
CMPUT 675: Topics in Algorithms and Combinatorial Optimiza tion (Fall 2009)

Lecture 2: Cardinality Matching, Maximum Weighted matching

Lecturer: Mohammad R. Salavatipour Scriber: Siamak Ravanbakhsh
Date: Sept 8 and 10, 2009

This lecture continues the discussion on bipartite matching, by analyzing the algorithm for construction of
maximum bipartite matching. Afterwards, construction of minimum vertex cover from maximum matching
is discussed, and finally we consider generalization to maximum weighted bipartite matching and introduce
three different algorithms for it.

1 Maximum Cardinality Bipartite Matching

From previous lecture we came up with the following algorithm for construction of a maximum matching
M for graphG = (A ∪B,E):

Maximum Bipartite Matching

M ← ∅
while there is anM -augmenting pathP do

let M beM∆P
return M

Figure 1: Cardinality bipartite matching algorithm

We proved in the previous lecture that this algorithm is guaranteed to find a maximum matching. The number
of iterations for this algorithm is in the order ofn (at mostn2). A question we have not answered yet is: How
to find anM -augmenting path? To find anM -augmenting pathP , we construct a digraphD = (A∪B,E′),
whereE′ has a directed edgee′ for every edgee ∈ E; e′ is directed fromB to A if e ∈ M and copies of
edges ofE −M are fromA to B in D.

Lemma 1.1 There is anM -augmenting path inG iff there is a directed path inD from and exposed node
in A to an exposed node inB.

Proof: An easy exercise.

To find such a path we can add an extra noder and connect it to all the exposed nodes ofA with directed
edgs. Now it is sufficient to use a search algorithm such as Breadth First Search (BFS) starting fromr to
find a path to an exposed node inB. Since BFS takesO(m + n), the total time-complexity of the matching
algorithm will beO(n(m + n)). The above lemma, together with Theorem 2.8 in Lecture 1 implies that

Theorem 1.2 Algorithm of Figure1 returns a maximum matching in a bipartite graph in timeO(n(m+n)).

However one may be able to improve the time complexity by finding several disjointM -augmenting paths
at each iteration. The following theorems are due to Hopcraft and Karp (1971).

Theorem 1.3 LetM andM̂ be matchings. If|M | = r, |M̂ | = s ands > r, thenM∆M̂ contains at least
s− r vertex-disjoint augmenting paths relative toM .

1

Given theseM -augmenting paths are disjoint, there exists anM -augmenting path of length≤ 2⌊r/(s −
r)⌋+ 1.

Theorem 1.4 LetM be a matching,P a shortestM -augmenting path, andP ′ a (M∆P)-augmenting path.
Then

|P ′| ≥ |P |+ |P ∩ P ′|

Therefore if we index the order in which an augmentation may happen using shortest augmenting paths we
have

Corollary 1.5 |Pi| ≤ |Pi+1| and for all i andj such that|Pi| = |Pj |, Pi andPj are vertex disjoint.

This means that we can augmentM with all disjoint M -augmenting paths in each iteration. The following
theorem limits the number of necessary iterations.

Theorem 1.6 Let |M∗| = s. The number of distinct integers in the sequence|P0|, |P1|, . . . , |Pi|, . . . is less
than or equal to2⌊√s⌋+ 2.

Therefore using single BFS to find all disjoint augmenting paths in each iteration the new algorithm will
have complexity ofO((m + n)

√
s) = O((m + n)

√
n).

2 Deriving Minimum Vertex Cover from Maximum Cardinality Ma tching
in Bipartite Graphs

So far we have shown that once the algorithm terminates we have found a maximum matching. In this
section we show that we can also find a minimum vertex cover easily. Consider digraphD = (A ∪B,E′),
whereE′ is the union of edges ofM directed fromB to A and edges ofE −M , directed fromA to B. Let
L be the set of vertices inD, that can be reached from any exposed node ofA (including exposed nodes
themselves).

Lemma 2.1 When the algorithm of figure 1 terminatesC∗ = (A − L) ∪ (B ∩ L) is a vertex cover and
|C∗| = |M |
Example: Consider the graphG of figure 2. The edges of maximum matchingM is in dotted (red) lines
and the vertices inL are painted as (blue) squares. Two circles isolated the vertices in the minimum vertex
cover.

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

A

B

(a) graphG

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

A - L

B Ý L

(b) graphD

Figure 2: An example of derivation of vertex-cover from maximum matching. In graphD, square nodes
belong to L, and dotted edges belong toM

2

Proof: If C∗ is not a vertex cover, then there is an edgeab ∈ E that is not covered. Such an edge must
have its end-pointa ∈ AL andb ∈ B − L because all the other edges are by definition ofC∗ covered.

We claim thatab /∈ M . Otherwise, sincea ∈ L, can be reached only byba (directed fromb to a by
construction ofD) from an exposed node,b should be reached from the exposed node as well, which
impliesb ∈ L, a contradiction with our assumptionb ∈ B − L. This meansab ∈ E −M and so is directed
from a to b by construction ofD. But since by assumptiona ∈ L, existence ofab implies b ∈ L as well,
which is in contradiction with assumption,b ∈ B − L. Sinceab is neither inM nor in E −M , such edge
does not exist andC∗ is a vertex cover.

We know show that|C∗| ≤ |M | which together with the fact that any vertex cover is lower bounded by any
matching implies that equality must hold. First, no vertex in A− L is exposed, because exposed vertices of
A are inL by definition. Also no vertex inB ∩ L is exposed, because otherwise a path from an exposed
node inA to such node exists (since both belong toL) that makes anM -augmenting path. Also, we proved
that there is no edgee = ab with a ∈ A−L andb ∈ B ∩L. Therefore,|M | ≥ |(A−L)∪ (B ∩L)| = |C∗|,
which completes the proof thatC∗ is a minimum vertex cover.

This lemma together with Theorem 1.2 completes the proof of König’s theorem form last lecture.

Although matching and vertex cover are still dual problems for general graphs too the min-max theorem we
proved (König’s theorem) does not hold for general graphs.For example, for cycle of size three, maximum
matching has size 1 whereas the min vertex cover has size 2. However, we can still derive a min-max
theorem for general graphs that will be seen in the next few lectures.

Another theorem which gives a characterization of bipartite graphs with perfect matching. This theorem can
be proved vita König’s theorem as well.

Theorem 2.2 (Hall 1935) A given bipartite graphG = (A ∪ B,E) has a matching that saturates all
vertices ofA iff ∀S ⊆ A |N(S)| ≥ |S|, whereN(S) = {b ∈ B | ∃ a ∈ S s.t. ab ∈ E} is the set
of neighbors of a vertex set.

Exercise 2.3Prove this theorem using K̈onigs theorem.

3 Maximum Weighted Bipartite Matching

Maximum weighted bipartite matching is a generalization ofmaximum cardinality bipartite matching de-
fined as follows.

Definition 3.1 Given a bipartite graphG = (A∪B,E), and edge weightswi,j, find a matching of maximum
total weight.

In the following we may assume

• G is a complete bipartite graph. For any non-existing edge addan edge with zero weight.

• |A| = |B|. If not, add proper dummy vertices and corresponding zero weight edges.

• wi,j ≥ 0. If not, choose a sufficiently largeW (sayW = maxij |wij |) and add that to all edge
weights.

We can alternatively formulate the problem as a minimiationby considering the costscij = W − wij with
W = maxij wij.

3

Let W (M) =
∑

(i,j)∈M wi,j denote the weight of a matching. We present three algorithmsfor maximum
weighted bipartite matching.

3.1 First Algorithm: Negative cycles

The first algorithm is an extension of the algorithm for maximum cardinality bipartite matching (figure 1).
Let D = (A ∪ B,E′), whereE′ is the union of edges ofM directed fromB to A and edges ofE −M
directed fromA to B with negative weights,wi,j ← −wi,j. Start from any perfect matchingM and build
the directed graphD as follows: LetD = (A ∪B,E′), whereE′ is the union of edges ofM directed from
B to A and edges ofE −M directed fromA to B with negative weights,wi,j ← −wi,j. Suppose there is
a matchingM∗ with w(M∗) > w(M). Then consider the graphH = M ∪M∗. This graph is the union of
some even cyclesC(note that both are perfect matchings). Furthermore:

w(H) =
∑

c∈C

w(c) = w(M) − w(M∗).

Sincew(M∗) > w(M), there must be a negative cycle inH. Such negative cycles may be detected using
algorithms such as Floyd-Warshal(O(n3)) or Bellman-Ford(O(mn)). Thus we can find a negative cycle
in D and improveM by replacing the edges ofM with those not inM in the negative cycle. Figure 3.1
summarizes this algorithm.

Maximum Weighted Bipartite Matching, 1st Algorithm

M ← any perfect matching
Build graphD from M
while there is a negative cycleC in Ddo

let M beM∆C
updateD

return M

Theorem 3.2 A perfect weighted bipartite matchingM is maximumiff there is no negative cycle inD.

Proof: It is easy to see that if there is a negative cycle inD thenM is not a maximum matching. Now
we consider the other way; if there is no negative cycleM is maximum. Suppose there is no negative cycle
in D andM is not maximum. Therefore there exists a maximum matchingM ′. Consider the graphD′ a
sub-graph ofD that only contains the edges inM ∪M ′. This graph is made up of single disjoint edges (
e ∈M ∩M ′) and alternating cycles (C ⊂ (M ∪M ′)− (M ∩M ′)). SinceW (M ′) > W (M) andW (e) for
e ∈M ∩M ′ is equal for both matchings, we haveW (M ′ −M) > W (M −M), which means there exists
negative cycleC ⊂ (M ∪M ′) − (M ∩M ′) = (M −M ′) ∪ (M ′ −M) in D′, and therefore inD, with a
weight at mostW (M −M)−W (M ′ −M) .

This method is not very efficient because there is no guarantee in the amount of improvement in each
iteration and whenwmax = maxi,j{wi,j} is large compared towmin = mini,j{wi,j} the time complexity
becomesO(mn× n(wmax −wmin), which is not polynomial in the inputs.

Goldberg and Tarjan (1989) showed that if one finds negative cycles with minimum average weightW (C)/|C|,
the time complexity will be strongly polynomial.

4

3.2 Second Algorithm: Hungarian method

This method, known as Hungarian method, was first introducedby Kuhn(1955) using Egervàry’s idea,
showing the finiteness of the assignment. The method was later improved by Munkres(1957) showing
its polynomial running time, and later by Iri(1960) and Edmond/Karp(1970). The method progresses in
iteration such that in iterationk, it has the maximum weighted matching of sizek.

For this, starting fromM = ∅, in each iteration construct digraphD = (A ∪ B,E′), whereE′ is the union
of edges ofM directed fromB to A and edges ofE −M , directed fromA to B. We also let the weight of
edgesbjai from B to A to be negative of their original weight, i.e.−wij.

Let P be anM -augmenting path andM ′ = M∆P . Then we haveW (M ′) = W (M) −W (P ∩M) +
W (P −M) = W (M) − l(P), wherel(P) = W (P ∩M) −W (P −M) is the length of pathP . Since
|M ′| = |M | + 1, we obtain a matching whose size is one larger. The idea of this method is to augmentM
with the shortest augmenting path–i.e., the negative length path with largest absolute value (l(P)), in each
iteration.

Definition 3.3 A matchingM of sizek is extreme if it has the largest weight among those of sizek.

Theorem 3.4 Augmenting an extreme matchingM of sizek by a shortest augmenting path produces an
extreme matching,M ′ of sizek + 1.

Proof: We prove the theorem by induction onk.

• Base Case:Fork = 1, the shortest augmenting path is of length one, and is the edge with the highest
original weight. It is obvious that this is an extreme matching fork = 1.

• Induction Step: Let P be the shortestM -augmenting path. SupposeM ′ = M∆P is not an extreme
matching of sizek + 1. Let N be the extreme matching of sizek + 1. We therefore should have.

W (N) > W (M ′) (1)

Let H = (A ∪B,N ∪M) be a sub-graph ofD with the same weighting. Since|N | > |M |, there is
anM -augmenting pathP ′ in H. We already knowP is the shortest augmenting path inD, andP ′ is
an augmenting path inH (as a subset ofD) should be longer thanP :

l(P) ≤ l(P ′) (2)

Consider the matchingN ′ = N∆P ′, obtained by applyingP ′ in reverse toN1. SinceM is by
assumption the maximum matching of sizek, we have

W (N ′) ≤W (M) (3)

Combining Eq(2) and Eq(3)

W (N ′)− l(P ′) ≤W (M)− l(P)

using definitions ofN ′ andM ′ we get

W (N) ≤W (M ′)

which contradicts our assumption Eq(1). ThereforeM ′ is an extreme matching of sizek + 1.

1by applying in ‘reverse’ we meanP ′ is not augmentingN but decreasing its size by one. However the symmetric difference
operation is performed the same.

5

To find the shortestM -augmenting path we can use Bellman-Ford algorithm which runs inO(mn) time.
Since the maximum matching has at mostn/2 edges, the algorithm is in the order ofO(n2m). This may be
improved toO(n(m + n log(n))). Figure 3.2 summarizes this algorithm. We have proved the following:

Theorem 3.5 We can solve the weighted bipartite matching problem inO(mn2) time.

Maximum Weighted Bipartite Matching, 2nd Algorithm; Hungarian Method

M ← {maxi,j wi,j}
Construct DigraphD
while |M | ≤ n/2 do

find shortest pathP in D
let M beM∆P
updateD

return M

3.3 Third Algorithm: Primal Dual method

To introduce this algorithm first we will have an overview of the linear programming and the concept of
duality in an example.

3.3.1 Duality in Linear Programs

Consider the following constraint minimization, which is alinear program (LP)

min 10x1 + 6x2 + 4x3

s.t 2x1 + x2 − x3 ≥ 2

x1 + x2 + x3 ≥ 3

xi ≥ 0

Let z∗ be the optimum value of this LP. We may ask questions about thelower and upper bounds forz∗

Q: is z∗ ≤ 100 ? A: Sincez∗ is less than or equal to all feasible solutions, we may answerthis question
easily by finding a feasible solution for which the conditionholds.x = (1, 1, 1) is such an example.

Q: is z∗ ≥ 10 ? A: To answer such questions we should be able to find good lower bounds forz∗. By
looking at second constraint we can sayz∗ ≥ 3 since the coefficients of all variables in the constraint are
smaller than those in the objective function. In fact using different linear combinations of the constraints
(with positive weights so that the combination is convex) give us different lower-bounds onz∗. For example
just by adding the two constraints we get3x1 + 2x2 ≥ 5. But since3x1 + 2x2 ≤ 10x1 + 6x2 + 4x3 we
havez ≥ 5.

Therefore we may look for a combinationy1 factor of the first constraint andy2 factor of the second:

y1(2x1 + x2 − x3) ≥ 2y1

y2(x1 + x2 + x3) ≥ 3y2

6

that gives us the tightest lower-bound onz∗. That is if we have:

y1(2x1 + x2 − x3) + y2(x1 + x2 + x3) ≤ 10x1 + 6x2 + 4x3 (4)

then it follows that

z∗ ≥ 2y1 + 3y2.

Therefore2y1 +3y2 is the value that we want to maximize to get the tightest boundsubject to the constraints
that the coeficients ofx1, x2, andx3 are no larger than those in the objective fucntion. This gives us the
following dual linear program:

max 2y1 + 3y3 (5)

s.t. 2y1 + y2 ≤ 10

y1 + y2 ≤ 6

−y1 + y2 ≤ 4

yi ≥ 0

in which the conditions are representing the constraint of inequality Eq(4), for each individual variable
xi. On the other hand for each constraint of theprimal program (Eq(4)), we have a variable in the dual
(Eq(5)). ForzP andzD as feasible solutions to primal and dual solutions respectively, when the primal is a

Primal-Dual correspondence

Constraints in Primal⇔ Variables in Dual
Constraints in Dual⇔ Variables in Primal

minimization, we always havezP ≥ zD. The equality holds for optimal solutions.

3.3.2 Duality of Maximum Weighted Bipartite Matching and Mi nimum Weighted Vertex Cover

Here we show the duality of weighted vertex cover and and weighted maximum matching and exploit this
duality to find the optimal solution for corresponding programs.

Recall that a vertex cover is defined as a functiony : V → {0, 1} such that for all edgee = uv: yu +yv ≥ 1
We can generalize this to weighted graphs.

Definition 3.6 A weighted vertex cover for a graph with weighted edges is a function y : V → R
+ such

that forall edgese = uv: yu + yv ≥ wuv.

Fact 3.7 By this definition for any matchingM and vertex covery
∑

e∈M

W (e) = W (M) ≤ C(y) =
∑

r∈V

yr

Now we formulate the maximum weighted matching as an IntegerProgram (IP), which we then relax to a
Linear Program (LP). Letxi,j be an indicator variable for each edgeij such that:

xi,j =

{

1 if the edge aibj ∈M
0 otherwise

7

when the following constraints enforce a matching:

∀ ai,
∑

j

xi,j ≤ 1

∀ bj ,
∑

i

xi,j ≤ 1

then forxi,j to represent the maximum matching, we want
∑

i,j xi,jwi,j to be maximized. Therefore maxi-
mum weighted matching has the following Integer Program formulation:

max
∑

i,j

xi,jwi,j (6)

s.t. ∀ ai,
∑

j

xi,j ≤ 1

∀ bj ,
∑

i

xi,j ≤ 1

xi,j ∈ {0, 1}

By relaxing the last constraint of IP (6) toxi,j ≥ 0 we have a linear program. IfZIP denotes the optimal
solution of the IP andZLP denotes the optimal solution of the corresponding LP relaxation then it is easy to
see thatZLP ≥ ZIP . The inequality for general IP/LP’s can be strict even if thecoefficients of the variables
are all integer; the optimum solution of an LP can have fractional values. However, for this specific problem
(matching) there is always an optimal solution to the linearprogram that is integer; so it is also a solution
to the integer program. We prove this property in two different ways. One is by giving an algorithm below
that finds both an optimal solution to the matching problem and an optimum solution to the vertex cover
problem with the same cost. Later on, we’ll see a different proof.

The dual program to this linear program is the formulation ofweighted vertex cover problem:

min
∑

i

yi (7)

s.t. ∀e = aibj : yai
+ ybj

≥ wi,j

yi ≥ 0

3.3.3 Primal-Dual Method for Maximum Bipartite Matching

The idea of theprimal-dual method is to maintain a dual feasible and a primal (not necessarily feasible)
solution. At each iteration we try to make the primal solution closer to a feasible solution and also improve
the dual (making it closer to an optimum one). In the end we have a primal feasible solution, whose cost is
the same as the dual and therefore both are optimal. We will use the following simple lemma.

Lemma 3.8 For a perfect matchingM and a weighted vertex covery:

C(y) ≥W (M)

AlsoC(y) = W (M) iff M consists of edgesaibj such thatyi + yj = wi,j . In this caseM is optimum.

Exercise 3.9Prove this lemma

8

The algorithm starts withM = ∅ and a trivial feasible solution for the weighted vertex cover which is the
following one:

∀ ai ∈ A; yai
= max

j
w(aibj)

∀ bj ∈ B; ybj
= 0

At any iteration of the algorithm we build an equality graph defined below. Theequality graph, Gy =
(A ∪B,Ey) is built based on they values such that it only containstight edges

aibj ∈ Ey ⇔ yi + yj = wi,j

Let us callyai
+ ybj

− wi,j, theexcessof aibj.

Observation 3.10 If M is a perfect matching inGy thenW (M) =
∑

ai∈A yai
+

∑

bj∈B ybj
and by previous

lemma that matching inG is an optimum solution.

Based on this observation, the goal of the algorithm is to finda perfect matching in the equality graph. For
this we updatey to make more edges tight to be added toEy (until it contains a perfect matching) while
keepingy a vertex cover. Now we present an algorithm to add an edge to equality graph.

Suppose we are at some iteration of the algorithm andM is a maximum matching inGy but is not perfect.
Construct digraphD as before2. Let L be a set of nodes accessible from any exposed node inA. Recall that
C∗ = (A−L)∪ (B∩L) is a vertex cover. Therefore there is no edge betweenA∩L andB−L (otherwise
that edge is not covered byC∗). However, we know that we start with a complete graphG. Thus there are
edges inG betweenA ∩ L andB − L but they are not inGy; which means all those edges have positive
excess (i.e. are not tight). We update they values to make one of these edges go tight. Let

ǫ = min{yai
+ ybj

− wi,j s.t., ai ∈ A ∩ L, bj ∈ B − L}
be the minimum excess value of all such edges (these are the edges that could be added toGy). Then we
update vertexy values to tighten the edges withǫ excess value by defining:

yai
=

{

yai
ai ∈ A− L

yai
− ǫ ai ∈ A ∩ L

and

ybj
=

{

ybj
bj ∈ B − L

ybj
+ ǫ bj ∈ B ∩ L

Note that by this change every edge that was inGy remains tight. Also by the choice ofǫ, no edge constraint
is going to be violated, soy remains a vertex cover. Furthermore, at least one edge betweenA∩L andB−L
goes tight and therefore is added toGy. We can repeat this operation until eitherGy has a perfect matching,
or there is no edges left betweenAL andB−L. The latter happens only if both these sets are empty, which
implies that we have a perfect matching. Thus, eventually wefind a perfect matching inGy which by the
previous lemma corresponds to an optimum matching inG. At this point the solutiony is also an optimum
vertex cover. Algorithm of figure 3.1 summarizes this method.

Next lecture we will see the analysis of the running time of this algorithm.

Example: Figure 3 demonstrate the expansion ofGy in the final iteration of the algorithm and before
adding the edges withwi,j = 03.

2D = (A ∪ B, E′), whereE′ is the union of edges ofM directed fromB to A and edges ofE − M directed fromA to B.
3Since we assumed a complete bipartite graph the edges with zero weight should be added too. These are not shown in the

graph of figure 3

9

Maximum Weighted Bipartite Matching Algorithm; Primal-Du al Method

For eachai ∈ A let yai
= maxbj∈B w(aibj);

For eachbj ∈ B let ybj
= 0;

Build graphGy and letM be a maximum matching inGy

Construct DigraphD
repeat

let L be the set of nodes (inD) accessible from any exposed node inA.
Let ǫ = min{yai

+ ybj
− w(ij) : ai ∈ A ∩ L, bj ∈ B − L}

Decreaseyai
for eachai ∈ A ∩ L by ǫ and increaseybj

for eachbj ∈ B − L by ǫ

Add the tight edges toGy and recompute matchingM .
Until M is a perfect matching.

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

A Ý L

B - L

Figure 3: Augmenting the equality graph (with dotted red edges) with an edge (in green) ofD connecting
A ∩ L andB − L

References

1. Combinatorial Optimization, Schrijver, (Volume 1) Springer-Verlag, 2003.

2. Combinatorial Optimization: Algorithms and Complexity, by Christos H. Papadimitriou, Kenneth
Steiglitz, Dover Publications, 1998.

3. Lecture notes by Lap Chi Lau for Combinatorial Optimization and Approximation Algorithms, 2008.
http://www.cse.cuhk.edu.hk/ chi/csc5160/index.html

4. Lecture notes by M.X. Goemans for Combinatorial Optimization, 2007. http://www-math.mit.edu/ goe-
mans/18433S07/18433.html

10

