setup
cost) of σi, a flow dependent incremental cost of δi, and unbounded capacity. We
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Fig. 3: A feasible solution for BBFL.

assume that δ1 > δ2 > · · · > δk (i.e discount cables obey economies of scale).
The cost for installing one copy of discount type i on edge e and transporting R
flow units on e is (σi + Rδi)ce. Yet another interesting variant of BBCFL oc-
curs in logistic networks where the connectivity among facilities is not required,
see [14] for more details. This is called facility location with buy-at-bulk edge costs
problem, denoted by BBFL; see Figure 3. As with BBCFL, we also consider
the deep-discount variant of BBFL, denoted by DDFL, in which we replace the
capacitated access cables by discount cable types.

Previous Work

The BBFL problem was first considered by [13]. They show that BBFL can be
seen as a special case of the Cost-Distance problem, and thereby provide the first
randomized approximation algorithm with approximation guarantee O(log(|D|))
for this problem. Their algorithm works for the more general version of single-sink
non-uniform buy-at-bulk network design where one has a different set of cable
types for each edge. The algorithm of [13] was then derandomized by [2] who show
that the integrality gap of the Cost-Distance problem is O(log(|D|)). To the best of
our knowledge, this is the only LP-based approximation algorithm that works for
BBFL. Later, an O(K) approximation for BBFL was developed by [14] (where
K is the number of cable types), who extended the combinatorial approximation
algorithm of [9] that was devised for the single-sink (uniform) buy-at-bulk network
design problem.

The BBCFL problem was recently considered by Bley and Rezapour [1]
who designed an approximation algorithm based on the random sampling tech-
niques, achieving a 192-approximation for BBCFL. They also obtained a 384-
approximation to DDCFL via a simple factor 2 reduction between DDCFL and
BBCFL. We note that one can show that an ρ-approximation to BBCFL gives
a (1 + ε)ρ-approximation to DDCFL; see Lemma 2.2 in [8] for more details. This
together with the result of Bley and Rezapour [1] yields a (192+ ε)-approximation
to DDCFL.

The unsplittable Single-Sink (uniform) Buy-at-Bulk network design problem
(uSSBB), also known as the single sink problem, can be seen as a further sim-
plification of BBCFL in which the set of interconnected open facilities are given
in advance. Several approximation algorithms for uSSBB have been proposed in
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the literature. Using LP rounding techniques, Garg et al. [5] developed an O(K)
approximation. The first constant factor approximation for this problem is due
to Guha et al. [9]. Talwar [17] showed that an LP formulation of this problem
has a constant integrality gap and provided a 216 approximation. Using sampling
techniques, this factor was reduced to 145.6 by [11], and later to 40.82 by [6].

The Connected facility location problem (ConFL) is the special case of BBCFL
with only one access cable type of unit capacity. Gupta et al. [10] obtained a 10.66-
approximation for this problem, based on LP rounding. Swamy and Kumar [16]
improved the approximation ratio to 8.55, using a primal-dual algorithm. Using
sampling techniques, the guarantee was later reduced to 4 by [3], and to 3.19 by
[7].

Our Results

The focus of our work in this paper is on LP-based techniques. We extend the
LP-based approximation for uSSBB by [17] to both buy-at-bulk facility location
and buy-at-bulk connected facility location problems and prove integrality gap
upper bounds for these problems.

Similar to previous work, one can show that a ρ-approximation algorithm for
DDCFL gives a 2ρ-approximation algorithm for BBCFL. For going in the other
direction, however, there is only a factor of (1+ε) lost: ρ-approximation to BBCFL
gives a (1 + ε)ρ-approximation to DDCFL; see [8] for more details.

Since the integrality gap of the natural flow-based formulation for BBCFL can
be arbitrarily large, we focus on the DDCFL problem. In Section 2, we present a
strong flow-based IP, namely (IP-DDCFL), model for DDCFL. Our main result
is the following.

Theorem 1 The integrality gap of (IP-DDCFL) is at most 234.

Thus, we obtain the first LP based (deterministic) algorithm for DDCFL and
thereby for BBCFL.

Using similar techniques, we finally obtain a new LP-based approximation
algorithm for the buy-at-bulk facility location problem in Section 3. We propose a
flow-based IP, namely (IP-DDFL), formulation for DDFL and obtain the following
result.

Theorem 2 The integrality gap of (IP-DDFL) is at most O(K).

This matches the approximation guarantee of the combinatorial algorithm of
[14], improving the LP-based O(log(|D|))-approximation obtained by [2].

The reason why we get a better guarantee for BBCFL, even though it may
seem more difficult than BBFL, is that the extra constraints in (IP-DDCFL) that
ensure connectivity among open facilities are helpful in bounding the integrality
gap.

2 Buy-at-Bulk Connected Facility Location

Recall that the only difference between BBCFL and DDCFL is due to the access
cable models considered for each variant: In BBCFL, an access cable of type
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k has a fixed capacity uk ∈ Z>0 and fixed setup cost σk ∈ Z≥0; whereas, in
DDCFL, an access cable of type k has a setup cost σk ∈ Z≥0, a flow dependent
cost of δk ∈ Z≥0, and unbounded capacity. As has been observed in the earlier
works, one can transform between buy-at-bulk and deep-discount variants of the
problem with factor 2 loss: Given an instance of BBCFL, one can consider a
corresponding DDCFL instance by omitting the cable capacity uk of each access
cable k and setting its flow dependent cost to δk := σk

uk
. It is not hard to see that⌈

De

uk

⌉
σkce ≤

(
σk +De

σk

uk

)
ce ≤ 2

⌈
De

uk

⌉
σkce holds for any edge e, where De is the

total demand carried by edge e. Hence the total cost of the access cable installation
of any solution of BBCFL is always within a factor of two of the cost of the same
access cable installation as the solution to the corresponding modified instance of
DDCFL, implying that an ρ-approximation to DDCFL gives a 2ρ-approximation
to BBCFL.

It is not hard to show that the natural flow-based integer linear program for
BBCFL has unbounded integrality gap, using the fact that an IP formulation
of BBCFL has to purchase capacities in discrete unites to support the demand
carried by each edge, while the LP relaxation can pay much less for supporting
that demand by only using the last cable type, with the lowest cost per capacity
ratio, fractionally.

Hence in this section we focus on the DDCFL problem and get an Integrality
gap of O(1) for the underlying LP of the problem, thereby obtaining a new LP-
based O(1)-approximation algorithm for the BBCFL problem.

2.1 IP Modeling of DDCFL

We write a flow-based IP formulation for DDCFL. We assume w.l.o.g. that a
particular facility r is open and thus it belongs to the core network in the optimal
solution and that D ∩ F = ∅. Also, to simplify the description of our algorithm it
will be useful to add an artificial root client r∗ with unit demand, connected to
r by an edge of 0 length. For each edge we create a pair of anti-parallel directed
arcs, with same length as the original one. Let E be the set of these arcs. The
undirected version of an arc e ∈ E is denoted by ē.

For every e ∈ E, cable type k ∈ [K] = {1, . . . ,K} and client j ∈ D, the variable
f je;k indicates if flow from client j uses cable type k on arc e; for ē ∈ E and k ∈ [K],

xkē indicates if cable type k is installed on edge ē; zē indicates if the core cable is
installed on edge ē; and yi indicates if facility i is opened.

The opening cost Cop, the core cost Ccore, the fixed cost Cfixed and the routing
cost Croute of a solution are defined as

Cop =
∑
i∈F

µiyi; Ccore = M
∑
ē∈E

cēzē; Cfixed =
K∑
k=1

Cfixed
k ; Croute =

K∑
k=1

Croute
k ,

where Cfixed
k = σk

∑
ē∈E

cēx
k
ē , and Croute

k = δk
∑
j∈D

dj
∑
e∈E

cēf
j
e;k, (1)

represent the fixed cost and routing cost of the cables of type k, respectively.
We use the notation δ+(S) = {(u, v) ∈ E : u ∈ S, v /∈ S}, δ−(S) = δ+(V \ S),

δ(S) = {uv ∈ E : u ∈ S, v 6∈ S} for each S ⊆ V and δ+(v) = δ+({v}) for each
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v ∈ V . Given a set of cables I ⊆ [K] and a client j ∈ D, we define the access flow
on e ∈ E with respect to I and j as f je;I =

∑
k∈I f

j
e;k; and the net in-flow on a

vertex v ∈ V with respect to I and j, as gjI(v) =
∑
e∈δ−(v) f

j
e;I −

∑
e∈δ+(v) f

j
e;I .

We also define hji = max{gj[K](i), 0} for j ∈ D and i ∈ F . Formally, this quantity
indicates whether facility i is serving client j.

With all the notation above, our integer program formulation is as follows.

min Cop + Ccore+Cfixed + Croute (IP-DDCFL)

gj[K](j) ≤ −1 ∀j ∈ D (2)

gj[K](v) = 0 ∀j ∈ D, v ∈ V \ (F ∪ {j}) (3)

gj[K](i) ≤ h
j
i ∀j ∈ D, i ∈ F (4)

hji ≤ yi ∀j ∈ D, i ∈ F (5)

f j(u,v);k + f j(v,u);k ≤ x
k
uv ∀j ∈ D, k ∈ [K], uv ∈ E (6)∑

i∈S∩F
hji −

∑
ē∈δ(S)

zē ≤ 0 ∀j ∈ D,S ⊆ V \ {r} : S ∩ F 6= ∅ (7)

yr = 1 (8)

gj[q,K](v) ≤ 0 ∀j ∈ D, v ∈ V \ F, 1 ≤ q ≤ K (9)

gj[q,K](i)−
∑
ē∈δ(i)

zē ≤ 0 ∀j ∈ D, i ∈ F \ {r}, 1 ≤ q ≤ K (10)

xkē , f
j
e;k, yi, zē, h

j
i ∈ {0, 1} (11)

Constraints (2) impose that at least one unit of flow leaves the clients. Constraints
(3) are flow conservation constraints at non-facility nodes. Constraints (4) and (5)
state that the flow only terminates at open facilities. Constraints (6) ensure that
we install access links to support the flow. Finally, Constraints (7) state that if
i is the facility serving demand j (the only i for which hji = 1) then for each
set S containing i and not containing the root there is a core link connecting
S with its complement. In other words, all open facilities are connected to the
root via core links, where Constraint (8) defines the root facility. Constraints (9)
and (10), called path monotonicity constraints, strengthen the linear relaxation of
(IP-DDCFL). They ensure that the cable types along any path used to connect
clients to facilities are nondecreasing from each client to its facility. We address
the validity of these constraints below. Similar to that in [5], we can assume that
the flow aggregated on an edge (in the optimum solution) never splits: once the
flow from two clients share an edge they share the same set of edges on their paths
to their facility. Consider any routing path connecting client j to some facility i.
As the flow never splits, the flow aggregated on edges of the path from j to i is
nondecreasing. Therefore, as the access cable types obey economies of scale, we
can conclude that the cable types along any routing path (in the optimal solution)
are nondecreasing from each client to its facility.

The introduction of variables hji may seem artificial, however, in the Appendix
we show that they are needed to achieve a constant integrality gap IP.
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We remark that the interesting variables of this IP formulation are (f, x, y, z) =
((f je;k), (xkē), (yi), (zē)). All the other quantities are written in terms of these vari-
ables.

2.2 Proof of Theorem 1

Let (LP-DDCFL) be the linear program relaxation of (IP-DDCFL) and (f, x, y, z)
be an optimal solution to (LP-DDCFL). It is not hard to show that (LP-DDCFL)
can be solved in polynomial time using, for example, the ellipsoid method. We
show how to round this LP solution to an integer one at constant factor loss.

2.2.1 Rounding Algorithm.

We extend the rounding approach of [17] for the single-source buy-at-bulk problem
to devise a rounding algorithm for DDCFL. Our algorithm has four phases.

Preprocessing Phase:

Pruning: We prune the set of access cable types such that all cables are consider-
ably different. Similar to [17], this can be done without increasing the cost of the
optimal solution too much.

Theorem 3 Given ε1, ε2 ∈ (0, 1), we can prune the set of access cables so that for
any i, σi+1 > σi/ε1 and δi+1 < ε2 · δi hold, increasing the installation and rout-
ing costs of the optimal fractional solution by a factor of at most 1/ε1 and 1/ε2,
respectively.

For the sake of notation, let [K] be the set of cables left and let (f, x, y, z) be the
new solution of (LP-DDCFL) after the pruning stage. For each client j and positive
radius R, define B(j, R) = {v ∈ V : cjv ≤ R} to be the moat centered at j. We say
that two moats B1 = B(j1, R1) and B2 = B(j2, R2) overlap if cj1j2 ≤ R1 + R2.
Define also Ljk =

∑
e∈E f

j
e;kcē which represents the estimated distance that the

flow of client j travels on cables of type k. Note that Croute
k = δk

∑
j∈D djL

j
k.

Flow path decomposition: Every client j sends (at least) one unit of flow from itself
to open facilities, specified by the f je,[K] variables. We decompose this fractional
flow into a set of paths Pj , with path p ∈ Pj starting from j and ending at some
facility. Let φ(p) denote the amount of flow of path p.

Filtering: For a predefined constant θ ∈ (0, 1) and for all j ∈ D, choose a subset
of paths P̄j ⊆ Pj such that φj :=

∑
p∈P̄j

φ(p) ≥ θ, by selecting paths in increasing

order of their lengths until their total φ(p)-value is at least θ. For each j ∈ D,
let βj be the length of the longest path in P̄j . Define a new solution (f̄ , x̄, ȳ, z̄) as
follows. For each client j ∈ D, scale the amount of flow sent across each P ∈ P̄j
by 1/φj and set the flow sent across each P ∈ Pj − P̄j to 0. The new flow f̄ (and
hence h̄) is derived naturally from this new path decomposition. For each cable
k ∈ [K] and edge ē ∈ E, define x̄kē as xkē/θ if there exists some j with f̄ je′;k > 0,

where e′ ∈ E is one of the two arcs associated to ē; and 0 otherwise. For each i,
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set ȳi = min{yi/θ, 1}. And finally for each ē ∈ E, set z̄ē = min{zē/θ, 1}. It is easy
to show that this solution is feasible for (LP-1).

Two important points: first, the solution (f̄ , x̄, ȳ, z̄) is such that the entire
demand of client j is satisfied by open facilities on the moat B(j, βj). The second

property is the following bound which is useful for the analysis. Let P̃j ⊆ Pj be

the set of paths with lengths at least βj . Then, P̃j includes all paths in Pj \ P̄j
and at least one path, say p∗ (the longest) of P̄j . We conclude that

∑
p∈P̃j

φ(p) ≥∑
p∈Pj

φ(p)−
∑
p∈P̄j\{p∗} φ(p) ≥ 1− θ, and so

K∑
k=1

Ljk =
∑
p∈Pj

∑
e∈p

φ(p)cē ≥
∑
p∈P̃j

φ(p)
∑
e∈p

cē ≥ βj(1− θ). (12)

Facility Selection Phase:

Moat selection: For a predefined constant η > 1, we consider the set of moats
Bη = {B(j, ηβj) : j ∈ D} around clients. We choose a maximal set B′ ⊆ Bη of
moats which do not overlap. We do this by processing the moats in Bη in increasing
order of their radii, and greedily adding them to B′ so that for each pair of selected
moats in B′ with centers j, j′ ∈ D, B(j, ηβj) and B(j′, ηβj′) do not overlap. Let
Score be the set of clients with moats in B′. Observe that for the artificial root
client r∗, we have βr∗ = 0 and so r∗ ∈ Score.

Facility opening: For each j ∈ Score, let Fj = {i : h̄ji > 0} be the facilities frac-
tionally serving demand from j with respect to solution (f̄ , x̄, ȳ, z̄). By the first
property noted at the end of the preprocessing phase, Fj ⊆ B(j, ηβj), hence
{Fj : j ∈ Score} consist of disjoint sets. On each Fj we open the facility ij with
lowest opening cost. In particular, the root r is opened since Fr∗ = {r}. Let I
be the set of facilities opened on this stage. The basic idea of this part of the
algorithm is inspired by [15].

For the purpose of analysis, associate each client with a special facility denoted
as its (K + 1)-st proxy. Formally, for each j ∈ Score we set proxyK+1(j) = ij . For
the remaining clients j ∈ D \ Score, we set proxyK+1(j) = proxyK+1(j′), where
j′ ∈ Score is the center of the smallest moat in B′ that overlapped with B(j, ηβj).
Since the moats in B′ were added in increasing radii and (12), we get

c(j, proxyK+1(j)) ≤ (1 + 2η)βj ≤
(1 + 2η)

(1− θ)

K∑
q=1

Ljq ∀j ∈ D. (13)

Core Network Phase: Consider the graphGK+1 obtained fromG by contracting
the nodes of each Fj into single nodes, for j ∈ Score. We construct an approximately
optimal Steiner tree T ′ in GK+1 having the contracted nodes as terminals. To do
this, we find an approximate Steiner tree whose cost is within a factor 2 of the
cut-based relaxation. The edges of T ′ form a forest in G which touches a subset
of the facilities in Fj , called F̃j , which may not include the open facility ij ; see
Figure 4(a). In order to connect all the open facilities together, we augment T ′

with the stars Qj = {ji : i ∈ F̃j ∪ {ij}}, j ∈ Score; see Figure 4(b). Let T core be
the resulting tree, after possibly canceling some cycles. To conclude this stage, we
install core cables on T core.
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j2
j1

j4

j3

r

(a)

j2
j1

j4

j3

r

(b)

Fig. 4: An illustration of the core network installation phase on a simple instance
where Score = {r∗, j1, j2, j4}.

Access Network Phase: We construct the access network in a top-down manner,
installing cables progressively in stages numbered from i = K to 1. Let TK+1 be
a minimum spanning tree on the graph induced by the set I of open facilities, and
connect them using an artificial cable type K + 1. This tree won’t appear in the
end, as it will be replaced by the core network. In stage i, we augment the current
tree Ti+1, which uses only cables of type i+1 or higher, by installing cables of type
i. Define L̄jk to be

∑
e∈E f̄

j
e;k ·ce. This estimates the distance that flow from j goes

on cable type k. Let R̄jl =
∑l−1
k=1 L̄

j
k be the estimated distance beyond which the

flow from j uses cable type l or higher in the new fractional solution. Intuitively,
R̄jl tells us how far from j to go before the LP solution installs access cable types
l or higher. Stage i consists of two steps:

Step 1. Moat Selection: For predefined γ > ζ > 1, we construct the set of
moats Biγ = {B(j, γR̄ji ) : j ∈ D} around all clients. We define Ŝi to be the set of

clients whose moats intersect Ti+1. For each j ∈ Ŝi remove moat B(j, γR̄ji ) from
Biγ . Similar to what we did for the core network, we choose a maximal set Bi ⊆ Biγ
of moats which do not overlap by selecting moats from Biγ in increasing order of
their radii. Let Si be the set of clients whose moats are selected in round i.

Step 2. Cable type i installation: We construct the set Biζ = {B(j, ζR̄ji ) : j ∈ Si}
of moats around clients in Si. We obtain a graph Gi from G by contracting each
moat in Biζ into a super-node, and the current tree Ti+1 into a super-node called

ri+1. We then construct an approximately optimal Steiner tree in Gi (with inte-
grality gap bound 2), where the terminals are all the super-nodes. By decontracting
the supernodes, we get a forest in G touching at least one node in Ti+1 and one
node from each moat (see Figure 5(a)). To get a tree, called T̃i, from the resulting
forest, we add direct edges from each client j ∈ Si to each node of B(j, ζR̄ji ) that is
incident on the forest and then we cancel cycles (see Figure 5(b)); we remark that
this crucial step of adding direct edges is missing from the uSSBB-approximation
in [17], even though it seems necessary for both that algorithm and ours to work.

Using Khuller et al.’s technique [12], we then convert tree T̃i rooted at ri+1, into
an (α, β)-Light Approximate Shortest-path Tree (LAST), for parameters β = α+1

α−1
and α > 1 to be chosen later. Let LASTi be the resulting tree. The LAST algorithm
[12] transforms tree T̃i into LASTi with c(LASTi) ≤ βc(T̃i) such that the path
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Fig. 5: An illustration of the access network phase where i = K.

length of any vertex v to root ri+1 in LASTi is at most α times the length of a
shortest v-ri+1 path in Gi. We decontract the moats and install cables of type i
on the edges of LASTi. Let Ti = Ti+1 ∪ LASTi.

For the purpose of analysis, for each j ∈ Si, we call an arbitrary node in its moat
which is connected to LASTi as the proxy, denoted by proxyi(j). For the clients
j ∈ Ŝi, we define proxyi(j) to be an arbitrary node in B(j, γR̄ji ) ∩ Ti+1. For the

remaining clients j′ ∈ D\Si∪Ŝi, we define proxyi(j
′) to be proxyi(j), where j ∈ Si

is the center of the smallest moat in Bi that overlapped with B(j′, γR̄j
′

i ). It is easy

to verify that c(j, proxyi(j)) ≤ 3γR̄ji ≤
3γ
θ

∑i−1
k=1 L

j
k. If we set∆ = max{1+2η

1−θ ,
3γ
θ },

then by the previous inequality and (13), we get

c(j, proxyi+1(j)) ≤ ∆ ·
i∑

q=1

Ljq, ∀j ∈ D, 1 ≤ i ≤ K (14)

which will be useful in bounding the routing cost.
Finally, note that Rj1 = 0 for all j. This means that in the first step of the last

stage, S1 consists of all clients that have not been connected to the current tree.
Therefore, at the end of the last stage, T1 is a tree spanning all clients and open
facilities. The access network we return consists of the forest obtained by removing
the artificial tree TK+1 from T1.

2.2.2 Analysis.

Let C∗op, C∗core, C∗fixed, and C∗route be the opening cost, core installation cost,
fixed installation cost, and routing cost paid by the LP optimum, respectively (see
(1)). And let Cop, Ccore, Cfixed, and Croute be the ones paid by our algorithm. Let
gapST denote the upper bound on the integrality gap of the cut based formulation
of Steiner tree problem, which is 2. Let OPT be the cost of LP optimum. The
following lemma bounds the opening cost.

Lemma 1 The opening cost of the returned solution is at most 1
θC
∗op.

Proof The cost of facility ij can be bounded by using (2)-(5), and the fact that ij
was chosen as the cheapest facility of Fj ⊆ B(j, βj), as follows

µij = µij ·
1

φj

∑
p∈P̄j

φ(p) =
1

φj

∑
i∈Fj

µijh
j
i ≤

1

θ

∑
i∈Fj

µiyi.
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As sets Fj , j ∈ Score are disjoint, the total opening cost is at most 1
θ ·
∑
i∈F yiµi =

1
θC
∗op. ut

Lemma 2 The cost of core link installation is at most η+1
θ(η−1) · gapST · C∗core.

Proof By (7), one can verify that
∑
ē∈δ+(S) z̄ē ≥ 1 holds for any arbitrary set

S ⊂ V that contains all facilities in Fj (for some j) and it does not contain r. This
means that z̄ is a feasible fractional solution to the cut based LP relaxation of
the Steiner tree problem on the graph GK+1 (see the core network phase) whose
terminals are all the contracted sets Fj (recall that Fr∗ = {r}). In particular, the
Steiner tree T ′ found in the core network phase has cost at most gapST ·

∑
ē∈E cēz̄ē.

The cost of the extra edges included in the final tree T core (i.e., the union of all
stars Qj) can be charged to the cost of T ′ as follows.

For each facility ĩj in F̃j let p(̃ij) be any path in T ′ connecting ĩj (which is
inside B(j, βj)) to a node v outside B(j, ηβj), we note that the length of p(̃ij) is at
least (η− 1)βj . By a similar argument, if p(̃ij) = p(̃ik) where ĩj ∈ F̃j and ĩk ∈ F̃k,
then we can use the fact that B(j, ηβj) and B(k, ηβk) do not overlap to conclude
that the length of the path connecting ĩj to ĩk in T ′ is at least (η − 1)(βj + βk).
Therefore, the total cost of the union of all Qj is at most∑

j∈Score

(
c(jij) +

∑
ĩj∈F̃j

c(jĩj)

)
≤ 2

∑
j∈Score

∑
ĩj∈F̃j

βj ≤ 2
∑
e∈T ′

c(e)

η − 1
.

Summing up, the cost of T core is at most 1 + 2
(η−1) times the cost of T ′, and

therefore it is at most η+1
θ(η−1) · gapST ·

∑
e∈E cēzē. ut

In the following, extending the ideas from [17] for uSSBB, we bound the fixed
cost and routing cost of the cables installed at stage i of the access network phase
of our algorithm, denoted by Cfixed

i and Croute
i , respectively.

Lemma 3 Cfixed
i ≤ σi · gapST ·

γβζ

(γ − ζ)(ζ − 1)θ

( K∑
q=i

1

σq
C∗fixed
q +

1

M
C∗core

)
.

Proof Let S be an arbitrary subset of V \ {r} that contains B(j, ζR̄ji ) and let

b̄jq;S :=
∑
e∈δ+(S) f̄

j
e,q denote the amount of flow from j that crosses the boundary

of S via cables of type q. We note that the flow we are considering may travel
from j to the boundary of S using any cables of type q or less than q (due to the
path monotonicity constraints) but it must use cables of type q while crossing the
boundary of S.

In the following we first show that
∑i−1
q=1 b̄

j
q;S ≤

1
ζ . Consider some q < i. As b̄jq;S

travels a distance of at least ζR̄ji (on cables of type q or less than q), it contributes

at least b̄jq;S · ζR̄
j
i units to R̄ji =

∑i−1
k=1 L̄

j
k. As the contributions from each q

are disjoint, we have R̄ji ≥
∑i−1
q=1 b̄

j
q;SζR̄

j
i , which implies that

∑i−1
q=1 b̄

j
q;S ≤

1
ζ .

This together with the LP constraints guarantee that
∑K
q=i b̄

j
q;S +

∑
e∈δ+(S) z̄e ≥

1 − 1
ζ and hence

∑
e∈δ+(S)

(∑K
q=i x̄

q
e + z̄e

)
≥ 1 − 1

ζ by the definition of b̄jq;S and

constraints (6). This means that the vector z̄ +
∑K
q=i x̄

q, scaled by a factor ζ
ζ−1 ,

is a feasible fractional solution to the LP relaxation of the Steiner tree connecting
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balls B(j, ζR̄ji ) to Ti+1. Therefore, the cost of the Steiner tree computed in step 2
of the access network phase can be bounded by

gapSTζ

ζ − 1

(∑
e∈E

K∑
q=i

cex̄
q
e +

∑
e∈E

cez̄e

)
≤ gapSTζ

(ζ − 1)θ

( K∑
q=i

1

σq
C∗fixed
q +

1

M
C∗core

)
.

Similar to Lemma 2, one can show that the cost of extra edges of T̃i, added after
un-contracting the moats, is at most ζ

γ−ζ times the cost of the current forest.
Altogether, the cost of the LASTi tree is at most

c(LASTi) ≤ β(1 +
ζ

γ − ζ ) · gapSTζ

(ζ − 1)θ

( K∑
q=i

1

σq
C∗fixed
q +

1

M
C∗core

)

= gapST

βγζ

(γ − ζ)(ζ − 1)θ

( K∑
q=i

1

σq
C∗fixed
q +

1

M
C∗core

)
ut

Lemma 4 Croute
i ≤ ∆δiα

i∑
q=1

(1 + α)i−q
1

δq
C∗route
q .

Proof Let T =
⋃K
i=1 LASTi be the access network (forest) constructed by our

algorithm and let Vi be the set of nodes via which flow routing from clients toward
facilities enters the LASTi tree; we assume V1 = D. Also, let dT (u, v) be the
distance between u and v on T .

The proof of the lemma is by induction on i. Since we install cables of type 1 on
the LAST1 tree, and also proxy2(j) lies in T2, we have dT (j, T2) ≤ αc(j, proxy2(j)).
Hence by using (14), we get

Croute
1 = δ1

∑
j∈D

dj · dT (j, T2) ≤ ∆δ1α
∑
j∈D

djL
j
1 ≤ ∆δ1α

1

δ1
C∗route

1 ,

which concludes the case i = 1. Assume now, that the claim holds for all l < i. Then
the total cost of routing along cables of type i can be bounded as the following.

Croute
i = δi

∑
v∈Vi

Dv · dT (v, Ti+1) ≤ δiα

[
i−1∑
p=1

Croute
p

δp
+
∑
j∈D

dj∆

i∑
q=1

Ljq

]
, (15)

where Dv is the amount of demand routed through LASTi via node v. The above
inequality holds because the cost of of routing the demand from v to Ti+1 on T
can be bounded by the cost of routing the demand back (via forest defined by the
edges of T that have cables of types 1, . . . , i− 1) to its source (sources), say j, and
then from there (directly) to proxyi+1(j), which lies in Ti+1, using the triangle
inequality and (14). Note that this is true because we install cables on the LASTi
trees. Recall Croute

q = δq
∑
j∈D djL

j
q. Therefore by (15) and induction hypothesis



14 Z. Friggstad, M. Rezapour, M. Salavatipour, J. Soto

we get

Croute
i ≤ ∆δiα

[ i−1∑
p=1

α

p∑
q=1

(1 + α)p−q
C∗route
q

δq
+

i∑
q=1

C∗route
q

δq

]

= ∆δiα
[ i−1∑
q=1

C∗route
q

δq

[
α

i−1∑
p=q

(1 + α)p−q
]

+

i−1∑
q=1

C∗route
q

δq
+
C∗route
i

δi

]

= ∆δiα
[ i−1∑
q=1

C∗route
q

δq
(1 + α)i−q +

C∗route
i

δi

]
= ∆δiα

i∑
q=1

C∗route
q

δq
(1 + α)i−q. ut

By Lemma 3, Theorem 3, and by summing over all cable types, the fixed cost
paid by the algorithm can be bounded as follows.

Cfixed ≤ gapST ·
γβζ

(γ − ζ)(ζ − 1)θ

[ K∑
s=1

C∗fixed
s (

∑
i≤s

σi
σs

) + C∗core(
K∑
i=1

σi
M

)
]

≤ gapST ·
γβζ

(γ − ζ)(ζ − 1)θ(1− ε1)

[
C∗fixed + C∗core]. (16)

Similarly, by using Lemma (4), we bound the routing cost as follows.

Croute ≤ ∆α
K∑
i=1

i∑
s=1

(1 + α)i−s
δi
δs
C∗route
s ≤ ∆α

K∑
i=1

i∑
s=1

(
(1 + α) · ε2

)i−s
C∗route
s

≤ ∆α
K∑
s=1

C∗route
s

∑
i≥s

(
(1 + α) · ε2

)i−s ≤ ∆α

1− ε2(1 + α)
· C∗route. (17)

Using (16), (17), Lemmas 1 and 2, the total cost of our solution is at most

1

θ
C∗op +

(η + 1)gapST

θ(η − 1)
C∗core +

γβζ · gapST (C∗fixed + C∗core)

(γ − ζ)(ζ − 1)θ(1− ε1)
+

∆α

1− ε2(1 + α)
C∗route.

Finally, using Theorem 3, we can bound the cost of our solution by

≤ max

(
1

ε1
· γβζ · gapST

(γ − ζ)(ζ − 1)θ(1− ε1)
+

(η + 1)gapST

θ(η − 1)
,

1

ε2
· ∆α

1− ε2(1 + α)

)
OPT.

(18)

This completes the proof of Theorem 1. Setting α = 1.47, γ = 4.10, ε1 = 0.50,
ε2 = 0.20, θ = 0.78, η = 1.27 and ζ = 2 and recalling gapST = 2, inequality (18)
implies that the integrality gap of (IP-DDCFL) is no more than 234. Thus, we
obtain the first LP based (deterministic) algorithm for DDCFL and thereby for
BBCFL.

3 Buy-at-Bulk Facility Location

In this section we study the integrality gap of an LP formulation for the buy-at-
bulk facility location problem. As with BBCFL, we consider the deep-discount
variant of BBFL, namely DDFL. Note that similar to the relation between
BBCFL and DDCFL, one can transform between BBFL and DDFL with a
factor 2 loss.
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3.1 IP Formulation

Similar to Section 2.1, DDFL can be formulated as follows:

min Cop + Cfixed+Croute (IP-DDFL)

(2), (3),(6), (9)

gj[K](i) ≤ yi ∀j ∈ D, i ∈ F (19)

gj[q,K](i)− yi ≤ 0 ∀j ∈ D, i ∈ F, 1 ≤ q ≤ K (20)

xkē , f
j
e;k, yi ∈ {0, 1} (21)

We do not need the z and hji variables anymore, as they were used to model the
connectivity requirements among facilities. Constraints (19) state that the flow
only ends at open facilities, and constraints (9) and (20) force the path mono-
tonicity discussed in Section 2.1.

3.2 Proof of Theorem 2

Let (f, x, y) be the optimal solution to the LP relaxation of (IP-DDFL). We shall
show that this fractional solution can be rounded to an integer solution increasing
the total cost by a factor of O(K).

3.2.1 Rounding Algorithm.

Our rounding algorithm will follow the same general ideas of that for DDCFL,
but we replace the core network and access network phases by a single one denoted
network phase. Another key difference is that we may open facilities at any stage
of the network phase. Ultimately, this is why our integrality gap bound is O(K)
as we have to overestimate and bound the opening cost in each of the K stages
by the total opening cost paid by the LP.

Preprocessing Phase: Apply the preprocessing phase (pruning, flow path decom-
position and filtering) of Section 2.2.1, disregarding variables z. Let (f̄ , x̄, ȳ) be
the solution after this phase.

Initial Facility Selection Phase. Perform the facility selection phase of Section 2.2.1
but fixing η = 1. Let I ′ be the set of facilities opened in this phase.

Network Phase: We construct a solution in a top-down manner, installing cables
and possibly opening more facilities in stages, which we number from i = K to 1.
We start with solution (IK+1, TK+1) = (I ′, ∅). At stage i we augment the current
solution by (1) opening some extra facilities and (2) installing cables of type i.
We do this while keeping the invariant that Ti is a forest in G such that each
connected component contains an open facility of Ii.

Stage i of this phase of our algorithm is similar to the i-th stage of the access
network phase in Section 2.2.1 and works as follows:



16 Z. Friggstad, M. Rezapour, M. Salavatipour, J. Soto

1. For a predefined constant γ > ζ > 1, construct the set of moats B(j, γR̄ij)
around clients j ∈ D. Remove the moats which intersect Ti+1 and select from
the rest a maximal subset Bi of non-overlapping moats in increasing order of
their radii. Let Si be the set of selected clients associated to Bi and construct
the set Biζ = {B(j, ζR̄ji ) : j ∈ Si} of moats around clients in Si.

2. Add a dummy node r̃ and connect it to every facility v fractionally opened by
the LP (with ȳv > 0). Set the cost of each dummy edge ẽ = r̃v to be zero if
facility v ∈ Ii+1; otherwise set it to be fv. To simplify the analysis, associate
each edge ẽ = r̃v with a variable x̃ẽ equal to ȳv.

3. Contract each moat in Biζ , and each component of Ti+1 into super-nodes. Call

the contracted graph G̃.
4. Construct an approximately optimal Steiner tree T̂ on G̃, where the terminals

are r̃ and all the super-nodes. Without loss of generality we assume that T̂
includes a dummy edge of cost 0 from r̃ to every super-node associated to a
component of Ti+1 (or, more precisely, to each facility v ∈ Ii+1).

5. For each v ∈ F \ Ii+1, if edge r̃v is in T̂ then open facility v and put it in Ii.
6. Set Ii = Ii ∪ Ii+1.
7. Contract all the dummy edges that are contained in T̂ , and decontract the

super-nodes associated to the moats. The edges from T̂ form a forest in the
resulting graph. To get a tree, add for each moat direct edges from its center
to all nodes in the moat that are incident to T̂ . Let T̃ be the resulting tree.

8. Using the LAST algorithm for appropriate parameters, transform T̃ rooted at
the contracted node containing r̃ into a tree called LASTi.

9. Install cables of type i along LASTi and let Ti = Ti+1 ∪ LASTi.

3.2.2 Analysis.

Let C∗op, C∗fixed, and C∗route be the opening cost, fixed installation cost and
routing cost paid by the optimum to the LP relaxation of (IP-DDFL), respectively.

Similar to Lemma 1, the cost of facilities opened in the facility selection phase
can be bounded as follows.

Lemma 5 The cost of facilities opened in the facility selection phase is O(1)·C∗op.

In the next lemma, we bound the fixed installation and opening cost incurred
in the network phase of the algorithm.

Lemma 6 The total fixed cost and facility cost of the network phase is O(1) ·
C∗fixed +O(K) · C∗op.

Proof Consider Stage i of this phase. Let S be an arbitrary subset of V \ {r} that
contains B(j, ζR̄ji ). Similar to Lemma 3, one can show that

∑i−1
q=1 b̄

j
q;S ≤

1
ζ , where

b̄jq;S :=
∑
e∈δ+(S) f̄

j
e,q indicates the amount of flow from j crossing the boundary

of S thorough cables of type q. This together with the LP constraints guarantee
that

∑K
q=i b̄

j
q;S+

∑
v∈S∩F ȳv ≥ 1− 1

ζ and hence
∑
e∈δ+(S)

(∑K
q=i x̄

q
e+ x̃e

)
≥ 1− 1

ζ .

This means that the vector x̃ +
∑K
q=i x̄

q, scaled by a factor ζ
ζ−1 , can be viewed

as a feasible fractional solution to the LP relaxation the Steiner tree problem
on G̃ connecting balls B(j, ζR̄ji ) to Ti+1. Therefore, the cost of this Steiner tree
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(including edge cost of Step 4 and opening cost of Step 5) can be bounded by

gapSTζ

ζ − 1

(∑
e∈E

K∑
q=i

cex̄
q
e +

∑
v∈F

µvx̃r̃v

)
≤ gapSTζ

(ζ − 1)θ

( K∑
q=i

1

σq
C∗fixed
q + C∗op

)
.

Similar to Lemma 3, the cost of the LASTi tree can be bounded by

gapST ·
γ

γ − ζ ·
βζ

(ζ − 1)θ

( K∑
q=i

1

σq
C∗fixed
q + C∗op

)
.

Summing over all stages 1 ≤ i ≤ K, we see the total fixed cost and facility cost of
this phase is at most

gapST ·
γ

γ − ζ ·
βζ

(ζ − 1)θ

K∑
i=1

( K∑
q=i

σi
σq
C∗fixed
q + C∗op

)

Which is O(1) · C∗fixed +O(K) · C∗op by Theorem 3. ut

Similar to Lemma 4, we can bound the routing cost of each stage, and then the
routing cost of the entire solution.

Lemma 7 The total routing cost of the solution is O(1) · C∗route.

Using Lemmas 5, 6, and 7, the total cost of the solution is at most

O(1)
(
C∗route + C∗fixed)+O(K) · C∗op.

This completes the proof of Theorem 2.

4 Conclusions

We have shown that the LP rounding framework for uSSBB given by [17] extends
to facility location buy-at-bulk problems. Our integrality gap analysis roughly
matches the known approximation ratios of combinatorial algorithms for BBCFL
and BBFL, so the obvious open problem is to improve this analysis to derive
better approximation algorithms. In particular, can we get an O(1)-approximation
for BBFL? We were able to bound the gap by O(1) for BBCFL by exploiting the
fact that the facility core network is fractionally connected by the LP. However,
in BBFL we do not have this property so we have to pay for the facility opening
costs with a copy of the y-values in each stage.

A potentially easier problem is to get an α-approximation for BBFL with
running time nf(k) for some function f where α is a constant that does not depend
on k.

Acknowledgements A special thank to Babak Behsaz for helpful discussions.
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15. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility location prob-
lems. Proceedings of the annual ACM symposium on Theory of computing (STOC) pp.
265–274 (1997)

16. Swamy, C., Kumar, A.: Primal–dual algorithms for connected facility location problems.
Algorithmica 40(4), 245–269 (2004)

17. Talwar, K.: The single-sink buy-at-bulk lp has constant integrality gap. Proceedings of
Integer Programming and Combinatorial Optimization (IPCO) pp. 475–486 (2002)

5 Appendix. A naive Model for DDCFL

In this section, we show that an alternative, but perhaps more natural IP formulation for
DDCFL has unbounded integrality gap. Consider the following integer programming formu-
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lation:

min Cop + Ccore+Cfixed + Croute (IP-DDCFL-2)

gj
[K]

(j) ≤ −1 ∀j ∈ D (2)

gj
[K]

(v) = 0 ∀j ∈ D, v ∈ V \ (F ∪ {j}) (3)

fj
(u,v);k

+ fj
(v,u);k

≤ xkuv ∀j ∈ D, k ∈ [K], uv ∈ E (6)

yr = 1 (8)

gj
[q,K]

(v) ≤ 0 ∀j ∈ D, v ∈ V \ F, 1 ≤ q ≤ K (9)

gj
[q,K]

(i)−
∑
ē∈δ(i)

zē ≤ 0 ∀j ∈ D, i ∈ F \ {r}, 1 ≤ q ≤ K (10)

gj
[K]

(i) ≤ yi ∀j ∈ D, i ∈ F (22)

yi −
∑

ē∈δ(S)

zē ≤ 0 ∀S ⊆ V \ {r} : S ∩ F 6= ∅, i ∈ S (23)

xkē , f
j
e;k, yi, zē ∈ {0, 1}

The difference between this formulation and (IP-DDCFL) is that (IP-DDCFL-2) does not
have variables h. We replace constraints (4) and (7) by (22) and (23) respectively.

Theorem 4 The integrality gap of (IP-DDCFL-2) can be arbitrarily large.

Proof Proof. Consider the instance described in Figure 6, where the square nodes represent
facilities and the circle nodes represent clients. In this instance, K = 1, i.e. we have a unique
access cable type, and we set σ = δ = 1. The core cable has a cost (per unit length) equal
to M with 1 < M < q. For every facility i ∈ {1, · · · p}, we set an opening cost of µi = 1. We
also set µn = ∞. The root facility r, which must be opened, has an opening cost of 0. The
distances are given by the metric completion of the edge costs depicted in the figure, where
L >> 1 is a constant larger than any other finite parameter of the instance.

Fig. 6: An instance of DDCFL with q clients of unit demands and (p+2) potential
facilities with facility r as the root node.
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The optimal integral solution to this instance can connect all the clients to a fixed facility
i∗ ∈ {1, · · · p} via access links; note that facilities {1, · · · p} are (almost) collocated. Then this
open facility is connected to the root node via (unopened) facility n using core links.

However, the LP relaxation of (IP-DDCFL-2) can cheat and open all facilities i ∈ {1, · · · p}
to the extends of 1/p to serve clients demands. Then it can install core links to the extends
of 1/p on the edges connecting them (via node n) to the root node. This means that LP only
pays M · L/p for the core link along edge nr, while the integral solution pays a cost of M · L
on that for the same edge. Since L was chosen as an arbitrarily large constant, this is the only
relevant value to compare. Hence, the integrality gap is proportional to p and thus it can be
made arbitrarily large. ut


