
,7

CMPUT 675: Approximation Algorithms Fall 2011

Lecture 6,7 (Sept 27 and 29 , 2011): Bin Packing, MAX-SAT
Lecturer: Mohammad R. Salavatipour Scribe: Weitian Tong

6.1 Bin Packing Problem

Recall the bin packing problem:

Bin Packing:

• Input: Given a set of n items each having a rational size si in (0, 1].

• Output: Find the minimum number of bins (of unit size) into which all the items can be packed.

Theorem 1 There is no α-approximation algorithm with α < 3
2 for Bin Packing unless P = NP .

Proof. Consider the following NP-hard problem.

Partition:

Input: set of items S = {1, ..., n} with size (0 ≤ si ≤ 1) ∈ Q+.

Question: Can we partition S into two parts S′ and S − S′ such that
∑
i∈S Si =

∑
j∈S−S′ Sj?

Let I be an instance of partition. Scale all Si’s such that
∑

Si = 2 and let this instance I ′ be the input to Bin

Packing. If all items of I ′ fit into 2 bins, since their total sum is 2, both bins must be full and therefore I is a yes
instance (the partition is given by the items in 2 bins for I ′). On the other hand, if I is a Yes instance, then the
corresponding partition implies that the set of items in each part can be fit into one bin for the corresponding
instance I ′. Therefore, the set of items of I ′ can be fit into 2 bins if and only if I is a Yes instance. So if we
can distinguish between 2 and ≥ 3 for I ′ then we can decide between Yes and No for I. Therefore, there is no
better than 3

2 -approximation for bin packing unless P=NP.

6.1.1 The obvious greedy algorithm: First Fit

There is a very straightforward greedy approximation algorithm, called First F it. First F it processes the
items in arbitrary order. For each item, it attempts to place the item in the first bin that can accommodate the
item. If no bin is found, it opens a new bin and puts the item within the new bin. First Fit implements easily
in O(n2) time. With proper data structures it can run faster.

FirstFit Algorithm

6-1

6-2 Lecture 6,7: Bin Packing, MAX-SAT

For i← 1 to n do
Let j be the first bin such that i can fit into
Put item i into bin j

Theorem 2 First Fit is a 2-approximation algorithm.

Proof. This is due to a simple observation that at any given time, it is impossible for 2 bins to be at most half
full. The reason is that if at some point a bin was at most half full, meaning it has at least a half empty space,
the algorithm will not open a new bin for any item whose size is at most 1

2 . Only after the bin fills with more
than 1

2 or if an item with a size larger than 1
2 arrives, the algorithm may open a new bin. Thus, if First F it

uses FF (I) bins, at least FF (I)− 1 bins are more than half full. Then FF (I)−1
2 <

∑n
i=1 si ≤ OPT (I), and we

get FF (I) ≤ 2 ∗OPT (I)

Theorem 3 (Johnson’73) Suppose the n items have been sorted in descending order by size. FF (I) ≤
11
9 OPT (I) + 4.

6.1.2 An asymptotic PTAS

Now we will introduce an asymptotic PTAS for Bin Packing. First, suppose all the items are small, say less
than ε, then by FF all but at most one bin are at least (1−ε)-full. Then (1−ε)(FF (I)−1) <

∑n
i=1 si ≤ OPT (I),

we get FF (I) ≤ (1 + ε)OPT (I) + 1. Now let’s consider the situation when all items are large. First we prove
the following lemma for a slightly more special case.

Lemma 1 Let ε > 0 be fixed constant and g be a fixed positive integer. Suppose all items are large that is at
least ε, and there are only g distinct sizes. Then we can solve this bin packing problem exactly in polynomial
time.

Proof. Since every bin is of unit size and item size is at least ε, at most m = b 1ε c items can be packed in each
bin. Define bin type is a configuration of different sizes of items that will be packed into bins. Then the number
of different bin types is no more than gm(R , gm), which is a constant. Since there are n items and each item
has size less than bin size, at most n bins are needed. Remembering that it only matters how many bins of each
configuration there are, not what order they are in. If xi denotes the number of bins with the ith configuration,
then the nonequivalent solutions correspond to nonnegative integral solutions to the equation

x1 + x2 + · · ·+ xR ≤ n,

of which there are at most (
n+R

R

)
solutions by a classic combinatorial argument. Since

(
n+R
R

)
is O(nR), we can solve this problem in polynomial

time by enumerating all the possible solutions and finding out the optimal solution.

Now what if all the items are large but there are not a constant number of distinct sizes? we use the same trick
of scaling (as in the knapsack problem) to bring down the number of distinct sizes to a constant at a loss of
small factor in the approximation ratio.

Lemma 2 If all the items are large (i.e. si > ε) for a fixed constant ε > 0, then there is a (1+ε)-approximation
algorithm.

Lecture 6,7: Bin Packing, MAX-SAT 6-3

Proof. Let IL be the given instance. Consider the large items in non-increasing order of their sizes. For some
k (which will be set to bε2nc), put every k consecutive items into one group, i.e. we are partitioning the large
items into groups of size k each. So we get g = dnk e = d1/ε2e groups: G1, G2, . . . , Gg and every item in group
Gi is greater than (or equal to) every item in group Gi+1, for every 1 ≤ i < g.

We build a new instance I ′ in the following way. First discard G1. For G1, we will need at most need k bins to
pack those items, so we can easily fit all those items into k bins at the end. Round up the items in group Gi to
the largest value in that group (for every 2 ≤ i ≤ g). We call this instance I ′. So we get g − 1 groups and all
the items in each group have the same size.

Lemma 3 The cost of OPT(I ′) ≤ OPT(IL).

Proof. To prove this lemma we build another instance, called I ′′ from IL. We can discard all the items in the
last group G≤g from IL and round all the items in group Gi (where 1 ≤ i < g) down to the smallest value in
that group. Now we call this instance I ′′. Clearly, OPT(I ′′) ≤ OPT(IL). Also, both I ′ and I ′′ have the same
number of groups and the same number of items in each group. Furthermore, all the items in the i’th group of
I ′ (which are coming from Gi+1 of IL) are smaller than all the items in the i’th group of I ′′ (which are coming
from Gi of IL). Therefore: OPT(I ′) ≤ OPT(I ′′). Combining these two inequalities we get the lemma.

Note that we can compute the optimum solution for I ′ since it has only a constant g = d1/ε2e number of bins.
This will take at most OPT(IL) bins according to the above lemma. Also we can pack all the items of groups
of G2, . . . , Gg of IL according to the packing of I ′. We use an extra at most k = bε2nc bins to pack the items
in G1. Thus, we pack all of IL using at most OPT(IL) + bε2nc bins. Since all items have size at least ε thus
OPT(IL) ≥ εn which implies bε2nc ≤ εOPT(IL). Thus we use at most (1 + ε)OPT(IL) bins.

Theorem 4 For any fixed ε > 0, we can find an approximation algorithm which produces a solution using at
most (1 + ε)OPT + 1 bins.

Proof. Let I be the given instance and partition it into two part: IL containing large items with size larger
than ε and IS containing the rest items. Then we have the following algorithm:

APTAS for Bin Packing

Split all items into smalls (≤ ε
2) and larges (> ε

2): IS and IL.
Let k = dε2ne,
Construct I ′ as above from IL.
Solve the problem on I ′ exactly; let us say b is the optimal solution for the instance I ′.
Pack items in G1 into k bins (because there are only k items in G1).
Use FF algorithm to pack the small items.

If the FF phrase does not open any new bin, then the number of bins is at most (1+ε)OPT(I ′) ≤ (1+ε)OPT(I)
by lemma 2. If the FF phase does open new bins, then at the end, all but the last bin must be more than 1− ε
full. Recall the discussion in the beginning of this subsection: FF (I) ≤ (1 + ε)OPT(I) + 1. Therefore, in either
case our algorithm uses no more than (1 + ε)OPT(I) + 1 bins.

6-4 Lecture 6,7: Bin Packing, MAX-SAT

6.2 Maximum Satisfiability Problem

The Maximum Satisfiability problem (MAX-SAT), which is an optimization version of SAT, consists of finding a
truth assignment that satisfies the maximum number of clauses in a CNF formula. Sometimes, we also consider
a variant of MAX-SAT, called weighted MAX-SAT. In weighted MAX-SAT, every clause has a weight and the
problem consists of finding a truth assignment in which the sum of weights of violated clauses is minimal.

MAX-SAT:

• Input: A boolean formula in CNF over n variables x1, . . . , xn and a weight wi for each clause Ci, 1 ≤ i ≤ m

• Output: Find a truth assignment to variables such that it maximizes the sum of weights of satisfied
clauses.

There are some special subproblem of Weight Maximum Satisfiability problem.

• Special case when wi = 1, i = 1, . . . ,m: maximize the number of satisfied clauses.

• MAX-KSAT: every clause has at most k literals.

• MAX-EKSAT: each clause contains exactly k literals.

Theorem 5 Max-k-SAT is NP hard for any k ≥ 2.

Note that 2-SAT is polynomially solvable and k-SAT (for k ≥ 3) is NP-hard.

Today, we will see 3 approximation algorithms for Max-SAT. The first one is good when the sizes of clauses are
large. Then we show how to improve upon this algorithm. The third algorithm (seen next lecture) will be good
when the clauses are small. At the end we show how the combination of the first and third algorithms yields a
better approximation algorithm.

6.2.1 Simple Randomized Algorithm

This is perhaps the most obvious randomized (and maybe the dumbest possible randomized) algorithm. Flip
a fair coin for every variable (independently) to choose the value True or False for that variable, i.e. set it
to True/False with probability of 1

2 and return this truth assignment. We call this the simple randomized
algorithm.

Theorem 6 (Johnson ’74) Simple Randomized Algorithm is a 1
2 -approximation algorithm for MAX-SAT.

Proof. Let τ be the truth assignment and let boolean variables Yj indicates whether clause Cj is satisfied.

Yj =

{
1, Cj is satisfied

0, otherwise

Let the random variable W denote the weight of the satisfied clauses, and let Wj be the contribution to W from
any particular clause Cj . Thus we have E [W] =

∑m
j=1 wjPr [Cj is satisfied] =

∑m
j=1 wjE [Yj]. Since clause

Cj is satisfied unless all of its literals are false, Pr [Cj is satisfied] = 1 − 1

2|Cj |
. One the other hand, |Cj | ≥ 1

indicates 1

2|Cj |
≤ 1

2 . Thus, E [W] ≥ 1
2

∑m
j=1 wj ≥

1
2OPT .

Lecture 6,7: Bin Packing, MAX-SAT 6-5

Note: If all clauses have size k is at least 3, then this is a
(
1− 1

2k

)
-approximate algorithm which is fairly good.

For example, when k = 3, we get a 7
8 -approximation algorithm for MAX-3SAT. And the following theorem

shows that this is essentially best possible.

Theorem 7 (Hastad’97) There is no α-approximation algorithm with α < 7
8 for MAX-3SATs unless P = NP

.

6.2.2 De-randomization Using the Method of Conditional Expectation

In fact, it is possible to achieve the approximations we showed not just in expectation but in a deterministic
way using the method of conditional expectation. This is a general technique developed by Erdös and Spencer
and can be used for many other problems. For this problem, we will use the following important property:

Lemma 4 Suppose we have assigned the first i boolean variables x1 = a1, . . . , xi = ai. Then we can compute
the expected value of solution in polynomial time.

Proof. Observe that we can calculate the expectation of W conditioned on any partial set of assignments
to the variables if a literal is false, then remove it from all the clauses in which it appears; if it is true, then
ignore the clauses which contain it, as they are already satisfied. Then the conditional expectation of W is the
unconditioned expectation of W in the reduced set of clauses plus the weight of the already satisfied clauses.
Thus let f ′ be the formula over variables xi+1, . . . , xn obtained from original formula f by substituting values
of x1, . . . , xi and simply we can compute the expected value of f ′.

This lemma suggests the following simple algorithm.

— Consider x1 for each of two assignment of x1 = T or F , compute the expected value of the solution. If
E [W |x1 = T] > E [W |x1 = F], then we assign x1 = T , otherwise, x1 = F . Now set x1 = τ as above and
write the expected value of W as a weighted average of conditional expectations.

E[W] = E [W |x1 = T]Pr(x1 = T) + E [W |x1 = F]Pr(x1 = F)

=
1

2
(E [W |x1 = T] + E [W |x1 = F])

Then we have E [W |x1 = τ] ≥ E[W] ≥ 1
2OPT So if we go through all the variables and always choose the

assignment that gives a larger expected W , eventually we will find some assignment to all the variables
such that the value of W is at least OPT

2 .

6.2.3 A better algorithm using biased coins

Now we introduce a better algorithm using biased coins. First, assume that all 1-clauses in a given instance
contain no negated literals. We set each xi = T with probability p (≥ 1

2 to be defined). Then we return the
truth assignment as the solution of the algorithm. If Cj is a 1-clause, it is satisfied with prob p. If Cj is a
≥ 2-clause then let α be the number of negated variables in Cj , and β be the number of positive variables in
Cj . So Pr[Cj is satisfied] = 1− pα · (1− p)β ≥ 1− pα+β ≥ 1− p2 (where we have used the fact p ≥ 1− p). This
implies that:

Lemma 5 Pr[Cj is satisfied] ≥ min{p, 1− p2}.

6-6 Lecture 6,7: Bin Packing, MAX-SAT

Now, set p = 1− p2, which means p = (
√
5+1)
2 u 0.618. Thus,

E[W] =
∑
j

wjPr[Cj is satisfied] ≥ p
∑
j

wj ≥ pOPT

and we get an p-approximation algorithm.

What if some of the 1-clauses have positive literals and some have negative literals? If for some variable xi
only its negated version appears in 1-clauses, say for example Cj = xi, then we can define another boolean

variable x′i = xi and replace all occurrences of xi with x′i and all occurrence of xi with x′i. If for some literal xi
both its negated version and non-negated version appear in 1-clauses, e.g. Cj = xi and C` = xi, without loss
of generality and using renaming of variables as above, we can assume that wj ≥ wl. So let N be the set of
1-clauses which contain only one negated literal and U be all other clauses. By the assumption above note that
OPT ≤

∑
j∈U wj . Now if we use the same randomized algorithm with probability p, then:

E[W] =
∑
j

wjPr[Cj is satisfied]

≥
∑
j

wjPr[Cj is satisfied]−
∑
j∈N

wjPr[Cj is satisfied]

=
∑
j∈U

wjPr[Cj is satisfied]

≥ pOPT.

6.2.4 Randomized Rounding for Max-SAT

In this section we present an LP rounding algorithm for Max-SAT and show that it has ratio at most 1 − 1
e .

The algorithm works better if the size of clauses is smaller. This algorithm is based on an IP/LP formulation
of Max-SAT and LP-rounding. First we show how to formulate the problem as an IP/LP.

Let Pj (Nj) be the indices of variables in clauses Cj that are in positive (negative) form. For every xi, we have
an indicating variable yi which is set to 1 (0) iff xi is set to Ture (False). Also, for every clause Cj , we have a
variable zj which is 1 iff Cj is satisfied. Then the Max-SAT problem can be stated as:

maximize
∑
wjzj

subject to ∀j :
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj
∀j : zj ∈ {0, 1}
∀i : yi ∈ {0, 1}

The LP-relaxation is:
maximize

∑
wjzj

subject to ∀j :
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj
∀j : 0 ≤ zj ≤ 1
∀i : 0 ≤ yi ≤ 1

Randomized-Rounding for Max-SAT:
- Solve the LP; let (y∗, z∗) be the optimal solution
- For each xi, set it to True with probability y∗i
- Let x̂ (vector) be the integer solution obtained.

Lecture 6,7: Bin Packing, MAX-SAT 6-7

Theorem 8 (Goemans-Williamson’94) The Rand-Rounding is a (1− 1
e)-approximation algorithm.

Proof. We will use the following two facts:

Fact 1: Arithmetic geometry means inequality For any sequence of non-negative integersa1, a2, . . . , ak:(
a1 + a2 + · · ·+ ak

k

)k
≥ a1a2 . . . ak.

Fact 2: If f(x) is concave over [0, 1] (i.e. (f ′′(x) ≤ 0)), and f(0) = 0, f(1) = α, then the function f is lower
bounded by the line going through origin (0, 0) and (1, α).

Figure 6.4: f(x)

Let wj be the weight contributed by Cj to W . For each clause Cj , it is not satisfied if and only if none of the
literals are True. Because xi is set to True with probability y∗i , the clause is true with probability

Pr[Cj is satisfied] = 1−
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i

≥ 1−

(∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

k

)k

= 1−

(
1−

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

k

)k

≥ 1−
(

1−
Z∗j
k

)k
.

(6.1)

Consider the function g(z) = 1−
(
1− z

k

)k
, since g(0) = 0, g(1) = 1−

(
1− 1

k

)k
and it is a concave function, we

have g(z) ≥ 1−
(
1− 1

k

)k
z according to second property as introduced above. Thus,

Pr[Cj is satisfied] ≥ 1−
(

1− 1

k

)k
Z∗j ≥

(
1− 1

e

)
Z∗j .

And

E[W] =
∑
j

wjPr[Cj is satisfied] ≥
(

1− 1

e

)
OPTLP .

6-8 Lecture 6,7: Bin Packing, MAX-SAT

Using the method of conditional expectation as applied in the analysis of Simple Randomized Algorithm, we
can also de-randomize this problem and get a same result as the Rand Rounding Algorithm gets.

Note that 1− 1
e ≈ 0.632 which is greater than 0.618 in algorithm 2. Also, if all clauses have size at most k and

k is relatively small, then the approximation ratio of this algorithm is 1 − (1 − 1
k)k > 1 − 1

e . So we get better
approximation factor for smaller k’s while the simple randomized algorithm gives better approximation factor
for larger k’s. So it seems reasonable to run both algorithms and return the better solution. This is the main
idea of our 3rd algorithm which gives a 3

4 -approximation ratio.

6.2.5 A 3
4
-approximation algorithm

Johnson’s Simple Randomized Algorithm works well if clauses are large while Rand Rounding Algorithm works
well if clauses are small.

Suppose we flip a coin and based on the outcome (a = 0 or a = 1) we run algorithm 1 (simple randomized) or
algorithm 3 (randomized-rounding).

The better of the two algorithm:

• Flip a fair coin.

• Use Simple Randomized Algorithm and Rand Rounding Algorithm with a probability of 1
2 respectively.

We can also run the deterministic version of each of the two algorithms and return the better of the two.
Clearly the solution is no worse than the expected value of the randomized version described above. We show
the following lemma which proves the approximation ratio of this algorithm is 3/4.

Lemma 6 E[wj] ≥ 3
4wjZ

∗
j .

Proof. Let’s assume that Cj has k variables and define αk = 1− 1
2k

and βk = 1− (1− 1
k)k. From the analysis

of simple randomized algorithm and the randomized rounding algorithm we know that:

E[Wj |a = 0] ≥ (1− 1

2k
)wj ≥ αkwjz∗j

and
E[Wj |a = 1] ≥ βkz∗jwj .

Therefore, combining these two:

E[Wj] = E[Wj |a = 0] Pr[a = 0] + E[Wj |a = 1] Pr[a = 1] ≥ 1

2
(αk + βk)wjz

∗
j

Since α1 + β1 = 1
2 + 1 = 3

2 , α2 + β2 = 3
4 + 3

4 = 3
2 , and for k ≥ 3: αk = 1 − 1

2k
≥ 1 − 1

8 = 0.875,

βk = 1− (1− 1
k)k ≥ 1− 1

e ; αk + βk ≥ 3
2 for all values of k. Therefore,

E[W] =
∑
j

E[Wj] ≥
3

4

∑
j

wjz
∗
j ≥

3

4
OPT.

Lecture 6,7: Bin Packing, MAX-SAT 6-9

The following example shows that the analysis of Algorithm 3 is tight, i.e. the integrality gap of the given LP
is at least 4

3 .

Example: Consider the following instance of Max-SAT: (x1∨x2)∧ (x1∨x2)∧ (x1∨x2)∧ (x1∨x2), and assume
that all the weights are 1. Clearly the cost of OPT is 3. On the other hand, if we set yi = 1/2 and zj = 1 for
every i, j we get a feasible fractional solution with weight 4. Therefore, the integrality gap is at least 4

3 .

The best known approximation factor for MAX-SAT is 0.7846 using semi-definite programming. Based on a
conjecture (by Uri Zwick), which is supported by experimental results, we can get 0.8331-approximation. Recall
that the lower bound (from the hardness of MAX-E3SAT) is 7/8, i.e. we cannot get an (7

8 − ε)-approximation
for any ε > 0, unless P=NP.

6.3 Uncapacitated Facility Location Problem

Facility location problem is one of the most well studied problem in approximation algorithms and operation
research. There are many different variations of this problem. Here we are going to look at the classical
Uncapacitated Facility Location Problem (UFLP).

Uncapacitated Facility Location Problem: Suppose we are given a metric graph G = (V,E). There is a
set of clients D ⊆ V each having a demand to be served. There is a set of facilities F ⊆ V , each having an
opening cost fi. We assume that G is weighted and cij is the cost (or distance) of going from j to i, e.g. for
a client at location j to get service at a facility at location i. Cost function cij satisfies the triangle inequality.
The goal is to find a subset F ′ ⊆ F to open and assign each client to nearest opened facility to minimize∑
i∈F ′ fi +

∑
j∈D(mini∈F ′Cij).

We are going to write an IP/LP formulation for UFLP. Declare variables yi ∈ {0, 1} for each facility i ∈ F
opened; variable xij indicates whether client j is served by facility i. We want to minimize the total cost of
opening facilities and the distance cost of each client. So we have the following integer linear program formulation
of the metric facility location problem.

minimize
∑
i fiyi +

∑
i,j cijxij

subjectto
∑
i xij = 1 ∀j ∈ D,
yi ≥ xij ∀j ∈ D, i ∈ F,

xij , yi ≥ 0

Let us formulate the dual LP too. We can have the following interpretation for the dual variables. Let vj be the
total payment for client j, j ∈ D and wij be the cost contributed by client j to open the facility i, i ∈ F, j ∈ F .

maximize
∑
j vj

subjectto
∑
j wij ≥ fi ∀i ∈ F,

vj − wij ≤ cij ∀j ∈ D, i ∈ F,
vi, wij ≥ 0 ∀j ∈ D, i ∈ F.

Lemma 7 If (x∗, y∗) and (v∗, w∗) are optimal solutions for primal and dual problems respectively, then x∗ij > 0
implies cij ≤ vj.

Proof. The proof is an easy application of the complementary slackness condition: x∗ij > 0 implies v∗j−w∗ij = cij .
Thus we have cij ≤ vj since w∗ij ≥ 0.

6-10 Lecture 6,7: Bin Packing, MAX-SAT

Let (x∗, y∗) be an optimal solution for the primal LP. For each client j ∈ D we define its first neighborhood
as: N(j) = {i ∈ F | x∗ij > 0} and second neighborhood as N2(j) = {k ∈ D | ∃i ∈ N(j) s.t. x∗ik > 0}. We
also define Cj =

∑
i cijx

∗
ij as the cost of serving client j ∈ D in the optimum LP. Our goal is to show that the

following algorithm is a 3-approximation for UFLP.

Rounding Algorithm for UFLP

1. Solve relaxed LP and its dual problem and get their optimal solutions (x∗, y∗) , (v∗, w∗)
2. C ← D
3. K ← 0
4. while C 6= φ do
5. k ← k + 1
6. choose jk ∈ C which minimizes Cj + v∗j
7. choose i ∈ N(jk) with probability x∗ijk
8. assign jk and all unassigned clients in N2(jk) to i
9. C ← C\{jk} ∪N2(jk)

