CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)
Lecture 10,11: General Matching Polytope, Maximum Flow

Lecturer: Mohammad R. Salavatipour Scriber: Mohammad Reza Khan
Date: Oct 6 and 8, 2009

In this lecture we finish the discussion of matching (and g rfnatching) polytopes. We prove that the
matching polytope is integral. Then we start the topic of 8@md circulations.

Recall that ifA = |V| x |E| is the incident vector of a grapf¥, then A is totally unimodular (TUM) if
and only if G is bipartite. We also proved that for every TUM mateily and integer vectob, the polytope
Az < bisintegral. This includes the matching polytope of bigartraphs.

1 Perfect Matching and Matching Polytope on General Graphs

Let G be a general graph antl be the set of all perfect matchings 6f i.e., all incident vectors iR/
where each corresponds to a perfect matching. The perfeching polytope of7, P(G), is defined as the
convex hull ofX. Consider the following LP:

z(0(v)) = 1 Yo 1)
z. > 0

It is easy to see that every perfect matching satisfies thasgtraints. However, these constraints are not
sufficient to define correctly a perfect matching. For examlwe consider any odd cycle, s&y; and
assign% to each edge, it satisfies these constraints but it does faido the perfect matching polytope
(as it is empty).

1/2 1/2

1/2

Figure 1: Triangle Counter Example

LetU C V be an odd size set and be any perfect Matching aff. Observation: M can have at most

'U‘T_l edges insidé/. Thus, at least one vertex bf is matched outside. This can be used to strengthen the
LP by adding “odd set” constraints:

z(d(v)) = 1 Yo (2)

Ul -1
- 2
0

VoddsetU CV

8
®
Vv

Note that these constraints are violated by the examplegufr€il. Edmonds proved that the LP(2) corre-
sponds to the polytop2(G), for perfect matchings i.

Theorem 1.1 (Edmonds)LP(2) is integral, i.e. it is the polytope for perfect matus ofG.

Proof: Here we prove that all bfs’s of this LP are integer, therefive polytope is integral. We prove
this by showing (inductively) that every fractional sobriiis a non-vertex, i.e. can be written as convex
combination of perfect matchings 6f. Letx be any basic feasible solution for this LP and suppose that it
does not correspond to a perfect matching. First, we camas#uatr is totally fractional, i.e0 < z. < 1

for every edge since if there is an edgwith z. = 1 we remove both the edge and the end points to reduce
the problem to a smaller graph, and:if = 0 we can simply delete that edge and the corresponding variabl
So we arrive at reduced graph and reduced bfs soluti@rhich is totally fractional. Note that all values
of x are rational. For simplicity, assume that every fractiovale is a multiple ofl /% (for sufficiently
large k this is true). Thus, we can assume that instead of each edgéawe parallel edges each with
fractional valuel /k and the number of parallel edges we have willag. Sox corresponds to a set of
tight constraints. Tight odd-set constraints of singleesdre implied by degree constraints. Therefore, we
can assume every odd-set constraint that is tight is for & seith 3 < |U| < |V| — 3, and for that we have
z(d(U)) = 1. Consider any such tight st We break the graph into two smaller on@s andG; as shown

in Figure 2 by: once contracting to a single node (allowing parallel edges) and once corig¢t — U

to a single node. Bottir; andG- will have smaller number of nodes because of the bound onzbeo§U .

o3
l o3 0.3
0.7 0.7
0.7
;5 Gl Gz

Figure 2: Removing an Odd-set Tight Constraint

Now consider projection of to these two graphs, callit andz”. Thenz’ andz” satisfy the constraints of
the LP forG; and G, respectively, and hence belong to the perfect matchingi@ods ofGG; andGs. So
G4 has perfect matching®l{, M5, ..., M, andG, has perfect matchings/{’, M/, ..., M, with

1< 1
== M{ and 2" == My

Now for each edge € §(U), the number of with e € M/ is equal tokz'(e) = kz(e) = ka”(e), which is
equal to the number afwith e € M/ Hence, we can assume that for each 1,...,k, M/ and M/ have
an edge i(U) in common. SaV/; = M/ U M/ is a perfect matching af. Thus,

Therefore, after removing edges with values 0/1 and comtigof odd-set constraints, we have only tight
degree constraints. If we ha2e nodes lef2n degree constraints have to be tight. Each node has a degree
greater than or equal to 2. We have ogly tight constraints (degree constraints) so we can have 2nly
edges, because this solution is a bfs. After all, we havehgrdth 2n nodes an@n edges so it is the union

of even cycles. We know that in this case (when the graph extiip) any fractional solution can be written

as convex combination of other perfect matchings, and tmsptetes the proof.]

Corollary 1.2 (Edmonds Matching Polytope) For any graphG the matching polytope can be defined by:

r(6(v)) = 1 Yo 3)
z(6(U)) > 1 VYoddset/ CV
Te > 0

Proof: Clearly every matchingy/ satisfies 3. If we prove that every vertex of the polytope aefiby
LP(3) is a matching then we are done. Suppose:thata bfs of this LP. Build a copy’ from G and for
eachv € V make an edgev’; call this the new grapley = (V, E). for eache € E we havei, = i = z.

and for each edgev’ € E we definez(vv’) = 1 —z(5(v)). It can be proved (as below) thais feasible for
the perfect matching LP af: degree constraints are satisfied as every nobasi(5(v)) = 1 now. Also,
for each odd sel/ C V, sayU = W U X’ with W, X C V we have

Z(0(U)) = 2(S(W\X)) +Z(3(X"\W"))

So we may assume thdt N X = () and by symmetry, we may assume thitis odd, thusX = (). So itis

enough to show that any odd $étC V hasz(6(U)) > 1. Now

() +22(EU) =Y #(5(v) = U]

vel

and hence(0(U)) = |U|-2&(E(U)) > \U|—2|1|U|] = 1. Soz belongs to the perfect matching polytope
of G and so can be expressed as convex combination of perfechimgscfG. Consider the projection of
these perfect matchings &; thenx is essentially the convex combination of these matchingéfo m

2 Maximum Flows and Minimum Cuts

Suppose we are given a digraph= (V, FE)) and two vertices;, ¢ € V. Every edges has an upper bound
capacityu, : F — R > 0 and a lower bound capacity : £ — R > 0. Afunctionf : E - R > 0is
called a flow if:

LYo eV —{sth X.csrw f(€) = 2ces-w) [(e) i.e. we have flow conservation at every node
(except the source and sink),

2.Vee B, I, < f.<u,,ie. capacity constraints are satisfied.

Definition 2.1 Total value of a flowf, denoted byf]|, is the total flow going out of, which by flow conser-
vation should be the net flow going into

Yoofle)= D fle=1fl= D> fle= D fle)
)

e€dt(s) e€d(s) ecd—(t e€dt(t)

The maximum flow problem is: Given digragh(V, F) andl,u : E — R > 0, find ans — ¢-flow of largest
possible value. Clearly, one can write this problem as an LP:

maz f(67(s)) — f(07(s)) 4
st > fle) = Y fle) VweV —{st}
eedt(v) e€d—(v)
I<f < w

(5)

This can be solved using an LP solver. In fact if we consiieto be the vertex-arc incident vector of the
graph thenV is ann x m matrix such that for each edge= ij:

1 u =1
N(u,e) =4 —1 u=j
0 ué{ij}
N ... e
U1 +1
(%) -1

then the constraints of the LP can be writtendas< b where

N
A= 1
-1

Then the following lemma is fairly easy to prove:
Lemma 2.2 A is totally unimodular.

Proof: We prove inductively that the determinant of any submatfixdds in {—1,0,+1}. Base case is
trivial. Consider any submatrix ofl. If there is a row with a single non-zero entry then clearlpaxding

the determinant around that entry and using induction Hhg®$ gives the desired result. So we can assume
that the submatrix is actually a submatrix gt Here again if there is a column with a sinle non-zero etnry
(which will be a+1 or a—1) then we can expand the determinant around that column anhdsction.
Therefore, the only case left is when every column of the saathimof NV has exactly two non-zero entries,
one+1 and one—1. The rows of such a submatrix is linearly dependent sincestine of the rows is then
zero, thus the determinant is zero.]

Corollary 2.3 If bis integer i.e. ifu, [are integers then the flow is always integer.

2.1 Cuts
Definition 2.4 Given a setS C V/, the cut defined by is:
§7(S)={uww € E| ue€s,veV/S}

The capacity of the cut ig5(.9)), which is the sum of the capacities of the edges going ofit of

Similarly, 6~ (.9) is the set of edges going inth We say a cué*(S) isans—t cutifs € Sandt € V - S.
If we have a flowf andS is ans — t-cut then|f| = f(67(S)) — f(67(S)). Itis easy to prove that:

Lemma 2.5 For any flowf and anys — t-cut.S, ¢(S) > f(61(s)) — f(6(s)
Proof:

[fl=F(67(9) = £(57(S)) Y (f(EH) = F(67 ()

veV —t

F7(8)) = f(67(9))
F(07(9))

c(S).

IA A

So we have weak duality:
m}gx|f| < mbinc(S)

We will show this the strong duality holds as well iiax | f| = ming c(S5).

Flow decomposition: Supposef is ans —t-flow in G. We can writef as linear combination of a polynomial
number ofs — ¢-path each carrying > 0 amount of flow. In particular if /| is integer then each path carries
a unit flow. Because, whenever you enter a vertex by a unit fleeabse of flow conservation) you can
exit from that node as well, unless you have arrived. atherefore, any walk that starts frosends at.
Moreover, in the special case when all capacities are 1 ediglilow-paths are edge disjoint. So the size of
a maximum flow is equal to the number of edge-disjoint patbsfs to ¢.

Theorem 2.6 The value of a Max-flow is equal to the size of a min-cu¥in
Proof: Given graph &/(V, E) and flow f on G we construct residual multi-graphi¢(V, E) as follows:

e Forward edge: ifi, j) € Eandf(i,j) < c(i,j) : (4,5) € Ey with capacityc(i, j) — f(i, 7).

e Backward edge: ifj,i) € Eandf(j,i) > 0: (i,7) € £y with capacityf(j,1).

Let f be a max-flow inG. Using weak duality, it is sufficient to find a cStsuch that f| = ¢(s) to prove the
strong duality. We first prove that jf is maximum then there is no-t-path inG . By way of contradiction,
suppose we find an— ¢ path P in G;. So it may contains forward edges and backward edges: het

.| ce—fe, ifeisaforward edge
TN g if e is a backward edge

e

Let p* be the set of forward edges apd be the set of backward edges then we can defirte be:

fete ecpt
f/: fe—c€ ecp
fe other wise

Clearly f’ is a feasible flow andlf’| = |f| + ¢, so it contradicts our assumption th&ts maximum. Thus
there is no path from to ¢ in G;. Let S be the set of vertices reachable frenn G; clearlyt ¢ S. As
there is nos — t-path we have following:

Vee 6T (S): f(e) =c(e)
Veed (S): f(e)=0
therefore ¢(S) = X c5+(s) €(€) = X oesr(s) fle) = |f]

This proof suggests the following algorithm to find a maximilomv:
as long as there is an augmenting patli-infind one and improve the flow and update.

Theorem 2.7 If all the capacities are rational the above algorithm tenaies.

Proof: Multiply all capacities by sufficiently large integérso that allc.’s will be integer; the theorem
follows since every path increases the flow by at least 1. [

For irrational values, there are examples which show treatforithm may never terminate if the augment-
ing paths are not selected carefully.

Another algorithm introduced by Danits in 1970 and EdmondpKa 1972 guarantee the polynomial time
complexity. It suggests that in each iteration, find the wstraugmenting path (path that has least number
of edges) each time. Lé{(v) be the length of shortest— v-path inG ¢. Suppose we augmetitto f/ by a
shortests — ¢-path inG.

It can be proved:
Lemma 2.8 d¢(v) is monotonically increasing after each iteration.

A critical edge on any patp is an edge whose residual capacity is equal ite. the edge disappears from
Gy after apply the augmenting path.

Lemma 2.9 Every edge becomes critical at mé%i — 1time.

Proof: Consider edgew. Whenuv becomes critical for the first time we must havg(v) = dg(u) + 1.
Once the flow is augmented, this edge disappears &igm

=]
Figure 3: uv Critical Path

and it appears only ifu appears on an augmenting path and therefore the flomvoncreases. So we must
have a situation (with a flowf’) such thatds (u) = ds (v) + 1 and we know thatls(v) < ds (v) asitis

6

monotonically increasing. So we will have:
df/(u) = df(v) +1 Z df(v) +1= df(u) + 2

Sod;(u) increases by two each time after the first time. Sidgeu) is bounded byV| — 1, the lemma
follows. u

According to lemma 2.9 number of times we can find augmentaty O (nm); using breadth first search
we can find a shortest augmenting path in tiéen). So the total time complexity will b& (m?n) which
can be improved t®(n?).

2.2 Some Applications

Many problems (including some of the ones we have lookedaat)oe reduced to max-flow problem. We
list a few below.

e Maximum Bipartite Matching: Suppose we are given a bipaditaphG = (A U B, F) and our goal
is to compute a maximum matching @ We can create a soureeand a destination, connects to
all nodes inA with directed edges out of with capacity 1 and connect all the nodesAno ¢ with
edges directed tband with capacity 1. Also direct all the edges frotrto B and put capacity 1. Itis
easy to see that a maximum flow in this new graph correspondsrtaximum matching betwee#
andB (i.e. those edges betweehand B with non-zero flow form a matching).

e Min-Cut: A minimum cut between andt is basically the minimum number of edges whose removal
from GG disconnects from ¢. By using max-flow we can find a minimum-— ¢-cut. Also, the (global)
minimum cut in a connected gragh is the minimum number of edges whose removal disconnects
G. Clearly by computing minimums — ¢ cut for all pairs of vertices as source and sink we can find
minimum cut ofG (although there are more efficient algorithms to find the o)

References

S03 SHRIJVER ALEXANDER , Combinatorial optimization: polyhedra and efficiencyjiwoe 1, 2003,
pp. 438-440.

