CMPUT 675: Approximation Algorithms Fall 2011

Lecture 18 (November 8): Euclidean TSP

Lecturer: Mohammad R. Salavatipour Scribe: Seyed Sina Khankhajeh

18.1 Introduction

Euclidean TSP is a subset of Travelling Salesman Problem in which distances are on Euclidean plane, i.e.
the instances are on R?. Mathematically speaking, distance of any two vertices v; = (x;,y;) and vj = (xj,y;) is

d(vi,v5) = /(s — )% + (yi — y5)?

We will give a PTAS for this problem, i.e. for any ¢ > 0, we will get to a (1 + €)-approximation.!

The general steps for this matter will be:

e Show that it is sufficient to focus on some special instances having certain properties.
e Use the method of dividing (recursively) the plane into smaller squares.
e Show that there is a (1 + €) * OPT costing tour that does not cross the squares too many times.

e Use dynamic programming.

In a lot of papers this idea has been used to obtain a PTAS for different problems such as Steiner Tree Problem.

18.2 Reducing to Nice instances

Definition 1 Nice Instance: In a nice instance of a Fuclidean TSP, minimum distance between points are
at least 4, and all the points are integers in [0, 0(n)].

Lemma 1 We can reduce any Euclidean instance to a nice one at a loss of (1 + €)-factor.

Proof. Take a minimal bounding box; say size L. this means there are two vertices with distance at least L

L
and obvious we will have OPT > L. Take a grid with spacing ;— and move each point to nearest grid point.
n
2¢eL
The increase in distances will be at most 26— for each point. Therefore, the OPT tour will increase by at most
n
2¢eL
7 * kit <exOPT.
2n

8n L 8n
Now, scale things by —. Now each grid size is at least ;— * 7= 4. So any two points in the scaled version
n e

will have distance at least 4.

1The figures and their captions are captured from textbooks of this course [1] [2]
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Note that:

Maximum distance (new L) < — = O(n) (e is fixed)
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Figure 18.1: An example of the smallest square containing all the points of the instance, and the grid of lines

el
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18.3 Dissection of bounding box

So far, we can assume that we have a nice instance at a loss of (1 + €)-factor. We can assume that:

L = 2% (and sinceL = O(n)) — k = O(logn)

We consider a dissection of bounding box into 4 squares, recursively. This corresponds to a quad-tree such that:
Level Zero(root) corresponds to the bounding box

Level one corresponds to squares of size % X é

and generally:

Level i corresponds to squares of size % X é

We continue until we get to squares of size one. Since our instance is a nice one, there is at most one vertex
at each leaf. We define squares having a node inside a useful squares. Note that lines dissecting a square of
level ¢ — 1 have level i.
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Figure 18.2: An example of a dissection. The level 0 square is outlined in a thick black line; the level 1 squares
in thin black lines, and the level 2 squares in dashed lines. The thin black lines are level 1 lines, and the dashed
lines are level 2 lines

. Level I line

. Level 2 line

_-Level 3 line

Figure 18.3: Another example of dissection of bounding box

L
Now, break each line into m + 1 points called portals, that are all equidistant, i.e. on line level ¢ they are —
apart.

Note that portals of larger/higher squares are co-located with smaller ones.
Choose m to be a power of two in [£, 2k]. So, m € O(IOLE”).

€ €
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Figure 18.4: Portals added to the squares of the dissection with portal parameter m = 2. The black squares are
portals for both the level 1 and level 2 squares; the white squares are portals for the level 2 squares.

18.4 Tours with nice features

Definition 2 p-tour(portal-respecting tour): a tour that crosses each square only at portal points.

Figure 18.5: A portal-respecting tour(p-tour). Note that only black portals are used to enter or exit the level 1
squares, while the portals on the level 2 squares are added to enter or exit the level 2 squares.

Definition 3 2-light p-tour: a p-tour that each portal point is crossed at most 2 times.
Definition 4 well-behaved p-tour: a p-tour that is non-self-crossing.

Lemma 2 if 7 is a p-tour that is well-behaved then there is one p-tour that is well-behaved and 2-light of no
more cost.
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Proof. By short-cutting and using triangle inequality it is easy to show that we can reduce number of crossings
to at most 2.

/

Figure 18.6: Illustration of a short-cutting a portal

Lemma 3 An optimum p-tour that is well-behaved and 2-light can be computed in time nO).

Proof. We use dynamic programming. Assume 7 is optimum such tour. Consider S to be a square with m
portals on each side. 7 crosses S at most 8m times(each portal at most 2). 7 inside S is a collection of at most
8m non-intersecting paths.

Figure 18.7: Partial p-tour inside a square

In order to find a valid path we know that it must be a non-intersecting path. So if we show the sides of the
square S on a single line a valid path will correspond to a valid collection of parenthesis, i.e. for every ( there
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is a unique ) at the rest of list of parenthesis. So, the number of valid paths is the 8m!" number on Catalan
numbers which is 20" = n0(),

Also, for each portal we can have 0, 1,2 crossings. So total number of options are 3*™ = nO(2). So here we will
use our dynamic programming in a bottom-up fashion. Since number of valid paths is polynomial and number
of possible crossings on portals is also polynomial, the total number of possible pairing will be also polynomial
and we will just have to check for the existing square.

N

Invalid pairing Valid pairing

Figure 18.8: An example of invalid and valid pairing

18.5 PTAS for Euclidean TSP

We will try to present a randomized algorithm. For that matter we should first define a random dissection.

Definition 5 A random dissection is a dissection in which we can choose the origin randomly. It is also called

(a,b)-dissection where a,b € [0, £]
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Figure 18.9: A (a,b)-dissection

Theorem 1 For random (a,b)-dissection, there is a well-behaved 2-light p-tour of cost at most (1 + €) * OPT
with probability at least %

Proof.

For each line [ let ¢(l) be the number of times the optimum tour crosses [. let 7' = >, ¢(l). We claim that
T < 2% OPT. To prove that, note that for each edge e = (u,v), contribution of e to T will be at most
|Zw — Tu| + |Yu — yo| + 2. Cost of e to the optimum is S = /(24 — )2 + (Yu — y»)? > 4. It is very easy to
check that contribution of e to T' is at most 25.
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Figure 18.10: u,v and their contribution to 7" and optimum

Consider any dissection and lets try to make optimum tour 7 a well-behaved 2-light p-tour. if 7 crosses line [
at any point, make it cross at nearest portal.
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Because of randomness, we will have: _
274
prob[l is at level i] = 7

So, portal distances on line [ are zfm'

Therefore, the expected increase in cost by making 7, portal-respecting is at most:
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In above, i is portal distances and T is number of level 7 lines.
m

Summing up over all lines (crossing in T') we get an upper bound for increase in cost of € * 20 PT.

So we have a (1 4 € )-factor here and we had a (1 + ¢ )-factor at the beginning to turn our instance to a nice
instance. Overall, we will still have a (1 + €)-factor for our general Euclidean problem which is the PTAS we

were looking for.

Actually this technique is operable on d-dimensional Euclidean TSP and we can get a PTAS in that problem

as well.
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