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10.1 Survivable Network Design

Steiner Network or Survivable Network Design problem is a generalization of the Steiner forest problem and is
the most general form of connectivity requirement network design problem. The problem definition is as follows:

Survivable Network Design: Given an undirected graph G = (V,E) and cost function on edges c : E → R
+

and a connectivity requirement r(u, v) for any pair u, v ∈ V .
Goal: find a minimum cost subgraph H which has at least r(u, v) edge-disjoint paths between u, v for every
pair u, v.

Examples: If r(u, v) = 1 for all pairs then our problem is the Minimum Spanning Tree problem.
If r(u, v) = 1 for all u, v ∈ T for a set T ⊆ V then our problem is actually Steiner Tree.
If r(u, v) ∈ {0, 1} for all pairs then our problem is actually Steiner Forest(Generalized Steiner Tree).
If r(u, v) = k for some given k, for all pairs then our problem is actually Minimum Cost k-edge-connected
subgraph problem.
If r(u, v) = 2 for all pairs then our problem is actually Minimum Cost 2-edge-connected subgraph problem.

If k = max r(u, v), a 2k-approximation is given by [1]. Later, a 2Hk-approximation came out by Goemans et

al. [2] where Hk =
∑k

i=1

1

i
. After that, Jain gave a 2-approximation algorithm [3] in which he used iterative

rounding that is now known as Jain’s rounding. It’s an inefficient algorithms but that is the only 2-approximation
algorithm that we know so far.

10.1.1 Jain’s rounding

Before we express an LP-relaxation of the problem we need a few definitions.

Definition 1 The cut requirement function f : 2V → Z
+, ∀S ⊆ V is the largest requirement across the cut S, S̄.

In other words, f(s) = maxu,v r(u, v) s.t. u ∈ S, v /∈ S.

Definition 2 We define Ue to be maximum number of copies of edge e that you can pick. In a simple graph it
would be 1. But in this problem, it is possible to have a graph with multiple edges.

The following is a natural LP relaxation of the problem:

xe is a variable that shows if we should pick edge e or not. We also define δx(S) =
∑

e∈δ(S) xe.

Definition 3 Suppose that we have picked a set of edges so far, say H ⊆ E. For each set S ⊆ V we define the
residual cut requirement as f ′(S) = f(S)− |δH(S)|.
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min
∑

e∈E ce · xe

s.t.
∑

e∈δ(S) xe ≥ f(S) ∀S ∈ V (1)

0 ≤ xe ≤ Ue ∀e ∈ E (2)

Note that f ′ may not correspond to any connectivity requirement function r(u, v). We now take a look at Jain’s
iterative rounding algorithm:

Jain’s rounding

1. H ← ∅
2. f ′ ← f
3. while H is not feasible do

4. find an optimum extreme point solution (basic feasible solution) x for graph G = (V,E −H) using f ′

5. delete edges with xe = 0
6. for each edge e with xe ≥

1
2 do

7. add ⌈xe⌉ copies of e to H
8. for every S ⊆ V : f ′(S)← f(S)− |δH(S)|
9. return H

Figure 10.1: Jain’s iterative rounding

What is interesting about this method is that, not only we can use it to derive some approximation algorithms,
but also you can prove some of the classical results in optimization theory as we’ll see in the next lecture.

Note that although the LP has exponentially many constraints we can solve this using Ellipsoid algorithm if we
have a separation oracle for it. For every pair of vertices u, v ∈ V (G) we can run a max-flow-min-cut from u
to v with these x values as flows to find a min-cut between u, v. This min-cut gives you a cut S and then you
need to have at least r(u, v) in this cut and the capacity of the cut with these values has to be at least r(u, v).
If a min-cut with less capacity than r(u, v) is found, then this cut represents a violated constraint.

For updating f ′, imagine an arbitrary iteration. Given x′ we want to check feasibility using ellipsoid algorithm.
We define xe = x′

e + eH , where eH is the number of copies of e added to H so far.

Lemma 1 Cut (S, S̄) is violated by x′ under f ′, if and only if it is violated by x under f .

Proof. We know that:

δx(S) = δ′x(S) + |δH(S)|

f(S) = f ′(S) + |δH(S)|

So we can easily conclude that:

δx(S) ≥ f(S)⇐⇒ δ′x(S) ≥ f ′(S)
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Figure 10.2: Types of edges for two crossing sets

So, you don’t need to update f ′ in each iteration, instead you can work with function f . The update statement
in Jain’s rounding is for easier description of algorithm.

Until now we have proved that Jain’s algorithm can be implemented to run in polynomial time. Now we should
prove that algorithm gives us a 2-approximation. But first we need to define some tools to help us in our proof.

Definition 4 A function g : 2V → Z
+ is (strongly) sub-modular if g(V ) = 0 and ∀A,B ⊆ V the following two

hold:

1. g(A) + g(B) ≥ g(A ∪B) + g(A ∩B)

2. g(A) + g(B) ≥ g(A−B) + g(B −A)

Definition 5 Two sets A,B cross each other if A−B 6= ∅ , B −A 6= ∅ and A ∩B 6= ∅.

Note that containment is not considered crossing.

Lemma 2 The function |δ(S)| is sub-modular.

Proof. Given A,B ⊆ V , we prove the first condition holds. The proof of second condition is very similar to
the first one. If A ∩ B = ∅ or A ⊆ B or B ⊆ A then the statement is easy to check. Otherwise, there are four
type of edges we need to consider as shown in Figure 10.2 .

our statement is: |δ(A)| + |δ(B)| ≥ |δ(A ∪ B)| + |δ(A ∩ B)|. Edges of type e1 only contribute to the left hand
side and edges of type e2, e3, e4 contribute equally to both sides. The reason is, edges of type e1 are in cuts of
A and B but not in cuts of A ∪ B or A ∩ B, and edges of type e2, e3, e4 appear the same number of times in
cuts of A and B as in cuts of A ∪B and A ∩B. So the statement must be true.
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Definition 6 A function g : 2V → Z
+ is weakly super-modular if g(V ) = 0 and ∀A,B ⊆ V at least one of the

following two holds:

1. g(A) + g(B) ≤ g(A ∪B) + g(A ∩B)

2. g(A) + g(B) ≤ g(A−B) + g(B −A)

Lemma 3 f, f ′ are weakly super-modular.

Proof. Since f is coming from r(u, v), it is easy to prove that f is weakly super-modular. We show that f ′

is weakly super-modular. Suppose that for a given pair A,B ⊆ V , first condition holds for f (the proof when
second condition is true is the same is the first). So we know that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B)

By Lemma 2, we know that |δ(S)| is sub-modular ( for any graph H ):

|δH(A)|+ |δH(B)| ≥ |δH(A ∪B)|+ |δH(A ∩B)|

Since the in the first statement left hand side is less than or equal to right hand side and for second statement
it is inverse, so we can subtract second statement from first statement and we will have:

(f(A)− |δH(A)|) + (f(B)− |δH(B)|) ≤ (f(A ∪B)− |δH(A ∪B)|) + (f(A ∩B)− |δH(A ∩B)|)

And we know that as we defined before, f(S)− |δH(S)| = f ′(S). Therefore:

f ′(A) + f ′(B) ≤ f ′(A ∪B) + f ′(A ∩B)

We will show the following:

Theorem 1 For any weakly super-modular function f ′ and a best feasible solution x to the LP with f ′, there
is some edge e with xe ≥

1
2 .

Assuming this theorem we complete the remaining part of our proof. Note that this theorem shows that Jain’s
algorithm has an approximation ratio of 2 for any weakly super-modular function f ′, not just one that comes
from a cut requirement function f .

Theorem 2 Jain’s algorithm is a 2-approximation.

Proof. We prove this theorem by induction on the number of iterations. Let ZLP be the optimum value of
the original LP. If there is only one iteration then clearly our solution costs at most 2ZLP . For the induction
step suppose there is an edge e with xe ≥

1
2 that is added to H . By induction hypothesis the algorithm finds

a solution of cost at most 2Z ′
LP where Z ′

LP is the optimum value of the new residual LP (which has one less
iterations than the original LP). We claim that Z ′

LP ≤ ZLP − cexe. This is because the restriction of x to the
edges in E − e is feasible for the residual LP. In other words:
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∀S ⊆ V, δx(S) ≥ f(S) =⇒ δx(S)− xe ≥ f ′(S)

Therefore,

Z ′
LP ≤ ZLP − cexe ≤ ZLP −

1

2
ce

So, if we show the whole cost of Graph H with c(H), considering our induction hypothesis, we will have:

c(H) ≤ ce + 2Z ′
LP ≤ 2ZLP

10.1.2 Characterization of basic feasible solutions

From now on, we prove Theorem 1.

Definition 7 A collection L of sets is a Laminar family if no two of them cross.

You can look at a Laminar family as a forest: there is a node corresponding to each set in L and a node u is
the parent of a node v is the set corresponding to u is the minimal set that contains the set corresponding to
v. Assume that 0 < xe < 1 for all edges because we can delete edges with xe = 0 and add those with xe = 1 to
the solution without any cost increase w.r.t optimum. Let m = |E| be the number of edges after deleting 0 and
1 values, i.e. the size of the totally fractional solution. For every set F ⊆ E we use x(F ) to denote the sum of
the xe values for e ∈ F .

Definition 8 A set S is called tight if x(δ(S)) = f(S).

Definition 9 For each set F ⊆ E the characteristic vector is defined as χF ∈ {0, 1}|E|=m, such that χF (e) =
{

1 if e ∈ F
0 otherwise

Lemma 4 For any basic feasible solution x that is totally fractional (i.e. 0 < x < 1) there is a collection of
m = |E| tight sets L s.t.

1. L is Laminar.

2. characteristic vectors of δ(S) (S ∈ L ) are linearly independent.

To prove this lemma we need to prove some other statements first. Let x be a basic feasible solution and τ be
a collection of m tight constraints corresponding to this solution. (note that they are all linearly independent)

Definition 10 Span of τ is the vector space generated by these m linearly independent vectors, i.e. {χδ(S) :
S ∈ τ}. So, we will have span(τ) = R

m
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Let L be a maximal laminar family that is a subset of τ . If |L | = m then we have what we need in Lemma 4.
Otherwise, we show there is a tight set S which can be added to L while increasing the span of L and keeping
it Laminar.

Lemma 5 If A,B ∈ τ and are crossing (tight and linearly independent), then one of following two holds:

1. A ∪B and A ∩B are tight and χδ(A) + χδ(B) = χδ(A∪B) + χδ(A∩B)

2. A−B and B −A are tight and χδ(A) + χδ(B) = χδ(A−B) + χδ(B−A)

Remark: This lemma can be used to uncross two sets A and B that cross by replacing them with A ∪ B and
A ∩B or A−B and B −A.

Proof. We know that f is weakly super-modular. Suppose that the second condition holds: f(A) + f(B) ≤
f(A−B) + f(B −A) (the proof when the first condition holds is similar). Because A,B ∈ T both are tight we
must have x(δ(A)) = f(A) and x(δ(B)) = f(B).

So x(δ(A)) + x(δ(B)) = f(A) + f(B) ≤ f(A− B) + f(B − A). Because x is feasible x(δ(A −B)) ≥ f(A − B)
and x(δ(B −A)) ≥ f(B −A); thus x(δ(A −B)) + x(δ(B −A)) ≥ f(A−B) + f(B −A). Combining these two
yields x(δ(A)) + x(δ(B)) ≤ x(δ(A −B)) + x(δ(B −A)).

We show that this holds with equality by the same technique as Lemma 2. Consider the four edge types in the
figure. Edge e3 contributes twice to the left hand side but edges e1, e2 and e4 contribute equally to both sides.
Therefore the inequality holds in other direction too; so we must have equality.

Because this holds with equality and we also have x(δ(A − B)) ≥ f(A − B) and x(δ(B − A)) ≥ f(B − A)
(because x is a feasible solution) we must have x(δ(A − B)) = f(A − B) and x(δ(B − A)) = f(B − A). Also,
there is only one type of edge, namely e3 in the figure, that does not contribute to both sides equally; since we
have x(δ(A)) + x(δ(B)) = x(δ(A − B)) + x(δ(B − A)), these edges must have value 0, i.e. don’t exist. Thus
χδ(A) + χδ(B) = χδ(A−B) + χδ(B−A), as wanted.

We now return to prove lemma 4.

Proof. for Lemma 4

Assume |L | < m. There must be a tight set S s.t. χδ(S) ∈ span(τ) but χδ(S) /∈ span(L ). Pick such S that
crosses the fewest number of sets in L . Suppose that S crosses S′ ∈ L . Apply Lemma 5 to S, S′. Either S ∩S′

and S ∪ S′ or S − S′ and S′ − S are tight and at least one of the following holds:

1. χδ(S) + χδ(S′) = χδ(S∪S′) + χδ(S∩S′)

2. χδ(S) + χδ(S′) = χδ(S−S′) + χδ(S′−S)

We know that S /∈ L and S′ ∈ L . If from the two situation mentioned above the first one is true, then at least
one of S ∪S′ and S ∪S′ are not in L and if the second statement is true, then at least one of S−S′ and S′−S
are not in L . In either case it is easy to show that for example S ∪ S′ /∈ L crosses fewer sets in L than S′.

We have proved all of our lemmas and theorems except Theorem 1. We will prove this theorem with a counting
argument.

Proof. For Theorem 1 Assume by contradiction that all xe <
1
2 . Note that |L | = |E| = m.

We assign one token to each edge e. The total number of tokens will be m. Then, we redistribute the token
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Figure 10.3: Redistributing tokens among sets

such that each S ∈ L gets one token and we will show that there will be some leftover tokens, which is clearly
a contradiction. Each edge e = (u, v) gives xe tokens to each set which is the first (smallest) set containing an
end-point of it, and also gives 1− 2xe tokens to the smallest set containing both end-points (as shown in Figure
10.3).

It is possible for an edge not to give 1− 2xe to the outer set because sometimes there would be no outer set to
give the token to. So the total token that an edge e gives is at most 2 × xe + (1 − 2xx) ≤ 1. For the root sets
(i.e. sets that don’t belong to any other set), the tokens of edges coming out are not totally used. So the total
tokens that a set S gets is (considering Figure 10.3) is:

x(C) + x(B) +
∑

e∈B

(1 − 2xe) +
∑

e∈A

(1− 2xe)

And because
∑

e∈B(1 − 2xe) = |B| − 2x(B) the total tokens will be:

x(c) − x(B)− 2x(A) + |B|+ |A|.

We claim that this is a positive integer. We have assumed that set S has only two children. It may have more
but the calculation doesn’t change and same reasoning will work for more than two children. We know that
|A|+ |B| is integer. Since our sets are all tight, so:

f(S) = x(δ(S)) (10.1)

f(R1) = x(δ(R1)) (10.2)

f(R2) = x(δ(R2)) (10.3)

If we subtract the last two statements from the first one:

f(S)− f(R1)− f(R2) = x(δ(S)) − x(δ(R1))− x(δ(R2)) = x(C) − x(B)− 2x(A).
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But f(S)− f(R1) − f(R2) is an integer. So x(C) − x(B) − 2x(A) should be an integer as well. Also, because
S,R1, R2 are linearly independent, this value cannot be zero. So x(C) − x(B) − 2x(A) > 0, so it must at least
1. Thus, each set S gets at least 1 token. If S is a maximal set in the laminar family, clearly there are some
edges coming out of S (those that are in δ(S) but in none of its children). There is at least 1 − 2xe token of
those edges left-over that are not accounted for. So the number of tokens would be larger than m, which is a
contradiction.

10.2 Minimum Spanning Tree polytope

We know that the minimum spanning tree problem is solvable in polynomial time. In this section we prove that
the spanning tree polytope is integral using an iterative argument. Let’s start with the following LP relaxation
of the problem.

min
∑

e∈E ce · xe

s.t. δx(S) ≥ 1 ∀S ⊂ V (1)
xe ≥ 0 ∀e ∈ E (2)

It is easy to see that all the constraints of this LP are satisfied by any spanning tree. However this LP has
integral gap.

Figure 10.4: A cycle and a fractional spanning tree

Figure 10.4 shows an example with integrality gap. For a cycle of size n, the fractional solution will be n
2 but

the integral solution will require n − 1 edges. So the size of integrality gap is almost 2. We can model our
problem in a way that we wouldn’t encounter to this problem. As an observation, it is obvious that in a graph
G with a spanning tree T :

∀S ⊆ V : E(T ) ∩ E(S) ≤ |S| − 1

where E(T ) is the edges of tree and E(S) is the edges both end-points in S. As a matter of fact this condition
is also sufficient for spanning trees. So we have:

min
∑

wexe

s.t. x(E(S)) ≤ |S| − 1, ∀S ⊂ V
x(E(V )) = |V | − 1
xe ≥ 0.
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We call this LPMST . Our goal is to prove that:

Theorem 3 LPMST is integral, i.e. every bfs of this LP is integral.
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