Tutorial notes for the Change Making Problem

This question concerns a dynamic programming algorithm for the Change Making Problem
(CMP). The input to CMP is a sequence of positive integers c1, ..., c,, T, where ¢, ..., ¢, represent
coin denominations and 7T is a target amount. Assuming an unlimited supply of coins of each
denomination, we are to find the minimum number M of coins needed to form T' exactly, or output
oo if no combination of coins of the given denominations sums to 7'.

For example, if n = 3, the denominations are ¢; = 5, co = 9 and ¢3 = 13, and 7" = 19, then the
answer is M = 3, since three coins suffice (19 = 5+ 5+ 9). With the same input denominations, if
T = 6, then the answer is M = cc.

Solution

To simplify presentation, we will use a two-dimensional array A(i,t), 0 <i<mn,0<¢t<T.

Step 1:

Step 2:

Step 3:

A(i,t) is the minimum number of coins needed to form ¢ using only coins ci,...,¢;. If no
combination of coins sums to ¢, then A(Z,t) = co.

Once the array is filled, the value of M is A(n,T).

Now we are ready to give the recurrence for filling the array. The initialization is:

A(0,0) =0 and for all 0 < ¢t < T, A(0,t) = co. That is, no coins are needed to get T' = 0,
and at least some coins are necessary to obtain any sum ¢ > 0.

The body of the recurrence is

That is, for every new denomination ¢; under consideration, we try to see if we can make the
number of coins to form ¢ smaller by adding some coins of denomination ¢;. Then we take
the minimum over all multiplicities of ¢; that we can add. That is, we see if the number of
coins is minimized if we add 0,1,2,... up to [t/¢;| coins. For that, we look at the number
of coins needed to form ¢ — k * ¢;, and add to it the number of coins k& of denomination c;.
Clearly, we cannot add more copies of ¢; than “fits” into ¢; this is why the maximal number
of ¢; is limited by [t/c;].

Note that this recurrence takes care of the special case ¢; > t: if ¢; > t then the only possible
value for k is 0, which amounts to choosing A(i,t) = A(i — 1,t). Also, for kK = 0 it considers
the number of coins necessary to make ¢ without any coins of denomination c;.

Example: Let n =3, ¢1 =2, co =3 and ¢3 = 5 with T'= 7. Then the array becomes:
La\effofr 2 [3 [4 ][5 [6[7]
0 0

o o0 o0

8181388
—1T8 8
—I™8 8
188

1 0 1 2 3
2 0 1 2 2
3 0 1 2 2

The following program fills in the array B[i, t], which corresponds to A(i,t) in the recurrence.
It has a different name to make it easier to prove that it contains the same values. Assume
that the array C[i] contains denomination of i*! coin, Also, assume that we have a constant
INF > T to represent oco.



B[0,0] <0
For every t € {1,...,T}
B[0,1] + o0
end for
For ¢ from 1 to n
for every t € {0,...,T}
B[i,t] «+ INF
for k from 0 to floor(t/CJi])
if Bli,t] > B[i — 1,t — k * C[i]] + k then
Bli,t] « Bli — 1,t — k« C[i]] + k
end if
end for
end for
end for
Output B[n, T

Step 4: 1In order to reconstruct the solution, we go backwards through our array and check how many
coins of each denomination we used.



