CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)
Lecture 2: Cardinality Matching, Maximum Weighted matahin

Lecturer: Mohammad R. Salavatipour Scriber: Siamak Ravanbakhsh
Date: Sept 8 and 10, 2009

This lecture continues the discussion on bipartite matghiy analyzing the algorithm for construction of
maximum bipartite matching. Afterwards, construction ahimum vertex cover from maximum matching

is discussed, and finally we consider generalization to mari weighted bipartite matching and introduce
three different algorithms for it.

1 Maximum Cardinality Bipartite Matching

From previous lecture we came up with the following algaritfor construction of a maximum matching
M for graphG = (AU B, E):

Maximum Bipartite Matching

M—0

while there is anV/-augmenting patt® do
let M be MAP

return M

Figure 1: Cardinality bipartite matching algorithm

We proved in the previous lecture that this algorithm is gnéeed to find a maximum matching. The number
of iterations for this algorithm is in the order af(at mosts). A question we have not answered yet is: How
to find anM-augmenting path? To find @ -augmenting patt®, we construct a digraph = (AU B, E'),
where E’ has a directed edgé for every edge: € E; ¢’ is directed fromB to A if e € M and copies of
edges ofF — M are fromA to B in D.

Lemma 1.1 There is anM-augmenting path ir~ iff there is a directed path i from and exposed node
in A to an exposed node iR.

Proof: An easy exercise. [

To find such a path we can add an extra nedad connect it to all the exposed nodesdoWith directed
edgs. Now it is sufficient to use a search algorithm such aaddneFirst Search (BFS) starting fromto
find a path to an exposed nodesn Since BFS take®(m + n), the total time-complexity of the matching
algorithm will beO(n(m + n)). The above lemma, together with Theorem 2.8 in Lecture ligsghat

Theorem 1.2 Algorithm of Figurel returns a maximum matching in a bip@rggraph in timeO (n(m+n)).

However one may be able to improve the time complexity by figdieveral disjoinf\/-augmenting paths
at each iteration. The following theorems are due to Hopenad Karp (1971).

Theorem 1.3 Let M and M be matchings. IfM| = r, [M| = s ands > r, thenM AM contains at least
s — r vertex-disjoint augmenting paths relative Ao.

Given theseM -augmenting paths are disjoint, there exists\draugmenting path of lengtkl 2|r/(s —
r)| + 1.

Theorem 1.4 Let M be a matchingP a shortest\/-augmenting path, ané#’ a (M A P)-augmenting path.
Then

|P'| = |P|+|PN P

Therefore if we index the order in which an augmentation mayden using shortest augmenting paths we
have

Corollary 1.5 |P;| < |P;41| and for alli and j such that ;| = | P;|, P; and P; are vertex disjoint.
This means that we can augmeétwith all disjoint M -augmenting paths in each iteration. The following
theorem limits the number of necessary iterations.

Theorem 1.6 Let|M*| = s. The number of distinct integers in the sequefég, | Py |,...,|F;|, ... is less
than or equal t@2| /s] + 2.

Therefore using single BFS to find all disjoint augmentinghpan each iteration the new algorithm will
have complexity o ((m + n)y/s) = O((m + n)y/n).

2 Deriving Minimum Vertex Cover from Maximum Cardinality Ma tching
in Bipartite Graphs

So far we have shown that once the algorithm terminates we fawnd a maximum matching. In this
section we show that we can also find a minimum vertex covélye&onsider digraphD = (AU B, E'),
whereE’ is the union of edges d¥/ directed fromB to A and edges off — M, directed fromA to B. Let

L be the set of vertices iy, that can be reached from any exposed nodd ¢including exposed nodes
themselves).

Lemma 2.1 When the algorithm of figure 1 terminatés” = (A — L) U (B N L) is a vertex cover and
7| = |M|

Example: Consider the graplr of figure 2. The edges of maximum matchifg is in dotted (red) lines
and the vertices i, are painted as (blue) squares. Two circles isolated th&gsrin the minimum vertex
cover.]

(a) graphG? (b) graphD

Figure 2: An example of derivation of vertex-cover from nmagim matching. In graptD, square nodes
belong to L, and dotted edges belonghb

Proof: If C* is not a vertex cover, then there is an edgec F that is not covered. Such an edge must
have its end-pointd € AL andb € B — L because all the other edges are by definitiod'dicovered.

We claim thatab ¢ M. Otherwise, sinces € L, can be reached only by (directed fromb to a by
construction ofD) from an exposed node, should be reached from the exposed node as well, which
impliesb € L, a contradiction with our assumptiéne B — L. This meansb € F — M and so is directed
from a to b by construction ofD. But since by assumptiom € L, existence ofib impliesb € L as well,
which is in contradiction with assumptioh,c B — L. Sinceab is neither inM nor in & — M, such edge
does not exist an@™* is a vertex cover.

We know show thaftC*| < |M | which together with the fact that any vertex cover is lowentded by any
matching implies that equality must hold. First, no vertexli— L is exposed, because exposed vertices of
A are in L by definition. Also no vertex inB N L is exposed, because otherwise a path from an exposed
node inA to such node exists (since both belongjahat makes ad/-augmenting path. Also, we proved
that there is no edge= ab witha € A— L andb € BN L. Therefore M| > |(A— L)U(BNL)| = |C*|,
which completes the proof that* is a minimum vertex cover. [

This lemma together with Theorem 1.2 completes the proofafigs theorem form last lecture.

Although matching and vertex cover are still dual probleorgeneral graphs too the min-max theorem we
proved (Konig’s theorem) does not hold for general grapts.example, for cycle of size three, maximum
matching has size 1 whereas the min vertex cover has size «ve\o, we can still derive a min-max
theorem for general graphs that will be seen in the next fetutes.

Another theorem which gives a characterization of bipaditaphs with perfect matching. This theorem can
be proved vita Konig's theorem as well.

Theorem 2.2 (Hall 1935) A given bipartite graphG = (A U B, FE) has a matching that saturates all
vertices ofA iff VS C A |N(S)| > |S|,whereN(S) ={be B | JaeS st abe E}isthe set
of neighbors of a vertex set.

Exercise 2.3 Prove this theorem usingdfigs theorem.

3 Maximum Weighted Bipartite Matching

Maximum weighted bipartite matching is a generalizatiormaiximum cardinality bipartite matching de-
fined as follows.

Definition 3.1 Given a bipartite graplt = (AUB, E), and edge weights; ;, find a matching of maximum
total weight.

In the following we may assume
e (7 is a complete bipartite graph. For any non-existing edgezadeldge with zero weight.
e |A| = |B|. If not, add proper dummy vertices and corresponding zelightedges.

e w;; > 0. If not, choose a sufficiently largl/ (say W = max;; |w;;|) and add that to all edge
weights.

We can alternatively formulate the problem as a minimiabgrconsidering the costg; = W — w;; with
W = maxsg; Wis;.

Let W(M) = >_(; jyen wi,; denote the weight of a matching. We present three algorifiomsiaximum
weighted bipartite matching.

3.1 First Algorithm: Negative cycles

The first algorithm is an extension of the algorithm for maximcardinality bipartite matching (figure 1).
Let D = (AU B, E'), whereE’ is the union of edges ai/ directed fromB to A and edges o) — M
directed fromA to B with negative weightsy; ; < —w; ;. Start from any perfect matchiny/ and build
the directed graplD as follows: LetD = (A U B, E’), whereFE’ is the union of edges af/ directed from
B to A and edges off — M directed fromA to B with negative weightsy; ; < —w; ;. Suppose there is
a matchinghM* with w(M*) > w(M). Then consider the grapi = M U M*. This graph is the union of
some even cycle§'(note that both are perfect matchings). Furthermore:

w(H) = w(e) = w(M) — w(M*).
ceC
Sincew(M™*) > w(M), there must be a negative cycleth Such negative cycles may be detected using
algorithms such as Floyd-Warsh@i(n?)) or Bellman-FordQ(mn)). Thus we can find a negative cycle
in D and improveM by replacing the edges d# with those not inM in the negative cycle. Figure 3.1
summarizes this algorithm.

Maximum Weighted Bipartite Matching, 1°¢ Algorithm

M «+ any perfect matching

Build graphD from M

while there is a negative cycl€ in Ddo
let M be MAC
updateD

return M

Theorem 3.2 A perfect weighted bipartite matching is maximumiff there is no negative cycle ib.

Proof. It is easy to see that if there is a negative cycléithen M is not a maximum matching. Now
we consider the other way; if there is no negative cyldés maximum. Suppose there is no negative cycle
in D and M is not maximum. Therefore there exists a maximum matchifig Consider the grapid’ a
sub-graph ofD that only contains the edges M U M’. This graph is made up of single disjoint edges (
e € M N M’) and alternating cycles{ C (M UM’) — (M N M’)). SinceW (M’) > W (M) andW (e) for

e € M N M’ is equal for both matchings, we hai# (M’ — M) > W (M — M), which means there exists
negative cycle ¢ (M UM') — (M NM')= (M — M)u (M — M)in D', and therefore irD, with a
weight at mostWV (M — M) — W (M’ — M) . |
This method is not very efficient because there is no guasaimehe amount of improvement in each
iteration and whenu,,x = max; j{w; ;} is large compared to,i, = min; ;{w; ;} the time complexity
becomesD(mn x n(wmar — Wmin), Which is not polynomial in the inputs.

Goldberg and Tarjan (1989) showed that if one finds negagiekes with minimum average weightt (C')/|C/|,
the time complexity will be strongly polynomial.

3.2 Second Algorithm: Hungarian method

This method, known as Hungarian method, was first introdumeduhn(1955) using Egervary’s idea,
showing the finiteness of the assignment. The method wasitaf@oved by Munkres(1957) showing
its polynomial running time, and later by Iri(1960) and EdmdKarp(1970). The method progresses in
iteration such that in iteratioh, it has the maximum weighted matching of size

For this, starting from\/ = (), in each iteration construct digragh = (A U B, E'), whereE’ is the union
of edges of\/ directed fromB to A and edges off — M, directed fromA to B. We also let the weight of
edges;a; from B to A to be negative of their original weight, i.e-w;;.

Let P be anM-augmenting path and/’ = M AP. Then we havéV (M') = W (M) — W (PN M) +
W(P —M)=W(M)—I(P), wherel(P) = W(PNM)—-W(P — M) is the length of pattP. Since
|M'| = |M| + 1, we obtain a matching whose size is one larger. The idea ®htlethod is to augmenit/
with the shortest augmenting patle-, the negative length path with largest absolute valg€)), in each
iteration.

Definition 3.3 A matchingM of sizek is extreme if it has the largest weight among those ofsize

Theorem 3.4 Augmenting an extreme matchidg of sizek by a shortest augmenting path produces an
extreme matching)/’ of sizek + 1.

Proof: We prove the theorem by induction @n

e Base Casefork = 1, the shortest augmenting path is of length one, and is the with the highest
original weight. It is obvious that this is an extreme matchior & = 1.

e Induction Step: Let P be the shortest/-augmenting path. Suppodd’ = M AP is not an extreme
matching of size: + 1. Let N be the extreme matching of size+ 1. We therefore should have.

W(N) > W(M') 1)

Let H = (AU B, N U M) be a sub-graph ab with the same weighting. Sing&/| > ||, there is
an M-augmenting patt®’ in H. We already know?P is the shortest augmenting path/in and P’ is
an augmenting path i/ (as a subset ab) should be longer tha®:

UP) <P (2)

Consider the matchingy/ = NAP’, obtained by applying®’ in reverse toN!. SinceM is by
assumption the maximum matching of sizeve have

W(N') < W(M) 3)
Combining Eq(2) and Eq(3)
W(N') = 1(P") < W(M) = I(P)
using definitions ofV/ and M’ we get
W(N) < W(M')

which contradicts our assumption Eq(1). Therefdféis an extreme matching of size+ 1.

by applying in ‘reverse’ we meaf?’ is not augmentingV but decreasing its size by one. However the symmetric diffee
operation is performed the same.

To find the shortesfi/-augmenting path we can use Bellman-Ford algorithm whicts fin O(mn) time.
Since the maximum matching has at mege edges, the algorithm is in the order@fn?m). This may be
improved toO(n(m + nlog(n))). Figure 3.2 summarizes this algorithm. We have proved theviing:

Theorem 3.5 We can solve the weighted bipartite matching probler® jmn?) time.

Maximum Weighted Bipartite Matching, 2"¢ Algorithm; Hungarian Method

M — {maxiyj wi,j}

Construct DigraphD

while | M| < n/2 do
find shortest pattP in D
let M be MAP
updateD

return M

3.3 Third Algorithm: Primal Dual method

To introduce this algorithm first we will have an overview bktlinear programming and the concept of
duality in an example.

3.3.1 Duality in Linear Programs

Consider the following constraint minimization, which i$irrear program (LP)

min 10xy 4+ 6x9 + 43
st 2x1 4+ 290 — 3

xl—l-l‘g-l-:lig

AYARAVARIY

T

Let z* be the optimum value of this LP. We may ask questions aboubter and upper bounds far*

Q: is z* < 100 ? A: Sincez* is less than or equal to all feasible solutions, we may ansigruestion
easily by finding a feasible solution for which the condittwoids.z = (1, 1,1) is such an example.

Q:is z* > 10 ? A: To answer such questions we should be able to find good lowerdsoforz*. By
looking at second constraint we can say> 3 since the coefficients of all variables in the constraint are
smaller than those in the objective function. In fact usiiféetent linear combinations of the constraints
(with positive weights so that the combination is convexggis different lower-bounds ori. For example
just by adding the two constraints we @at; + 2z, > 5. But since3x; + 2z < 10x1 + 629 + 4x3 We
havez > 5.

Therefore we may look for a combinatign factor of the first constraint angh factor of the second:

Y1 (221 + 20 — x3) > 211
yg(:l,‘l + xZ9 + %3) Z 3y2

that gives us the tightest lower-bound gn That is if we have:
y1(2:1:1 + I9 — :133) + y2($1 + 2o + :133) < 10zq + 629 + 4x3 (4)
then it follows that

2" > 2y1 + 3ys.

Therefore2y, 4 3y, is the value that we want to maximize to get the tightest bauiject to the constraints
that the coeficients afq, z2, andzs are no larger than those in the objective fucntion. This gjive the
following dual linear program:

max 2y1 + 3ys3 5)
st. 2y14+y2 < 10
y1+y2 < 6
—yl+y2 < 4
Yi 2

in which the conditions are representing the constraintnefjuality Eq(4), for each individual variable
x;. On the other hand for each constraint of ffrémal program (Eq(4)), we have a variable in the dual
(Eq(b)). Forzp andzp as feasible solutions to primal and dual solutions respelgtiwhen the primal is a

Primal-Dual correspondence

Constraints in Primad&s Variables in Dual
Constraints in Duats Variables in Primal

minimization, we always havepr > zp. The equality holds for optimal solutions.

3.3.2 Duality of Maximum Weighted Bipartite Matching and Mi nimum Weighted Vertex Cover

Here we show the duality of weighted vertex cover and and tedymaximum matching and exploit this
duality to find the optimal solution for corresponding pragns.

Recall that a vertex cover is defined as a functjanl” — {0, 1} such that for all edge = uv: y,, +y, > 1
We can generalize this to weighted graphs.

Definition 3.6 A weighted vertex cover for a graph with weighted edges iswationy : V' — R™ such
that forall edges = uv: v, + Yy > Wy

Fact 3.7 By this definition for any matchingy/ and vertex covey
Y W) = WM) < Cly) = >

eeM reV

Now we formulate the maximum weighted matching as an Intégegram (IP), which we then relax to a
Linear Program (LP). Let; ; be an indicator variable for each edgesuch that:

- _J 1 iftheedge ab; € M
Y571 0 otherwise

when the following constraints enforce a matching:
vV ooai, Zl’zg <1

J
v bj, inJ < 1

then forz; ; to represent the maximum matching, we want ; z; jw; ; to be maximized. Therefore maxi-
mum weighted matching has the following Integer Prograrmidation:

max Z Tj Wy 5 (6)

>J
st. V Q;, inJ S 1
J
Vob, Y miy <1
7
Tij; € {0,1}

By relaxing the last constraint of IP (6) tg ; > 0 we have a linear program. K;p denotes the optimal
solution of the IP and/;, » denotes the optimal solution of the corresponding LP re¢iarahen it is easy to
seethat;p > Z;p. The inequality for general IP/LP’s can be strict even if toefficients of the variables
are all integer; the optimum solution of an LP can have faaal values. However, for this specific problem
(matching) there is always an optimal solution to the ling@gram that is integer; so it is also a solution
to the integer program. We prove this property in two différerays. One is by giving an algorithm below
that finds both an optimal solution to the matching problerd an optimum solution to the vertex cover
problem with the same cost. Later on, we’'ll see a differenbpr

The dual program to this linear program is the formulationvefghted vertex cover problem:

min Zyz (7)
i
sit. Ve=abj: ya, tuyp;, = wij
vi = 0

3.3.3 Primal-Dual Method for Maximum Bipartite Matching

The idea of thegrimal-dual method is to maintain a dual feasible and a primal (not necidgdeasible)
solution. At each iteration we try to make the primal solatoser to a feasible solution and also improve
the dual (making it closer to an optimum one). In the end welaprimal feasible solution, whose cost is
the same as the dual and therefore both are optimal. We wilthesfollowing simple lemma.

Lemma 3.8 For a perfect matching/ and a weighted vertex cover
Cly) > W (M)

AlsoC(y) = W (M) iff M consists of edges;b; such thaty; + y; = w; ;. In this caseM is optimum.
Exercise 3.9 Prove this lemma

The algorithm starts withh/ = () and a trivial feasible solution for the weighted vertex aowich is the
following one:

Vo oa; € A; y, =max w(ab))
J
V. bj€B; yp, =0

At any iteration of the algorithm we build an equality grapéfided below. Thesquality graph G, =
(AU B, E,) is built based on thg values such that it only contaitight edges

CLibj € Ey < YTy = Wi
Let us cally,, + yp;, — w; ;, theexcesf a;b;.

Observation 3.10 If M is a perfect matching iGr, thenW (M) = >~ 1 Ya, +ij€B y», @and by previous
lemma that matching if7 is an optimum solution.

Based on this observation, the goal of the algorithm is to éimerfect matching in the equality graph. For
this we updateg, to make more edges tight to be addedip (until it contains a perfect matching) while
keepingy a vertex cover. Now we present an algorithm to add an edgeualigggraph.

Suppose we are at some iteration of the algorithm &ht a maximum matching igr, but is not perfect.
Construct digraphD as beforé. Let L be a set of nodes accessible from any exposed node Recall that
C* = (A—-L)U(BnNL)is avertex cover. Therefore there is no edge betwéen. and B — L (otherwise
that edge is not covered lfy*). However, we know that we start with a complete gré&phThus there are
edges inG' betweenA N L and B — L but they are not irz,; which means all those edges have positive
excess (i.e. are not tight). We update thealues to make one of these edges go tight. Let

€= min{yai + Yb; — Wij st., a; €ANL, bj €B— L}

be the minimum excess value of all such edges (these are ¢&s ¢uat could be added @,). Then we
update vertey values to tighten the edges witlexcess value by defining:

_ Ya, a; € A—L
Yai = Yo, — € a; €ANL

and

_ Yo, bjEB—L
Yb; ybj—i—e bjEBﬂL

Note that by this change every edge that wasS jiremains tight. Also by the choice efno edge constraint

is going to be violated, spremains a vertex cover. Furthermore, at least one edge betive . andB — L
goes tight and therefore is addeddq. We can repeat this operation until eitly has a perfect matching,

or there is no edges left betwediC and B — L. The latter happens only if both these sets are empty, which
implies that we have a perfect matching. Thus, eventuallfimeea perfect matching id7, which by the
previous lemma corresponds to an optimum matching.irt this point the solutiory is also an optimum
vertex cover. Algorithm of figure 3.1 summarizes this method

Next lecture we will see the analysis of the running time @ #igorithm.

Example: Figure 3 demonstrate the expansion(f in the final iteration of the algorithm and before
adding the edges witty; ; = 0°.]

D = (AU B, E'), whereE' is the union of edges af/ directed fromB to A and edges of; — M directed fromA to B.
3Since we assumed a complete bipartite graph the edges withasgght should be added too. These are not shown in the
graph of figure 3

Maximum Weighted Bipartite Matching Algorithm; Primal-Du al Method

For eachn; € Alety,, = max, cpw(a;b;);
For eachh; € B let yp; = 0;
Build graphG,, and letM be a maximum matching i@,
Construct DigraphD
repeat
let . be the set of nodes (i) accessible from any exposed nodedin
Lete = min{y,, +yp, —w(ij): ai € ANL, bj€B-L}
Decreasey,, for eacha; € AN L by eand increasgbj for eachb; € B— Lbye
Add the tight edges t6, and recompute matchingy.
Until M is a perfect matching.

Figure 3: Augmenting the equality graph (with dotted redesjgvith an edge (in green) @ connecting
ANnLandB — L

References

1. Combinatorial Optimization, Schrijver, (Volume 1) Spyer-Verlag, 2003.

2. Combinatorial Optimization: Algorithms and Complexityy Christos H. Papadimitriou, Kenneth
Steiglitz, Dover Publications, 1998.

3. Lecture notes by Lap Chi Lau for Combinatorial Optimiaatand Approximation Algorithms, 2008.
http://www.cse.cuhk.edu.hk/ chi/csc5160/index.html

4. Lecture notes by M.X. Goemans for Combinatorial Optirticzg 2007. http://www-math.mit.edu/ goe-
mans/18433S07/18433.html

10

