
CMPUT 675: Approximation Algorithms Fall 2015

Lecture 13 (Oct 13th, 2015): GAP, MST
Lecturer: Mohammad R. Salavatipour Scribe: Chenyang Huang

13.1 Generalized Assignment Problem(GAP)

Problem Description:
Suppose we are given a set of n jobs, and m unrelated machines. Let pij be the processing time of job j on
machine i and cij be the cost of running job j on machine i. Let T be the bound by which we want to finish all
the jobs. Our goal is to find a scheduling of the jobs on the machines so that all the jobs are done before time
T and we minimize the cost of processing these jobs. The following is a natural LP relaxation for this problem
known as Generalized Assignment Problem (GAP):

min
∑

i,j cij · xij∑
i xij = 1 1 ≤ j ≤ n∑

j pij · xij ≤ T 1 ≤ i ≤ m
xij ≥ 0

Clearly the problem is NP-hard since even the feasibility (whether there is a solution satisfying all the constraints
is NP-hard). We present a bicriteria algorithm in the sense that it either detects that there is no feasible solution
or finds a solution of cost at most OPT but violates the time constraint by a factor ≤ 2.

Bipartite Matching Polytope
Before presenting our algorithm we first present a classical result from combinatorial optimization. Consider a
bipartite graph G = (V ∪U,E) with |U | ≤ |V |. We say M ≤ E is a complete matching if saturates all of U , i.e.
∀u ∈ U , u has degree 1 in M and ∀v ∈ V , v has degree ≤ 1 and ∀v ∈ V has degree ≤ 1. We say M is a perfect
matching with every vertex of U and V has degree 1 in M (obviously we must have |U | = |V | = |M |). We can
write the complete matching problem as the following integer program:

∑
u:uv∈E

yuv ≤ 1 ∀v ∈ V∑
v:uv∈E

yuv = 1 ∀u ∈ U

yuv ∈ {0, 1}

By relaxing the last constraint to yuv ≥ 0 we obtain an LP.

Theorem 1 For any bipartite graph G(U∪V,E), any bfs of the above LP is integral. Also any feasible fractional
solution can be turned to an integral solution of no more cost.

Now back to the GAP, suppose x̄ is an optimal solution with cost C to the LP presented. So we have a total
of

∑n
j=1 xij (fractional) jobs assigned to machine i. Suppose we allocate d

∑n
j=1 xije = ki slots for machine i;

13-1

13-2 Lecture 13: GAP, MST

...

...

1ix

2ix

3ix

4ix

(,)jy i s

Figure 13.1: Blablabla

think of each as a unit size bin. We build a bipartite graph B = (J ∪ S,E) in the following way. For each job j
we will have a node in J . We will have a node (i, s) in S for each i, s where i is the ith machine (1 ≤ i ≤ m)
and s is the sth slot (1 ≤ s ≤ ki). Consider the jobs assigned by LP to i. They are the only jobs that will have
an edge to (i, s) (detailed below). Ideally we would like to have the following properties in our bipartite graph:

1. B has a fractional complete matching for J of cost at most C

2. Each integer complete matching on J corresponds to an assignment of jobs to machines of cost at most
C and completion time ≤ 2T .

If we can obtain such a fractional complete matching, then using Theorem 1 we should be able to find an
integer solution of cost at most C with completion time at most 2T . Now we describe the edges of the bipartite
graph B. Consider a machine i and suppose we sort the jobs in none-increasing order of their size on i, i.e.
pi1 ≥ pi2 ≥ · · · pki . Now we consider slots (i, s) for 1 ≤ s ≤ ki as unit size bins and xij as fractional pieces of
the jobs to be packed in these bins. We go through the jobs in that order and fill slot (i, 1) until it becomes full
and we move on to the next slot. If at a point we have a capacity z is left in a bin and for job j we have xij > z
we fill that bin using xij − z fraction of job j and the rest of that job goes to the next slot. Let yj,(i,s) be the
fraction of job j assigned to bin/slot (i, s), ∀j. We will have an edge j, (i, s) in B if yj,(i,s) > 0, the cost of this
edge is set to cij . Note that each job has fractional degree 1 (since

∑
i xij = 1). (see Figure 13.1).

So the yj,(i,s) constitute a fractional matching (covering all of J) in B and clearly the cost of the matching is at
most

∑
i,j cijxij since we assigning the jobs fractionally in the same way as the LP does. Now we want to show

that the second property mentioned above holds for B. Consider some slot (i, s) and let max(i, s) be defined
to be longest job assigned to to slot (i, s). then if we consider any matching in B the total “load” (sum of
processing time of jobs) assigned to machine i is at most:

ki∑
s=1

max(i, s).

Also note that each job by itself is most T . Therefore if we show that
∑ki−1

s=1 max(i, s) ≤ T then we have shown

Lecture 13: GAP, MST 13-3

∑ki

s=1 max(i, s) ≤ 2T . Thus if we find a min-cost matching in B then each machine load is at most 2T and we
are done. Below we complete this argument.

First note that all the slots except the last one for machine i is full, i.e. 1 ≤ s ≤ ki − 1:
∑

j yj,(i,s) = 1. So∑
j pijyj,(i,s) is a weighted average of processing times assigned to slot (i, s). Since the jobs are considered in

non-increasing order of their processing times, the largest job assigned to slot s+ 1 is no more than the average
assigned to slot s, i.e. max(i, s+ 1) ≤

∑
j yj,(i,s)pij , which implies

ki−1∑
s=1

max(i, s+ 1) ≤
ki−1∑
s=1

∑
j

yj,(i,s)pij ≤
ki∑
s=1

∑
j

yj,(i,s)pij .

Noting that xij =
∑

s yj,(i,s), and by changing the order of sums in the RHS, we can uppoer bound that
expression by

∑
j

∑
s yj,(i,s)pij =

∑
j pijxij ≤ T .

13.2 Minimum Spanning Tree

We know that the minimum spanning tree problem is solvable in polynomial time. Our goal (this and next
lecture) is to prove that the spanning tree polytope is integral using an iterative argument. Let’s start with the
following LP relaxation of the problem.

min
∑

e∈E ce · xe
s.t. δx(S) ≥ 1 ∀S ⊂ V (1)

xe ≥ 0 ∀e ∈ E (2)

It is easy to see that all the constraints of this LP are satisfied by any spanning tree. However this LP has
integrality gap of almost 2.

Figure 13.2 shows such an example, a cycle of size n with each edge having factional value 1/2. So the cost of
the LP will be n

2 but the integral solution will require n − 1 edges. So the size of integrality gap is almost 2.
We can model our problem in a way that we wouldn’t encounter this problem. As an observation, it is obvious
that in a graph G with a spanning tree T :

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

nc

Figure 13.2: None integral example of LP(1)

13-4 Lecture 13: GAP, MST

∀S ⊆ V : E(T) ∩ E(S) ≤ |S| − 1

where E(T) is the edges of tree and E(S) is the edges both end-points in S. As a matter of fact this condition
is also sufficient for spanning trees. So we have:

min
∑
wexe

s.t. x(E(S)) ≤ |S| − 1, ∀S ⊂ V
x(E(V)) = |V | − 1
xe ≥ 0.

We call this LPMST . Our goal is to prove that:

Theorem 2 LPMST is integral, i.e. every bfs of this LP is integral.

