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1 Matroid Intersection

We have seen that greedy algorithm works well on matroidsigh fiaximum weight independent sets. So
any problem that can be formulated as optimizing over inddpat sets of a matroid (e.g. min spanning
tree) can be solved using the greedy algorithm. Howevermraoty problems fall into this category and
so the greedy algorithm doesn’t work. It turns out that mapgmoization problems can be formulated as
finding a common independent set in the intersection of twireits and for maximizing over such sets
there is an algorithm that was first presented by EdmondsovBele describe a few problems that can be
formulated as finding a common independent set between twioits

Example: [Bipartite Matching] Given a bipartite graplé = (A U B, E), whereA = {ay,--- ,a,} and
B = {b1, -+ ,bn}, let M be the set of all matchings ¢f. As we saw,(E, M) does not define a matroid
(and therefore we cannot find the maximum matching using thedy algorithm). HowevetM has the
property that it is the intersection of two matroids; in fags the intersection of two partition matroids that
we define below. For each vertex let 5(v) denote the edges incident to and we define two partition
matroids as follows:

M, = (E,Il), whereF = (5(0,1) U 5((12) U---u 5(an)

and
My = (E,Ig), whereF = (5(()1) U (5(()2) U---u 5(bm)

Then,VF € 7; N7, has degreec 1 on A (because of;) and degree< 1 on B (because ofs). So every
I C Fis amatching if and only if it is an independent set in bafh and M5. Thus a maximum matching
in G is a a common independent set of largest size. [

Example: [r-arborescence (r-branching)] Given a digraphD = (V, A) and a root node € V, anr-
arborescence is a rooted tree (rooted)atThat is, the indegree of each node (other thais 1 and the
rootr has indegre®. Note that if we drop the directions on the edgesyamborescence is just a spanning
tree of G. We can assume thathas in-degree zero ifv since any such edge can be deleted from the
graph as they don’t belong to amyarborescence. Here we show thatraarborescence can be viewed as
an independent set of in the intersection of two matroidd. (e the underlying undirected graph bf
obtained by disregarding the directions of the edgeB.i.et M, = (FE,Z;) be the graphic matroid, where
E is the same asl ignoring directions of edges id. Let My = (A,Z,) be the partition matroid, where
A=5Yv)UdHuy) U---Udvy,). Itis easy to see that ararborescence is independent set of
both matroids: the underlying graph must be a spanning sedt (s a bases of/;) and the set of edges
must have indegree at most 1 for eack: r, so it is an independent set 6f,. Conversely, any common
independent set has an underlying graph that is acyclic aadnidegree at most 1 for each node. Although
the greedy algorithm can find a MST in an undirected graph, aveact use that to find minimum cost (or
maximum cost)-arborescence in a graph. ]



Example: [rainbow spanning trees] Suppose that we have colored the edges of a given graph(V, F)
with k colors. LetE = Fy U F> U - - - U Ey, be a partition of of edges intl color sets. A rainbow spanning
tree is a spanning tree whose edges have all distinct coldescan show that finding a rainbow spanning
tree is equivalent to finding a maximum independent set comtmawo matroids. LetV; = (E,Z;) be

a graphic matroid owdr. Let My = (F,Zs), whereZy = {E : |F N E;| < 1,V1 < i < k}, be a partition
matroid. The a maximum common independent set/gfand M5 is a rainbow spanning tree. [

Example: [Forest in two graphs] Suppose we are given two grapfis= (V, E) andG’ = (V', E’) with
|E| = |E'|; we assume the edges of the two graphs are labeled with ;i@ 1 tom = |E|. Our goal is
to find a largest sef of indicesZ C {1,--- ,m} such that a subgraph induced by these edges in eaGh of
and@’ is a forest. This problem too can be represented as findinggasacommon independent set of two
graphic matroids . [

Given two matroidsM; = (F,Z;) with rank functionr;, and My = (F,Z) with rank functionr,. Let
S € 71 NIy andU C E. We claim that

|S| < Tl(U) + ?”Q(E — U)

To see this, observe thegi N U | is an independent set of bdth andZ,, in particular,Z;, and|S N (E — U)|
is an independent set of baih andZs, in particular,Zs. Therefore,

IS|=1SNU|+|SN(E-U)| <ri(U)+r:(E—-U)

In particular, we have

< ] — .
Sélll_?%{zQ < Engl%{rl(U) +ro(E—-U)}

It can be proved that in fact equality holds and this was mtdwe Edmonds:

Theorem 1.1 (Edmonds) For matroidsM; = (E,Z; and My = (E,Z,) with rank functionsr; and ro,
respectively:
max < min{ry(U) +ro(E —U)}.

SeZinNZ, ~ UCE
GivenM, = (E,Z,) andI C 7;, we define a bipartite directed grap@h,, (1) as follows:
Dy, (1) = (E, A),
whereVy € Iandz € £ —I,if I —y+ x € 7y, then add(y, z) to A. If we also have another matroid
M, = (E,Iy), we define digraptDy, 1, = (E, A) as follows:
o (yx)eAifyelande e E— 1,1 —y+z € 1;
o (x,y)cAifyeclande € E—1,I —y+z € Is.

This is the union oD, (I) with reversed edge dDy, (). Let Xy ={x ¢ I|[+x € Z;} and X, = {x ¢
I|I +x € IQ}

It can be proved that repeated application of the followitggpathm finds a largest common independent
set of the two matroidd/; and M> and also gives a proof of Edmonds’ matroid intersection r@o



Matroid Intersection Algorithm

Input: given My, M, and/

Output: find I’ € 7; N Z, such thatl’| > |I|
find a shortest path from X; to X5

I' —IAV(p)y=T—-J)Uu(J—1)

return I’

We are going to skip the proof of this algorithm and matroiteisection theorem. The algorithm can
be generalized to solve the maximum weight common indepegrgtt of two matroids for the case that
each element has a weight. Therefore, any problem that céoripelated as finding a maximum weight
common independent set of two matroids can be solved in patyad time. Edmonds proved this theorem
using LP and duality. He characterized all inequalitiesrdiefj the matroid intersection polytope, which is
the convex-hull of independent sets common to two matraudsr(the same ground set).

Unlike intersection of two matroids, finding a largest commiredependent sets of three or more matroids is
NP-hard.

Theorem 1.2 Given three matroids); = (S,Z,), M2 = (S,1), and M3 = (S, Z3), finding the largest
common independent set of those three is NP-hard.

Proof: Reduction fromHam-Path Given a digraphD = (V, A) with s, ¢ € V, the goal is to find a directed
Hamiltonians-t-path. We show this problem can be formulated as the largestron independent set of
three matroids:M; = (FE,Z;) is a graphic matroid where each independent sef;af a forest,M; =
(E, 1) is a partition matroid whergé, = {FF C E : [0~ (v)NF| <1 v # s}, i.e. indegree is at most 1 for
each node # s, andM, = (F,Z3) is a partition matroid withils = {FF C E: |6t (v)NF| <1 v # t},
i.e. outdegree of each node is most 1 except.for

2 Uncrossing technique, and Iterative Rounding and relaxation

So far we have seen different proofs for showing that cefaigtopes (e.g. matching polytope) is integral.
In this section (and in the future lectures) we introduce teghniques to analyse basic feasible solutions
of other LP’s. We use a different technique, called uncragsind then show that a certain LP for minimum
cost spanning tree is integral. We then introduce a diffetechnique called iterative relaxation which
combined with iterative rounding can be used to derive verydgapproximation algorithms for some NP-
hard optimization problems.

Consider a given grapty = (V, E) with w : E «— R=%, We already know that the minimum spanning
tree problem can be solved easily using greedy algorithng®iynomial time (it is also a special case of a
matroid optimization). Here we consider the LP formulasidar this problem. A natural LP relaxation for

this problem is the following:

min ) wexe
stt. z(d(s)) > 1,¥VSCV
ze > 0.

Clearly, any spanning tree satisfies all the constrainttodigh this LP has exponentially many constraints,



we can solve it using Ellipsoid algorithm since the separatiracle for it is just computing a minimum cut
which can be solved in polynomial time. Unfortunately, thizis not integral. For example if one considers
the cycle omn nodes,C,,, thenz, = % everywhere is a feasible solution to this LP whereas anyiate
solution needs — 1 edges.

So let’s find another LP formulation for the MST problem. Anpantant observation is that for any trée
and any setS C V: E(T) N E(S) < |S| — 1. Also, any spanning tree ovi must have exactlyl'| — 1
edges. Thus we obtain the following LP relaxation of MST:

min ) wexe

st. z(E(S)) <|S|-1L,vScCV
2(E(V) = V| - 1
T > 0.

We refer to it as LP(2) from now on. Our goal is to prove thedaling theorem:
Theorem 2.1 LP(2) is integral, i.e. every bfs of this LP is integral.

Before that, we need to show that we can solve this LP in pohyabtime, and for that it is sufficient to
show that the separation oracle (to be used with Ellipsadré&hm) is polynomial.

2.1 Separation Oracle

Given fractional solution:, the algorithm needs to find a node $etc V, such that:(E(S)) > |S| — 1.
For that, itt is sufficient to check if

min{|S| -1 — 2(E(5)) < 0}

We show how to check this using oriyV/| — 2 calls to a procedure that solves an instance of min-cut. Fix
a nodeyy € V. For eachu € V — vy we build two min-cut instances:

e one checks the inequality for all s€tcontainingv, but notu.

¢ the other checks the inequality for all sets containinigut notwy.

So for a fixed node there are a total df|V'| — 2 such tests. We describe the procedure for the first type; the
second one is similar.

Build a digraphG’ = (V, E’) in the following way. For each edgg € E we add two directed edgés ;)
and(j,7) in E’, each having weight;; /2. We also add arcs from eache V' — {vg, u} to u with weight 1
and fromu, to eachw € V' — r of weight}_ 5, (z./2). See Figure 1.

Consider any cut separating andu, say(S,V — S). The edges of weight 1 contribute exact| — 1 to
this cut. For each edgg € F its corresponding copy i’ contributes exactly:(6(.S))/2 to this cut. The
edges fromyg to the rest of the vertices contribuEvQ S M Thus, the total weight of the edges of the
cutis:

S| -1+ @ + > x(52(”)) = |S| — 1+ 2(B(V)) — «(B(S)),
veV -5



Figure 1: An illustration of edges i’ for each edge; € G

The total weight of the edges of the whole graph, .€(V")) is a fixed given value. Therefore, if we find

a minimum cut it also minimizesS| — 1 — xz(E(S)). If the minimum cut is negative then we have found a
violated constraint. Therefore, we can solve this LP in polyial time.

Next lecture we will complete the proof of Theorem 2.1 by shraythat every bfs of this LP is integral.



