
CMPUT 675: Approximation Algorithms Fall 2015

Lecture 5 (Sep 15, 2015 ): Bin Packing and Max SAT
Lecturer: Mohammad R. Salavatipour Scribe: Samuel Fischer

5.1 Bin packing (continuation)

In the last lecture we introduced the bin packing problem, in which elements of given sizes shall be packed into
a minimal number of unit size bins. We introduced a simple greedy algorithm (the first fit algorithm) to solve
the problem approximately and showed that it leads to a solution not worse than 2 opt+ 1.

In this lecture we will show that there are algorithms that return results much closer to the optimum.

Theorem 1 For any 0 < ε ≤ 1
2 there is an algorithm Aε that runs in polynomial time and returns a solution

to the bin packing problem of cost ≤ (1 + ε) opt+ 1.

Proof. We will prove this theorem in multiple steps. First, we will consider only small items that have at most
size ε

2 . Then, we will consider a simplified instance of the general problem, in which all items have sizes from
a fixed set of size values. We will use the solution to this simplified problem to solve the bin packing problem
for the ”big” elements (with sizes larger than ε

2 ). Finally, we will combine the approaches in order to obtain an
algorithm that returns an approximation of the desired quality.

5.1.1 Bin packing with small elements

Suppose all items are small, i.e. their size is ≤ ε
2 . We call this problem instance IS

Claim 1 If we apply the first fit algorithm to this problem, there will be less than ε
2 free space in all bins except

maybe one.

Proof. We can prove this easily by contradiction: Let us call the ith bin Bi, whereby the index i indicates the
order in which the bins are visited by the first fit algorithm. Suppose there were two bins filled not more than(
1− ε

2

)
. Call their indices j and k with j < k and let s be the size of an arbitrary element in Bk.

Let us now look back into how the algorithm could have achieved this setting: The algorithm would have tried
to fill the element s into Bj first, because j < k. This would have been successful, since there is at least ε

2 ≥ s
space in Bj . Therefore, the considered item would have been filled into Bj , which contradicts the assumption
that it is in Bk. Hence, the algorithm cannot return a setting like the constructed. Thus, there is not more
than one bin filled ≤

(
1− ε

2

)
.

Using this observation, it is not difficult to assess the approximation quality of the first fit algorithm:

Claim 2 The first fit algorithms applied to a bin packing problem instance in which all items have sizes less or
equal to ε

2 returns a cost ≤ (1 + ε) opt+ 1.

5-1



5-2 Lecture 5: Bin Packing and Max SAT

Proof. Let FF (IS) denote the number of required bins returned by the first fit algorithm and opt the cost
of the optimal solution, i.e. the number of required bins with optimal packing. As shown above, all bins but
maybe one are filled with at least

(
1− ε

2

)
. Hence,

(
1− ε

2

)
(FF (I)− 1) ≤

n∑
i=1

si.

Furthermore, the items must occupy at least d
∑n
i=1 sie bins. That is,

n∑
i=1

si ≤ opt.

Therefore, (
1− ε

2

)
(FF (I)− 1) ≤ opt

⇔

FF (I) ≤
(

1

1− ε
2

)
opt+ 1

≤ (1 + ε) opt+ 1.

For the last step we used that 1 < 1 + ε
2 −

ε2

2 = (1 + ε)
(
1− ε

2

)
⇔ 1

1− ε2
< 1 + ε.

5.1.2 Bin packing with a fixed set of element sizes

Before we proceed to regard the problem instance with the big elements, we consider a simplified version of the
bin packing problem. Suppose that the size of each element can only take one out of r different values. Let
{si : 1 ≤ i ≤ r} be the set of the occurring sizes.

Definition 1 A vector (x1, . . . , xr) is called a configuration, if we can pack a bin using xi items of size si,
respectively.

We can obtain an upper bound for the number of all configurations by assuming that each xi in a configuration
can take an integer between 0 and n (the number of considered items). If this were the case, there would be
(n+ 1)r, which is in O (nr), different possibilities.

In any solution to the bin packing problem a bin corresponds to a configuration. Let C be the set of all
configurations whose items fit into a single bin. That is, C := {(x1, . . . , xr) :

∑r
i=1 xi ≤ 1}.

Let A [x1, . . . xr] be the number of bins needed to pack a set of items containing xi items of size si, respectively.
We can solve the problem by applying dynamic programming as outlined in algorithm 1.



Lecture 5: Bin Packing and Max SAT 5-3

Algorithm 1 Bin packing with fixed element sizes linear programming Algorithm.

1: initialize all entries of r-dimensional array A with ∞
2: for all (x1, . . . , xr) ∈ C do
3: A [x1, . . . , xr] = 1
4: end for
5: for i1 ← 0 to n do
6: for i2 ← 0 to n do

7:
...

8: for ir ← 0 to n do
9: for all (x1, . . . , xr) ∈ C do

10: A [i1, . . . , ir] = min {A [i1, . . . , ir] , A [i1 − x1, i2 − x2, . . . , ir − xr] + 1}
11: end for
12: end for

13:
...

14: end for
15: end for

5.1.3 Bin packing with big elements

We have already regarded the problem considering only the small items. Let us now look at the problem instance
IL in which all items are big, i.e. their size is greater than ε

2 . Suppose we have n such items.

We will solve the problem by reducing it (by introducing small errors) to a bin packing problem with a small
set of element sizes – just as we regarded it in the previous section.

First of all, we sort the items by their sizes in decreasing order. This works in polynomial time. Now we put
every k consecutive items in one group, for k to be specified later. The group G1 contains the k largest items,
the group G2 the next k items and so on. We obtain

⌈
n
k

⌉
groups.

We discard the items in G1 and replace in all other groups Gi with 2 ≤ i ≤
⌈
n
k

⌉
the sizes of all items with

the size of the respective largest item in the group Gi. See figure 5.1 for a visual presentation of the described
procedure.

Let us call the obtained problem instance I ′L.

Lemma 1 For the optimum of the instances IL and I ′L: opt(I ′L) ≤ opt(IL)

Proof. To prove this inequality we build a further problem instance I ′′L starting from IL. However, this time

ϵ
2

0 1G
1

G
2

Gn
k

...

...

Figure 5.1: Visualizing of the rounding procedure to trasform the bin packing problem with large elements into
a bin packing problem in which the element sizes are from a fixed set. On the horizontal line the different
element sizes (small dashes) are plotted. The grey boxes show which elements each group contains. The arrows
denote by which value an element size is replaced during the replacement procedure.



5-4 Lecture 5: Bin Packing and Max SAT

we proceed in the opposite way than we did in the construction of I ′L:

• Instead of G1 we discard the group Gdnk e

• In G1, . . . , Gdnk e−1 we replace the size of all items with the size of the smallest item in their respective
group.

Clearly, it is opt(I ′′L) ≤ opt(IL), because all item sizes were either decreased or not changed. In addition, I ′′L
does not contain the items in Gdnk e. On the other hand, opt(I ′L) ≤ opt(I ′′L), since the largest items have been

discarded in I ′L and all items in Gi+1 in instance I ′L are smaller than or equal to those in group Gi in instance
I ′′L. Thus, opt(I ′L) ≤ opt(IL).

To solve the problem IL we solve I ′L and distribute the k items from G1 with the first fit algorithms to further
bins (at most k of them). The overall resulting number of bins will be smaller or equal opt(I ′L) + k.

Of course it is important to make a good choice for the number k of items in each group. Let us set k := dεSe,
whereby S :=

∑n
i=1 si is the sum of the sizes of all items. Because all items are greater than ε

2 and all bins have
size 1 (which implies that we need at least dSe bins), it is n ε2 ≤ S ≤ opt.

Using these observations, we can compute the running time of the algorithm. We obtain for the number r of
different item sizes (# of constructed groups− 1) in instance I ′L:

r + 1 =
⌈n
k

⌉
⇔

r ≤ n

k
=

n

dεSe
≤ n

εn ε2
=

2

ε2

That is, the dynamic programming part of the algorithm runs in O
(
n

1
ε2

)
.

Claim 3 The proposed procedure leads to a result ≤ (1 + ε) opt(IL) + 1.

Proof. It is

opt(I ′L) + k ≤ opt(IL) + dεSe
≤ opt(IL) + ε opt(IL) + 1

= (1 + ε) opt(IL)) + 1.

In the first line we applied lemma 1. For the second inequality we used that S ≤ opt.

5.1.4 Combining the approaches

In order to solve the general bin packing problem we combine the our solutions for the instances IS and IL as
follows:

In figure 5.2 we show how the result of the combined approach could look like.



Lecture 5: Bin Packing and Max SAT 5-5

...
Bin 1 Bin 2 Bin 3 Bin opt(I'

L
) + m Bin opt(I'

L
) + m + 1

< ϵ
2

Elements in G
1

Big elements not in G
1

Small elementsLegend:

Figure 5.2: Visualization of the combined bin packing algorithms. The turquois elements have been distributed
using the approach for large items. In particular, the light turquois elements have bin distributed using algorithm
1. The dark turquois and then the yellow elements were added afterwards using the first fit algorithm. In all
but maybe one bins that contain small (yellow) items, there is less than ε

2 free space. Distributing only the
light turquois elements would require opt(I ′L) bins. The number m denotes the number of additional bins that
is required, if also the dark turquois items have to be considered.

Algorithm 2 Bin packing with successively considering large and small items

• Pack the large (> ε
2 ) items into opt(IL) bins

• Use the first fit algorithm to add the small (≤ ε
2 ) items.

Claim 4 The returned solution has a value ≤ max {opt(IL), (1 + ε) opttot + 1}, whereby opttot denotes the over-
all optimum.

Proof. If all small items fit in the bins of the large items, they will not occupy further space. On the other
hand, if they do not fit in the bins of the large items, all (except maybe one) bins will be filled more than 1− ε

2
(same argument as in claim 1).

Theorem 1 follows directly from claim 3 and claim 4.

Further scientific progress has been made with regard to the bin packing problem. For example, [KK88] found
an algorithm that returns a result ≤ opt+O(log2 n). Later, even better algorithms were developed. However,
it is still an open question whether there is an approximation as good as opt+O(1)

5.1.5 Complementary problem: Scheduling on identical parallel machines

The complementary problem to bin packing is scheduling on identical parallel machines.

Scheduling on identical parallel machines:

• Input:

– A set of k identical machines M1, . . . ,Mk, which run parallel.

– A set of n jobs J1, . . . , Jn with processing times p1, . . . , pn, respectively.



5-6 Lecture 5: Bin Packing and Max SAT

• Goal: Assign the jobs to the machines in a way that the ”make span”, i.e. the latest time any machine
finishes its last job, is minimized.

In the bin packing problem we tried to minimize the number of bins (here: machines), whereby each bin had
a given size. On the other hand, in the scheduling problem the number of machines (previously: bins) is fixed
and we try to minimize the largest computation time (previously: bin size).

Note that even if two problems are complementary to each other, their solutions can be of different computational
difficulty.

We will pass on solving the problem for now and go to the next section directly: maximum satisfiability.

5.2 Max SAT (Maximum Satisfiability)

Before we introduce the maximum satisfiability problem, recall the term ”CNF” (”clausal normal form”, or
”conjunctive normal form”). It is a boolean expression that consists of a conjunction (”and-linkage”) of clauses.
Thereby, a clause is a disjunction (”or-linkage”) of literals.

Example 1 Let x1, . . . , x6 be literals. Then the statement

(x1 ∨ x̄2∨) ∧ (x̄5 ∨ x4) ∧ (x̄1 ∨ x3 ∨ x6) (5.1)

is in CNF. The expressions inside the parentheses are clauses. Note that we write x̄ for ¬x.

Naively speaking, we want to maximize the ”truth value” of a given CNF in the maximum satisfiability problem.

Maximum satisfiability problem:

• Input: A CNF formula over n variables x1, . . . xn, whereby each clause ci has weight wi.

• Goal: Find a truth assignment that maximizes the total weight of satisfied clauses.

We can distinguish multiple special cases of the Max SAT problem:

• Max k SAT: There are ≤ k literals in each clause. The respective decision problem is NP-hard for k ≥ 3.

• Max E k SAT: There are exactly k literals in each clause.

Theorem 2 Max k SAT is NP-hard for any k ≥ 2.

We state this theorem without proof.

There are plenty of algorithms to solve the problem approximately. As we did for the bin packing problem,
we introduce some simple algorithms first, which we will combine later to a more sophisticated approach that
leads to an even better approximation. Let us start by looking at the algorithm ”random assignment using fair
coins”:

Theorem 3 (Johnson ’74) Algorithm 3 is a 1
2 -approximation.



Lecture 5: Bin Packing and Max SAT 5-7

Algorithm 3 (Max SAT 1) Random assignment using fair coins

1: for all variables xi do
2: xi ← True or False with probability 1

2 , respectively
3: end for

Proof. For all clauses cj define

zj :=

{
1 if clause cj is satisfied

0 else.

A clause cj is satisfied if any of its literals is true. We randomly assign truth values to the variables. Therefore,
the literals are true or false with probability 1

2 , respectively, too. The probability that the |cj | literals in j are

all false is 1

2|cj |
. Hence, the expected value of zj is E[zj ] =

(
1− 1

2|cj |

)
≥ 1

2 .

The total weight w of all satisfied clauses is given by

w =
∑
j

wjzj .

Hence, the expected total weight is given by

E[w] =
∑
j

wjE[zj ]

=
∑
j

wj

(
1− 1

2|cj |

)
≥ 1

2

∑
j

wj .

Since opt ≥
∑
j

wj (we cannot obtain a result better than that all clauses are true), the algorithm gives a

1
2 -approximation.


