
Tutorial notes for Hall’s Theorem

Problem: Let G = (V,E) be a bipartite graph where |V | = 2n, V = L∪R where |L| = |R| = n,
and E ⊆ L × R. A matching M ⊆ E is said to be perfect if |M | = n. The goal of this problem
is to prove a necessary and sufficient condition for the existence of a perfect matching in G. (This
condition is called Hall’s Theorem).

For a set L′ ⊆ L, define the neighborhood of L′ by N(L′) = {v ∈ R|(u, v) ∈ E for some u ∈ L′}.
The following parts of this problem show that G has a perfect matching iff |N(L ′) ≥ |L′| for all
L′ ⊆ L.
(a) Prove that if G has a perfect matching, then |N(L′)| ≥ |L′| for all L′ ⊆ L.
(b) Consider the flow network associated with G described in class (and the text). This network
contains the vertices and (directed) edges of G, as well as edges from a new vertex s to every vertex
in L, as well as edges from every vertex in R to a new vertex t; all edges have capacity 1.

Let (S, T ) be a cut of this network, and assume that the capacity of this cut c(S, T ) (the sum
of capacities of the edges going from S to T , which in this case is the number of edges going from
S to T ) is less than n. Prove that |N(S ∩ L)| < |S ∩ L|.
(c) Use part (b) to prove that if |N(L′)| ≥ |L′| for all L′ ⊆ L, then G has a perfect matching.

Solution:
(a) Let M be a perfect matching for G, and let L′ ⊆ L. Say that L′ has k distinct members:

L′ = {x1, . . . , xk}. Since M is a perfect matching, there exist k distinct points y1, . . . , yk in R such
that (xi, yi) ∈ M ⊆ E for each i. Therefore, {y1, . . . , yk} ⊆ N(L′), so |N(L′) ≥ k = |L′|.

(b) Let (S, T ) be a cut of the associated network, such that c(S, T ) < n. Let S1 ⊆ L and
S2 ⊆ R be such that S = {s} ∪ S1 ∪ S2, and let x be the number of edges from S1 to R − S2. This
means that N(S1) contains at most x vertices that are not in S2, so that |N(S1)| ≤ |S2| + x. The
set of edges going from S to T includes the n−|S1| edges going from s to L−{S1}, plus the x edges
going from S1 to R−S2, plus the |S2 edges going from S2 to t. So n > c(S, T ) = n−|S1|+x+ |S2|,
so |S1| > |S2| + x ≥ |N(S1)|. So |S1| > |N(S1)|, which is what we were required to show.

(c) Assume that |N(L′)| ≥ |L′| for every L′ ⊆ L. Part (b) therefore implies that every cut
of the associated network has capacity at least n. Since the minimum cut capacity equals the
maximum flow value, and the maximum flow value equals the size of a largest matching in G, a
largest matching must have size at least n. Since no matching can have size bigger than n, a largest
matching must have size exactly n, and must therefore be a perfect matching.

1


