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1 Ellipsoid Algorithm

Simplex was the first algorithm developed for solving LPtsislstill the most practical algorithm although

the running time of it is exponential in worst case. Elligbwias the first polytime algorithm for LPs. It was

known and used earlier for general convex optimiation potd but it was Khachyan in 1979 who showed
that it can solve LP in polynomial time. It is not a practicigaithm as it has a large (although polynomial)
time bound but has big consequences in combinatorial opdition and design of algorithms (including

approximation). Since then, there have been other polyaloalgorithms developed to solve LP’s (a.k.a.
interior point methods).

The question of sloving LP’s is that of determining whethgiveen LP is feasible or not. It can be proved
(an exercise) that the optimization problem can be reduz@doblynomial number of calls to an oracle that
would decide feasibility of a given LP. Therefore, it is scifint to present a polynomial time algorithm for
deciding feasibility of an LP:

Given: Given a polyhedrorP? = {z : Cz < d} find a feasible solution: € R" if there exists one.

The general idea of the algorithm is as follows. Start withgadilipsoid F that is guaranteed to contain

We then check if the centre of this ellipsoid is insiteor not. If yes, we return that as the feasible solution.
If not, then there is a constraief = < d; which is voilated. This defines a separating hyperplane such
that the centre of the elliposid is to one side dhdk to the other side of this hyperplane. We then find a
smaller ellipsoid based on the intersection of this haesp(containing?) with the previous ellipsoid. This
becomes one iteration of the algorithm. If the startingoshiid is £y anday is the center of this ellipsoid
then:

e Let E, be the starting ellipsoid containiit anda be its centre.

e While a; is not in P do

— Let ¢’z < d; be a voilating constraint.
— Let B 1 be the minimum volume ellipsoid containidg, N {z : ¢’z < c’'ay}
— Letk «— k£ +1.

Figure 1 shows one iteration of the Ellipsoid algorithm. T¥ey ellipsoids are built is guaranteed their sizes
to shrink in volume. Thus i? has positive volume, we eventually find a pointftn

Definition 1.1 A sphere inR™ centered at the origin is the set

{z: 2t +a3+ ... +22 <1} = {zf2T -2 <1}
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Figure 1: One iteration of Ellipsoid Algorithm

Definition 1.2 An ellipsoid inR™ centered at: € R™ is obtained by an affine transformation of unit sphere:

{z eRY(zx —c)TATA(z —¢) <1}

For each ellipsoid®, by half eIIipsoid%E we mean the intersection @f and a halfspace going through the
centetr ofE, i.e. allz that satisfy the conditiox — ¢)” AT A(z — ¢) < 1 as well asa” z > o’ d for some
vectord. The following Lemma (whose proof we omit) is the key lemmdaunding the running time of
Ellipsoid algorithm.

Lemma 1.3 (Key lemma) Each half eIIipsoid%E is an ellpsoidE with:

Vol(E) JS
Vol(E) '

VOl(E())
Vol(P)
one can find an initiaF, such that“//"oll(gf)) is bounded by a polynomial in terms of length of encoding’of

In typical applications, we have < x < 1, soP = conv(X) for someX C {0, 1}". For such applications
we can start withE,, being a ball (sphere) centered(at 3, ..., 3) and radius;/n. This ball contains all
the points of{0, 1}" and has volume bounded byl(E,) = 5= (v/n)"Vol(B,) whereB,, is the unit ball.
A crude upper bound fov ol(B,,) is 2". Thuslog(Vol(Ep)) = O(nlogn).

Separation Oracle and exponential size LP’s:

One important feature of Ellipsoid algorithm is that we dd need to have an explicit representation of
the LP for the algorithm. What we need to have is to be able tiddewhether a gien point belongs to

P or not, and if not find a violated constraint. This enablesousalve even LP’s with exponentially many
constraints as long as we can check in polynomial time whetlggzen proposed solution is feasible or not.
In other words, the above analysis actually proves thap&did algorithm makes a polynomial number of
calls to a separation oracle for checking feasibility of &po.

Therefore, after at mo&t(n + 1) In

iterations, we should arrive at a pointin It can be shown that
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Figure 2: A half ellipsoid obtained from an ellipsoid and gobyplane going through the center of the
ellipsoid

2 Duality
Recall that for every LP there is a dual LP. For a primal LP effibrm:

minimize Y | ¢x;

subject to D7) aj;z;
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The dual has the form:
maximize Y " biy;
subject to Y " a;;y;
Yi
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By construction, every feasible solution to the dual proggives a lower bound on the optimum value of
the primal. Also, every feasible solution to the primal piag gives an upper bound on the optimal value
of the dual. This is the notion of weak duality which can beveformally:

Theorem 2.1 (Weak duality) If £ andy are feasible solutions for primal (min) and dual (max), then
Z CiTi > Z bjy;

Proof:
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It turns out that if the optimal solutions of the primal ancatibhave the same value:

Theorem 2.2 (Strong duality) If z* andy* are optimal feasible solutions of the primal and dual LP then
CTy* =pTy*.
Theorem 2.3 (Fundermental Theorem of LP) Any LP given in standard form either:
(1) has an optimal solution with bounded value, or
(2) is feasible, or
(3) unbounded
This can be proved using the following lemma:

Lemma 2.4 (Ferka’s Lemma) The linear programAz = b with = > 0 has no solution if and only if there
isy with ATy > 0 andb”y < 0.

Using the above theorem, the relation between feasibilitaroLP and its dual can be characterized as
below:

Primal \ Dual | optimal | infeasible | unbounded

optimal possible | impossible| impossible
infeasible impossible| possible possible

unbounded | impossible| possible | impossible

3 Totally Unimodular Matrices (TUM)

Definition 3.1 A matrix A is TUM if every square submatrix ¢f has determinent ig—1,0,1}.
Definition 3.2 A polyhedronP is called integer if each vertex @f is integer.

What is the importance of integral polyhedrons? If we cariensin optimization problem as an LP and the
polyhedron that it defines is integral then solving the LP &inding a vertex optimum solution gives an

optimum integer solution of the problem (note that we usddbethat for every LP and every cost function,

there is a vertex which is optimum for that function; alsodeery vertex of a given polytope there is a cost
function for which that vertex is the unique optimum solajio

Theorem 3.3 If Aiis TUM then for every integral vectdt polyhedronP = {z|Az < b,z > 0} is integeral.

Proof: We prove the theorem fa?’ = {z|Ax + Iz = b} since forP we can use slack variables and obtain
the polytopeP’ in standard form. It can be easily shown (exercise) fhas integral if and only ifP’ is
integral. Take any bfs aP’ and basisB corresponding to this basic solutioB.consists of some columns of
A and some of . Sincel has exactly one 1 in each column, if we expand the determofe#}; along these
columns, it becomes (in absolute value) equal to the detembiof some square submatrix 4f SinceA is



TUM and becausel ; is a collection of linearly independent columns (so its #di), its determinent must
be in{—1,+1}. The basic solution is

A
~ det(Ap)

x:Agl'b

whereA‘;dj is the adjoint matrix ofAp and consists of subdeterminentsAf. Thus bothA‘;dj andb are
integral anddet(B) € {—1,+1} which implies thatr is integeral. |

4 Matching and Perfect Matching Polytope

Let G = (V, E) be a weighted graph. The perfect matching polyté}i€) is defined as as the convex hull
of incident vectors of perfect matchings Gf More precisely, for each perfect matchifg, we define

M |E| . M _ 1 eeM
X7 R x _{ 0 o.w.
Then P(G) = conv(xM). P(G) is clearly a polyhedron and hence can be defined by a set ddrline
inequalities. Suppose we consider the following LP to dbsdhis polytope:

Sa = 1 ®

esv

T > 0

Clearly, each point oP(G) satisfies this LP. The question is: does this LP correspot{ €9)? The answer
is no as these equalities are in general not sufficient sioicarfy odd cycle, e.gC'; there is a fractional
solution withz, = 1 everywhere which satisfies this LP but does not belong(@). It turns out that for
bipartite graphg=, the polytope of this LP is exactli?(G).

Theorem 4.1 If G is bipartite, any vertex (bfs) of LP(1) corresponds to a eetrimatching of> and so is
an integer solution.

Proof: We show any fractional solution is not a vertex, i.e. can b#ter as convex combination of
perfect matchings ofr. Take any fractional solutiom*. Without loss of generality, we assumé s totally
fractional, i.e.0 < z} < 1 (we can do so by dropping the edges with= 0 and also for every edge with
x} = 1 we consider the project af* on the smaller graph obtained by removing the end-points’ pfSo
every vertex of the graph is incident to at least two edges‘inConsider an edge and one end-point of
e, sayv. Since) . = 1 there is some other edgéincident tov with =%, > 0. We can move or’ to
the other vertex. We can continue in this manner until we fimyade. Note that sincé is bipartite each
cycle has even length. Lét be such a cycle. We can partition the edge€’afito two matchings\/ and H
whereM contains the odd (indexed) edges avictontains the even (indexed) edges’b{see Figure3).

We can now find two other fractional solutions in the follogiway. For a sufficiently smal > 0, in one
solution we subtract from all edges of\/ and addt to all edges ofV and we do the opposite in in the other
solutions; then the two solutions a¢ — s U N + ¢ andM + ¢ U N — ¢, note that these are two feasible
solutions still andc* is convex combination of these two. Therefaré,is not a bfs, a contradiction. m



Figure 3: An even cycl€’ obtained from a fractional solution

This implies that the following LP for weighted perfect niaitoy for bipartite graphs has always an integer

solution:
max ), Wele
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We had proved this fact earlier using the primal-dual mettinad finds both an optimum matching and an
optimum vertex cover. The above is yet another proof of tmeestact that this LP is integral.

There is a close connection between TUM matrices and thdantimatrix of bipartite graphs (as proved
in the following theorem). Le#l be theV x E incident matrix of a graph which has a 1 in entyw, ¢] if
edgee is incident to vertex. Note that4 has exactly twd’s in each column.

Theorem 4.2 GG is bipartite iff A is TUM.
Corollary 4.3 P = {z|Az < 1} is integeral for bipartite graph&-.
Now we prove the thoerem:

Proof: Supposed is TUM andG has an odd cycl€’, say|C| = t = 2k + 1. Let A, be the submatrix of
A corresponding t@; so A, is at x t matrix with exactly twol’s in each row and each column. Sincis
odd, it can be easily verified thdet(A.) = £+2, thusA is not TUM.

Conversely, supposg is bipartite. We prove thatl is TUM. Let B be anyt x t submatrix ofA. We prove
by indcution thatlet(B) € {—1,0,1}. The case of = 1 is trivial. So assumé > 1.
e case 1: IfB has a column with only’s then clearlydet(B) = 0 and we are done.

e case 2: ifB had a column with exactly one 1 then it has the following foongome vectoré and
submatrixB’:




Then using induction oB’, det(B’) € {—1,0,1}. Expandingdet(B) along this column gives
det(B) € {—1,0,1}.

o , B’
e case 3: every column has exactly two 1's; sii¢és bipartite we can write3 asB = < > such

Bl/
that each solumn oB’ and each column oB” has exactly one 1. So sum of rows Bf is vector
(1,1,...,1) and so is the sum of rows @". Therefore, rows of B are not linearly independent which

impliesdet(B) = 0.

Implication of this theorem:

Suppose that = (V, E) is a bipartite graph and! is its vertex-edge incident matrix. We can derive
Konig's theorem (which says the maximum matching size isaktp the minimum vertex cover) using the
above theorem. We know that the maximum matching and miniwentex cover LP formulations are the
following: Py; = min{z|Az < 1} andP,. = maz{y|ly’ A > 1}. By LP duality, the optimum solutions to
these LP’s are equal. On the other hand, by the previouseheot is TUM and therefore polytop@y, is
integeral, i.e. each vertex is integer. Thus so is the optirsalution which implies the maximum matching
has the same size as minimum vertex cover.

This min-max relation holds for the weighted matching todosg as the weights are integer:

max g wl.x
Ax

x 0

(AVARVAN

Theorem 4.4 An integer matrixA,, ., with a;; € {—1,0,1} is TUM if no more than two non-zero entries
appear in each column and the rows can be partitioned ®toR, S.t.:

1. If a column has two entries of the same sign, their rows mudifferent parts

2. If a column has two entries of different signs, then theivs are in the same part

Proof: Let B be ak x k submatrix ofA. We proveA is TUM by induction onk. The case ok = 1is
trivial.
e If B has a column with all zero entries then cleaity(B) = 0.

e If B has a column with exactly one non-zero entry then we can ekgeti B) around that column
and use induction for the rest of the matrix.

e if every column has two non-zero entry then conditions 1 aati@ve imply that:
2= oy
i€ERy 1€ERy

So there is a linear combination of rows which adds to zengs this singular and thus ha&t(B) =
0.



Corollary 4.5 Any LP whose constraint matri# is either :

1. the node-edge incident matrix of an undirected bipaditgph, or

2. the node-arc incident matrix of a directed bipartite gnap

has only integeral optimal solutions. This includes LP foorgest path, max-flow, and matching.
Here we give yet another proof of showing integrality of petfmatching polytope of Bipartite graphs.
Theorem 4.6 PolytopePy;(G) = {z|>_ .., re = 1,z > 0} is integeral for bipartite graphs-.

Proof: Supposez = (AU B, E) is a bipartite graph withA| = |B| = n. Take any bfsc* and without
loss of generality, assume thatis totally fractional. Sincé _,, z. = 1, and since all edges are fractional,
each node has degree at least 2. Since

1 1
E|=- >_-.2.2n=2
Bl = 5> d(v) 2 5220 =2n

there are at leagn edges with non-zero value. There &revariables so in bfs there age tight constraints,
but these tight constraints are not linearly independecabse:

* *
icA i€B

so there are at mo&n — 1 linearly independent tight constraints, but we h&vevariables. Thus a bfs
cannot be fractional. n

5 General Matching Polytope

Recall that our first attempt at describing the perfect matgipolytope for general graphB,, fec: =
convz(X) whereX is the set of perfect matchings 6fwas:

z(0(v)) = 1 Yo 2
z. > 0

The polytope defined by LP(2) is integral for bipartite grajfais we proved) but there are fractional solutions
for odd cycles that are feasible for this LP and do not belang,t, ... So this LP is not strong enough for
the perfect matching polytope of general graphs.

Note that for any odd size sét C V, any perfect matching/ can have at mo# edges in’/, and thus
must have at least one edge crosdihgSo we can strenghten the above LP by adding constrainteséth

type:

z(d(v)) = 1 Yo (3)
HEU) < W‘T_l v odd set/ C V
T > 0



Note that constraints of the second type are equivalentyimgdhatz(5(U)) > 1. Itis easy to see that
such constraints are violated by fractional solutions #ssignsl /2 to each edge of an odd cycle (and was
feasible for LP(2). Next lecture we will prove that this LPdstually describing the polytope of perfect

matchings ofG by showing that:
Theorem 5.1 LP(3) is integeral i.e. every vertex corresponds to a peneatching ofG.
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