CMPUT 675: Randomized Algorithms Fall 2005
Lecture 5: Sept 22

Lecturer: Mohammad R. Salavatipour Scribe: Bruce Fraser

5.1 Chernoff Bound

Today, we are going to find a bound on the tails probabilities that is considerably sharper than Markov’s
and Chebyshev’s. We focus on the sum of independent Bernoulli trials. If Xi,...,X,, are independent
Bernoulli trials with Pr[X; = 1] = p then X = Y7 | X, has a binomial distribution. In more general cases,
if Pr[X; = 1] = p; then E[X] =)7, p; and these are referred to as Poisson trials.

Theorem 5.1 (Chernoff Bound) Assume X1, Xa,..., X, are independent Poisson trials with Pr[X; =
1] = pi, for0 < p; < 1. Then for X =% | X;, p = E[X]:

I
1. for any 0 < §: Pr[X > (1 4+ 0)p] < ((1-1-66)%) .

2. for any 0 < § < 1: Pr[X > (1 + 6)p] < e=H9°/3,
3. for any R > 6u: Pr[X > R] <27 &,

Note that these bounds are independent of u.
Proof: We prove the first bound. For all ¢ > 0:
Pr[X > (14 8)u] = Pr[tX > t(1 + 0)p] = Pr[etX > t1+9H),

By Markov’s inequality,

E[e™] _ B[l e™] _ L E[E™]

tX t(146)p
Pr[e Z €]S et(1+5)“ - et(1+5)” - et(1+6)u :

1 1—p;
Now e!Xi = {e’ N Pi g6 E[e!Xi] = elp; + (1 — p;) = 1 + p;(e! — 1).. Thus
? 2

[Llpi(et +1)] _ [[en Y
Pr[X > (1+6)p] < et(1+o) < et(+d)p

(since always 1 4+ z < e”). Continuing,

ele =13, pi ele'=1)n
Pr[X > (1+6)u] < JRTCET T uw v

If we let t =1n(1 + §), then

e’ #
Pr[X > (1+0)u] < (W) .

Similarly, we can show:

5-1

5-2 Lecture 5: Sept 22

Theorem 5.2 Under the same assumptions as in Theorem 5.1:

_ i
1. for any 0 < d < 1: Pr[X < (1 —9)u] < ((173)%) .

2. for any 0 < 6 < 1: Pr[X < (1 — 8)u] < e=n9°/2,

Corollary 5.3 For 0 <d < 1:
Pr[|X — p| > dp] < 2e 10 /3,
5.1.1 Example 1: Flipping n unbiased coins

Suppose we flip n unbiased coins uniformly randomly and independently. Let X; = 1 if coin ¢ is heads and
X =3 X is the number of heads, E[X] = %. Using the Chernoff bound,

I3 =2
3 = e3u,

Pr [X > g+>\] —Pr [XZp(l-q-%)] <e ()

Now try A = v/3nlnn. Then % = 3”31% = 2Ilnn. So we have
2
Pr[X > p+V3nlnn] < e™22m = =2,
This is a better bound than given by Chebyshev’s inequality: 6?[X] =3 ¢?[X;] = 2 and

2
7 ¢ Mzo(i
Inn

Pr[X > <
1 _H+)\]_)\2 O(nlnn)

).

5.1.2 Example 2: Minimum Discrepancy Coloring of Hypergraphs

Consider the problem of 2-coloring hypergraphs.

Definition 5.4 A hypergraph is a set of vertices, V = {v1,va,...,vn} and a set of edges E = {ey, ea,...,em},
where e; C V. (Graphs are the special case when |e;| = 2.)

Our goal is to color vertices red and blue such that we have a balanced number of colors in each edge. That
is, we want to minimize the discrepancy where Disc(e;) = max|number of reds in e; — number of blues in &].
€j

Lemma 5.5 A random 2-coloring gives Disc < O(v/nlnn).

Proof: Consider random variable X,:

X, = 1 if v is red.
0 otherwise.

Lecture 5: Sept 22 5-3

Let Xe, = > c., Xo- Then E[X,] = |<;| and Disc(e;) = 2 % — Xe;|- Using Chernoff bound with A =
v/3nlogm:
. 2 nlnm
Pr M—Xe. > A §2632‘+ﬁ| <670(e)Si
2 : m2
Since there are m edges, using union bound:
1 1
Pr[any edge has disc. > V3nlnm] <m (W) =

5.1.3 Oblivious Routing in Hypercubes

Consider a network with N nodes, with directed links between nodes. Furthermore, every node i has a
packet v; which has a destination d(z). We assume that these destinations are all distinct, i.e. d(7)’s form a
permutation of vertices. The system is synchronous and works in rounds. In every round vertices may send
some packets to some of their neighbors. Every edge can transmit only one packet in every time step and it
takes exactly one time step for a packet to travel an edge. If there are several packets at a node that want
to go through an edge we buffer them (queue) and send them one by one. We usually use FIFO queuing at
buffers.

We are looking for a routing scheme for these packets with minimum number of rounds. The scheme must
be oblivious; i.e. every packet is routed independently, without regard to where other packets are routed. At
every node we decide where to send each packet based only on its destination d(z). Typically the network is
sparse. The model of network we consider is a k-dimensional hypercube.

Definition 5.6 A hypercube or k-cube has 2F nodes, with k-bit binary strings as labels for each node. Two
nodes are connected with directed edges if and only if their labels differ in exactly one bit. Thus in a k-cube,
each node is of degree k.

The following theorem (which we don’t prove) gives a lower on the number rounds in the worst case for any
deterministic algorithm.

Theorem 5.7 For any deterministic algorithm, there is a permutation that requires) (TN) rounds, where

d is the degree of the nodes.

In the case of the hypercube, the bound is {2 (@) Our goal is to route all the packets in O(log N) rounds,
where N = 2F (i.e. O(k) rounds).

A typical oblivious and simple routing algorithm is call bit-fizing: given v; to be sent to d(i) at current node
o (i), compare d(i) with ¢(¢), and find the leftmost bit at which the two strings differ, say bit j. Then send
it to the neighbour of (i) that differs from it in bit j. So in every step, we “fix” one of the bits by making
it closer and closer to the destination. Obviously, if there are no other packets in the network, a packet is
delivered in k steps.

Let us first examine the effect of bit-fixing when the input is a random permutation. Define T'(e;) to be the
number of routes that use edge e;. By symmetry, E[T(e;)] is the same for all the edges. The expected length

5-4 Lecture 5: Sept 22

of a route is & (since the source and destination can differ in at most & bits). There are N nodes (and so N

packets), so the expected number of edge uses is % There are Nk edges in the cube, so expected load per
edge is 3. Hence E(T'(e;)) = 3. Assume that the T'(e;)’s are independent. We can use Chernoff bound to
say:
_ 1
Pr(|T(e;) — E(T(e;))| > 6k] < 27% = NG
So each edge causes a delay of at most O(k) w.h.p. Since every route has to go through O(k) edges, it
will have a delay of less than O(k?). Of course this argument is loose (because the variables T'(e;)’s are not

independent. But the idea works.

The key idea for our randomized improvement: first try to route each v; to a random location, then route
back to original destination. This way we confound an adversary choosing a worst-case permutation for us.

Two Phase Algorithm
Phase 1: Route packets to a random location (not a permutation!) using bit-fixing.
Phase 2: Route packets from the random intermediate locations to their destination using bit-fixing.

Analysis of this algorithm will follow in the next lecture.

