
CMPUT 675: Topics in Algorithms and Combinatorial Optimiza tion (Fall 2009)

Lecture 10,11: General Matching Polytope, Maximum Flow

Lecturer: Mohammad R. Salavatipour Scriber: Mohammad Reza Khani
Date: Oct 6 and 8, 2009

In this lecture we finish the discussion of matching (and perfect matching) polytopes. We prove that the
matching polytope is integral. Then we start the topic of flows and circulations.

Recall that ifA = |V | × |E| is the incident vector of a graphG, thenA is totally unimodular (TUM) if
and only ifG is bipartite. We also proved that for every TUM matrixA, and integer vectorb, the polytope
Ax ≤ b is integral. This includes the matching polytope of bipartite graphs.

1 Perfect Matching and Matching Polytope on General Graphs

Let G be a general graph andX be the set of all perfect matchings ofG, i.e., all incident vectors inR|E|

where each corresponds to a perfect matching. The perfect matching polytope ofG, P (G), is defined as the
convex hull ofX. Consider the following LP:

x(δ(v)) = 1 ∀v (1)

xe ≥ 0

It is easy to see that every perfect matching satisfies these constraints. However, these constraints are not
sufficient to define correctly a perfect matching. For example, if we consider any odd cycle, sayC3 and
assign1

2 to each edge, it satisfies these constraints but it does not belong to the perfect matching polytope
(as it is empty).

Figure 1: Triangle Counter Example

Let U ⊆ V be an odd size set andM be any perfect Matching ofG. Observation: M can have at most
|U |−1

2 edges insideU . Thus, at least one vertex ofU is matched outside. This can be used to strengthen the
LP by adding “odd set” constraints:

1

x(δ(v)) = 1 ∀v (2)

x(E(U)) ≤
|U | − 1

2
∀ odd setU ⊆ V

xe ≥ 0

Note that these constraints are violated by the example of Figure 1. Edmonds proved that the LP(2) corre-
sponds to the polytopeP (G), for perfect matchings inG.

Theorem 1.1 (Edmonds)LP(2) is integral, i.e. it is the polytope for perfect matchings ofG.

Proof: Here we prove that all bfs’s of this LP are integer, thereforethe polytope is integral. We prove
this by showing (inductively) that every fractional solution is a non-vertex, i.e. can be written as convex
combination of perfect matchings ofG. Let x be any basic feasible solution for this LP and suppose that it
does not correspond to a perfect matching. First, we can assume thatx is totally fractional, i.e.0 < xe < 1
for every edge since if there is an edgee with xe = 1 we remove both the edge and the end points to reduce
the problem to a smaller graph, and ifxe = 0 we can simply delete that edge and the corresponding variable.
So we arrive at reduced graph and reduced bfs solutionx which is totally fractional. Note that all values
of x are rational. For simplicity, assume that every fractionalvalue is a multiple of1/k (for sufficiently
large k this is true). Thus, we can assume that instead of each edge, we have parallel edges each with
fractional value1/k and the number of parallel edges we have will bekxe. Sox corresponds to a set of
tight constraints. Tight odd-set constraints of single nodes are implied by degree constraints. Therefore, we
can assume every odd-set constraint that is tight is for a setU with 3 ≤ |U | ≤ |V | − 3, and for that we have
x(δ(U)) = 1. Consider any such tight setU . We break the graph into two smaller onesG1 andG2 as shown
in Figure 2 by: once contractingU to a single node (allowing parallel edges) and once contracting G − U
to a single node. BothG1 andG2 will have smaller number of nodes because of the bound on the size ofU .

Figure 2: Removing an Odd-set Tight Constraint

Now consider projection ofx to these two graphs, call itx′ andx′′. Thenx′ andx′′ satisfy the constraints of
the LP forG1 andG2 respectively, and hence belong to the perfect matching polytopes ofG1 andG2. So
G1 has perfect matchingsM ′

1,M
′
2, . . . ,M

′
k andG2 has perfect matchingsM ′′

1 ,M ′′
2 , . . . ,M ′′

k with

x′ =
1

k

k
∑

i=1

χM ′

i and x′′ =
1

k

k
∑

i=1

χM ′′

i .

Now for each edgee ∈ δ(U), the number ofi with e ∈ M ′
i is equal tokx′(e) = kx(e) = kx′′(e), which is

equal to the number ofi with e ∈ M ′′
i Hence, we can assume that for eachi = 1, . . . , k, M ′

i andM ′′
i have

an edge inδ(U) in common. SoMi = M ′
i ∪ M ′′

i is a perfect matching ofG. Thus,

2

x =
1

k

k
∑

i=1

χMi .

Therefore, after removing edges with values 0/1 and contracting of odd-set constraints, we have only tight
degree constraints. If we have2n nodes left2n degree constraints have to be tight. Each node has a degree
greater than or equal to 2. We have only2n tight constraints (degree constraints) so we can have only2n
edges, because this solution is a bfs. After all, we have a graph with2n nodes and2n edges so it is the union
of even cycles. We know that in this case (when the graph is bipartite) any fractional solution can be written
as convex combination of other perfect matchings, and this completes the proof.

Corollary 1.2 (Edmonds Matching Polytope) For any graphG the matching polytope can be defined by:

x(δ(v)) = 1 ∀v (3)

x(δ(U)) ≥ 1 ∀ odd setU ⊆ V

xe ≥ 0

Proof: Clearly every matchingM satisfies 3. If we prove that every vertex of the polytope defined by
LP(3) is a matching then we are done. Suppose thatx is a bfs of this LP. Build a copyG′ from G and for
eachv ∈ V make an edgevv′; call this the new graph̃G = (Ṽ , Ẽ). for eache ∈ E we havex̃e = x̃e′ = xe

and for each edgevv′ ∈ Ẽ we definẽx(vv′) = 1−x(δ(v)). It can be proved (as below) thatx̃ is feasible for
the perfect matching LP of̃G: degree constraints are satisfied as every nodev hasx̃(δ(v)) = 1 now. Also,
for each odd setU ⊆ Ṽ , sayU = W ∪ X ′ with W,X ⊆ V we have

x̃(δ̃(U)) ≥ x̃(δ̃(W\X)) + x̃(δ̃(X ′\W ′))

So we may assume thatW ∩ X = ∅ and by symmetry, we may assume thatW is odd, thusX = ∅. So it is
enough to show that any odd setU ⊆ V hasx̃(δ̃(U)) ≥ 1. Now

x̃(δ̃(U)) + 2x̃(Ẽ(U)) =
∑

v∈U

x̃(δ̃(v)) = |U |

and hencẽx(δ̃(U)) = |U |−2x̃(Ẽ(U)) ≥ |U |−2⌊1
2 |U |⌋ = 1. Sox̃ belongs to the perfect matching polytope

of G̃ and so can be expressed as convex combination of perfect matchings ofG̃. Consider the projection of
these perfect matchings toG; thenx is essentially the convex combination of these matchings (of G).

2 Maximum Flows and Minimum Cuts

Suppose we are given a digraphD = (V,E) and two verticess, t ∈ V . Every edges has an upper bound
capacityue : E → R ≥ 0 and a lower bound capacityle : E → R ≥ 0. A function f : E → R ≥ 0 is
called a flow if:

1. ∀v ∈ V − {s, t},
∑

e∈δ+(v) f(e) =
∑

e∈δ−(v) f(e), i.e. we have flow conservation at every node
(except the source and sink),

2. ∀e ∈ E, le ≤ fe ≤ ue, i.e. capacity constraints are satisfied.

3

Definition 2.1 Total value of a flowf , denoted by|f |, is the total flow going out ofs, which by flow conser-
vation should be the net flow going intot:

∑

e∈δ+(s)

f(e) −
∑

e∈δ−(s)

f(e) = |f | =
∑

e∈δ−(t)

f(e) −
∑

e∈δ+(t)

f(e)

The maximum flow problem is: Given digraphG(V,E) andl, u : E → R ≥ 0, find ans− t-flow of largest
possible value. Clearly, one can write this problem as an LP:

max f(δ+(s)) − f(δ−(s)) (4)

s.t.
∑

e∈δ+(v)

f(e) =
∑

e∈δ−(v)

f(e) ∀v ∈ V − {s, t}

l ≤ f ≤ u

(5)

This can be solved using an LP solver. In fact if we considerN to be the vertex-arc incident vector of the
graph thenN is ann × m matrix such that for each edgee = ij:

N(u, e) =







1 u = i
−1 u = j
0 u 6∈ {i, j}

N . . . e . . .
...
v1 +1
...
v2 -1
...

then the constraints of the LP can be written asAx ≤ b where

A =





N

I

−I





Then the following lemma is fairly easy to prove:

Lemma 2.2 A is totally unimodular.

Proof: We prove inductively that the determinant of any submatrix of A is in {−1, 0,+1}. Base case is
trivial. Consider any submatrix ofA. If there is a row with a single non-zero entry then clearly expanding
the determinant around that entry and using induction hypothesis gives the desired result. So we can assume
that the submatrix is actually a submatrix ofN . Here again if there is a column with a sinle non-zero etnry
(which will be a+1 or a−1) then we can expand the determinant around that column and use induction.
Therefore, the only case left is when every column of the submatrix of N has exactly two non-zero entries,
one+1 and one−1. The rows of such a submatrix is linearly dependent since thesum of the rows is then
zero, thus the determinant is zero.

Corollary 2.3 If b is integer i.e. ifu, l are integers then the flow is always integer.

4

2.1 Cuts

Definition 2.4 Given a setS ⊂ V , the cut defined byS is:

δ+(S) = {uv ∈ E| u ∈ s, v ∈ V/S}

The capacity of the cut isc(δ+(S)), which is the sum of the capacities of the edges going out ofS.

Similarly, δ−(S) is the set of edges going intoS. We say a cutδ+(S) is ans− t cut if s ∈ S andt ∈ V −S.
If we have a flowf andS is ans − t-cut then|f | = f(δ+(S)) − f(δ−(S)). It is easy to prove that:

Lemma 2.5 For any flowf and anys − t-cutS, c(S) ≥ f(δ+(s)) − f(δ−(s)

Proof:

|f | = f(δ+(S)) − f(δ−(S)) =
∑

v∈V −t

(f(δ+(v)) − f(δ−(v)))

= f(δ+(S)) − f(δ−(S))

≤ f(δ+(S))

≤ c(S).

So we have weak duality:
max

f
|f | ≤ min

S
c(S)

We will show this the strong duality holds as well i.e.maxf |f | = minS c(S).

Flow decomposition:Supposef is ans−t-flow in G. We can writef as linear combination of a polynomial
number ofs− t-path each carryingǫ > 0 amount of flow. In particular if|f | is integer then each path carries
a unit flow. Because, whenever you enter a vertex by a unit flow because of flow conservation) you can
exit from that node as well, unless you have arrived att. Therefore, any walk that starts froms ends att.
Moreover, in the special case when all capacities are 1 all these flow-paths are edge disjoint. So the size of
a maximum flow is equal to the number of edge-disjoint paths from s to t.

Theorem 2.6 The value of a Max-flow is equal to the size of a min-cut inG.

Proof: Given graph aG(V,E) and flowf onG we construct residual multi-graphGf (V,Ef) as follows:

• Forward edge: if(i, j) ∈ E andf(i, j) < c(i, j) : (i, j) ∈ Ef with capacityc(i, j) − f(i, j).

• Backward edge: if(j, i) ∈ E andf(j, i) > 0 : (i, j) ∈ Ef with capacityf(j, i).

Let f be a max-flow inG. Using weak duality, it is sufficient to find a cutS such that|f | = c(s) to prove the
strong duality. We first prove that iff is maximum then there is nos−t-path inGf . By way of contradiction,
suppose we find ans − t pathP in Gf . So it may contains forward edges and backward edges. Letǫ be:

ǫ = min
e

{

ce − fe, if e is a forward edge
fe, if e is a backward edge

Let p+ be the set of forward edges andp− be the set of backward edges then we can definef ′ to be:

5

f ′ =







fe + ǫ e ∈ p+

fe − ǫ e ∈ p−

fe other wise

Clearlyf ′ is a feasible flow and|f ′| = |f | + ǫ, so it contradicts our assumption thatf is maximum. Thus
there is no path froms to t in Gf . Let S be the set of vertices reachable froms in Gf ; clearly t /∈ S. As
there is nos − t-path we have following:

∀e ∈ δ+(S) : f(e) = c(e)
∀e ∈ δ−(S) : f(e) = 0

therefore c(S) =
∑

e∈δ+(S) c(e) =
∑

e∈δ+(S) f(e) = |f |

This proof suggests the following algorithm to find a maximumflow:
as long as there is an augmenting path inGf find one and improve the flow and updateGf .

Theorem 2.7 If all the capacities are rational the above algorithm terminates.

Proof: Multiply all capacities by sufficiently large integerk so that allce’s will be integer; the theorem
follows since every path increases the flow by at least 1.

For irrational values, there are examples which show that the algorithm may never terminate if the augment-
ing paths are not selected carefully.

Another algorithm introduced by Danits in 1970 and Edmond Karp in 1972 guarantee the polynomial time
complexity. It suggests that in each iteration, find the shortest augmenting path (path that has least number
of edges) each time. Letd(v) be the length of shortests − v-path inGf . Suppose we augmentf to f ′ by a
shortests − t-path inGf .

It can be proved:

Lemma 2.8 df (v) is monotonically increasing after each iteration.

A critical edge on any pathp is an edge whose residual capacity is equal toǫ i.e. the edge disappears from
Gf after apply the augmenting path.

Lemma 2.9 Every edge becomes critical at most|V |
2 − 1 time.

Proof: Consider edgeuv. Whenuv becomes critical for the first time we must havedf (v) = df (u) + 1.
Once the flow is augmented, this edge disappears fromGf

Figure 3: uv Critical Path

and it appears only ifvu appears on an augmenting path and therefore the flow onuv increases. So we must
have a situation (with a flowf ′) such thatdf ′(u) = df ′(v) + 1 and we know thatdf (v) ≤ df ′(v) as it is

6

monotonically increasing. So we will have:

df ′(u) = df (v) + 1 ≥ df (v) + 1 = df (u) + 2

Sodf (u) increases by two each time after the first time. Sincedf (u) is bounded by|V | − 1, the lemma
follows.

According to lemma 2.9 number of times we can find augmenting path isO(nm); using breadth first search
we can find a shortest augmenting path in timeO(m). So the total time complexity will beO(m2n) which
can be improved toO(n3).

2.2 Some Applications

Many problems (including some of the ones we have looked at) can be reduced to max-flow problem. We
list a few below.

• Maximum Bipartite Matching: Suppose we are given a bipartite graphG = (A ∪ B,E) and our goal
is to compute a maximum matching inG. We can create a sources and a destinationt, connects to
all nodes inA with directed edges out ofs with capacity 1 and connect all the nodes inB to t with
edges directed tot and with capacity 1. Also direct all the edges fromA to B and put capacity 1. It is
easy to see that a maximum flow in this new graph corresponds toa maximum matching betweenA
andB (i.e. those edges betweenA andB with non-zero flow form a matching).

• Min-Cut: A minimum cut betweens andt is basically the minimum number of edges whose removal
from G disconnectss from t. By using max-flow we can find a minimums− t-cut. Also, the (global)
minimum cut in a connected graphG is the minimum number of edges whose removal disconnects
G. Clearly by computing minimums − t cut for all pairs of vertices as source and sink we can find
minimum cut ofG (although there are more efficient algorithms to find the min-cut).

References

S03 SCHRIJVER, ALEXANDER , Combinatorial optimization: polyhedra and efficiency, Volume 1, 2003,
pp. 438–440.

7

