
CMPUT 675: Approximation Algorithms Winter 2018

Lecture 19 (March 20, 2018): Group Steiner Tree
Lecturer: Mohammad R. Salavatipour Scribe: Jingjiao Ni

19.1 Group Steiner Tree

Group Steiner tree is a problem that generalizes Steiner tree.

Group Steiner Tree:

• Input: weighted G = (V,E), ce : E → Q+, root r, k subsets (groups). gi ⊆ V

• Goal: Find a tree T rooted at r that connects at least one node from each gi to r, min-cost.

However, this problem is signinifacntly more difficult to approximate. In fact, even when the input graph is a
tree, the problem is as hard as set cover (Exercise!).

Theorem 1 (Halperin Kraughtganer’03) Group Steiner trees on trees is Ω(log2−ε n)-hard to approx for
any ε > 0.

In this lecture we see a polylogarithmic approximation for this problem on general graphs. Given G the first
step is to use the probabilistic embeddings of metrics into tree metrics that we saw last lecture and at a loss of
O(log n)-loss we reduce the problem into solving the problem on trees. Then we present an algorithm for it on
trees. We prove the following Theorem.

Theorem 2 (Garg/Konjevod/Ravi’00) Group Steiner problem on trees has an O(log n · log k)-approx.

We will use the following LP relaxation of the problem.

min
∑
e

ce · xe∑
e∈δ(S)

xe ≥ 1 ∀S ⊆ V, S separates a group gi from r.

Our rounding algorithm outputs a set of edges E′ such that:

1. E[cost(E′)] ≤ OPT .

2. For any gi, Pr[E′ covers gi] ≥ 1
log |gi| .

19-1

19-2 Lecture 19: Group Steiner Tree

We repeat this algorithm O(log n · log k) times and take the union. It is easy to see that the expected cost of
the solution is at most O(log n · log k) times the optimum. The probability that any group gi is not connected
to the root after all these iterations is bounded by (1− 1

n)O(logn log k) ≈ 1
k2 . Using union bound the probability

that any group is not connected is very small.

For each edge e, let p(e) be the parent of e. Suppose we first try a simple randomized rounding like set cover;
i.e. pick each edge e with probability xe. It will be easy to see that the expected cost of the solution is the
same as optimum LP, however, it is far from satisfying the second condition. For example, consider the simple
tree with only two leaves u and v and there are two paths of length n/2 from r to each of these. Let k = 1 and
g1 = {u, v}. Consider the LP solution in which all xe’s are 1/2. Then the probability that either of u or v are
connected to r is at most 2× 2−n/2.

We modify the rounding in the following way:

Let x′e = 1 with prob xe
xp(e)

; if p(e) doesn’t exist x′e = 1 with prob xe.

We pick each edge e if x′e = 1 and all its ancestors e′ has x′e′ = 1.

Lemma 1 Pr[e is picked] = xe.

Proof. Consider any edge e. Say it has i ancestor edges. Then the probability that it gets picked is the
probability that e and all its ancestors are marked. Therefore,

Pr[e is picked] =
xe
xp(e)

·
xp(e)

xp(p(e))
. . . xepi(e) = xe

Thus, the expected cost of the solution generated is the same as optimum LP. We have to prove that condition
2 holds. Given x, we build another LP solution x̃ such that:

∀gi, Pr[gi is not covered by x] ≤ Pr[gi is not covered by x̃] ≤ 1− 1

log |gi|
.

Lemma 2 If x̃e ≤ xe for all e ∈ E then Pr[gi is not covered by x] ≤ Pr[gi is not covered by x̃].

Proof. Prove lemma 2 by induction on the number of edges where x & x̃ differ. Suppose that x & x̃ differ
on only one edge e : xe > x̃e. We use Te to denote the subtree below e. Note that for groups outside Te,
probabilities for x & x̃ are the same. Let A be the event that a vertex from group gi in Te is covered.

Pr[A] = Pr[none of vertices of gi in Te are covered]

≤ (1− xe) + xe · Pr[A|e is picked]

= 1− xe(1 + Pr[A|e is picked]).

So if xe increases then Pr[A] decreases. Hence for any group, the probability that gi is covered in Te in x is
larger than that of x′.

How to build x̃ from x, fix group gi

1. Delete all edges e incident to leaves from nodes not in gi. Also remove unnecessary/irrelevant edges.

2. Reduce x values (if needed) so that it is minimally feasible. → 1 flows from gi to r.

Lecture 19: Group Steiner Tree 19-3

3. Round down x values to the nearest power of 1
2 .→ ≥

1
2 flow from gi to r.

4. Delete all edges with x values < 1
4|gi| ; Therefore the remaining flow from gi to r is at least 1

2 −|gi| ·
1

4|gi| >
1
4

5. ∀e if xe = xp(e) and p(e) has only one child then merge the edges. If p(e) has at least two children, then
contract e such that children of e become children of p(e). (Note we can do this because when we pick p(e)
then xe is picked with prob 1).

Lemma 3 The height of the new tree is O(log |gi|).

Proof. At each node, x values decrease by factor ≥ 2 going down and they are all 1 . . . 1
4 log |gi| →≤ log(4|gi|)

steps from root to any leaf.

Suppose U is a set and S1, S2, . . . are some subsets of U . Also, assume we generate S′ by randomly and
independently adding each e ∈ u to S′. Let event Ei be the event that Si ⊆ S′, µ =

∑
i Pr[Ei] and ∆ =∑

i∼j Pr[Ei ∩ Ej] where i ∼ j means Ei and Ej are dependant.

Lemma 4 (Janson’s Inequality) If µ ≤ ∆ then Pr[∩iE i] ≤ e
−µ2

2∆ .

In our setting, let U = E, ∀v ∈ gi, Sv is the set of edges on the path from v to r and good event Ev is when all
edges of Sv are picked. S′ is the set of edges we pick in our randomized rounding.

Note that Pr[Ev] = x̃p(v) and therefore 1
4 ≤

∑
v∈gi Pr[Ev] ≤ 1. Also Pr[gi not covered] = Pr[∩v∈giEv]

Lemma 5 ∆ =
∑
u∼v Pr[Eu ∩ Ev] ∈ O(log n).

First, assume this lemma. Then:

Pr[∩vEv] = e
−O(1)

O(log |gi|) ≈ 1− 1

log |gi|
and this completes the proof. So it remains to prove the lemma.

Proof. Suppose that the height of the tree is H. Let u ∈ gi. We prove that

∆u =
∑
v∼u

Pr[Eu ∩ Ev] ≤ O(H) · x̃u.

Noting that
∑
u∈gi x̃u ≤ 1 and H ∈ O(log n) implies the bound claimed. Let e be the edge going up the least

common ancestor (LCA) of two vertices u, v and let c(e) be the child of LCA towards v. Recall that Pr[Eu] = x̃u.
Also:

Pr[Ev|Eu] =
x̃v
x̃p(v)

·
x̃p(v)

x̃p(p(v))
. . .

x̃ce
x̃e

=
x̃v
x̃e

Pr[Eu ∩ Ev] = x̃u ·
x̃v
x̃e

Sum over all v’s that have e as L.C.A. with u and noting that
∑
such v′s x̃v ≤ O(x̃e), since the flow of all of

those vertices goes up from e towards r, therefore:

∑
such v′s

Pr[Eu ∩ Ev] ≤ O(x̃u).

