Tutorial notes for the Change Making Problem

This question concerns a dynamic programming algorithm for the Change Making Problem (CMP). The input to CMP is a sequence of positive integers c_1, \ldots, c_n, T , where c_1, \ldots, c_n represent coin denominations and T is a target amount. Assuming an unlimited supply of coins of each denomination, we are to find the minimum number M of coins needed to form T exactly, or output ∞ if no combination of coins of the given denominations sums to T.

For example, if n = 3, the denominations are $c_1 = 5$, $c_2 = 9$ and $c_3 = 13$, and T = 19, then the answer is M = 3, since three coins suffice (19 = 5 + 5 + 9). With the same input denominations, if T = 6, then the answer is $M = \infty$.

Solution

To simplify presentation, we will use a two-dimensional array $A(i,t), 0 \le i \le n, 0 \le t \le T$.

Step 1: A(i,t) is the minimum number of coins needed to form t using only coins c_1, \ldots, c_i . If no combination of coins sums to t, then $A(i,t) = \infty$.

Once the array is filled, the value of M is A(n,T).

Step 2: Now we are ready to give the recurrence for filling the array. The initialization is:

A(0,0) = 0 and for all $0 \le t \le T$, $A(0,t) = \infty$. That is, no coins are needed to get T = 0, and at least some coins are necessary to obtain any sum t > 0.

The body of the recurrence is

$$A(i,t) = \min_{0 \le k \le |t/c_i|} A(i-1, t-k * c_i) + k.$$

That is, for every new denomination c_i under consideration, we try to see if we can make the number of coins to form t smaller by adding some coins of denomination c_i . Then we take the minimum over all multiplicities of c_i that we can add. That is, we see if the number of coins is minimized if we add $0, 1, 2, \ldots$ up to $\lfloor t/c_i \rfloor$ coins. For that, we look at the number of coins needed to form $t - k * c_i$, and add to it the number of coins k of denomination c_i . Clearly, we cannot add more copies of c_i than "fits" into t; this is why the maximal number of c_i is limited by $\lfloor t/c_i \rfloor$.

Note that this recurrence takes care of the special case $c_i > t$: if $c_i > t$ then the only possible value for k is 0, which amounts to choosing A(i,t) = A(i-1,t). Also, for k = 0 it considers the number of coins necessary to make t without any coins of denomination c_i .

Example: Let n = 3, $c_1 = 2$, $c_2 = 3$ and $c_3 = 5$ with T = 7. Then the array becomes:

$i \backslash t$	0	1	2	3	4	5	6	7
0	0	∞						
1	0	∞	1	∞	2	∞	3	∞
2	0	∞	1	1	2	2	2	3
3	0	∞	1	1	2	1	2	2

Step 3: The following program fills in the array B[i,t], which corresponds to A(i,t) in the recurrence. It has a different name to make it easier to prove that it contains the same values. Assume that the array C[i] contains denomination of i^{th} coin, Also, assume that we have a constant INF > T to represent ∞ .

```
B[0,0] \leftarrow 0 For every t \in \{1,\ldots,T\} B[0,t] \leftarrow \infty end for
For i from 1 to n for every t \in \{0,\ldots,T\} B[i,t] \leftarrow INF for k from 0 to floor(t/C[i]) if B[i,t] > B[i-1,t-k*C[i]]+k then B[i,t] \leftarrow B[i-1,t-k*C[i]]+k end if end for end for end for Output B[n,T]
```

Step 4: In order to reconstruct the solution, we go backwards through our array and check how many coins of each denomination we used.