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1 Ellipsoid Algorithm

Simplex was the first algorithm developed for solving LP’s. It is still the most practical algorithm although
the running time of it is exponential in worst case. Ellipsoid was the first polytime algorithm for LPs. It was
known and used earlier for general convex optimiation problems but it was Khachyan in 1979 who showed
that it can solve LP in polynomial time. It is not a practical algorithm as it has a large (although polynomial)
time bound but has big consequences in combinatorial optimization and design of algorithms (including
approximation). Since then, there have been other polynomial algorithms developed to solve LP’s (a.k.a.
interior point methods).

The question of sloving LP’s is that of determining whether agiven LP is feasible or not. It can be proved
(an exercise) that the optimization problem can be reduced to a polynomial number of calls to an oracle that
would decide feasibility of a given LP. Therefore, it is sufficient to present a polynomial time algorithm for
deciding feasibility of an LP:

Given: Given a polyhedronP = {x : Cx ≤ d} find a feasible solutionx ∈ R
n if there exists one.

The general idea of the algorithm is as follows. Start with a big ellipsoidE that is guaranteed to containP .
We then check if the centre of this ellipsoid is insideP or not. If yes, we return that as the feasible solution.
If not, then there is a constraintcT x ≤ di which is voilated. This defines a separating hyperplane such
that the centre of the elliposid is to one side andP is to the other side of this hyperplane. We then find a
smaller ellipsoid based on the intersection of this half-space (containingP ) with the previous ellipsoid. This
becomes one iteration of the algorithm. If the starting ellipsoid isE0 anda0 is the center of this ellipsoid
then:

• Let E0 be the starting ellipsoid containintP anda0 be its centre.

• While ai is not inP do

– Let cT x ≤ di be a voilating constraint.

– Let Ek+1 be the minimum volume ellipsoid containingEk ∩ {x : cT x ≤ cT ak}
– Let k ← k + 1.

Figure 1 shows one iteration of the Ellipsoid algorithm. Theway ellipsoids are built is guaranteed their sizes
to shrink in volume. Thus ifP has positive volume, we eventually find a point inP .

Definition 1.1 A sphere inRn centered at the origin is the set

{x : x2
1 + x2

2 + ...... + x2
n ≤ 1} ≡ {x|xT · x ≤ 1}
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Figure 1: One iteration of Ellipsoid Algorithm

Definition 1.2 An ellipsoid inR
n centered atc ∈ R

n is obtained by an affine transformation of unit sphere:

{x ∈ R
n|(x− c)T AT A(x− c) ≤ 1}

For each ellipsoidE, by half ellipsoid1
2E we mean the intersection ofE and a halfspace going through the

centetr ofE, i.e. allx that satisfy the condition(x− c)T AT A(x − c) ≤ 1 as well asaT x ≥ aT d for some
vectord. The following Lemma (whose proof we omit) is the key lemma inbounding the running time of
Ellipsoid algorithm.

Lemma 1.3 (Key lemma) Each half ellipsoid1
2E is an ellpsoidẼ with:

V ol(Ẽ)

V ol(E)
< e

− 1
2(n+1) .

Therefore, after at most2(n + 1) ln V ol(E0)
V ol(P ) iterations, we should arrive at a point inP . It can be shown that

one can find an initialE0 such thatV ol(E0)
V ol(P ) is bounded by a polynomial in terms of length of encoding ofP .

In typical applications, we have0 ≤ x ≤ 1, soP = conv(X) for someX ⊆ {0, 1}n. For such applications
we can start withE0 being a ball (sphere) centered at(1

2 , 1
2 , . . . , 1

2 ) and radius1
2

√
n. This ball contains all

the points of{0, 1}n and has volume bounded byvol(E0) = 1
2n

(
√

n)nV ol(Bn) whereBn is the unit ball.
A crude upper bound forV ol(Bn) is 2n. Thuslog(V ol(E0)) = O(n log n).

Separation Oracle and exponential size LP’s:
One important feature of Ellipsoid algorithm is that we do not need to have an explicit representation of
the LP for the algorithm. What we need to have is to be able to decide whether a gien pointx belongs to
P or not, and if not find a violated constraint. This enables us to solve even LP’s with exponentially many
constraints as long as we can check in polynomial time whether a given proposed solution is feasible or not.
In other words, the above analysis actually proves that Ellipsoid algorithm makes a polynomial number of
calls to a separation oracle for checking feasibility of a point x.
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Figure 2: A half ellipsoid obtained from an ellipsoid and a hyperplane going through the center of the
ellipsoid

2 Duality

Recall that for every LP there is a dual LP. For a primal LP of the form:

minimize
∑n

i=1 cixi

subject to
∑n

j=1 aijxj ≥ bi

xj ≥ 0

The dual has the form:
maximize

∑n
i=1 biyi

subject to
∑m

i=1 aijyi ≤ cj

yi ≥ 0

By construction, every feasible solution to the dual program gives a lower bound on the optimum value of
the primal. Also, every feasible solution to the primal program gives an upper bound on the optimal value
of the dual. This is the notion of weak duality which can be proved formally:

Theorem 2.1 (Weak duality) If x andy are feasible solutions for primal (min) and dual (max), then
∑

cixi ≥
∑

bjyj

Proof:
n

∑

j=1

cjxj ≥
n

∑

j=1

(
m

∑

i=1

aijyi)xj

≥
m

∑

i=1

(

n
∑

j=1

aijxj)yi

≥
m

∑

i=1

biyi
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It turns out that if the optimal solutions of the primal and dual have the same value:

Theorem 2.2 (Strong duality) If x∗ andy∗ are optimal feasible solutions of the primal and dual LP then:
CT x∗ = bT y∗.

Theorem 2.3 (Fundermental Theorem of LP)Any LP given in standard form either:

(1) has an optimal solution with bounded value, or

(2) is feasible, or

(3) unbounded

This can be proved using the following lemma:

Lemma 2.4 (Ferka’s Lemma) The linear programAx = b with x ≥ 0 has no solution if and only if there
is y with AT y ≥ 0 andbT y < 0.

Using the above theorem, the relation between feasibility of an LP and its dual can be characterized as
below:

Primal \Dual optimal infeasible unbounded

optimal possible impossible impossible

infeasible impossible possible possible

unbounded impossible possible impossible

3 Totally Unimodular Matrices (TUM)

Definition 3.1 A matrixA is TUM if every square submatrix ofA has determinent in{−1, 0, 1}.
Definition 3.2 A polyhedronP is called integer if each vertex ofP is integer.

What is the importance of integral polyhedrons? If we can write an optimization problem as an LP and the
polyhedron that it defines is integral then solving the LP andfinding a vertex optimum solution gives an
optimum integer solution of the problem (note that we use thefact that for every LP and every cost function,
there is a vertex which is optimum for that function; also forevery vertex of a given polytope there is a cost
function for which that vertex is the unique optimum solution).

Theorem 3.3 If A is TUM then for every integral vectorb, polyhedronP = {x|Ax ≤ b, x ≥ 0} is integeral.

Proof: We prove the theorem forP ′ = {x|Ax+ Ix = b} since forP we can use slack variables and obtain
the polytopeP ′ in standard form. It can be easily shown (exercise) thatP is integral if and only ifP ′ is
integral. Take any bfs ofP ′ and basisB corresponding to this basic solution.B consists of some columns of
A and some ofI. SinceI has exactly one 1 in each column, if we expand the determinentof AB along these
columns, it becomes (in absolute value) equal to the determinent of some square submatrix ofA. SinceA is
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TUM and becauseAB is a collection of linearly independent columns (so its det6= 0), its determinent must
be in{−1,+1}. The basic solution is

x = A−1
B · b =

Aadj
b

det(AB)
· b

whereAadj
B is the adjoint matrix ofAB and consists of subdeterminents ofAB . Thus bothAadj

B andb are
integral anddet(B) ∈ {−1,+1} which implies thatx is integeral.

4 Matching and Perfect Matching Polytope

Let G = (V,E) be a weighted graph. The perfect matching polytopeP (G) is defined as as the convex hull
of incident vectors of perfect matchings ofG. More precisely, for each perfect matchingM , we define

χM ∈ R
|E| : χM

e =

{

1 e ∈M
0 o.w.

Then P (G) = conv(χM ). P (G) is clearly a polyhedron and hence can be defined by a set of linear
inequalities. Suppose we consider the following LP to describe this polytope:

∑

e∋v

xe = 1 ∀v (1)

xe ≥ 0

Clearly, each point ofP (G) satisfies this LP. The question is: does this LP correspond toP (G)? The answer
is no as these equalities are in general not sufficient since for any odd cycle, e.g.C3 there is a fractional
solution withxe = 1

2 everywhere which satisfies this LP but does not belong toP (G). It turns out that for
bipartite graphsG, the polytope of this LP is exactlyP (G).

Theorem 4.1 If G is bipartite, any vertex (bfs) of LP(1) corresponds to a perfect matching ofG and so is
an integer solution.

Proof: We show any fractional solution is not a vertex, i.e. can be written as convex combination of
perfect matchings ofG. Take any fractional solutionx∗. Without loss of generality, we assumex∗ is totally
fractional, i.e.0 < x∗

e < 1 (we can do so by dropping the edges withx∗
e = 0 and also for every edge with

x∗
e = 1 we consider the project ofx∗ on the smaller graph obtained by removing the end-points ofx∗

e). So
every vertex of the graph is incident to at least two edges inx∗. Consider an edgee and one end-point of
e, sayv. Since

∑

e∋v = 1 there is some other edgee′ incident tov with x∗
e′ > 0. We can move one′ to

the other vertex. We can continue in this manner until we find acycle. Note that sinceG is bipartite each
cycle has even length. LetC be such a cycle. We can partition the edges ofC into two matchingsM andH
whereM contains the odd (indexed) edges andN contains the even (indexed) edges ofC (see Figure3).

We can now find two other fractional solutions in the following way. For a sufficiently smallε > 0, in one
solution we subtractε from all edges ofM and addε to all edges ofN and we do the opposite in in the other
solutions; then the two solutions areM − ε ∪N + ε andM + ε ∪N − ε, note that these are two feasible
solutions still andx∗ is convex combination of these two. Therefore,x∗ is not a bfs, a contradiction.
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Figure 3: An even cycleC obtained from a fractional solution

This implies that the following LP for weighted perfect matching for bipartite graphs has always an integer
solution:

max
∑

e wexe
∑

e∋v xe = 1 ∀v
xe ≥ 0

We had proved this fact earlier using the primal-dual methodthat finds both an optimum matching and an
optimum vertex cover. The above is yet another proof of the same fact that this LP is integral.

There is a close connection between TUM matrices and the incident matrix of bipartite graphs (as proved
in the following theorem). LetA be theV × E incident matrix of a graph which has a 1 in entryA[v, e] if
edgee is incident to vertexv. Note thatA has exactly two1’s in each column.

Theorem 4.2 G is bipartite iffA is TUM.

Corollary 4.3 P = {x|Ax ≤ 1} is integeral for bipartite graphsG.

Now we prove the thoerem:

Proof: SupposeA is TUM andG has an odd cycleC, say|C| = t = 2k + 1. Let Ac be the submatrix of
A corresponding toC; soAc is at× t matrix with exactly two1’s in each row and each column. Sincet is
odd, it can be easily verified thatdet(Ac) = ±2, thusA is not TUM.

Conversely, supposeG is bipartite. We prove thatA is TUM. Let B be anyt× t submatrix ofA. We prove
by indcution thatdet(B) ∈ {−1, 0, 1}. The case oft = 1 is trivial. So assumet > 1.

• case 1: IfB has a column with only0’s then clearlydet(B) = 0 and we are done.

• case 2: ifB had a column with exactly one 1 then it has the following form for some vectoreb and
submatrixB′:
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Then using induction onB′, det(B′) ∈ {−1, 0, 1}. Expandingdet(B) along this column gives
det(B) ∈ {−1, 0, 1}.

• case 3: every column has exactly two 1’s; sinceG is bipartite we can writeB asB =

(

B′

B′′

)

such

that each solumn ofB′ and each column ofB′′ has exactly one 1. So sum of rows ofB′ is vector
(1, 1, . . . , 1) and so is the sum of rows ofB′′. Therefore, rows of B are not linearly independent which
impliesdet(B) = 0.

Implication of this theorem:
Suppose thatG = (V,E) is a bipartite graph andA is its vertex-edge incident matrix. We can derive
König’s theorem (which says the maximum matching size is equal to the minimum vertex cover) using the
above theorem. We know that the maximum matching and minimumvertex cover LP formulations are the
following: PM = min{x|Ax ≤ 1} andPvc = max{y|yT A ≥ 1}. By LP duality, the optimum solutions to
these LP’s are equal. On the other hand, by the previous theorem,A is TUM and therefore polytopePM is
integeral, i.e. each vertex is integer. Thus so is the optimum solution which implies the maximum matching
has the same size as minimum vertex cover.

This min-max relation holds for the weighted matching too aslong as the weights are integer:

max
∑

wT .x

Ax ≤ 1

x ≥ 0

Theorem 4.4 An integer matrixAm×n with aij ∈ {−1, 0, 1} is TUM if no more than two non-zero entries
appear in each column and the rows can be partitioned intoR1, R2 s.t.:

1. If a column has two entries of the same sign, their rows are in different parts

2. If a column has two entries of different signs, then their rows are in the same part

Proof: Let B be ak × k submatrix ofA. We proveA is TUM by induction onk. The case ofk = 1 is
trivial.

• If B has a column with all zero entries then clearlydet(B) = 0.

• If B has a column with exactly one non-zero entry then we can expand det(B) around that column
and use induction for the rest of the matrix.

• if every column has two non-zero entry then conditions 1 and 2above imply that:

∑

i∈R1

aij =
∑

i∈R2

aij

So there is a linear combination of rows which adds to zero, thusB is singular and thus hasdet(B) =
0.
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Corollary 4.5 Any LP whose constraint matrixA is either :

1. the node-edge incident matrix of an undirected bipartitegraph, or

2. the node-arc incident matrix of a directed bipartite graph

has only integeral optimal solutions. This includes LP for shortest path, max-flow, and matching.

Here we give yet another proof of showing integrality of perfect matching polytope of Bipartite graphs.

Theorem 4.6 PolytopePM (G) = {x|∑e∈v xe = 1, x ≥ 0} is integeral for bipartite graphsG.

Proof: SupposeG = (A ∪ B,E) is a bipartite graph with|A| = |B| = n. Take any bfsx∗ and without
loss of generality, assume thatx∗ is totally fractional. Since

∑

e∋v xe = 1, and since all edges are fractional,
each node has degree at least 2. Since

|E| = 1

2

∑

d(v) ≥ 1

2
· 2 · 2n = 2n

there are at least2n edges with non-zero value. There are2n variables so in bfs there are2n tight constraints,
but these tight constraints are not linearly independent because:

∑

i∈A

x∗
ij =

∑

i∈B

x∗
ij .

so there are at most2n − 1 linearly independent tight constraints, but we have2n variables. Thus a bfs
cannot be fractional.

5 General Matching Polytope

Recall that our first attempt at describing the perfect matching polytope for general graphsPperfect =
convx(X) whereX is the set of perfect matchings ofG was:

x(δ(v)) = 1 ∀v (2)

xe ≥ 0

The polytope defined by LP(2) is integral for bipartite graphs (as we proved) but there are fractional solutions
for odd cycles that are feasible for this LP and do not belong to Pperfect. So this LP is not strong enough for
the perfect matching polytope of general graphs.

Note that for any odd size setU ⊆ V , any perfect matchingM can have at most|U |−1
2 edges inU , and thus

must have at least one edge crossingU . So we can strenghten the above LP by adding constraints of these
type:

x(δ(v)) = 1 ∀v (3)

x(E(U)) ≤ |U | − 1

2
∀ odd setU ⊆ V

xe ≥ 0
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Note that constraints of the second type are equivalent to saying thatx(δ(U)) ≥ 1. It is easy to see that
such constraints are violated by fractional solutions thatassigns1/2 to each edge of an odd cycle (and was
feasible for LP(2). Next lecture we will prove that this LP isactually describing the polytope of perfect
matchings ofG by showing that:

Theorem 5.1 LP(3) is integeral i.e. every vertex corresponds to a perfect matching ofG.
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