
CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)

Lecture 16-17: Matroid Intersection

Lecturer: Mohammad R. Salavatipour Scriber: Yining Wang
Date: Oct 25,27, 2009

1 Matroid Intersection

We have seen that greedy algorithm works well on matroids to find maximum weight independent sets. So
any problem that can be formulated as optimizing over independent sets of a matroid (e.g. min spanning
tree) can be solved using the greedy algorithm. However, notmany problems fall into this category and
so the greedy algorithm doesn’t work. It turns out that many optimization problems can be formulated as
finding a common independent set in the intersection of two matroids and for maximizing over such sets
there is an algorithm that was first presented by Edmonds. Below, we describe a few problems that can be
formulated as finding a common independent set between two matroids.

Example: [Bipartite Matching] Given a bipartite graphG = (A ∪ B,E), whereA = {a1, · · · , an} and
B = {b1, · · · , bm}, letM be the set of all matchings ofG. As we saw,(E,M) does not define a matroid
(and therefore we cannot find the maximum matching using the greedy algorithm). However,M has the
property that it is the intersection of two matroids; in factit is the intersection of two partition matroids that
we define below. For each vertexv, let δ(v) denote the edges incident tov, and we define two partition
matroids as follows:

M1 = (E,I1), whereE = δ(a1) ∪ δ(a2) ∪ · · · ∪ δ(an)

and
M2 = (E,I2), whereE = δ(b1) ∪ δ(b2) ∪ · · · ∪ δ(bm)

Then,∀F ∈ I1 ∩ I2 has degree≤ 1 on A (because ofI1) and degree≤ 1 on B (because ofI2). So every
F ⊆ E is a matching if and only if it is an independent set in bothM1 andM2. Thus a maximum matching
in G is a a common independent set of largest size.

Example: [r-arborescence (r-branching)] Given a digraphD = (V,A) and a root noder ∈ V , an r-
arborescence is a rooted tree (rooted atr). That is, the indegree of each node (other thanr) is 1 and the
root r has indegree0. Note that if we drop the directions on the edges, anr-arborescence is just a spanning
tree of G. We can assume thatr has in-degree zero inD since any such edge can be deleted from the
graph as they don’t belong to anyr-arborescence. Here we show that anr-arborescence can be viewed as
an independent set of in the intersection of two matroids. Let G be the underlying undirected graph ofD
obtained by disregarding the directions of the edges inD. Let M1 = (E,I1) be the graphic matroid, where
E is the same asA ignoring directions of edges inA. Let M2 = (A,I2) be the partition matroid, where
A = δ−1(v1) ∪ δ−1(v2) ∪ · · · ∪ δ−1(vn). It is easy to see that anr-arborescence is independent set of
both matroids: the underlying graph must be a spanning tree (so it is a bases ofM1) and the set of edges
must have indegree at most 1 for eachv 6= r, so it is an independent set ofM2. Conversely, any common
independent set has an underlying graph that is acyclic and has indegree at most 1 for each node. Although
the greedy algorithm can find a MST in an undirected graph, we cannot use that to find minimum cost (or
maximum cost)r-arborescence in a graph.

1

Example: [rainbow spanning trees] Suppose that we have colored the edges of a given graphG = (V,E)
with k colors. LetE = E1 ∪E2 ∪ · · · ∪Ek be a partition of of edges intok color sets. A rainbow spanning
tree is a spanning tree whose edges have all distinct colors.We can show that finding a rainbow spanning
tree is equivalent to finding a maximum independent set common to two matroids. LetM1 = (E,I1) be
a graphic matroid onG. Let M2 = (E,I2), whereI2 = {E : |F ∩ Ei| ≤ 1,∀1 ≤ i ≤ k}, be a partition
matroid. The a maximum common independent set ofM1 andM2 is a rainbow spanning tree.

Example: [Forest in two graphs] Suppose we are given two graphsG = (V,E) andG′ = (V ′, E′) with
|E| = |E′|; we assume the edges of the two graphs are labeled with indices from 1 tom = |E|. Our goal is
to find a largest setI of indicesI ⊆ {1, · · · ,m} such that a subgraph induced by these edges in each ofG
andG′ is a forest. This problem too can be represented as finding a largest common independent set of two
graphic matroids .

Given two matroidsM1 = (E,I1) with rank functionr1, andM2 = (E,I2) with rank functionr2. Let
S ∈ I1 ∩ I2 andU ⊆ E. We claim that

|S| ≤ r1(U) + r2(E − U).

To see this, observe that|S∩U | is an independent set of bothI1 andI2, in particular,I1, and|S ∩ (E − U)|
is an independent set of bothI1 andI2, in particular,I2. Therefore,

|S| = |S ∩ U |+ |S ∩ (E − U)| ≤ r1(U) + r2(E − U)

In particular, we have
max

S∈I1∩I2

≤ min
U⊆E
{r1(U) + r2(E − U)}.

It can be proved that in fact equality holds and this was proved by Edmonds:

Theorem 1.1 (Edmonds) For matroidsM1 = (E,I1 and M2 = (E,I2) with rank functionsr1 and r2,
respectively:

max
S∈I1∩I2

≤ min
U⊆E
{r1(U) + r2(E − U)}.

GivenM1 = (E,I1) andI ⊆ I1, we define a bipartite directed graphDM1(I) as follows:

DM1(I) = (E,A),

where∀y ∈ I andx ∈ E − I, if I − y + x ∈ I1, then add(y, x) to A. If we also have another matroid
M2 = (E,I2), we define digraphDM1,M2 = (E,A) as follows:

• (y, x) ∈ A if y ∈ I andx ∈ E − I, I − y + x ∈ I1;

• (x, y) ∈ A if y ∈ I andx ∈ E − I, I − y + x ∈ I2.

This is the union ofDM1(I) with reversed edge ofDM2(I). Let X1 = {x /∈ I|I + x ∈ I1} andX2 = {x /∈
I|I + x ∈ I2}.

It can be proved that repeated application of the following algorithm finds a largest common independent
set of the two matroidsM1 andM2 and also gives a proof of Edmonds’ matroid intersection theorem:

2

Matroid Intersection Algorithm

Input: givenM1, M2, andI
Output: find I ′ ∈ I1 ∩ I2 such that|I ′| > |I|
find a shortest pathp from X1 to X2

I ′ ← I∆V (p)J = (I − J) ∪ (J − I)
return I ′

We are going to skip the proof of this algorithm and matroid intersection theorem. The algorithm can
be generalized to solve the maximum weight common independent set of two matroids for the case that
each element has a weight. Therefore, any problem that can beformulated as finding a maximum weight
common independent set of two matroids can be solved in polynomial time. Edmonds proved this theorem
using LP and duality. He characterized all inequalities defining the matroid intersection polytope, which is
the convex-hull of independent sets common to two matroids (over the same ground set).

Unlike intersection of two matroids, finding a largest common independent sets of three or more matroids is
NP-hard.

Theorem 1.2 Given three matroids,M1 = (S,I1), M2 = (S,I2), andM3 = (S,I3), finding the largest
common independent set of those three is NP-hard.

Proof: Reduction fromHam-Path. Given a digraphD = (V,A) with s, t ∈ V , the goal is to find a directed
Hamiltonians-t-path. We show this problem can be formulated as the largest common independent set of
three matroids:M1 = (E,I1) is a graphic matroid where each independent set ofI1 is a forest,M2 =
(E,I2) is a partition matroid whereI2 = {F ⊆ E : |δ−(v)∩F | ≤ 1 v 6= s}, i.e. indegree is at most 1 for
each nodev 6= s, andM2 = (E,I3) is a partition matroid withI3 = {F ⊆ E : |δ+(v) ∩ F | ≤ 1 v 6= t},
i.e. outdegree of each node is most 1 except fort.

2 Uncrossing technique, and Iterative Rounding and relaxation

So far we have seen different proofs for showing that certainpolytopes (e.g. matching polytope) is integral.
In this section (and in the future lectures) we introduce newtechniques to analyse basic feasible solutions
of other LP’s. We use a different technique, called uncrossing and then show that a certain LP for minimum
cost spanning tree is integral. We then introduce a different technique called iterative relaxation which
combined with iterative rounding can be used to derive very good approximation algorithms for some NP-
hard optimization problems.

Consider a given graphG = (V,E) with w : E ← R
≥0. We already know that the minimum spanning

tree problem can be solved easily using greedy algorithms inpolynomial time (it is also a special case of a
matroid optimization). Here we consider the LP formulations for this problem. A natural LP relaxation for
this problem is the following:

min
∑

wexe

s.t. x(δ(s)) ≥ 1, ∀S ⊂ V
xe ≥ 0.

Clearly, any spanning tree satisfies all the constraints. Although this LP has exponentially many constraints,

3

we can solve it using Ellipsoid algorithm since the separation oracle for it is just computing a minimum cut
which can be solved in polynomial time. Unfortunately, thisLP is not integral. For example if one considers
the cycle onn nodes,Cn, thenxe = 1

2 everywhere is a feasible solution to this LP whereas any integral
solution needsn− 1 edges.

So let’s find another LP formulation for the MST problem. An important observation is that for any treeT
and any setS ⊆ V : E(T) ∩ E(S) ≤ |S| − 1. Also, any spanning tree onV must have exactly|V | − 1
edges. Thus we obtain the following LP relaxation of MST:

min
∑

wexe

s.t. x(E(S)) ≤ |S| − 1, ∀S ⊂ V
x(E(V)) = |V | − 1
xe ≥ 0.

We refer to it as LP(2) from now on. Our goal is to prove the following theorem:

Theorem 2.1 LP(2) is integral, i.e. every bfs of this LP is integral.

Before that, we need to show that we can solve this LP in polynomial time, and for that it is sufficient to
show that the separation oracle (to be used with Ellipsoid algorithm) is polynomial.

2.1 Separation Oracle

Given fractional solutionx, the algorithm needs to find a node setS ⊂ V , such thatx(E(S)) > |S| − 1.
For that, itt is sufficient to check if

min
S⊂V
{|S| − 1− x(E(S)) < 0}

We show how to check this using only2|V | − 2 calls to a procedure that solves an instance of min-cut. Fix
a nodev0 ∈ V . For eachu ∈ V − v0 we build two min-cut instances:

• one checks the inequality for all setS containingv0 but notu.

• the other checks the inequality for all sets containingu but notv0.

So for a fixed noder there are a total of2|V | − 2 such tests. We describe the procedure for the first type; the
second one is similar.

Build a digraphG′ = (V,E′) in the following way. For each edgeij ∈ E we add two directed edges(i, j)
and(j, i) in E′, each having weightxij/2. We also add arcs from eachv ∈ V − {v0, u} to u with weight 1
and fromv0 to eachv ∈ V − r of weight

∑
e∈δ(v)(xe/2). See Figure 1.

Consider any cut separatingv0 andu, say(S, V − S). The edges of weight 1 contribute exactly|S| − 1 to
this cut. For each edgeij ∈ E its corresponding copy inE′ contributes exactlyx(δ(S))/2 to this cut. The
edges fromv0 to the rest of the vertices contribute

∑
v 6∈S

x(δ(v))
2 . Thus, the total weight of the edges of the

cut is:

|S| − 1 +
x(δ(s))

2
+

∑

v∈V −S

x(δ(v))

2
= |S| − 1 + x(E(V))− x(E(S)),

4

S

T

u

1 1

1 1

v

v_0P

e∈δ(v)(xe/2)

Figure 1: An illustration of edges inG′ for each edgeij ∈ G

The total weight of the edges of the whole graph, i.e.x(E(V)) is a fixed given value. Therefore, if we find
a minimum cut it also minimizes|S| − 1− x(E(S)). If the minimum cut is negative then we have found a
violated constraint. Therefore, we can solve this LP in polynomial time.

Next lecture we will complete the proof of Theorem 2.1 by showing that every bfs of this LP is integral.

5

